ELEC 6131: Error Detecting and Correcting Codes
Lecture 6: Cyclic Codes

Cyclic codes:

Definition: a linear block code is cyclic if a cycle shift of any codeword is another codeword.

The ith shift of v = (v, v4, -+,

For example, g(l) = (Vp_1, V0, V1, """,

Example:

i) —
Z( ) = (Un—i: Un—i+1 """

Vp_q) 1S:

2) _
Vp—p) and Z( ) = (Vn-2, Vn—1,V0, V1, """,

Un-1,Vo, V1, vn—i—l)-

Vp_3).

A (7, 4) cyclic code generated by g(X) = 1 + X + X°>.

Messages Code vectors Code polynomials

(0000) 0000000 0=0-gX)

(1000y 1101000 1+X+X3=1 gX)

(0100) 0110100 X+ X*2+X'=X-gX)

(1100) 1011100 1+ X2+ X3+ X' =(1+X)-g(X)

(0010) 0011010 X2+ X34+ X5=Xx2.g(X)

(1010) 1110010 1+ X+X2+X=(1+X%-gX)

(0110) 0101110 X+ X3 +X +X5=(X+X)-gX)

(1110) 1000110 14+ X+ X3 =1+ X + X?) - g(X)

(0001) 0001101 X*4+X¥'4+Xx6=X3.gX)

(1001) 1100101 14X+ X'+ X0 =1 +XY.gx)

G101) 0111001 X+ X?+X°+X=X+X%-gX)

(1101) 1010001 1+ X24+X%=(1+X+X3). gX)

0011) 0010111 X2+ x4+ X5+ X5=(X2+X3).g(X)

101 1) 1111111 14X+ X2+ X3+ X%+ X5+ X°
=1+ X2+ X3 . g(x)

(0111) 0100011 X+X3+Xx5=(X+X2+X%-gXx)

1111 1001011 14+ X3+ X5+ x6

=1+ X+ X2+ X% g(X)

Let v(X) = vy + v, X + v,X% + -+ + v,,_1 X" ! be the polynomial representation of v. Then,

vOX) = v+ Vi X+ + v X+ M+ 1}{%‘“1 + et vn_/é("‘l.

Multiply X* by v(X), i.e., shift v i times (linearly, not cyclically). Then,

XiU(X) = M + 311(441 + -t v, 1Xn—1 + -+ Un—1Xn+i_1-

Add X'v(X) and v® (X):



Xiv(X) + vO(X)
= Vpoi Vg ip1 X+ F Uy X+ 0 X 4 vy X 4 ey, XL

or:
XvX) +vOX) = [V + Vpojgr X + o+ v XET(X™ + 1),
So:
Xw(X) = qO)[X™ + 1] + v (X).
That is, the ith cyclic shift of v(X) is generated by dividing X'v(X) by X™ + 1.
Theorem 1: the non-zero code polynomial with minimum degree in a cyclic code C is unique.

Proof: let g(X) = go + g1 X + -+ gr_1 X"~ 1 + X" be the minimal degree code polynomial of C.
Suppose there is another g'(X) = go+ g1 X + -+ gr_1X""1 4+ X". Then, g(X) + g'(X) is
another codeword in C with degree less than r. = contradiction.

Theorem 2: let g(X) = go + g1 X + -+ gr_1 X"~ + X" be the minimum degree polynomial of
a cyclic code C. Then, gy # 0.

Proof: if g, = 0 then shifting g(X) once to the left (or n — 1 times to right) results in g; + g, X +
o+ 4+ gr_1X""2 4+ X"~1 which has a degree <r = contradiction. So, g(X) =1+ g, X + -+
Groa X7 L+ X"

Let g(X) be the polynomial of minimum degree of a code C. Take
g(X), Xg(X),X?g(X),+, X" ""1g(X). These are shifts of g(X) by 0,1,--,n —r — 1. So, they
are codewords. Any linear combination of them is also a codeword. Therefore,

v(X) = upg(X) + w1 Xg(X) + - + up_r X" 1g(X)
= [up + Wy X + -+ U X" g(X)
1s also a code.

Theorem 3: let g(X) =1+ g, X+ -+ g,_;X""1 + X" be the non-zero code polynomial of
minimum degree of an (1, k) cyclic code C. A binary polynomial of degree n — 1 or less is a code
polynomial if and only if it is a multiple of g(X).

