ELEC 6131: Error Detecting and Correcting Codes
Lecture 8: Reed-Solomon (RS) Codes

RS Codes are a sub-class of non-binary BCH Codes. In a non-binary code, codewords consist of
symbols which are each m > 2 bits long.

In general, non-binary codes can be defined over any Galois Field GF(q) where q is either a prime
or a power of a prime. However, for obvious reasons, people are most interested in codes defined
over GF(2™) .

For Reed-Solomon Codes take some integer m. Then each symbol is m bits long. This means that
symbols belong to {0,1, ..., 2™}.

An (N, K) RS code consists of N symbols each of which is m bits long and has K information
symbols and N-K parity symbols.

For an RS code over GF(2™) we have N = 2™ — 1.

K can be any value less than N.

An (N, K) RS code has the minimum distance d,; = N — K + 1.

dpmin—1 N—-K
Itcancorrectt=[m‘2"]=[>]

The reason I used N and K instead of n and k was to differentiate between an (n, k) binary code
that has codewords that are n bits long and have k information bits and non-binary codes with N
and K symbols.

I hope we have so far have got used to the idea of symbols other than a single bit. So, from this
point on, I will use n and k.

(n, k) RS code over GF(2™) has codeword of length n symbols, i.c., n * m bits out of which k * m
are information (or systematic) bits.

For example a (255,239) RS Code over GF (2®) has codewords each 255 bytes and each codeword

has 239 bytes of information on (n-k) = 16 bytes of parity. Such a code can correct up to ? =8

bytes of errors.
Note that here when we correct one symbol, we may have corrected 1,2,.., m bits. If we have a
burst of errors, that is a lot of errors near. One another, RS Codes can be very useful. An RS Code
which can correct t error symbols can correct (¢ — 1)m bits long bursts.
The generating polynomial of t error correcting RS Code is:
gx) =(x+a)(x+a?)..(x +a?)

= go + g1X + gox* + -+ gop g x¥ T+ x*
With g; € GF(2™) for 0 < i < 2t.
a,a?, ... a?t are roots of X"+1. G(x) divides X"+1. So, g(x) generates a 2™ — ry cyclic code of
length n with 2t parity symbols.

Encoding of RS Codes:

We can simply multiply the information polynomial u(x) by g(x). However, this may not result in
a systematic code to make the code systematic, we multiply u(x) by X " *to get X " *u(x) which
we divide by g(x) to get:

X" Fu(x) = q(x)g(x) + b(x)

q(x)g(x) is a code polynomial. Also we have:

V(x)=q(x)g(x) = x"Fu(x) + b(x)

This means that we have u(x) as part of v(x), i.e., the code is systematic and b(x) is the parities
polynomial.

The following circuit shows the encoding procedure:

@ denotes an adder that adds two elements from GF(g)

denotes a multiplier that multiplies a field element from GF(g) by a fixed
element g, from the same field

. denotes a storage device that is capable of sioring a field element b, from
: ™ GF ()

D Parity digits
]
X¥a(X) o
Message - - Output

Encoding circuit for a g-ary RS code with generator polynomial g(X) =
p+aX+aXl+. gy XU 4 X

1) First we close the gate and feed the information symbols into the division circuit. At the
same time these information symbols are put on the line (to be transmitted): switch in lower
position.

2) After feeding all k symbols, we open the gate (disconnect the feedback) and put switch in
the up position, transmitting 2t parity symbols.

Example:
Find the generating polynomial of triple error correcting code over GF (2°).
gx) =(@x+a)(x+a>)(x+a®)(x +a*)(x + a®)(x + a®)

=a?l + a0 + a®5x%2+a*3x3 + a*8x* + a®%x5 4 x°

T g

The Parity-Check matrix of an RS code is given as:

n-—1

a a,Z a

1
o 1 0(:2 (a.Z)Z (az?n—l

i a.Zt (a,Z:t)Z (a2t')n—1
Decoding of RS Codes:

1) Find syndrome.

