Chapter 5

5.6 (a) A polynomial over GR2) with odd number of terms is not divisible by + 1, hence it
can not be divisible by (X) if g(X) has(X + 1) as a factor. Therefore, the code contains no
code vectors of odd weight.

(b) The polynomialX™ + 1 can be factored as follows:
X'+1=X+1D)X""+ X" 2+ + X +1)

Sinceg(X) divides X" + 1 and sinceg(X ) does not hav&X + 1 as a factorg (X ) must divide
the polynomialX”~! + X"=2 ... + X + 1. Thereforel + X + --- + X" 2 + X" lisa
code polynomial, the corresponding code vector consists afsall

(c) First, we note that nd is divisible byg(X). Hence, no code word with weight one.
Now, suppose that there is a code werdX ) of weight 2. This code word must be of the
form,

v(X)= X"+ X/

with 0 < i < j < n. Putv(X) into the following form:
v(X) = X'(1+X77%).

Note thatg(X) and X" are relatively prime. Since(X) is a code word, it must be divisible

by g(X). Sinceg(X) and X"’ are relatively primeg(X ) must divide the polynomiak’—¢+1.
However,j — ¢ < n. This contradicts the fact thatis the smallest integer such thgtX)
divides X™ + 1. Hence our hypothesis that there exists a code vector of weight 2 is invalid.
Therefore, the code has a minimum weight at least 3.

5.7 (a) Note thatX™ + 1 = g(X)h(X). Then

XX " +1)=X"g(X Hh(X
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L+ X" =[x Fg(x )] [X*h(x )]
— g*(X)h*(X).

whereh*(X) is the reciprocal oh(X). We see thag*(X) is factor of X" + 1. Therefore,
g*(X) generates afn, k) cyclic code.

(b) LetC' andC™* be two(n, k) cyclic codes generated g(.X) andg*(X) respectively. Let
v(X) = v+ v X + -+ v,.1 X" ! be a code polynomial i?. Thenv(X) must be a
multiple ofg(X), i.e.,

ReplacingX by X! and multiplying both sides of above equality &y*~!, we obtain
Xn_1V(X_1) _ [Xk—la(X—l)] [Xn_kg(X_l)}

Note thatX" !v(X 1), X*1a(X~!) and X" *g(X~!) are simply the reciprocals of(X),
a(X) andg(X) respectively. Thus,

vi(X) = a’(X)g"(X). (1)

From (1), we see that the reciprogéil(.X ) of a code polynomial il is a code polynomial in
C*. Similarly, we can show the reciprocal of a code polynomial'inis a code polynomial in

C. Sincev*(X) andv(X) have the same weight;* andC' have the same weight distribution.

5.8 Let C be the cyclic code generated b¥ + 1)g(X). We know thatC, is a subcode of”
and(C consists all the even-weight code vector€oés all its code vectors. Thus the weight
enumeratord, (z) of C; should consists of only the even-power termsi¢f) = > 7" A;z".

Hence
[n/2

]
Al(Z) = Z A2j22j (1)

j=0
Consider the sum

A(z) + A(=2) = Z A2t + Z Ay(—2)
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n

A; [zi + (—z)i} .

=0
We see that’ + (—z)! = 0if 7 is odd and that’ + (—z) = 22% if i is even. Hence
(/2] |
A(z) + A(=2) = Y 24527 2)

J=0

From (1) and (2), we obtain

A(2) = 1/2[A(2) + A(—2)] .

5.10 Lete;(X) = X'+ X"t andey(X) = X’ + X’*! be two different double-adjacent-error
patterns such that< j. Suppose that; (X) andey(X) are in the same coset. Then X) +
e,(X) should be a code polynomial and is divisiblegyX') = (X + 1)p(X). Note that

e (X)+exX) = Xi(X—i- 1) —l—Xj(X—I— 1)

= (X + )X (X7 +1)

Sinceg(X) dividese;(X) + e(X), p(X) should divideX*(X’~* 4+ 1). Howeverp(X) and
X' are relatively prime. Thereforp(X) must divideX’~* + 1. This is not possible since
Jj—1i<2™—1andp(X) is a primitive polynomial of degree: (the smallest integet such
thatp(X) dividesX™ + 1is2™ — 1). Thuse;(X) + e2(X) can not be in the same coset.

5.12 Note thate” (X) is the remainder resulting from dividing’e(X) by X™ + 1. Thus
X'e(X)=a(X)(X" +1) +e?(X) (1)

Note thatg(X) dividesX™ + 1, andg(X) and X* are relatively prime. From (1), we see that
if e(X) is not divisible byg(X), thene (X) is not divisible byg(X). Therefore, ife(X) is
detectablee (X) is also detectable.
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5.14 Suppose that does not divide:. Then

n=k-l+r, 0<r<dt.

