
ELEC 6131: Error Detecting and Correcting Codes 
Lecture 8: Reed-Solomon (RS) Codes 

 
RS Codes are a sub-class of non-binary BCH Codes. In a non-binary code, codewords consist of 
symbols which are each 𝑚𝑚 ≥ 2 bits long. 
In general, non-binary codes can be defined over any Galois Field GF(q) where q is either a prime 
or a power of a prime. However, for obvious reasons, people are most interested in codes defined 
over 𝐺𝐺𝐺𝐺(2𝑚𝑚) . 
For Reed-Solomon Codes take some integer m. Then each symbol is m bits long. This means that 
symbols belong to {0,1, … , 2𝑚𝑚}. 
An (N, K) RS code consists of N symbols each of which is m bits long and has K information 
symbols and N-K parity symbols. 
For an RS code over 𝐺𝐺𝐺𝐺(2𝑚𝑚) we have 𝑁𝑁 = 2𝑚𝑚 − 1. 
K can be any value less than N. 
An (N, K) RS code has the minimum distance 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑁𝑁 − 𝐾𝐾 + 1 . 
It can correct 𝑡𝑡 = �𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚−1
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The reason I used N and K instead of n and k was to differentiate between an (n, k) binary code 
that has codewords that are n bits long and have k information bits and non-binary codes with N 
and K symbols. 
I hope we have so far have got used to the idea of symbols other than a single bit. So, from this 
point on, I will use n and k. 
(n, k) RS code over 𝐺𝐺𝐺𝐺(2𝑚𝑚) has codeword of length n symbols, i.e., 𝑛𝑛 ∗ 𝑚𝑚 bits out of which 𝑘𝑘 ∗ 𝑚𝑚 
are information (or systematic) bits. 
For example a (255,239) RS Code over 𝐺𝐺𝐺𝐺(28) has codewords each 255 bytes and each codeword 
has 239 bytes of information on (n-k) = 16 bytes of parity. Such a code can correct up to 16
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bytes of errors. 
Note that here when we correct one symbol, we may have corrected 1,2, . . ,𝑚𝑚 bits. If we have a 
burst of errors, that is a lot of errors near. One another, RS Codes can be very useful. An RS Code 
which can correct t error symbols can correct (𝑡𝑡 − 1)𝑚𝑚 bits long bursts. 
The generating polynomial of t error correcting RS Code is: 

𝑔𝑔(𝑥𝑥) = (𝑥𝑥 + 𝛼𝛼)(𝑥𝑥 + 𝛼𝛼2) … (𝑥𝑥 + 𝛼𝛼2𝑡𝑡) 
= 𝑔𝑔0 + 𝑔𝑔1𝑥𝑥 + 𝑔𝑔2𝑥𝑥2 + ⋯+ 𝑔𝑔2𝑡𝑡−1𝑥𝑥2𝑡𝑡−1 + 𝑥𝑥2𝑡𝑡 

With 𝑔𝑔𝑖𝑖 ∈ 𝐺𝐺𝐺𝐺(2𝑚𝑚) for 0 ≤ 𝑖𝑖 ≤ 2𝑡𝑡. 
𝛼𝛼,𝛼𝛼2, … 𝛼𝛼2𝑡𝑡 are roots of Xn+1. G(x) divides Xn+1. So, g(x) generates a 2𝑚𝑚 − 𝑟𝑟𝑟𝑟 cyclic code of 
length n with 2t parity symbols. 
 
Encoding of RS Codes: 
 
We can simply multiply the information polynomial u(x) by g(x). However, this may not result in 
a systematic code to make the code systematic, we multiply u(x) by 𝑋𝑋 𝑛𝑛−𝑘𝑘to get 𝑋𝑋 𝑛𝑛−𝑘𝑘u(x) which 
we divide by g(x) to get: 

𝑋𝑋 𝑛𝑛−𝑘𝑘 𝑢𝑢(𝑥𝑥) = 𝑞𝑞(𝑥𝑥)𝑔𝑔(𝑥𝑥) + 𝑏𝑏(𝑥𝑥) 



𝑞𝑞(𝑥𝑥)𝑔𝑔(𝑥𝑥) is a code polynomial. Also we have: 
V(x)= 𝑞𝑞(𝑥𝑥)𝑔𝑔(𝑥𝑥) = 𝑥𝑥𝑛𝑛−𝑘𝑘𝑢𝑢(𝑥𝑥) + 𝑏𝑏(𝑥𝑥) 
This means that we have u(x) as part of v(x), i.e., the code is systematic and b(x) is the parities 
polynomial. 
The following circuit shows the encoding procedure: 

 
 

1) First we close the gate and feed the information symbols into the division circuit. At the 
same time these information symbols are put on the line (to be transmitted): switch in lower 
position. 

2) After feeding all k symbols, we open the gate (disconnect the feedback) and put switch in 
the up position, transmitting 2t parity symbols. 

Example: 

Find the generating polynomial of triple error correcting code over 𝐺𝐺𝐺𝐺(26). 

𝑔𝑔(𝑥𝑥) = (𝑥𝑥 + 𝛼𝛼)(𝑥𝑥 + 𝛼𝛼2)(𝑥𝑥 + 𝛼𝛼3)(𝑥𝑥 + 𝛼𝛼4)(𝑥𝑥 + 𝛼𝛼5)(𝑥𝑥 + 𝛼𝛼6) 

=𝛼𝛼21 + 𝛼𝛼10𝑥𝑥 + 𝛼𝛼55𝑥𝑥2+𝛼𝛼43𝑥𝑥3 + 𝛼𝛼48𝑥𝑥4 + 𝛼𝛼59𝑥𝑥5 + 𝑥𝑥6 



 

The Parity-Check matrix of an RS code is given as: 

𝐻𝐻 = �
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1
⋮
1

   

 𝛼𝛼
𝛼𝛼2
⋮
𝛼𝛼2𝑡𝑡

  

𝛼𝛼2
(𝛼𝛼2)2
⋮
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⋯
⋯
⋮
⋯

  

𝛼𝛼𝑛𝑛−1
(𝛼𝛼2)𝑛𝑛−1

⋮
(𝛼𝛼2𝑡𝑡)𝑛𝑛−1
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Decoding of RS Codes: 

1) Find syndrome. 
2) Find error-location polynomial. 
3) Find error-value evaluator. 
4) Find the error locations and error values and correct. 