2) Find error-location polynomial.

3) Find error-value evaluator.

4) Find the error locations and error values and correct.

Assume that the codeword v = (v, V4, ..., V1) 1s transmitted or equivalently
v(x) = vy + v1x + vpx? + o+ vy X!
Assume that r(x) is received:
r(x) =19+ rx +1px% + 1y x™t
r(x)=v(x)+e(x) where e(x) is the error polynomial
e(x) =r(x)+vx) =ey+ex+ - +e,_ 4 x"

Assume we have errors at locations

Judz oy
Denote the values of error by €)1 € e e]-y
Then:
0 LF Jiy e Jy
e; = Lo . . .
' eje lf L=]ee{ll' -"']e}

So, we can write:

= p. yvi1 Coxd2z 4 xS
e(x)—ejlx +ej x/2 + +e]yx1'

So what we need to do is to find jy, ..., j, as well as € ejy.

That is why we have 2y unknowns.
Remember that
vie)=0 i=12..2¢
r(a) = v(a)) +e(a’) =s;
So,
S; =r(a)) =e(ab)

That is we substitute a’, i = 1,2, ...,2t in r(x) to get 2t syndromes. These provide 2t equations
with j;s and €, ‘s as their components. In order to be able to solve for the 2y unknowns, we need
to have 2y equations, i.e., 2t = 2y — t = y. That is a proof that RS Code can correct t errors.
Now let’s expand S; = e(a?) 's:
51 = et +e,al + -+ e aly

Sy = e, @t + e, a2 + -+ ¢ @y

Sy = ej1a2tj1 + ej2a2tf2 + ot eij(thY
LetB; 2 a/iand S; 2 ¢;, Forl<i<y
Then:

S1 = 51P1 + S2B2 + -+ 5By

2 2
Sy =81P1" + 526"+ + Syﬂ}%

Sa¢ = 511" + 52855 + o+ 5, B
Define the error location polynomial:
g(x) = (1+ B1x)(A + frx) .. (1 + B, x)
=0y + 01x + 0,x% + - + g, xY
We can see that
oo =1

o=p+B++pB, =5

0y = P1f2 + -+ By-1By = 0151 + 5,

Overall, we get the following equations named Newton equalities:
S]/+1 + O-lsy + O'ZSy_l + -+ O-ysl S 0

Sy42 + 01Sy4q + 028, + -+ 0,5, =0

Sot + 01S7¢-1 + 0787t + -+ O—]/Szt—]/ =0
The same as BCH Codes, we start from o(x)=1 in stage 0, say we call it ¢(®) () and try to increase

the number of terms so that all equations are satisfied.

Assume that at stage 1 we have

oW (x) = aé“) + al(“)x + aL(:‘)xl#

(M)’ o 1(M)

This means that we have coefficients g, JL(”)

of a polynomial that satisfy the first pn

TP

Newton equalities. We try to apply coefficients to u+1-st equality, i.e., form

S

u+1 + O-l(H)S'u + oo + O-IFZ)SM+1_IH

aé”), Ul(u)

If this gives us a zero it means that R JL(Z) satisfy p+1-st equality.

Otherwise we have to modify the polynomial so form:

w

dy = Sur1 + oS+ oS+ oSy

n

If the discrepancy d,, = 0 then
o U+ (x) = a(“)(x)
And continue.