Proof: let v(X) be a polynomial of degree n — 1 or less such that:
v(X)=(ag + ¢ X + -+ ap_r_ X" HgX).
Then,
v(X) = apg(X) + a; Xg(X) + - + ap_r 1 X" g(X).
Since g(X),Xg(X), - are each codeword of C so is their sum v(X).

Now assume v(X) be a code polynomial in C. Then write:



v(X) = a(X)g(X) + b(X)
i.e., divide v(X) by g(X) and get remainder b(X) and quotient a(X).
b(X) =v(X) + a(X)gX).

v(X) is a codeword and so is a(X) g(X). Therefore, b(X) is also a codeword. But degree of b(X)
is less than r = contradiction unless if b(X) = 0.

The number of polynomials of degree n — 1 or less that are multiple of g(X) is 2"~". Due to 1-to-
1 correspondence between these polynomials and the codewords (Theorem 3), we have 2" =
2k=>r=n—-k.

Theorem 4: in an (1, k) cyclic code, there is one and only one code polynomial of degree n — k,
g =14 g1 X + g X? + -+ Gnog1 XVF 1+ XK,

Every code polynomial is a multiple of g(X). Every binary polynomial of degree n — 1 or less
that is a multiple of g(X) is a code polynomial. So,

v(X) = u(X)g(X)
is a code polynomial, however, not in a systematic form.

To make code systematic, multiply the information polynomial u(X) by X™ . This means placing
the k information bits at the head of the shift register (in k right-most Flip-Flops). Then,

u(X) = ug + u X + -+ X571
will result in:
X" u(X) = upX™ 7 +ug XM gy X
Now divide X™ *u(X) by g(X) to get:
X" u(X) = a(X)g(X) + b(X),
where b(X) is a polynomial of degree n — k — 1 or less:
b(X) =by+ b X+ -+ bp_j_ X" k1
b(X) + X" *u(X) = a(X)g(X).
This means that b(X) + X" *u(X) is the representation of a codeword in systematic form, i.e.,
b(X) + X" *u(X) = by + by X + -+ bpy_j_ XK1
+upX" 7 Fu X gy X
that represents

v = (bg, by, ", bp_g_1,Ug, Uy, ", Ug_1).



Example: consider the (7,4) cyclic code generated by g(X) =1+ X + X3. Letu(X) = 1 + X3.

Then,

- X3u(X) = X* +X°

2-

X 3+X

VTR 7 S

x6ay ax3
X%
X X A X
XZx¥ & b )

- vX)=bX)+X3uX)=X+X*+X>+X®0orv=(0,1,1,1,0,0,1)

A (7, 4) cyclic code in systematic form generated by g(X) =

1+ X + X3

Message Codeword

(0000) (0000000) 0=0-g(X)

(1000) (1101000) 1+ X+ X3 =g(X)

(0100) (0110100) X+ X2+ X* = Xg(X)

(11000 (10111000 1+ X2+ X3+ X*=(1+XgX)

(0010) (11100100 1+ X+ X2+ X5=(+ x)gX)

(1010) (0011010) X%+ X3+ X% = X%g(X)

(0110) (1000110) 14+ X4+ X> = (14 X + X)g(X)

(1110) (0101110) X+ X3+ X* + X% = (X + XH)g(X)

(0001) (1010001) 1+ X2+ X6 =(14+X+ XgX)

(1001) (0111001) X+X2+ X3+ X5 = (X + X>g(X)

(0101) (1100101) 1+ X +X*+ X5 =(1+ X3)g(X)

(1101) (0001101) X3+ x*+ X% = X3g(Xx)

(0011) (0100011) X+ X5+ X%=(X+ X2+ X>gX)

(1011) (1001011) 1+ X3+ X+ X=(1+X+ X2+ XHa(X)

(0111) (0010111) X24 X*+ X5+ X5 = (X2 + X3)g(X)

(1111) Q111111 1+ X+ X2+ X3+ x*+ x5 4+ X8
= (1 + X2 + X5)g(X)

Theorem 5: the generator polynomial of an (n, k) code is a factor of X™ + 1.

Proof: divide X*g(X) by X™ + 1.

Xkg) ="+ 1D+ g®X) or XM+ 1=X*g(X) + g®X)

g% (X) is a code polynomial. So, g™ (X) = a(X)b(X) for some a(X). So,

X"+ 1=[X*+aX)]gX).

QED



Theorem 6: if g(X) is a polynomial of degree n — k and is a factor of X™ + 1. Then g(X)
generates an (n, k) cyclic code.