Assume that the codeword 𝑣𝑣 = (𝑣𝑣0, 𝑣𝑣1, … , 𝑣𝑣𝑛𝑛−1) is transmitted or equivalently  

𝑣𝑣(𝑥𝑥) = 𝑣𝑣0 + 𝑣𝑣1𝑥𝑥 + 𝑣𝑣2𝑥𝑥2 + ⋯+ 𝑣𝑣𝑛𝑛−1𝑥𝑥𝑛𝑛−1 

Assume that r(x) is received: 

𝑟𝑟(𝑥𝑥) = 𝑟𝑟0 + 𝑟𝑟1𝑥𝑥 + 𝑟𝑟2𝑥𝑥2 + ⋯+ 𝑟𝑟𝑛𝑛−1𝑥𝑥𝑛𝑛−1 

r(x)=v(x)+e(x) where e(x) is the error polynomial 

𝑒𝑒(𝑥𝑥) = 𝑟𝑟(𝑥𝑥) + 𝑣𝑣(𝑥𝑥) = 𝑒𝑒0 + 𝑒𝑒1𝑥𝑥 + ⋯+ 𝑒𝑒𝑛𝑛−1 𝑥𝑥𝑛𝑛 

Assume we have errors at locations  

𝑗𝑗1, 𝑗𝑗2,⋯ , 𝑗𝑗𝛾𝛾 

Denote the values of error by 𝑒𝑒𝑗𝑗1, 𝑒𝑒𝑗𝑗2, … , 𝑒𝑒𝑗𝑗𝛾𝛾 

Then: 

 𝑒𝑒𝑖𝑖 = �
0               𝑖𝑖 ≠ 𝑗𝑗1, … , 𝑗𝑗𝛾𝛾
𝑒𝑒𝑗𝑗𝑒𝑒 𝑖𝑖𝑖𝑖 𝑖𝑖 = 𝑗𝑗𝑒𝑒𝜖𝜖{𝑗𝑗1, … , 𝑗𝑗𝑒𝑒} 

So, we can write: 

𝑒𝑒(𝑥𝑥) = 𝑒𝑒𝑗𝑗1𝑥𝑥
𝑗𝑗1 + 𝑒𝑒𝑗𝑗2𝑥𝑥

𝑗𝑗2 + ⋯+ 𝑒𝑒𝑗𝑗𝛾𝛾𝑥𝑥
𝑗𝑗𝛾𝛾  



So what we need to do is to find 𝑗𝑗1, … , 𝑗𝑗𝛾𝛾 as well as 𝑒𝑒𝑗𝑗1, … , 𝑒𝑒𝑗𝑗𝛾𝛾. 

That is why we have 2γ unknowns. 

Remember that 

𝑉𝑉�𝛼𝛼𝑖𝑖� = 0         𝑖𝑖 = 1,2, … ,2𝑡𝑡 

𝑟𝑟(𝛼𝛼𝑖𝑖) = 𝑣𝑣(𝛼𝛼𝑖𝑖) + 𝑒𝑒(𝛼𝛼𝑖𝑖) = 𝑠𝑠𝑖𝑖 

So, 

𝑆𝑆𝑖𝑖 = 𝑟𝑟(𝛼𝛼𝑖𝑖) = 𝑒𝑒(𝛼𝛼𝑖𝑖) 

That is we substitute 𝛼𝛼𝑖𝑖,     𝑖𝑖 = 1,2, … ,2𝑡𝑡 in r(x) to get 2t syndromes. These provide 2t equations 
with 𝑗𝑗𝑖𝑖′s and 𝑒𝑒𝑗𝑗𝑖𝑖 ‘s as their components. In order to be able to solve for the 2γ unknowns, we need 
to have 2γ equations, i.e., 2𝑡𝑡 = 2𝛾𝛾 → 𝑡𝑡 = 𝛾𝛾. That is a proof that RS Code can correct t errors. 

Now let’s expand 𝑆𝑆𝑖𝑖 = 𝑒𝑒(𝛼𝛼𝑖𝑖)     ′ 𝑠𝑠: 

𝑠𝑠1 = 𝑒𝑒𝑗𝑗1𝛼𝛼
𝑗𝑗1 + 𝑒𝑒𝑗𝑗2𝛼𝛼

𝑗𝑗2 + ⋯+ 𝑒𝑒𝑗𝑗𝛾𝛾𝛼𝛼
𝑗𝑗𝛾𝛾  

𝑠𝑠2 = 𝑒𝑒𝑗𝑗1𝛼𝛼
2𝑗𝑗1 + 𝑒𝑒𝑗𝑗2𝛼𝛼

2𝑗𝑗2 + ⋯+ 𝑒𝑒𝑗𝑗𝛾𝛾𝛼𝛼
2𝑗𝑗𝛾𝛾  

⁝ 

𝑠𝑠2𝑡𝑡 = 𝑒𝑒𝑗𝑗1𝛼𝛼
2𝑡𝑡𝑡𝑡1 + 𝑒𝑒𝑗𝑗2𝛼𝛼

2𝑡𝑡𝑡𝑡2 + ⋯+ 𝑒𝑒𝑗𝑗𝛾𝛾𝛼𝛼
2𝑡𝑡𝑡𝑡𝛾𝛾  

Let 𝐵𝐵𝑖𝑖 ≜ 𝛼𝛼𝑗𝑗𝑖𝑖 and 𝑆𝑆𝑖𝑖 ≜ 𝑒𝑒𝑗𝑗𝑖𝑖              For 1 ≤ 𝑖𝑖 ≤ 𝛾𝛾 

Then: 

