ELEC 6131: Error Detecting and Correcting Codes
Lecture 9: Convolutional Codes

In Block Code’s data is encoded using a Combinational circuit. That is, a circuit with only logic
gates and no memory.

Convolutional Codes on the other hand, have encoders that are Sequential Circuits. A
Convolutional encoder receives k bits as the input and generates n > k output symbols based on
the input at a given time and past inputs (or outputs) still in the memory. A convolutional code
usually has m memory units resulting in 2™ states. M is called the constraint length, sometimes
m+1 is called the constraint length taking into account the present input and m bits in the memory
as the bits affecting the output. K and n are usually small integers of particular interest are the

codes with k=1 resulting in code rate %

For example, if k=1 and n=2, we have a code of rate S = %

It is important to note the fact that while k=1 or 2 or some other small number, the input and output
are streams of bits. Assume that L symbols enter the encode. This means kL input bits and nL
output bits we need also to flush the encoder to make it ready for next block of data, e.g., by feeding
km bits. So, the output will actually be n(L + m) bits long and the rate is

kL kL k

—_— - . =
n(L+m) nl+m n

when m < L.

Since the codewords of a Convolutional code are generated using a Finite State Machine (FSM),
1.e. a sequential circuit, the decoder can be a scheme that finds the best match for the received
sequence (based on minimum distance), by going through all possible outputs the FSM (the
encoder could have generated. The scheme used is the travelling salesman algorithm. It is called
the Viterbi Algorithm (VA) in coding literature as it was first used for decoding of convolutional
codes by Andrew Viterbi (the relationship between VA and travelling salesman problem was later
discovered. So, in fact, Viterbi re-invented the algorithm).

VA finds a solution that is optimal over the whole received sequence and not necessarily having
lower probability of error for each symbol.

Another Scheme called BCJR (Bahl, Cocke,Jelinek and Raviv) algorithm is another decoding
technique that works based on the maximum a posterior (MAP) probability taking into account a
priori probability of bits. It is very useful in iterative decoding of Turbo codes.

Example: let’s start with a non-systematic feed forward rate % code.

The code is non-systematic as there is no direct connection between the input and any of the
outputs. Also, we call the code feed forward as the outputs are not fed back to the input side.

v

-

.-— = i
L 1 B

L

Let the input sequence to be u=(ug, U4, Uy, ...)

the output sequence will be vO=(1?, vl(o), vz(o),)

—(,,(0) (0) _(0)
and v"=(v, ", vy, v, 7, ..)
these outputs can be obtained by convolving u with the impulse response of two branches.

To find the impulse response let u=(1 0 0 ...) and observe the outputs. Since the memory order is
m, the impulse response can last at most m+1 time units so,

0 0 0
g©=g", g9, ..., g

And

0 0 0
gV=g!?, g, .., gt

For this example:

g@=(1011)
And

gP=(1111)

These are also called generator sequences.

Now,

And

Where ® denotes convolution:

l(l) = Do U gi(]) =y g(()]) + U4 g(()]) + ot Uy, g,(,]l) For j=0 and 1.

For this example,

Ul(O) =y + Uj_» + Uj_3

@®

v =u U T U T U3

And

v= (U(O), vél), vl(o), vl(l), vz(o), vz(l),)

Assumeu=(10111)
Then
vO9=(10111) ® (1011)=(10000001)
vO=10111D)*® 1111)=(11011101)
and
v=(11, 01, 00, 01, 01, 01, 00 ,11)

When the number of bits encoded is large, we can view the operation of the convolutional
encoder as a block encoder by defining the generate matrix:

0y (1) m_ 1 1
5 8 & 8 g3 o g% g
@ (1) (T ol
G- En Bp By By 3:1-13;11 Ejn‘ E:[nb
il _(1) m i 0 (1 o (1
Bo B0 ' Em_38m-2 3,,,_12,5,,1 SLJEL}

Then v =uG. For input u= (101111) we have:

11 01 11 11
11 01 11 11
=(10111) 11 01 11 11
11 01 11 11
11 01 11 11

=(11010001,01,01,00,11),

2 . .
Example: A rate 5 hon-systematic feed forward convolutional code:

Let gi(j) represent the generator sequence corresponding to input I and output j, we have:

g”=0a1 gV=01D g?=011

g’ =01 g’=00 g¢?=@10
Then:
p(©® =yl @ gio) +y@® = ggo)

1 @& (1)+u(2)® 1

v =u 91 92
@ =yl ® g(Z) +y@® gg)
So,
vl(o) = ul(l) + +“1(P1 + ul(f)l
Uz() (2) + u(l)
7@ = u® +u® + 1,

While rate S codes with k#1 can be used, it is easier to use a code % rate to generate codes S This
is done using puncturing. Assume that we have a rate % code, we can feed it two bits at a time and
out of 4 bits we get at the output throughout one to get a rate 2 code. Or input 3 bits and get 6 bits
out and throughout 2 bits to get % code .