Note that
v (X) = vIFEI(X) = v(X) (1)
Sincev?(X) = v(X),
v (X) = v(X) )
From (1) and (2), we have
v(X) = v(X).

This is not possible sindé < r < ¢ and/ is the smallest positive integer such thé? (X) =
v(X). Therefore, our hypothesis th@tdoes not divide: is invalid, henceg must dividen.

5.17 Let n be the order of;. Thenp™ = 1, andf is a root of X™ + 1. It follows from Theorem
2.14 thatp(X) is a factor ofX™ + 1. Hence¢(X) generates a cyclic code of length

5.18 Letn; be the order ofj; andn, be the order ofj,. Letn be the least common multiple ef
andnay, i.e. n = LCM (ny,ny). ConsiderX™ + 1. Clearly, 5, and 3, are roots ofX™ + 1.
Since¢, (X) andg,(X) are factors ofX™ + 1. Since¢, (X) andg,(X) are relatively prime,
g(X) = ¢1(X) - p2(X) divides X" + 1. Henceg(X) = ¢1(X) - ¢2(X) generates a cyclic
code of lengtm = LC M (nq,na).

5.19 Since every code polynomial X') is a multiple of the generator polynomia{ X ), every root
of p(X) is a root ofv(X). Thusv(X) hasa and its conjugates as roots. Suppes$&) is
a binary polynomial of degreg™ — 2 or less that has as a root. It follows from Theorem
2.14 thatv(X) is divisible by the minimal polynomiap(X) of . Hencev(X) is a code

polynomial in the Hamming code generatedpiyX ).

5.20 Letv(X) be a code polynomial in botfi; andC,. Thenv(X) is divisible by bothg, (X') and
g2(X). Hencev(X) is divisible by the least common multipfg X') of g;(X) andgs(X),
i.e. v(X) is a multiple ofg(X) = LCM(g:1(X),g2(X)). Conversely, any polynomial of
degreen — 1 or less that is a multiple of(X) is divisible by g;(X) andg,(X). Hence
v(X) is in bothC; andC,. Also we note thag(X) is a factor ofX™ + 1. Thus the code

24



polynomials common t6'; andC, form a cyclic code of length whose generator polynomial
isg(X) = LCM(gi1(X),g2(X)). The codeCs generated by (X) has minimum distance
dg Z max(dl,dg).

5.21 See Problem 4.3.

5.22 (a) First, we note thak?" ! + 1 = p*(X)h*(X). Since the roots of{?"~! + 1 are the
2™ — 1 nonzero elements in GE™) which are all distinctp*(X) andh*(X) are relatively
prime. Since every code polynomia(X) in Cy is a polynomial of degree™ — 2 or less,
v(X) can not be divisible by (X) (otherwisev(X) is divisible byp*(X)h*(X) = X?" 141
and has degree at lea@t — 1). Suppose that? (X) = v(X). It follows from (5.1) that

X'v(X)=a(X)( X" +1)+vO(X)

=a(X)(X*" '+ 1)+ v(X)

Rearranging the above equality, we have
(X' 4+ 1D)v(X) =a(X)(X*" 1 +1).

Sincep(X) divides X?"~! + 1, it must divide(X"® + 1)v(X). Howeverp(X) andv(X) are
relatively prime. Hence(X) divides X + 1. This is not possible sindé< i < 2™ — 1 and
p(X) is a primitive polynomial(the smallest positive integesuch thap (X ) dividesX™ + 1
isn = 2™ —1). Therefore our hypothesis that, fox i < 2™ — 1, v(D(X) = v(X) is invalid,
andv® (X) # v(X).

(b) From part (a), a code polynomial X') and its2™ — 2 cyclic shifts form all the2™ — 1
nonzero code polynomials i@;. These2™ — 1 nonzero code polynomial have the same
weight, sayw. The total number of nonzero components in the code words &w- (2™ —1).
Now we arrange the™ code words irC,; as ar2™ x (2™ — 1) array. It follows from Problem
3.6(b) that every column in this array has exa@ly ' nonzero components. Thus the total
nonzero components in the arraRis ! - (2™ — 1). Equatingw.(2™ — 1) to2™~1. (2™ — 1),

we have

w = 2m—1
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5.25 (a) Any error pattern of double errors must be of the form,
e(X)= X"+ XJ
wherej > i. If the two errors are not confined to— k£ = 10 consecutive positions, we must

have

J—1+1>10,
15— (5 —1i)+1>10.

Simplifying the above inequalities, we obtain

j—1>9

J—1<6.

This is impossible. Therefore any double errors are confined to 10 consecutive positions and
can be trapped.