𝑠𝑠1 = 𝑠𝑠1𝛽𝛽1 + 𝑠𝑠2𝛽𝛽2 + ⋯+ 𝑠𝑠𝛾𝛾𝛽𝛽𝛾𝛾 

𝑆𝑆2 = 𝑠𝑠1𝛽𝛽1
2 + 𝑠𝑠2𝛽𝛽2

2 + ⋯+ 𝑠𝑠𝛾𝛾𝛽𝛽𝛾𝛾2 

⁝ 

𝑠𝑠2𝑡𝑡 = 𝑠𝑠1𝛽𝛽12𝑡𝑡 + 𝑠𝑠2𝛽𝛽22𝑡𝑡 + ⋯+ 𝑠𝑠𝛾𝛾𝛽𝛽𝛾𝛾2𝑡𝑡 

Define the error location polynomial: 

𝜎𝜎(𝑥𝑥) = (1 + 𝛽𝛽1𝑥𝑥)(1 + 𝛽𝛽2𝑥𝑥) … (1 + 𝛽𝛽𝛾𝛾𝑥𝑥) 

=𝜎𝜎0 + 𝜎𝜎1𝑥𝑥 + 𝜎𝜎2𝑥𝑥2 + ⋯+ 𝜎𝜎𝛾𝛾𝑥𝑥𝛾𝛾 

We can see that  

𝜎𝜎0 = 1 

𝜎𝜎1 = 𝛽𝛽1 + 𝛽𝛽2 + ⋯+ 𝛽𝛽𝛾𝛾 = 𝑠𝑠1 



𝜎𝜎2 = 𝛽𝛽1𝛽𝛽2 + ⋯+ 𝛽𝛽𝛾𝛾−1𝛽𝛽𝛾𝛾 = 𝜎𝜎1𝑠𝑠1 + 𝑠𝑠2 

⁝ 

Overall, we get the following equations named Newton equalities: 

𝑠𝑠𝛾𝛾+1 + 𝜎𝜎1𝑠𝑠𝛾𝛾 + 𝜎𝜎2𝑠𝑠𝛾𝛾−1 + ⋯+ 𝜎𝜎𝛾𝛾𝑠𝑠1 = 0 

𝑠𝑠𝛾𝛾+2 + 𝜎𝜎1𝑠𝑠𝛾𝛾+1 + 𝜎𝜎2𝑠𝑠𝛾𝛾 + ⋯+ 𝜎𝜎𝛾𝛾𝑠𝑠2 = 0 

⁝ 

𝑠𝑠2𝑡𝑡 + 𝜎𝜎1𝑠𝑠2𝑡𝑡−1 + 𝜎𝜎2𝑠𝑠2𝑡𝑡−2 + ⋯+ 𝜎𝜎𝛾𝛾𝑠𝑠2𝑡𝑡−𝛾𝛾 = 0 

The same as BCH Codes, we start from σ(x)=1 in stage 0, say we call it 𝜎𝜎(0)(𝑥𝑥) and try to increase 
the number of terms so that all equations are satisfied. 

Assume that at stage μ we have 

𝜎𝜎(𝜇𝜇)(𝑥𝑥) = 𝜎𝜎0
(𝜇𝜇) + 𝜎𝜎1

(𝜇𝜇)𝑥𝑥 + ⋯+ 𝜎𝜎𝐿𝐿𝜇𝜇
(𝜇𝜇)𝑥𝑥𝑙𝑙𝜇𝜇 

This means that we have coefficients 𝜎𝜎0
(𝜇𝜇),𝜎𝜎1

(𝜇𝜇), … ,𝜎𝜎𝐿𝐿𝜇𝜇
(𝜇𝜇) of a polynomial that satisfy the first μ 

Newton equalities. We try to apply coefficients to μ+1-st equality, i.e., form  

𝑆𝑆𝜇𝜇+1 + 𝜎𝜎1
(𝜇𝜇)𝑆𝑆𝜇𝜇 + ⋯+ 𝜎𝜎𝐿𝐿𝜇𝜇

(𝜇𝜇)𝑆𝑆𝜇𝜇+1−𝑙𝑙𝑙𝑙 

If this gives us a zero it means that 𝜎𝜎0
(𝜇𝜇),𝜎𝜎1

(𝜇𝜇), … + 𝜎𝜎𝐿𝐿𝜇𝜇
(𝜇𝜇) satisfy μ+1-st equality. 

Otherwise we have to modify the polynomial so form: 

𝑑𝑑𝜇𝜇 = 𝑆𝑆𝜇𝜇+1 + 𝜎𝜎1
(𝜇𝜇)𝑆𝑆𝜇𝜇 + 𝜎𝜎2

(𝜇𝜇)𝑆𝑆𝜇𝜇−1 + ⋯+ 𝜎𝜎𝐿𝐿𝐿𝐿
(𝜇𝜇)𝑆𝑆𝜇𝜇+1−𝐿𝐿𝐿𝐿 

If the discrepancy 𝑑𝑑𝜇𝜇 = 0 then  

𝜎𝜎(𝜇𝜇+1)(𝑥𝑥) = 𝜎𝜎(𝜇𝜇)(𝑥𝑥) 

And continue.  

Otherwise: 

𝜎𝜎(𝜇𝜇+1)(𝑥𝑥) = 𝜎𝜎(𝜇𝜇)(𝑥𝑥) + 𝑑𝑑𝜇𝜇𝑑𝑑𝜌𝜌−1𝑥𝑥𝜇𝜇−𝜌𝜌𝜎𝜎(𝜌𝜌)(𝑥𝑥) 

Where ρ is the stage closest to μ such that 𝑑𝑑𝜌𝜌 ≠ 0 

Continue this iteration until we get to stage 2t then 

𝜎𝜎(𝑥𝑥) = 𝜎𝜎(2𝑡𝑡)(𝑥𝑥) 

Start by filling out the first two rows: 



 

Example: 

Consider triple-error correcting code over 𝐺𝐺𝐺𝐺(24). Let 𝑟𝑟(𝑥𝑥) = 𝛼𝛼7𝑥𝑥3 + 𝛼𝛼3𝑥𝑥6 + 𝛼𝛼4𝑥𝑥12 

Then  

𝑔𝑔(𝑥𝑥) = (𝑥𝑥 + 𝛼𝛼)(𝑥𝑥 + 𝛼𝛼2)(𝑥𝑥 + 𝛼𝛼3)(𝑥𝑥 + 𝛼𝛼4)(𝑥𝑥 + 𝛼𝛼5)(𝑥𝑥 + 𝛼𝛼6) 