Otherwise:
a(‘”l)(x) = g (x) + dﬂdglx“‘pa(p)(x)
Where p is the stage closest to p such that d,, # 0
Continue this iteration until we get to stage 2t then
o(x) = c@(x)

Start by filling out the first two rows:

Berlekamp's iterative procedure for
finding the error-location polynomial of a g-ary

BCH code,
[l a#(X) dy Iy p=1Iy
-1 1 1 0 -1
1] 1 51 0]
1 1- 51X
2
3
2r

Example:
Consider triple-error correcting code over GF(2*). Let r(x) = a’x3 + a3x® + a*x1?
Then
gx) =(x+a)(x+a®)(x+a®)(x+a®)(x + a®)(x + a®)
=a®+ a’x + a®x? + a*x3 + al*x* + a%x5 + x°
s;=r(@)=a®+a’ +a=al?
s,=r(@®)=a®+1+al3=1
ss=r(a@®) =a+a’®+al®=at*
sg=r(@) =a*+a'?+a” =al®
ss=r(@®)=a’+a’+a*=0
se =1(a®) =al®+a’ + a = al?

TABLE 7.Z Steps for finding the error-location polynomial of
the (15,9) RS code over GF(24).

m ™ X) de I m=1I,

-] 1 1 o =1

01 a2 0 0

1 l+ably el 1 Oftake p = =1)
I 140X [| 1(take o = 0)
3 14X +a’x? a2 1(take p=10)
4 14a'X 4oi2y? ol 2 2(take p = 2)
S 14+’ X+e'X +a5%) 0 3 2akep=3)
f 1+G?X+ﬂlx1+aﬁx! — e —

Step 2. To find the error-location polynomial o (X)), we fill out Table 7.1 and
obtain Table 7.2 Thus, a(¥) = 1 + &' X +a*X? 4+ oX%

Step3. By substituting 1, @, e?, - -- , 2™ into o(X), we find that o*, o®, and
12 are roots of or(X). The reciprocals of these roots are &2, 2%, and
o, which are the error-location numbers of the error pattern e{X).
‘Thus, errors occur at positions X2, X8, and X112,

A more straightforward algorithm where the correction term is evolved as the iterations go ahead
is given in Vicker’s text.

The algorithm is as follows:

1) Compute syndromes S, ..., Syt .
2) Initialize the algorithm by letting p=0, 0@ (x) = 1, | = 0 and T(x)=x.
3) Set u=u+1 compute discrepancy d,, ,

l
_ (u-1)
d# = SH + Z O'i Sll.—i
i=1

4) If d, = 0 then go to 8.
5) Modify the polynomial as:

oW (x) = oWV (x)d,T(x)

6) If 21 > u then go to step 8.

7) Setl=pu—1land T(x) = d;la(”_l)(x).

8) SetT(x) = x.T(x).

9) If u < 2t go to step 3.

10) Determine o (x) = o @9 (x). If the roots are distinct and in the right field, then determine

the error values, correct the errors and STOP.
11) Declare a decoding failure and STOP.

Next slide shows the problem above done again.
Example: Consider (7,3) RS Code over GF(8) with r(x) = a?x® + a?x* + x3 + a®x2.

Although we have done the generation of g(x) and encoding, let’s start from ground zero for doing
some exercise in Galois field arithmetic. Let’s start with p(x)= x*+x+1. Take a to be a primitive
element of this field, i.e., aroot of s; = a'?,s, = 1,553 = a'*, s = 0,5, = a'?

d” = u+1 + O-l(M)SH + O-Z(H)Sﬂ—l + - O—EZ)SPH'l_LH

B Su o™ (x) d® L, T(x)

0 - 1 - 0 X

1 al? 1+ a'?x at? |1 a3x

*2 1 1+ a3x a’ 1 ax® + adx?
*¥%3 | gl4 14 a®3x + a®x? 1 2 x + a3x?

4 alf 1+ a*x + a'?x? A) atx + a’x? + a°x3
5 0 1+ a’x + a*x3 al® |3 a’x + a’x? + a3x3
6 a2 |1+ a’x+a*x?>+a®x3| a'® |3 -

o(x) =1+ a’x+ a*x? + a®x3

e di=s,+tos,=1+a%a?=a’+1=a’
o d2=S3+O'1$2=1+0l14+053.1=1

p(x). Thatis a® + @ + 1 = 0 or o’= a+1.