Example: Industry Standard Code:

Figare 8. B4-Stats Gonvolutionsl Encodar

(T EO(50" 171 Ocal)

=

AT 8 THI +Hl il 11 Ty

mmmmm:’Jm
-..____________‘ \
T ——

I"'-----.______. ﬁ‘—‘ {Hm.I:a'm'w]
o~ B
W
B (52 = 165 Detey
\L/ ENCC2

Figire Ba. Penctured Coding for Rate 34
(] Erasded Puscured R Data with Cata
Lo Deta Enceded Data Wl Irsertians
e 14 T Tl ¥ it
——* CLomolubonl] Ml el ——a
@ | ensoe At © et | @ | e | ©®
Trangmiting cfﬂ ﬂ" ': E‘. Rucping
Stafian Chanel Hation
® [T o [om [owm [om [om]
foan) T
204 Clid
ey T | BT BIG
L
©] -] c0) | e
W) Lz} L) i) 0 el
® RO} B | Am | R4 ==
&) [ITH] - Rij4) RIS
® o T ow T ow T owm [&5 1 o8

Flgure 8. Pusctured Coding for Bate Ta

latz Encoded Funciared [t Diata with [als
Ingast — [ata Encoded Datn Ml Ingartions Dutput
Faie ¥
——— okl ol S) S e
® | e e © et | @ | o | @
ry e — r
el
® 1 i 1) [o 13y | o
0 I T2, mmrn-uum B el
@ fkoeld 144 3) (s brR) Aoy). GITH m&m‘a.ﬂrﬂﬂia.ﬁ
@ LIt} 4 s m COlE) [STH <7} Lo | Chaneal
L) CA@Y G4 £165) 1) G13) alAL] [A\E]] 0 Chiasrsl
® [e EAEMENE e
ENT) J VR | RAGE) | R | <@ | R1gE) | =@ | eagm | oo e [Rio [8- [Rin | 8-
@ o 4 0oy o 0 W

=B = NulkSymbel Irsarted
X = Symbol Oalsied (Rerchired)

Polynomial Domain Representation:

Similar to block codes, we can transform the time domain representation by transforming the
generating sequences to generating polynomial and similarly input and output sequences to input

and output polynomials:

For example for the (2,1,3) code, i.e. rate% memory = 3 code, instead of g¥=(1011)and g
=(1111), wecan use:

g@M) =1+D?+D3and gV (D) =1+D +D?+ D3

If we denote the input sequence as,

u(D) = uy +wy D + u,D* + -+

Then

vOD = u(D)g® (D)
And

vD = u(D)g™ (D)
So,

v(D) = [v@(D), vV (D)] = v°(D)? + DvV (D?)
Assume thatu=10111—uD)=1+ D? + D3 + D*.
Then,

v (D)= 1+D?+D%+D*)(1+D?>+D3) =1+D’
vDD)=Q+D?+D3*+DY(1+D+D?*+D3=1+D+D3+D*+D54D’

And

V(D)=[14+D"+1+D+ D3>+ D*+D°>+ D]

=1+D+ D3+ D7 +D°+ D1 + D' + D15

As anexercise trytoget 1 1010001010100 by feeding 1 011 1 to the encoder.

Equivalently, we could use g(D) = g@(D?) + Dg™ (D?) and find the output using
v(D) = u(D?)g(D)

For the above example:
g(D)=1+D*+D®+D[1+ D?+ D*+ D9
=1+D*+ D%+ D+ D3+ D>+ D’

=1+D+D3*+D*+D>+D®+ D’

And
v(D) =u(D?)g(D) =1+ D*+D®+D®)(1+ D+ D3+ D*+D°>+D®+ D7)
=1+D+D3*+D7+D°+ D + D + D15
In general, for a code with k inputs and n outputs, we have:
g:(D) = g @™ + Dg(D™) + -+ DG (DY) for 1<i<k
And

k

v(D) =) u®(D")g,D

i=1

Graphical representation of Convolutional codes:

Trees, Trellises and FSM

Consider a code with m memory elements, each bit takes the contents of shift register from one of
the 2™ possible values to another value. For simplicity take the case of feed forward, k=1 code.
Let’s start from all zero content for m memory elements i.e., start from 0 0...0. If the bit entering
the encoder is zero it moves to the same state. Otherwise goes to 1 0 0 ... 0. Next bit takes it to 0
10...0o0r110...0.