= 𝛼𝛼6 + 𝛼𝛼9𝑥𝑥 + 𝛼𝛼6𝑥𝑥2 + 𝛼𝛼4𝑥𝑥3 + 𝛼𝛼14𝑥𝑥4 + 𝛼𝛼10𝑥𝑥5 + 𝑥𝑥6 

𝑠𝑠1 = 𝑟𝑟(𝛼𝛼) = 𝛼𝛼10 + 𝛼𝛼9 + 𝛼𝛼 = 𝛼𝛼12 

𝑠𝑠2 = 𝑟𝑟(𝛼𝛼2) = 𝛼𝛼13 + 1 + 𝛼𝛼13 = 1 

𝑠𝑠3 = 𝑟𝑟(𝛼𝛼3) = 𝛼𝛼 + 𝛼𝛼6 + 𝛼𝛼10 = 𝛼𝛼14 

𝑠𝑠4 = 𝑟𝑟(𝛼𝛼4) = 𝛼𝛼4 + 𝛼𝛼12 + 𝛼𝛼7 = 𝛼𝛼10 

𝑠𝑠5 = 𝑟𝑟(𝛼𝛼5) = 𝛼𝛼7 + 𝛼𝛼3 + 𝛼𝛼4 = 0 

𝑠𝑠6 = 𝑟𝑟(𝛼𝛼6) = 𝛼𝛼10 + 𝛼𝛼9 + 𝛼𝛼 = 𝛼𝛼12 

 



A more straightforward algorithm where the correction term is evolved as the iterations go ahead 
is given in Vicker’s text. 

The algorithm is as follows: 

1) Compute syndromes 𝑆𝑆1, … , 𝑆𝑆2𝑡𝑡 . 
2) Initialize the algorithm by letting μ=0, 𝜎𝜎(0)(𝑥𝑥) = 1,   𝑙𝑙 = 0 and T(x)=x. 
3) Set μ=μ+1 compute discrepancy 𝑑𝑑𝜇𝜇 , 

𝑑𝑑𝜇𝜇 = 𝑆𝑆𝜇𝜇 + �𝜎𝜎𝑖𝑖
(𝜇𝜇−1)

𝑙𝑙

𝑖𝑖=1

𝑆𝑆𝜇𝜇−𝑖𝑖 

4) If 𝑑𝑑𝜇𝜇 = 0 then go to 8. 
5) Modify the polynomial as: 

𝜎𝜎(𝜇𝜇)(𝑥𝑥) = 𝜎𝜎(𝜇𝜇−1)(𝑥𝑥)𝑑𝑑𝜇𝜇𝑇𝑇(𝑥𝑥) 

6) If 2𝑙𝑙 ≥ 𝜇𝜇 then go to step 8. 
7) Set 𝑙𝑙 = 𝜇𝜇 − 𝑙𝑙 and 𝑇𝑇(𝑥𝑥) = 𝑑𝑑𝜇𝜇−1𝜎𝜎(𝜇𝜇−1)(𝑥𝑥). 
8) Set 𝑇𝑇(𝑥𝑥) = 𝑥𝑥.𝑇𝑇(𝑥𝑥). 
9) If 𝜇𝜇 < 2𝑡𝑡 go to step 3. 
10) Determine 𝜎𝜎(𝑥𝑥) = 𝜎𝜎(2𝑡𝑡)(𝑥𝑥). If the roots are distinct and in the right field, then determine 

the error values, correct the errors and STOP. 
11)  Declare a decoding failure and STOP. 

Next slide shows the problem above done again. 

Example: Consider (7,3) RS Code over GF(8) with 𝑟𝑟(𝑥𝑥) = 𝛼𝛼2𝑥𝑥6 + 𝛼𝛼2𝑥𝑥4 + 𝑥𝑥3 + 𝛼𝛼5𝑥𝑥2. 

Although we have done the generation of g(x) and encoding, let’s start from ground zero for doing 
some exercise in Galois field arithmetic. Let’s start with p(x)= x3+x+1. Take α to be a primitive 
element of this field, i.e., a root of  𝑠𝑠1 = 𝛼𝛼12, 𝑠𝑠2 = 1, 𝑠𝑠3 = 𝛼𝛼14, 𝑠𝑠5 = 0 , 𝑠𝑠6 = 𝛼𝛼12 

𝑑𝑑𝜇𝜇 = 𝑆𝑆𝜇𝜇+1 + 𝜎𝜎1
(𝜇𝜇)𝑆𝑆𝜇𝜇 + 𝜎𝜎2

(𝜇𝜇)𝑆𝑆𝜇𝜇−1 + ⋯𝜎𝜎𝐿𝐿𝜇𝜇
(𝜇𝜇)𝑆𝑆𝜇𝜇+1−𝐿𝐿𝐿𝐿 

 

 

μ 𝑠𝑠𝜇𝜇 𝜎𝜎(𝜇𝜇)(𝑥𝑥) 𝑑𝑑(𝜇𝜇) 𝐿𝐿𝜇𝜇 T(x) 
0 - 1 - 0 x 
1 𝛼𝛼12 1 + 𝛼𝛼12𝑥𝑥 𝛼𝛼12 1 𝛼𝛼3𝑥𝑥 
*2 1 1 + 𝛼𝛼3𝑥𝑥 𝛼𝛼7 1 𝛼𝛼𝑥𝑥8 + 𝛼𝛼5𝑥𝑥2 
**3 𝛼𝛼14 1 + 𝛼𝛼13𝑥𝑥 + 𝛼𝛼5𝑥𝑥2 1 2 𝑥𝑥 + 𝛼𝛼3𝑥𝑥2 
4 𝛼𝛼10 1 + 𝛼𝛼4𝑥𝑥 + 𝛼𝛼12𝑥𝑥2 𝛼𝛼11 2 𝛼𝛼4𝑥𝑥 + 𝛼𝛼2𝑥𝑥2 + 𝛼𝛼9𝑥𝑥3 
5 0 1 + 𝛼𝛼9𝑥𝑥 + 𝛼𝛼4𝑥𝑥3 𝛼𝛼10 3 𝛼𝛼5𝑥𝑥 + 𝛼𝛼9𝑥𝑥2 + 𝛼𝛼3𝑥𝑥3 
6 𝛼𝛼12 1 + 𝛼𝛼7𝑥𝑥 + 𝛼𝛼4𝑥𝑥2 + 𝛼𝛼6𝑥𝑥3 𝛼𝛼10 3 - 