Proof: let g(X),Xg(X), -, X* 1g(X). They are all polynomials of degree n — 1 or less. A linear
combination of them:

v(X) = upg(X) + w1 Xg(X) + -+ + w1 X1 g (X)
= [ug + W X + - + up_ 1 X g (X)

is a code polynomial since u; € {0, 1}. Then v(X) will have 2¥ possibilities. These 2¥ polynomials
form the 2% codewords of the (n, k) code.

Generator polynomial of a cyclic code:

(20 81 @ gnt O 0 0 0
0 2 & & gn-tk 0 O 0
0 0 g & & gnk O 0
G=| . .
00 - - -0 g g g =

For example, for (7,4) code with g(X) = 1+ X + X3, go = g1 = g3 = 1 and g; = 0 otherwise.

1101000
c_l01 10100
0011010
000110 1

This is not always in systematic form. We can make it into systematic form by row and column
operations. For example, for the (7, 4) code:

go 1101000

o= 9 o1 10100
Jo+ gz 1110010
9o+ 91+ 92 1 01 0 0 0 1

Parity check matrix of cyclic codes:
We saw that g(X) divides X" + 1. Write
X"+ 1=gX)hX),
where h(X) is a polynomial of degree k
h(X) = hg + hy X + -+ + hp Xk,

Consider a code polynomial v(X)



v(X)h(X) = u(X)g(X)h(X)
=uX) X"+ 1)
=u(X)X™ + u(X).

Since u(X) has degree less than or equal k—1, so u(X)X™ +u(X) does not have
Xk xk+1 ... xn=1 Thatis coefficients of these powers of X are zero. So, we get n — k equalities:

hivn_l-_j =0 for 1 S]Sn—k

k
=0

L

So, we have H as:

[he hey hez - o+ hp 0 . . .. 07
0 hy Mg hi_2 . S ; . hg 0 - - . 0
H=| 0 0 he  hp_1 hey - - . . - hp - - - 0
_0 0 . . . 0 Ak -1 hg—s - P . h.oj

Theorem 7: let g(X) be the generator polynomial of the (n, k) cyclic code C. The dual code of C

is generated by X*h(X~1) where h(X) = );T(l;)l :

Example: consider (7,4) code C with g(X) = 1+ X + X3. The generator polynomial of C* is
X*h(X~1) where

h(X) =%= 1+X+ X2+ X%
That is, the generator of C* is:

X*hX D) =X*A+X1+X2+Xx1

=1+X>+X3+Xx*
So, Ctis a (7,3) code with d,,;, = 4. Therefore, it can correct any single error and detect any
combination of double errors.
Encoding of cyclic codes:
We saw that if we multiply the information polynomial by X~ * and divide by g(X), we get:
X" uX) = aX)g(X) + b(X)

and

a(X)g(X) = b(X) + X" u(X)



is a codeword in systematic form. The following circuit encodes u(X) based on the above
discussion.

e (D] rC})
Message X" ky(x)

& »o_Codeword
—_
Parity-check
digits

Encoding circuit for an (n, k) cyclic code with generator polynomial
) =141 X2+ + gpypg X414 xn—k,

1) Close the gate and enter information bits in and also send them over channel. This does
multiplication by X™ ¥ as well as parity bit generation.

2) Open the gate (break the feedback).

3) Output the n — k parity bits.

Example: (7,4) code with g(X) = 1+ X + X3.

Message X" fu(x)

»o_Codeword

0
Parity-check
digits

Encoder for the (7, 4) cyclic code generated by g(X) = 1+ X + X3.
Syndrome:

Assume r(X) = ry + X + r,X? + -+ + 1,,_1 X" ! is the polynomial representing received bits.
Divide r(X) by g(X) to get:

r(X) =aX)gX) + s(X).

s(X) is a polynomial of degree n —k — 1 or less. The n — k coefficients of s(X) are the
syndromes.



Theorem 8: let s(X) be the syndrome of r(X) =1, +r1X + 4 7,_,X™ 1. Then, s©(X)
resulting from dividing X!s(X) by g(X) is the syndrome of r ¥ (X).

-t . - m

r

A
r C 'J
(X) n L 5o ° | 5 ° LA ° Sp—a—1 =

Received
vector

An (n - k)-stage syndrome circuit with input from the left end.

Example of (7, 4) code:

Input
14 Gate o ‘ + —=

FIGURE 5.6: Syndrome circuit for the (7, 4) cyclic code generated by gX) =1+
X+ X3,

TABLE 5.3: Contents of the syndrome
register shown in Figure 5.6 with r =
(0010110) as input.