For example: for the 3-bit memory encoder (2,1,3) we will have:

vy
0oa
100
0oo
010
100
110
0090
001
010
101
100
010
110
111

Note that after entering 3 bits, we get to 8 terminal nodes with all possible binary values. If we
continue, we get trees with 16, 32, 64, ... of terminal nodes. But node labels will still be one of the
eight patterns 000, 001, ...,111.

So, instead of a tree, we can use a trellis. For the above code, we have the following trellis. We
label the nodes by state values and the arcs by the input and let’s first draw the state-diagram:

Each state is labeled with the content of the memory elements and each transition is labeled with
the input and output. So, an input 1 takes the system from state 000 to state 100 generating output
11, so, 1/11 is the label of the transition from 000 to 1000. Since this is a binary (one bit) input
code, we can represent the input by thickness or shape of line, e.g., using solid line for zero and
dashed line for one.

- 0t

- -

"'\\:"I' S ‘,II i
A (2,1, 3) binary systematic feedforward convolutional encoder,

Convolutional encoders can also have feedback. Following is an example of (2,1,2) systematic
feedback encoder.

> Vi)

(e
*1,(+}.LD\T/-:D

e VI

These codes are defined in terms of their feedback and feedforward transfer functions (or
generator functions). The above code has go(D)=1

1+D?
1+D+D?2

And g,(D) =
Or the generator matrix is
G(D) =[1,(1+D?*/(1+ D + D?)]

Trellis Diagrams list all possible codewords. For example, for a convolutional code with binary
input, after entering k bits, i.e., passing through k stages, we have 2* paths to consider. Note that

for a rate % after entering k bits. We have nk bit sequence. So, the search is for one of the 2* trellis
paths among 2" possibilities.
We will have an error if the transmitted sequence belongs to one path of trellis and we decide in

favour of another path. That is, if the noise make the path diverge at one node and coverage at
another node. To see this, let’s try a simple example.

Consider the (2,1,2) feedback code above.

Assume, for example, that input the encoder is all zero sequence. Then the top line is the path
taken by the output of the encoder.

Now assume that at some point there is an error and instead of straight (solid line), the decoder
takes the dashed line. Unlike un-coded case, the next output is not un-constraint since the first
divergence has rested in 00 being 11, then the next two bits are either 01 or 10. This continues
until the two paths merge. Any convergence of two diverged paths is called an error event. The

shortest error event defines, the minimum or free distance of the code. In this case the free distance
is 5 and is a result of 00,00,00 being changed to 11,01,00. That means decoding 100 instead of
000.

Catastrophic Convolutional encoder:

A convolutional encoder, is one that creates a trellis diagram in which a stream with an infinite
number of errors appears as having a finite distance from the original sequence.

Example: Take the convolutional code with G(D) = [1 + D, 1 + D?]

The encoder is:

The trellis for this encoder is:

Now assume that 0 0...0 be encoded, i.e., 00,00, ... 00 (upper path) be transmitted. The distance
between 11,01,00, ...,00 (the violet path) and the correct path is 3. But one decodes to all 0 and
the other to all one.

Let’s analyze the situation. Note that 1+D is a common divisor to go(D)= 1+D and

g1(D) =1+ D? = (1+ D)(1+ D) So, the encoder can be conceived as an m=1 encoder [1,
1+D] and a multiplication (say prior to encoding) by 1+D.

Note that

L=1+D+D2+D3+---
1+D

(1+D+D?*+D3+--)(1+D)

So, if we feed the all one sequence to the 1+D, we get a single 1 and all zero. The same is true for
any encoder whose constituent g;(D) have a common divisor other than unity (or shift of unity

say DY), A % code is not catastrophic if and only if

GCD[go(D),g:(D), ..., gn_1(D)] = D' for some integer L.

Performance of Convolutional Codes:

The performance of convolutional codes is computed based on their distance profile (Spectrum)
Assume that in the trellis of a code there are Aqerror event paths of distance d, for all possible d.

Then

AX) = i Ag X

d=dfree
Assuming that probability of error event for a path of distance d is Pq.

Then:

P(E) < Z AgPy

d=dfree

P(E) can be approximated as (upper bound approximated) for BSC:

PEY< D Ad2Vp =) = A, i)
d=dfree

For low p , i.e., high SNR, we have the path with distance df, as dominant so:

P(E) = Aay,,,[24/p(1 — p)]¥rree

Instead of Aqwhich is the number of error event of weight d, we may use B;which is the sum of
numbers of non-zero bits on all d paths divided by the number of information bits k.