 



𝜎𝜎(𝑥𝑥) = 1 + 𝛼𝛼7𝑥𝑥 + 𝛼𝛼4𝑥𝑥2 + 𝛼𝛼6𝑥𝑥3 

• 𝑑𝑑1 = 𝑠𝑠2 + 𝜎𝜎1𝑠𝑠1 = 1 + 𝛼𝛼12.𝛼𝛼12 = 𝛼𝛼9 + 1 = 𝛼𝛼7 
• 𝑑𝑑2 = 𝑠𝑠3 + 𝜎𝜎1𝑠𝑠2 = 1 + 𝛼𝛼14 + 𝛼𝛼3. 1 = 1 

ρ(x). That is 𝛼𝛼3 + 𝛼𝛼 + 1 = 0 or α3= α+1.  

The field elements are: 

0 0 0 0 0 
1 1 0 0 1 
𝛼𝛼1 0 1 0 α 

𝛼𝛼2 = 𝛼𝛼.𝛼𝛼 0 0 1 𝛼𝛼2 
𝛼𝛼3 = 𝛼𝛼2.𝛼𝛼 1 1 0 α+1 

𝛼𝛼4 0 1 1 𝛼𝛼2 + 𝛼𝛼 
𝛼𝛼5 1 1 1 𝛼𝛼2 + 𝛼𝛼 + 1 
𝛼𝛼6 1 0 1 𝛼𝛼2 + 1 
𝛼𝛼7 1 0 0 1 

 

Note: 

• 𝛼𝛼3 =  𝛼𝛼2.𝛼𝛼 =  𝛼𝛼 + 1 
• 𝛼𝛼4 =  𝛼𝛼.𝛼𝛼3 =  𝛼𝛼(𝛼𝛼 + 1) = 𝛼𝛼2 + 𝛼𝛼  
• 𝛼𝛼5 =  𝛼𝛼4.𝛼𝛼 =  (𝛼𝛼2 + 𝛼𝛼)𝛼𝛼 = 𝛼𝛼3 + 𝛼𝛼2 = 𝛼𝛼2 + 𝛼𝛼 + 1  
• 𝛼𝛼6 = 𝛼𝛼 (𝛼𝛼2 + 𝛼𝛼 + 1) = 𝛼𝛼2 + 1 
• 𝛼𝛼7 = 𝛼𝛼 (𝛼𝛼2 + 1) = 𝛼𝛼3 + 𝛼𝛼 = 𝛼𝛼 + 1 + 𝛼𝛼 = 1 

Now, g(X) is: 

𝑔𝑔(𝑥𝑥) = (𝑥𝑥 + 𝛼𝛼)(𝑥𝑥 + 𝛼𝛼2)(𝑥𝑥 + 𝛼𝛼3)(𝑥𝑥 + 𝛼𝛼4) 

= [𝑥𝑥2 + (𝛼𝛼 + 𝛼𝛼2)𝑥𝑥 + 𝛼𝛼3][𝑥𝑥2 + (𝛼𝛼3 + 𝛼𝛼4)𝑥𝑥 + 𝛼𝛼7] 

= [𝑥𝑥2 + 𝛼𝛼4𝑥𝑥 + 𝛼𝛼3][𝑥𝑥2 + 𝛼𝛼6𝑥𝑥 + 1] 

= 𝑥𝑥4 + 𝛼𝛼3𝑥𝑥3 + 𝑥𝑥2 + 𝛼𝛼𝛼𝛼 + 𝛼𝛼3 

Computing Syndromes: 

𝑆𝑆𝑖𝑖 = 𝑟𝑟�𝛼𝛼𝑖𝑖�.       𝑖𝑖 = 1,2,3,4 

In this case, since the number of parities are less than the number of information symbols, it is 
reasonable to use 𝑟𝑟�𝛼𝛼𝑖𝑖� = 𝑆𝑆𝑖𝑖. However, for high rate codes where 𝑛𝑛 − 𝑘𝑘 ≪ 𝑘𝑘, it is better to divide 
r(x) by g(x) to get 

𝑟𝑟(𝑥𝑥)  =  𝑔𝑔(𝑥𝑥) 𝑞𝑞(𝑥𝑥)  +  𝑏𝑏(𝑥𝑥) 

Where b(x) is a polynomial of degree less than or equal n-k. 



𝑆𝑆𝑖𝑖 = 𝑟𝑟�𝛼𝛼𝑖𝑖� = 𝑔𝑔�𝛼𝛼𝑖𝑖�𝑞𝑞�𝛼𝛼𝑖𝑖� + 𝑏𝑏�𝛼𝛼𝑖𝑖�        𝑖𝑖 = 1,2, … ,2𝑡𝑡. 

Since 𝑔𝑔�𝛼𝛼𝑖𝑖� = 0        𝑖𝑖 = 1, … ,2𝑡𝑡 

𝑆𝑆𝑖𝑖 = 𝑏𝑏�𝛼𝛼𝑖𝑖� 

Dividing 𝑟𝑟(𝑥𝑥) = 𝛼𝛼2𝑥𝑥6 + 𝛼𝛼2𝑥𝑥4 + 𝑥𝑥3 + 𝛼𝛼5𝑥𝑥2 by g(x) 

𝑟𝑟(𝑥𝑥) = (𝛼𝛼2𝑥𝑥2 + 𝛼𝛼5𝑥𝑥)𝑔𝑔(𝑥𝑥) + 𝛼𝛼𝑥𝑥4 + 𝛼𝛼6𝑥𝑥3 + 𝛼𝛼6𝑥𝑥2 + 𝛼𝛼𝛼𝛼.     

