ELEC 6131: Error Detecting and Correcting Codes
Lecture 3: Galois Fields

Properties of extended Galois Field GF(2™):

In ordinary algebra, it is very likely that an equation with real coefficients does not have real roots.

For example, equation X% + X + 1 has to have two roots, but neither of them is in R. The roots of

X2+ X+ 1are —% ij?. That is, they are from the complex field (.

The same way, a polynomial with coefficients from GF(2), may or may not have roots € {0, 1}.
For example, it is easy to see that X* + X3 + 1 over GF(2) is irreducible. So, it does not have
roots in GF (2). But it is of degree four, so it has to have four roots. These roots are in GF (2%). For
a small field like GF (2%) it is easy to try all 16 elements (in fact 14, since we know that 0 and 1
are not answers) to find four that solves the equation.

Doing this, i.e., substituting elements of GF (2*%) into the equation X* + X3 + 1 we find out that
a’, a'l, a3, and a'* are its roots. For example, (a”)*+ (a’)*+1=a®®* +a?t+1=0a'3 +
a®+1=>1+a?+a®)+ (a? + a®) + 1 = 0. Similarly, we can check a'?, a3, and a'*. So,

X+ X3 +1=X+aD)X+aH)X + a®)(X + a'?).
The following theorem helps us to find other roots of a polynomial after finding one.
Theorem 11: let § € GF(2™) be a root of f(X). Then, ﬁzi,i > 0 is also a root of f(X).

Proof: we have seen that [f(X)]? = f(X?). So, [f(B)]? = f(B?). Sine f(B) =0, f(B?) = 0.
Also, [f(82)]? = f (B2*). So. £ (8?”) = £(8*) = 0 and so on. Therefore, f (5?') = 0,i > 0.
These elements ﬁzi of GF(2™) are called conjugates of 3.

In the previous example, after finding § = a” as a root of X* + X3 + 1, we can see that §2' =
a'* is a root as well. B2° = B* = a?® = '3 is also a root. And also, f2° = B8 = a6 = 1.
Theorem 12: the 2™ — 1 non-zero elements of GF(2™) form all the roots of X 2M-1 4 1.

Proof: in Theorem 8, we saw that if 8 is an element of GF (q), then 971 = 1. So, for B € GF(2™)
we have 2"~ = 1 = 2™~1 4 1 = 0. This means that § is a root of X2~ + 1. Therefor, every
non-zero elements of GF(2™) is a root of X 2™-1 1 1 and since this polynomial has 2™ — 1 roots,
the 2™ — 1 non-zero elements of GF(2™) form all the roots of X2" 1 + 1.

Corollary 12.1: the elements of GF(2™) form all the roots of X2" + X.

Proof: this polynomial factors as X [X 2m-1 1]. It has a root of zero and all non-zero elements of
GF(2™) as its roots.



While an element 8 over GF(2™) is always a root of X2 ~1 + 1, it may also be a root of a
polynomial over GF(2) with degree less than 2™ — 1. Take m = 4, i.e., GF(2%). X" 141 =
X +1. Wecanwrite X5 +1=X*+ X3+ DX+ X0+ X+ X8+ X0 + X* + X3 +1).
We saw that § = a’ is aroot of X* + X3 + 1.

Definition: for any f € GF(2™) the polynomial @(X) with lowest degree that has § as its root is
called the minimal polynomial of 3.

Theorem 13: the minimal polynomial @(X) of a field element S is irreducible.

Proof: suppose @(X) is not irreducible and can be written as @(X) = @, (X)?,(X). Since @(B) =
?,(B)D,(B) = 0, then either @,(B) = 0 or @,(B) = 0. This contradicts the definition the @(X)
is the smallest degree polynomial with £ as a root.

Theorem 14: if a polynomial f(X) over GF(2) has [ as a root, then @(X) divides f(X).

Proof: suppose f(X) is not divisible by @(X). Then, f(X) = @(X) - a(X) + r(X) with r(X)
having degree less than @(X). But,

fB) =0 -alB)+r(B)
fB)=0and@(B)=0=>r(f)=0
= contradiction.
Following properties are simple to prove:
Theorem 15: the minimal polynomial @(X) of 8 € GF(2™) divides X2 + X.
Theorem 16: if f(X) is an irreducible polynomial and f(8) = 0, then f(X) = @(X).

In a previous example, we saw that a’, a'!, a3, and a'* are roots of f(X) = X* + X3 + 1. That
is,

X'+ X3+1=X+a)D)X+a)X + a®) (X + a').

Note that if we take f = a”’, we have f2 = a*, p* = a?®8 = a3, 8 = @', and p1* = g = a’.
That is,

X*+X3+1=X+pX+ L)X+ BH(X + p3).
Following theorem relates to this observation.

Theorem 17: for B € GF(2™) if e is the smallest number such that B2 = B, then f(X) =
123X + B 2" is an irreducible polynomial over GF (2).

Proof: first we show that f(X) is a polynomial over GF (2).
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Let f(X) =fo + fiX + -+ f,X¢, then f(X?) = fo + f1X% + -+ f,X?¢ and [f(X)]? = (fy +
X4+ X2 = X fEXH+ (L + D X0 X0 fifiX™ = T80 f7XL. So,

fXH) =[f(X)]? = f2 = f; forall i.