The field elements are:

0 0 0O 0 O
1 1 0O 0 1
al 0 1 0 a
a’=aa 0 0 1 a?
al=a’a 1 1 0 otl
at 0 1 1 a’+a
a® 1 1 1 a’?+a+1
a® 1 0 1 a’?+1
a’ 1 0O 0 1

Note:
e a=ca’a=a+1
e at=aa?=a(a+1)=a’+a
e a’=cata=(@*+a)a=a+a’=a’+a+1
e a®=a(@®+a+1)=a’+1
7

e d'=a@+1)=a+a=a+1+a=1
Now, g(X) is:
gx)=(x+a)(x+a®)(x+ a®)(x + a?)
=[x%+ (a + a®)x + a3][x? + (a® + aMx + a”]
= [x? + a*x + a3][x? + a®x + 1]
=x*+a3x3+x%+ax+ad
Computing Syndromes:
S;=r(al). i=1234

In this case, since the number of parities are less than the number of information symbols, it is
reasonable to use r(ai) = S;. However, for high rate codes where n — k < k, it is better to divide

r(x) by g(x) to get
r(x) = g(x) q(x) + b(x)

Where b(x) is a polynomial of degree less than or equal n-k.

S;=r(a’) =g(a')q(a’) +b(a’) i=12..2t
Since g(ai) =0 i=1,..,2t

S; = b(ai)

Dividing 7(x) = a?x° + a?x* + x3 + a®x? by g(x)
r(x) = (a?x? + a®x)g(x) + ax* + a®x3 + a®x? + ax.
So:

s;=bl@)=a’+a’+a®+a?=qa®
s,=b(@®)=a’+a'?*+a'®+ a3 =ad
ss=b(a®)=a®+al®>+al?+a* =a*
ss=b@a)=a+a®+a" +a®=ad

Now we use the algorithm:

K| Sy o™ (x) d, | L T (x)
0 |- 1 - 0 X
1 | 1+ a®x a® 1 ax*
2 | ad 1+ a*x a? 1 ax?”
3 | at | 1+a*x+a®x? | b 2 a’x + abx?
4 | a® | 1+a’x+ax? | a® - -
e Note:

Forp=1 L=0 - 2L<u—->L=pu—-L=1

c®x) x

And T(x) = 7 — = ax.
e Note:

For p=2

L
— (-1 ¢ — O
d,=s,) o Su—i ™ Uz =Sz + 0,75,

i=1

Or

p=a’+ab.a®=a®+a’>=a

2L=2>u=2-T(x) =xT(x) > T(x) = ax?
So:
o(x) = ax? + a’x + 1.

The above algorithm is based on message’s Linear Feedback Shift Register (LESR) synthesis
technique.

Note that for y errors, we have the following Newton equalities.
S] S O-lsj_l + O-Zsj_z + -+ O'yS]_y

This relationship can be represented as LFSR circuit looking like:

The problem of finding error-locator polynomial is then to find an LFSR of minimal length such
that the first 2t elements in the output sequence are sy, Sy, ..., Sy¢-

The coefficients of the filter are then the coefficient of 6(x).

For the above (7,3) RS code, we start with

af, w

This works for the s; = a® as it outputs the content of the register ,i.e., a°. But after the application
of the seconds clock, the output will be a®. a® = a'? = a® which is not s,_a3.

6
To correct the situation, we change the filter tap to a* which is % and therefore, the output after

5
the clocking will be = = «
a

After the next clock the output will be 3. a* = 1 which is not equal to 53 = a*.

To correct this we need to add o’ so that, we get 1 + a® = a* = s;. We keep the above and add a
stage with of in the register and o° as the tap.

of, a'o, ot wt -—1 o

hﬂ]::}

-

This circuit outputs af first and then calculates a®. a® + a3.a* = a® + 1 = a*

Content of the rightmost SR is moved to left and a*is loaded into it.
T 1'13 AT {14 4—‘

So, the next output is a3 = s,.