So: 

𝑠𝑠1 = 𝑏𝑏(𝛼𝛼) = 𝛼𝛼5 + 𝛼𝛼9 + 𝛼𝛼8 + 𝛼𝛼2 = 𝛼𝛼6 

𝑠𝑠2 = 𝑏𝑏(𝛼𝛼2) = 𝛼𝛼9 + 𝛼𝛼12 + 𝛼𝛼10 + 𝛼𝛼3 = 𝛼𝛼3 

𝑠𝑠3 = 𝑏𝑏(𝛼𝛼3) = 𝛼𝛼13 + 𝛼𝛼15 + 𝛼𝛼12 + 𝛼𝛼4 = 𝛼𝛼4 

𝑠𝑠4 = 𝑏𝑏(𝛼𝛼4) = 𝛼𝛼17 + 𝛼𝛼18 + 𝛼𝛼14 + 𝛼𝛼5 = 𝛼𝛼3 

Now we use the algorithm: 

 

𝜇𝜇 𝑆𝑆𝜇𝜇 𝜎𝜎(𝜇𝜇)(𝑥𝑥) 𝑑𝑑𝜇𝜇 𝐿𝐿 𝑇𝑇(𝑥𝑥) 
0 - 1 - 0 x 
1 𝛼𝛼6 1 + 𝛼𝛼6𝑥𝑥 𝛼𝛼6 1 𝛼𝛼𝑥𝑥∗ 
2 𝛼𝛼3 1 + 𝛼𝛼4𝑥𝑥 𝛼𝛼2 1 𝛼𝛼𝑥𝑥2∗∗ 
3 𝛼𝛼4 1 + 𝛼𝛼4𝑥𝑥 + 𝛼𝛼6𝑥𝑥2 𝛼𝛼5 2 𝛼𝛼2𝑥𝑥 + 𝛼𝛼6𝑥𝑥2 
4 𝛼𝛼3 1 + 𝛼𝛼2𝑥𝑥 + 𝛼𝛼𝑥𝑥2 𝛼𝛼6 - - 

 

 

• Note: 

For μ=1   L=0  → 2𝐿𝐿 < 𝜇𝜇 → 𝐿𝐿 = 𝜇𝜇 − 𝐿𝐿 = 1 

And 𝑇𝑇(𝑥𝑥) = 𝜎𝜎(0)(𝑥𝑥)
𝑑𝑑1

=  𝑥𝑥
𝛼𝛼6

= 𝛼𝛼𝛼𝛼. 

• Note: 

For μ=2  

𝑑𝑑𝜇𝜇 = 𝑠𝑠𝜇𝜇�𝜎𝜎𝑖𝑖(𝜇𝜇−1)
𝐿𝐿

𝑖𝑖=1

𝑠𝑠𝜇𝜇−𝑖𝑖 → 𝜇𝜇2 = 𝑠𝑠2 + 𝜎𝜎1
(1)𝑆𝑆1 

Or 

𝜇𝜇2 = 𝛼𝛼3 + 𝛼𝛼6.𝛼𝛼6 = 𝛼𝛼3 + 𝛼𝛼5 = 𝛼𝛼2 



2𝐿𝐿 = 2 ≥ 𝜇𝜇 = 2 → 𝑇𝑇(𝑥𝑥) = 𝑥𝑥𝑥𝑥(𝑥𝑥) → 𝑇𝑇(𝑥𝑥) = 𝛼𝛼𝑥𝑥2 

So: 

𝜎𝜎(𝑥𝑥) = 𝛼𝛼𝑥𝑥2 + 𝛼𝛼2𝑥𝑥 + 1. 

The above algorithm is based on message’s Linear Feedback Shift Register (LESR) synthesis 
technique. 

Note that for γ errors, we have the following Newton equalities. 

𝑠𝑠𝑗𝑗 = 𝜎𝜎1𝑠𝑠𝑗𝑗−1 + 𝜎𝜎2𝑠𝑠𝑗𝑗−2 + ⋯+ 𝜎𝜎𝛾𝛾𝑠𝑠𝑗𝑗−𝛾𝛾 

This relationship can be represented as LFSR circuit looking like: 

 

The problem of finding error-locator polynomial is then to find an LFSR of minimal length such 
that the first 2t elements in the output sequence are 𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠2𝑡𝑡. 

The coefficients of the filter are then the coefficient of σ(x). 

For the above (7,3) RS code, we start with  

 

This works for the 𝑠𝑠1 = 𝛼𝛼6 as it outputs the content of the register ,i.e., α6. But after the application 
of the seconds clock, the output will be 𝛼𝛼6.𝛼𝛼6 = 𝛼𝛼12 = 𝛼𝛼5 which is not 𝑠𝑠2=𝛼𝛼3. 

To correct the situation, we change the filter tap to 𝛼𝛼4 which is 𝛼𝛼
6

𝛼𝛼2
 and therefore, the output after 

the clocking will be 𝛼𝛼
5

𝛼𝛼2
= 𝛼𝛼3 = 𝑠𝑠2. 

 



After the next clock the output will be 𝛼𝛼3.𝛼𝛼4 = 1 which is not equal to 𝑠𝑠3 = 𝛼𝛼4. 

To correct this we need to add α5 so that, we get 1 + 𝛼𝛼5 = 𝛼𝛼4 = 𝑠𝑠3. We keep the above and add a 
stage with α6 in the register and α6 as the tap. 

 

This circuit outputs α6 first and then calculates 𝛼𝛼6.𝛼𝛼6 + 𝛼𝛼3.𝛼𝛼4 = 𝛼𝛼5 + 1 = 𝛼𝛼4 

Content of the rightmost SR is moved to left and 𝛼𝛼4is loaded into it. 

 

So, the next output is 𝛼𝛼3 = 𝑠𝑠2. 