This means that f; = 0 or f; = 1 for all i. Therefore, f(X) is a polynomial over GF(2). Now we
show that if we assume f(X) is not irreducible, we arrive at a contradiction.

Let f(X) not be irreducible and can be written as f(X) = a(X)b(X). Since f(B) = 0, either
a(B) =0 or b(B) = 0. If a(B) = 0, then a(X) has B as well as B2,---, 52" ! as its roots. So, it
has degree e and a(X) = f(X). Similarly, for b(X). Therefore, f (X) must be irreducible.

Definition: B2, -, 32" " are called conjugates of §.

Theorem 18: let @(X) be the minimal polynomial of 8 € GF(2™). Let e be the smallest non-
negative integer such that #2° = . Then,

e—1
o0 = | Jer+£%
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Example: consider Galois Field GF(2%) and let # = 3. The conjugates of a3 are 2 = a3, %* =
B* = a2, %’ = a?* = a°. So, O(X) for B = a® is

X)) =X +a> )X +a®)(X + a>)(X + a?)
=X*+X3+X*+X+1

Consider GF (2*) generated by p(X) = X* + X + 1. Following is a list of minimal polynomials.

Conjugate Roots P(X)
0 X
1 X+1
a, a?, at, ab X*+X+1
a3, a®, a®, at? X*+X3+X2+X+1
5 10 2
a’,a X“+X+1
a’, a'l, a3, alt X*+Xx3+1

Theorem 19: let @(X) be the minimal polynomial of f € GF(2™) and the degree of @(X) is e.
Then e is the smallest integer such that 2° = B. Also e < m.

Theorem 20: if 8 is a primitive element of GF(2™), then 52, ---,,[i'zi, .-+ (its conjugates) are also
primitive elements of GF (2™).

Theorem 21: all conjugates of § € GF(2™) have the same order.
Vector Spaces:

Let V be a set of elements on which an operation called addition (+) is defined. Let F be a field. A
multiplication () operation between elements of V and F is defined. The set V is called a vector
space over F if the following conditions hold:

1) V is a commutative group under addition.
ii) for any elementa € F andany vE€V: a-vEV.
i11) distributive law:
Vab€FandVuveV:
a-(g+g)=a-g+a-gand
(a+b)-v=a-v+b-v

1v) associative law:

(@ab)-v=a-(b-v)
v) let 1 be the unit element of F. Then, Vv €V = 1.v = v.

The elements of V are called vectors. The elements of the field F are called scalars.




The addition between elements of V is called vector addition.

The multiplication between elements of F and V is called scalar multiplication.
Properties of the vector field:
Property I: Vv € V = 0+ v = 0 where 0 is the zero element of F.
Property II: V¢ € F = ¢ - 0 = 0 where 0 is the zero element of V.
Property III: V¢ € F and Vv € V, we have:
(—a)-v=c-(-v) =—(c-v)
Definition: a subset of a vector space V say S is called a subspace if it is also a vector space.
Theorem 22: let S ¢ V where V is a vector space over F. The S is a subspace of V' if:
HDYuveS ut+ves.
i)Vae€Vandu€S=>a-ue€s.
n-tuples of GF(2) elements as a vector space:
Take v = (vg, V4, "+, V—1) Where v; € GF(2). Define:
v+u=Wo+up v+ Uy, Vnog + Upg),
where addition is modulo-2.
Also, for a € GF(2) define:
a-v=(a-vy,a vy, ,a ),
where multiplication is modulo-2.
Let vy, vy, -+, vy be k vectors € V and a4, a,, -, a, € F. Then,
101 + AV + -+ Ay

is called a linear combination of vy, v,, **+, V. It is clear that sum of two linear combinations of

V1, Vg, +, Uy 1s a linear combination of vy, v,, ++-, V.
Also, ¢ - (a1v1 + a,v, + -+ + a,vy) is a linear combination of vy, v,, **+, V. So:
Theorem 23: the set of all linear combinations of vy, v,, -+, v, € V is a subspace of V.

Definition: v,, v,, -, v, € V are linearly dependent if there are k scalars a,, a,, -, a, € F such
that a;v; + a,v, + -+ av, = 0.

A set of vectors V4, Uy, -, Uy € V are linearly independent if they are not linearly dependent.

Consider:



eo = (1,0,--,0)
e = (01,0

en-1 = (0,0,--,1)
these n-tuples span the vector space V of all 2™ n-tuples.

Each n-tuple (ag, aq, -+, an_q1) is written as (ag, aq,*+,ap_1) = Qp€o + a161 + -+ Ap_1€5_1-
Wecall u v = ugvy + uyvq + -+ + Uy 1,1 the inner product of u and v. If u - v = 0, we say
that u and v are orthogonal.

Let S be a subspace of V. Let the subset S; of V' be the set of all vector u of S and for any vector
v €Sy wehaveu v = 0.5, is called the null space of S.

Theorem 24: let S be a k-dimensional subspace of V;, (set of n-tuples over GF(2)). The dimension
of S;, the null space of S, isn — k.