Shift  Input  Register contents

000 (initial state)
000

100

110

011

011

111

101 (syndrome s)
100 (syndrome s‘!)
010 (syndrome s)

| SO O =

b =R B - N I -G I NG

Decoding:



Gate [

r(X) Buffer regi i+ )
—_— gister > + >
Received Gate \'/éorrected

vector

G

vector

\
Feedback connection

Gate

LR N
Y Y Y Y

-
)

Syndrome register

Y A 4

e;
Error pattern detection circuit -

Syndrome modification

General cyclic code decoder with recejved polynomial r(X) shifted into

the syndrome register from the left end,

Example of (7, 4) code:

Error patterns and their syndromes with the
received polynomial r(X) shifted into the syndrome register
from the left end.

Error pattern Syndrome Syndrome vector
e(X) S(X) (S(), 51, 32)
eg(X) = X$ s(X)=1+Xx?2 (101
es(X) = X° s(X) =1+ X+ X? (111)
es(X) = x4 s(X) =X + X* (011)
ea(X) = X3 s(X)=1+X (110)
e(X) = X2 s(X) = X2 (001)
e (X) = X1 s(X) =X (010)

ep(X) = X° s(X)=1 (100)




Buffer register

- L r'(X)

r—_—’! Multiplexer 8 : Qutput
put
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Gate
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Decoding circuit for the (7, 4) cyclic code generated by g(X) = 1+ X +X el

jJ Gate IL:
r,

r(X) - I—G_ata—-h Buffer register '—;\_+
Received § Corrected
vector veclor

—»1 Gate
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Gate +
LA N J
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Syndrome J
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Error pattern detection circuit

General cyclic code decoder with received polynomial r(X) shifted into
the syndrome register from the right end.

Another implementation of syndrome calculator



Syndrome decoding of (7, 4) code using syndrome decoder fed from right:

_ Error patterns and their syndromes with the
received polynomial r(X) shifted into the syndrome
register from the right end,

Errer pattern Syndrome Syndrome vector
e(X) s (X) (50, 51, 52)
eX)=X% s¥(x)=x2 001)
e(X) =X ¥X)=x (010)
e(X)=X* ss¥w)=1 (100)
eX)=X%X3 s¥x)=1+x2 (101)
eX)=X2 sOX)=1+Xx+x2 (111)
eX)=X s(X) = X+ x2 (011)
eX)=X" s X)=1+% (110)
(X v Buffer register ‘@
I-—_‘nput ~—>l Multiplexer H | L I ‘ + Output
>| Gate Il\
Gate

—{ |-

03

A

! e Decoding circuit for the (7, 4) cyclic code generated by g(X) =
+ X+ X°.

Cyclic Hamming codes:

A Hamming code of length n = 2™ — 1 with m > 3 is generated by a primitive polynomial of
degree m. let’s see how we can put the Hamming code with defined in last lecture in cyclic form:

Divide X™* by p(X) to get X™ = a;(X)p(X) + b;(X).

1) Since p(X) is primitive, X is not a factor of p(X) so p(X) does not divide X™** = b;(X) #
0.



2) b;(X) has at least two terms. If it had one term:
X = a,(X)p(X) + X7
= X (X™H +1) = a;(X)p(X)
= p(X) divides X"/ + 1butm+i—j<2m—1
= contradiction.
3) Ifi # j, then b;(X) # b;(X). Let
X" = bi(X) + a;(XOp(X)
X" = b;i(X) + ¢;(X)p(X).
If b;(X) = b;(X), then
Xm0+ 1) = [@ (0 + g;(0]pX),
i.e., p(X) divides X/~* + 1 = contradiction.

Let H = [I,;,: Q] be the parity check matrix of this code. I, is an m X m identity matrix with Q an
m X (2™ —m — 1) matrix with b; = (b;o, bj1,***, by ;m—1) as its columns. Since no two columns
of Q are the same and each have at least two 1’s, then H is indeed a parity-check matrix of a
Hamming code.

Syndrome decoding of Hamming codes:
Assume that error is in location with highest order, i.e.,
e(X) = X2 2,

Then, feeding r(X) from right to syndrome calculator is equivalent to dividing X™ - X 22 by the
generator polynomial p(X). Since p(X) divides X2" ~1 + 1 then

sX)=Xx""1 or s=(0,0,---,0,1).

Input
Gate Buffer register r(X)
Gate

5y

Decoder for a cyclic Hamming code.