Next 𝛼𝛼3.𝛼𝛼6 + 𝛼𝛼4.𝛼𝛼4 = 𝛼𝛼2 + 𝛼𝛼 = 𝛼𝛼4 is placed in right register and 𝛼𝛼4 is moved left 

 

Now 𝛼𝛼4 is output  which is 𝑠𝑠3. But the next output is 𝛼𝛼4 ≠ 𝑠𝑠4 = 𝛼𝛼3 

To avoid this, we modify the taps of the LFSR to:  

 

It is easy to see that this circuit outputs 𝛼𝛼6,𝛼𝛼3,𝛼𝛼4,𝛼𝛼3, 𝑖𝑖. 𝑒𝑒 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3,𝑠𝑠4 

Finding the Error Values: 

Now, we have found error-locator polynomial σ(X). We can solve it to find the error locations 
𝛽𝛽𝑖𝑖 = 𝛼𝛼𝑗𝑗𝑖𝑖  i=1,2, …,γ. 



Now we need to find 𝑆𝑆𝑖𝑖 = 𝑒𝑒𝑗𝑗𝑖𝑖 , i.e., error values at the error locations and correct them, That is the 
equations are: 

𝑆𝑆1 = 𝑒𝑒𝑗𝑗1𝛼𝛼
𝑗𝑗1 + 𝑒𝑒𝑗𝑗2𝛼𝛼

𝑗𝑗2 + ⋯+ 𝑒𝑒𝑗𝑗𝛾𝛾𝛼𝛼
𝑗𝑗𝛾𝛾     

⁝ 

𝑆𝑆2𝑡𝑡 = 𝑒𝑒𝑗𝑗1𝛼𝛼
2𝑡𝑡𝑡𝑡1 + 𝑒𝑒𝑗𝑗2𝛼𝛼

2𝑡𝑡𝑡𝑡2 + ⋯+ 𝑒𝑒𝑗𝑗𝛾𝛾𝛼𝛼
2𝑡𝑡𝑗𝑗𝛾𝛾     

With 𝛼𝛼𝑗𝑗𝑖𝑖′𝑠𝑠 and 𝑆𝑆𝑖𝑖’s known. Or equivalently: 

𝑆𝑆1 = 𝑠𝑠1𝛽𝛽1 + 𝑠𝑠2𝛽𝛽2 + 𝑠𝑠𝛾𝛾𝛽𝛽𝛾𝛾 

𝑆𝑆2 = 𝑠𝑠1𝛽𝛽12 + 𝑠𝑠2𝛽𝛽22 + ⋯+ 𝑠𝑠𝛾𝛾𝛽𝛽𝛾𝛾2   

⁝ 

𝑆𝑆2𝑡𝑡 = 𝑠𝑠1𝛽𝛽12𝑡𝑡 +  𝑠𝑠2𝛽𝛽22𝑡𝑡 + ⋯+ 𝑠𝑠𝛾𝛾𝛽𝛽𝛾𝛾2𝑡𝑡   

Let’s define the syndrome polynomial: 

𝑆𝑆(𝑥𝑥) = 𝑆𝑆1 + 𝑆𝑆2𝑋𝑋 + ⋯+ 𝑆𝑆2𝑡𝑡𝑋𝑋2𝑡𝑡 + 𝑆𝑆2𝑡𝑡+1𝑋𝑋2𝑡𝑡 + ⋯ 

= �𝑆𝑆𝑗𝑗𝑋𝑋𝑗𝑗−1
∞

𝑗𝑗=1

 

Note that this has an infinite number of terms whose first 2t terms are known: 

𝑆𝑆𝑗𝑗 = �𝑆𝑆𝑙𝑙

𝛾𝛾

𝑙𝑙=1

𝛽𝛽𝑙𝑙
𝑗𝑗         𝑗𝑗 = 1,2, … ,2𝑡𝑡 

Substituting this (but now for all terms), we get: 

𝑆𝑆(𝑥𝑥) = �𝑥𝑥𝑗𝑗−1
∞

𝑗𝑗=1

�𝑆𝑆𝑙𝑙

𝛾𝛾

𝑙𝑙=1

𝛽𝛽𝑙𝑙
𝑗𝑗 

= �𝑆𝑆𝑙𝑙

𝛾𝛾

𝑙𝑙=1

𝛽𝛽𝑙𝑙�(𝛽𝛽𝑙𝑙𝑥𝑥)𝑗𝑗−1
∞

𝑗𝑗=1

 

But  

�(𝛽𝛽𝑙𝑙𝑥𝑥)𝑗𝑗−1
∞

𝑗𝑗=1

=
1

1 + 𝛽𝛽𝑙𝑙𝑥𝑥
 

So: 



𝑆𝑆(𝑥𝑥) = �
𝑆𝑆𝑙𝑙𝛽𝛽𝑙𝑙

1 + 𝛽𝛽𝑙𝑙𝑥𝑥

𝛾𝛾

𝑙𝑙=1

 

𝜎𝜎(𝑥𝑥) = ∏ (1 + 𝛽𝛽𝑖𝑖𝑥𝑥)𝛾𝛾
𝑖𝑖=1 So:  

𝑆𝑆(𝑥𝑥)𝜎𝜎(𝑥𝑥) = �𝑆𝑆𝐿𝐿

𝛾𝛾

𝑙𝑙=1

𝛽𝛽𝐿𝐿 � (1 + 𝛽𝛽𝑖𝑖𝑥𝑥)
𝛾𝛾

𝑖𝑖=1.  𝑖𝑖≠𝜌𝜌

≜ 𝑍𝑍0(𝑥𝑥) 

Also, 

𝜎𝜎(𝑥𝑥)𝑆𝑆(𝑥𝑥) = �1 + 𝜎𝜎1𝑥𝑥 + ⋯+ 𝜎𝜎𝛾𝛾𝑥𝑥𝛾𝛾�[𝑆𝑆1 + 𝑆𝑆2𝑥𝑥 + 𝑆𝑆3𝑥𝑥2 + ⋯ ] 

= 𝑆𝑆1(𝑆𝑆2 + 𝜎𝜎1𝑆𝑆1)𝑥𝑥 + (𝑆𝑆3 + 𝜎𝜎1𝑆𝑆2 + 𝜎𝜎2𝑆𝑆1)𝑥𝑥2 + ⋯ 

… + �𝜎𝜎2𝑡𝑡 + 𝜎𝜎1𝑆𝑆2𝑡𝑡−1 + ⋯+ 𝜎𝜎𝛾𝛾𝑆𝑆2𝑡𝑡−𝛾𝛾�𝑥𝑥2𝑡𝑡−1 + ⋯ 

So: 