(b) An error pattern of triple errors must be of the form,

e(X)= X"+ X7+ X",

where0 < i < j < k < 14. If these three errors can not be trapped, we must have

k—i>9
j—1<6
k—j<6.

If we fix 4, the only solutions foj andk arej = 5+ ¢ andk = 10 + . Hence, for three errors
not confined to 10 consecutive positions, the error pattern must be of the following form

e(X) = X'+ X 4 X0
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for 0 <i < 5. Therefore, only 5 error patterns of triple errors can not be trapped.

5.26 (b) Consider a double-error pattern,
e(X)=X"+X’

where(0 < i < j < 23. If these two errors are not confined to 11 consecutive positions, we
must have

j—i+1>11
23— (j—i—1)>11

From the above inequalities, we obtain
10<j—i<13

For a fixedi, j has two possible solutiong,= 11+ andj = 12+. Hence, for a double-error
pattern that can not be trapped, it must be either of the following two forms:

el(X) — Xl _}_Xll-i-i’

er(X) = X'+ X2+,

There are a total of 23 error patterns of double errors that can not be trapped.

5.27 The coset leader weight distribution is

1 _ 23 _ 23 _ 23
Qo = 1,01 = 1 , Qg = 9 , 3 = 3

=05 =-"=ay3=>0
The probability of a correct decoding is

P(C)=(1-p)*+ (213>p(1 —p)* + (223)272(1 - p)*

27



+ (233> p*(1—p)*.

The probability of a decoding error is

P(E)=1- P(C).

5.29(a) Consider two single-error patterns,(X) = X andey(X) = X7, wherej > i. Suppose
that these two error patterns are in the same coset. Tien X’/ must be divisible by
g(X) = (X3 + 1)p(X). This implies thatX’—" + 1 must be divisible byp(X). This is
impossible sincg — ¢ < n andn is the smallest positive integer such thatX) divides
X™+ 1. Therefore no two single-error patterns can be in the same coset. Consequently, all
single-error patterns can be used as coset leaders.

Now consider a single-error pattesp( X ) = X* and a double-adjacent-error pattesi.X ) =
X7 + X%, wherej > i. Suppose thaé;(X) andey(X) are in the same coset. Then
X'+ X7+ X7t must be divisible byg(X) = (X*+1)p(X). This is not possible sinag(X)
hasX + 1 as a factor, howevek’ + X7 + X7*! does not haveX + 1 as a factor. Hence no

single-error pattern and a double-adjacent-error pattern can be in the same coset.

Consider two double-adjacent-error patteifisi- X! and X’ + X7+ wherej > i. Suppose
that these two error patterns are in the same cosets. Xhen X! + X7 + X! must be
divisible by (X? + 1)p(X). Note that

X' X 4 X9 4 X = XX 4+ 1)(X7E 4 1),

We see that forX*(X + 1)(X?~* + 1) to be divisible byp(X), X/~ + 1 must be divisible
by p(X). This is again not possible singe- i < n. Hence no two double-adjacent-error
patterns can be in the same coset.

Consider a single error patteiy and a triple-adjacent-error pattei¥ + X/*! + X7+2_ |f
these two error patterns are in the same coset, Xien X7 + X7t + X772 must be divisible

by (X3 + 1)p(X). But X’ + X7 + X7+ 4 X772 = X' + XJ(1+ X + X?) is not divisible by
X3+1=(X+1)(X*+ X +1). Therefore, no single-error pattern and a triple-adjacent-error
pattern can be in the same coset.

Now we consider a double-adjacent-error patt&fn- X! and a triple-adjacent-error pattern
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X7 + X7+l 4 X7*2, Suppose that these two error patterns are in the same coset. Then
X X X0 4 X X2 = XX+ 1) + XI( X2+ X +1)

must be divisible by X3 +1)p(X). This is not possible sinc&® + X1 + X7 + X7+ 4 X7+2
does not haveél +1 as a factor buK ®+1 hasX + 1 as a factor. Hence a double-adjacent-error
pattern and a triple-adjacent-error pattern can not be in the same coset.

Consider two triple-adjacent-error patteraé’, + X1 + X2 and X7 4+ X/*! 4 X2 |f
they are in the same coset, then their sum

X(X2P4+ X+ 1)1+ X7

must be divisible by(X? + 1)p(X), hence byp(X). Note that the degree ¢f(X) is 3 or
greater. Hence(X) and(X? + X + 1) are relatively prime. As a resulp(X) must divide
X7=%4 1. Again this is not possible. Hence no two triple-adjacent-error patterns can be in the
same coset.

Summarizing the above results, we see that all the single-, double-adjacent-, and triple-
adjacent-error patterns can be used as coset leaders.
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