Then:

[oe)

PE)< D BaPa=) Bal2pyT-p)f

dzdfree dzdfree

Again, taking dg,.. path as the dominant path:

P(E) = By, [2Jp(1 - p)]%ree

~ Afree pAfree
= By, 2"/ PYS
Letting
p 2E; _%
= ~ — 0
Q N, > e ,i.e.,
Assuming BPSK:

dfree dfree
Py(E) = By, 2 2 -G

Note that £}, = % , So

dfree _ dfree
Py(E) =By, 2 2 e\ 2 @)

Comparing this with un-coded BPSK, i.e.,

Ep

P =0 2B, 1 B
= —_— ~ —e 0
b N, 2

free

We find that there is power gain of 2Lree

This in decibel is called the asymptotic coding gain:

A Rdfree
y £ 10 logqg > dB.

Soft Decoding:

If we do not do demodulation prior to decoding, we use Euclidean distance.

Then:
- 2dRE,
PE<) 40| |
dzdfree 0

o)

2dRE,

PEY< Y Be0| [
d=dfree 0

We can approximate the Q(.) function so that,
> _dRE}

Pb (E) < Z Bde No
d=dfree
Or

_dfreeR Ep

Py(E) = By, e Mo

Comparing with un-coded BPSK, i.e.,

We get coding gain (asympthotic):
y & 10l0g10(Rdfree) dB

Which is 3 dB better than hard decision decoding.

TABLE 12.2 Optimum rate R = 172

quick-look-in coavolutional codes,
* g diree Ady, ¥ 10B) TABLE 12.1c): Optimum rate & = 1/2 con-
] 5 5 1 308 volutlonal codes,
3 5 6 1 47 e g™ @ dpe Ag, ¥ (dB)
. ; ;; ; § ig 1 3 1 3 1 L |
& 151 9 4 683 z 5 7 5 1 96
7 215 g 1 653 3 13 17 & 1 4.77
4 £ 3 7 2 5.44
) 455 10 1 699 . i
9 1335 11 3 7.40 : B 1 6.02
1 A5 12 3 778 117 155 10 11 699
1 8055 13 8 813 7w oW 1 689
12 14135 14 10 845 B s&1 TER 1211 7.78
1 WMl 14 s 448 a 1% 1537 12 1 1.
14 6545 15 6 875 0 247 T M4 4 BaS
15 171045 16 11 903 11 4375 67T 15 14 B75
16 141295 16 2 003 12 10627 16765 16 14 LT}
17 61351 17 5 939 13 I751 3TIE 16 1 M
18 142055 18 6 954
19 3007451 18 2 9
20 6153605 19 4 9.78 TABLE 12.1¢dk: Optimum rate & = 2/3 convolo-
21 14565371 20 7 1000 tional cades.
22 RETIMS 20 1 1000 . BE n? m® 4
23 6B4M6s 2 3 1021 fpee _ Adpws ¥ (d4B)
4 147373045 22 T 10.41 2 3 5 T 3 1 301
3 17 15 13 4 1 4736
TABLE 12.1(a)": Optimum rate R = 1/4 convolutional ; ?B) I 3 513
codes 1057 73 6 7 am
: 6 122 47 1 7 17 .60
v g™ g0 g g dpe g, B 7 33 27 M OB 4 1O
B 558 631 477 B 6 17
i 1 1 3 3 6 1 1.76 e
: 5 5 7 7 1w 1 108
3 13 13 15 17 13 3 %12 10 2621 2137 3013 10] 824
4 ™ I @ 3 1 4 &
s 48 53 67 T w3 65
& 117 1; 1% 1m 2 2 .09 TABLE 12.1fe}: Optimum rate B = 3/4 eomvolutional
7 257 M1 337 355 g 1 3.41; codes,
g 513 575 @47 TI 1 7 = T
9 173 1325 MeT 1751 T 3 B b WP W R e Ag,, ¥ @B
2 : 5 7 & 3 5 352
_ 3 011 13 15 12 4 0 477
'r_.nBLE 12.1(b): Optimum rate B = 1/3 coavolu- 4 13 25 17 4 5 s
tional codes. 5 47 T 57 7§ 7 574
vy g™ g% g dpe A4, rUB) 6 107 13 13 141 & 27 653
— 7 1 M1 315 T 6 5 6.53
) ; ; — 3 . B S5 757 T 66l T 27 120
3 13 15 T 1w 3 521 B 1475 1723 1157 1371 B 1% 778
PR o3 1 5 el
5 47 3 75 13 1 636
& 17 117 155 15 1 6599
7 oWs 3 38T 16 1 17
8 55 &3 T 18 1 T
9 1167 1375 1545 20 1 &n
10 s ¥l 347 omo 7 BaS
11 5745 6471 7553 M4 13 o
12 23 13735 T oM 50 9@