𝑍𝑍0(𝑥𝑥) = 𝑆𝑆1 + (𝑆𝑆2 + 𝜎𝜎1𝑆𝑆1)𝑥𝑥 + (𝑆𝑆3 + 𝜎𝜎1𝑆𝑆2 + 𝜎𝜎2𝑆𝑆1)𝑥𝑥2 + ⋯+ (𝑆𝑆𝛾𝛾 + 𝜎𝜎1𝑆𝑆𝛾𝛾−1 + ⋯+ 𝜎𝜎𝛾𝛾−1𝑆𝑆1)𝑥𝑥𝛾𝛾−1 

Let’s substitute 𝛽𝛽𝑘𝑘−1 in 𝑍𝑍0(𝑥𝑥): 

𝑍𝑍0(𝛽𝛽𝑘𝑘−1) = �𝑆𝑆𝑙𝑙𝛽𝛽𝑙𝑙 � (1 +
𝛾𝛾

𝑖𝑖=1,𝑖𝑖≠𝑙𝑙

𝛽𝛽𝑖𝑖𝛽𝛽𝑘𝑘−1)
𝛾𝛾

𝑙𝑙=1

 

= 𝑆𝑆𝑘𝑘𝛽𝛽𝑘𝑘 � (1 +
𝛾𝛾

𝑖𝑖=1,𝑖𝑖≠𝑘𝑘

𝛽𝛽𝑖𝑖𝛽𝛽𝑘𝑘−1) 

Taking derivative of σ(x) 

𝜎𝜎′(𝑥𝑥) =
𝑑𝑑
𝑑𝑑𝑑𝑑

�(
𝛾𝛾

𝑖𝑖=1

1 + 𝛽𝛽𝑖𝑖𝑥𝑥) = �𝛽𝛽𝑙𝑙 � (1 +
𝛾𝛾

𝑖𝑖=1,𝑖𝑖≠𝑙𝑙

𝛽𝛽𝑖𝑖𝑥𝑥) 

Then  

𝜎𝜎1(𝛽𝛽𝑘𝑘−1) = 𝛽𝛽𝑘𝑘 � (1 +
𝛾𝛾

𝑖𝑖=1,𝑖𝑖≠𝑘𝑘

𝛽𝛽𝑖𝑖𝛽𝛽𝑘𝑘−1) 

So, 

𝑆𝑆𝑘𝑘 =
𝑍𝑍0(𝛽𝛽𝑘𝑘−1)
𝜎𝜎1(𝛽𝛽𝑘𝑘−1)

 

Let’s [σ(x)S(x)]2t represent the first 2t terms of σ(x)S(x). Then 

𝜎𝜎(𝑥𝑥)𝑆𝑆(𝑥𝑥) − [𝜎𝜎(𝑥𝑥)𝑆𝑆(𝑥𝑥)]2𝑡𝑡 



Is divisible by𝑋𝑋2𝑡𝑡. 

That is: 

𝜎𝜎(𝑥𝑥)𝑆𝑆(𝑥𝑥) ≡ [𝜎𝜎(𝑥𝑥)𝑆𝑆(𝑥𝑥)]2𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 𝑋𝑋2𝑡𝑡 

But, 

[𝜎𝜎(𝑥𝑥)𝑆𝑆(𝑥𝑥)]2𝑡𝑡 = 𝑍𝑍0(𝑥𝑥) 

And we have: 

𝜎𝜎(𝑥𝑥)𝑆𝑆(𝑥𝑥) ≡ 𝑍𝑍0(𝑥𝑥)𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥2𝑡𝑡 

This is called the key equation that has to be solved in decoding of RS codes. 

Example: Consider the (7,4) code in the previous example: 

We had 𝑆𝑆1 = 𝛼𝛼6, 𝑆𝑆2 = 𝛼𝛼3, 𝑆𝑆3 = 𝛼𝛼4 𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆4 = 𝛼𝛼3 , 

So: 

 𝑆𝑆(𝑥𝑥) = 𝛼𝛼6 + 𝛼𝛼3𝑥𝑥 + 𝛼𝛼4𝑥𝑥2 + 𝛼𝛼3𝑥𝑥3 

Also, we found: 

𝜎𝜎(𝑥𝑥) = 1 + 𝛼𝛼2𝑥𝑥 + 𝛼𝛼𝑥𝑥2 → 𝜎𝜎′(𝑥𝑥) = 𝛼𝛼2 + 2𝛼𝛼𝛼𝛼 = 𝛼𝛼2 

So:  

𝑍𝑍0(𝑥𝑥) = 𝜎𝜎(𝑥𝑥)𝑆𝑆(𝑥𝑥)𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥4 

= (1 + 𝛼𝛼2𝑥𝑥 + 𝛼𝛼𝑥𝑥2)(𝛼𝛼6 + 𝛼𝛼3𝑥𝑥 + 𝛼𝛼4𝑥𝑥2 + 𝛼𝛼3𝑥𝑥3) 

= 𝛼𝛼6 + 𝑥𝑥 

We can find the error locations by solving σ(x)=0 to get 𝛽𝛽1 = 𝛼𝛼3 and 𝛽𝛽2 = 𝛼𝛼5 

So, 

𝑒𝑒3 = 𝑆𝑆1 =
𝑍𝑍0(𝛼𝛼−3)
𝜎𝜎′(𝛼𝛼−3)

=
𝛼𝛼6 + (𝛼𝛼−3)

𝛼𝛼2
= 𝛼𝛼4 + 𝛼𝛼2 = 𝛼𝛼 

And  

𝑒𝑒5 = 𝑆𝑆2 =
𝑧𝑧0(𝛼𝛼−5)
𝜎𝜎′(𝛼𝛼−5)

=
𝛼𝛼6 + 𝛼𝛼−5

𝛼𝛼2
= 𝛼𝛼4 + 1 = 𝛼𝛼5 

So, 

𝑒𝑒(𝑋𝑋) = 𝛼𝛼𝑋𝑋3 + 𝛼𝛼5𝑋𝑋5 

 