Next a3.a® + a*.a* = a? + a« = a* is placed in right register and a* is moved left

T

Now a* is output which is s3. But the next output is a* # s, = a3

To avoid this, we modify the taps of the LFSR to:

Ay

It is easy to see that this circuit outputs a®, a3, a* a3 i.e s1,,,53 54
Finding the Error Values:

Now, we have found error-locator polynomial o(X). We can solve it to find the error locations
B =ali i=12,...y.

Now we need to find S; = e;,, i.e., error values at the error locations and correct them, That is the
equations are:

= . gl ol 4+ ... ol
Sy =¢jalt+e a2+ + e a’

_ 2tj 2tj 2tj
Sat = €@t + e a2 4t ey ™y
With a’/i’s and S;’s known. Or equivalently:
S1 = 8181 + 5282 + 5,8y

Sy = 518 + 5,85 + -+ 5, By

Sy = 51ﬁ12t + SzﬂZZt + -t Syﬂft
Let’s define the syndrome polynomial:

S(x) = Sl + 52X + e +Sti2t + Szt+1X2t + cee

S z SjX]_l
j=1

Note that this has an infinite number of terms whose first 2t terms are known:

Y
S; = Zsl Bl j=12..2t
=1

Substituting this (but now for all terms), we get:

S(x) = i X1 i SiB;
j=1 1=1
= isl ﬁli(ﬁlx)f‘l
1=1 j=1

But

S gyt =
= 1+ ,le

So:

Siﬂl
= 1+ ,le

S(x) =
o(x) =I1_,(1 + B;x)So:

@) = ZSL A]_[(1+Bix) £ Zo(x)

i=1. i#p
Also,
o(x)S(x) = [1 + oyx + -+ 0, xV|[Sy + Syx + Szx? + -]
= 5,(S; + 01S)x + (S5 + 015, + 0,5)x% + -+
wot (Oap + 01Sp01 + o+ Oy Sppoy JXHT 4 o
So:

Zo(x) = Sl + (Sz + 0'151)3(+ (53 + 0-152 + O-zsl)xz + b + (Sy + O-lsy_l + ot + O-y_lsl)xy_l
Let’s substitute B ! in Zo(x):

Zo(Bic") = Zslﬁl 1_[1+ B

i=1,i#l

14
=sebi | | a+ps

i=1,i#k

Taking derivative of o(x)

o) = o]_[(1+ﬁlx)—2m 1_[1+

i=1,i#l
Then
Y
BN =6 | | a+ps
i=1,i#k
So,
o _ B
“T ol (BeY)

Let’s [0(x)S(x)]2¢ represent the first 2t terms of 6(x)S(x). Then
o (x)S(x) = [0(x)S(x)]2e

Is divisible by X?t.
That is:
a(x)S(x) = [0(x)S(x)],ymod Xt
But,
[0(x)S()]2e = Zo(x)
And we have:
a(x)S(x) = Zy(x)modx?t
This is called the key equation that has to be solved in decoding of RS codes.
Example: Consider the (7,4) code in the previous example:
We had S; = ab,S, = a3,5; = a* sndS, = a3,
So:
S(x) =a®+ a’x + a*x? + a3x3
Also, we found:
g(x) =1+ a’x + ax? - o' (x) = a? + 2ax = a?
So:
Zo(x) = o(x)S(x)modx*
= (1+ a?x + ax?)(a® + ax + a*x? + a3x3)
=ab®+x

We can find the error locations by solving 6(x)=0 to get 5; = a3 and 5, = a®

So,
Zo(a™®) ab®+ (a73) .
e; =S, = = =at+a’=a
3 17 6/ (a3) a?
And
-5 6 -5
Zo(a™) a®+a 4
e = = = =a* + 1 = as
> 27 g'(a™d) a?
So,

e(X) = aX?®+ a’X?

