
Chapter 5

5.6 (a) A polynomial over GF(2) with odd number of terms is not divisible byX + 1, hence it

can not be divisible byg(X) if g(X) has(X + 1) as a factor. Therefore, the code contains no

code vectors of odd weight.

(b) The polynomialXn + 1 can be factored as follows:

Xn + 1 = (X + 1)(Xn−1 + Xn−2 + · · ·+ X + 1)

Sinceg(X) dividesXn +1 and sinceg(X) does not haveX +1 as a factor,g(X) must divide

the polynomialXn−1 + Xn−2 + · · · + X + 1. Therefore1 + X + · · · + Xn−2 + Xn−1 is a

code polynomial, the corresponding code vector consists of all1′s.

(c) First, we note that noX i is divisible byg(X). Hence, no code word with weight one.

Now, suppose that there is a code wordv(X) of weight 2. This code word must be of the

form,

v(X) = X i + Xj

with 0 ≤ i < j < n. Putv(X) into the following form:

v(X) = X i(1 + Xj−i).

Note thatg(X) andX i are relatively prime. Sincev(X) is a code word, it must be divisible

byg(X). Sinceg(X) andX i are relatively prime,g(X) must divide the polynomialXj−i+1.

However,j − i < n. This contradicts the fact thatn is the smallest integer such thatg(X)

dividesXn + 1. Hence our hypothesis that there exists a code vector of weight 2 is invalid.

Therefore, the code has a minimum weight at least 3.

5.7 (a) Note thatXn + 1 = g(X)h(X). Then

Xn(X−n + 1) = Xng(X−1)h(X−1)
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1 + Xn =
[
Xn−kg(X−1)

] [
Xkh(X−1)

]

= g∗(X)h∗(X).

whereh∗(X) is the reciprocal ofh(X). We see thatg∗(X) is factor ofXn + 1. Therefore,

g∗(X) generates an(n, k) cyclic code.

(b) Let C andC∗ be two(n, k) cyclic codes generated byg(X) andg∗(X) respectively. Let

v(X) = v0 + v1X + · · · + vn−1X
n−1 be a code polynomial inC. Thenv(X) must be a

multiple ofg(X), i.e.,

v(X) = a(X)g(X).

ReplacingX by X−1 and multiplying both sides of above equality byXn−1, we obtain

Xn−1v(X−1) =
[
Xk−1a(X−1)

] [
Xn−kg(X−1)

]

Note thatXn−1v(X−1), Xk−1a(X−1) andXn−kg(X−1) are simply the reciprocals ofv(X),

a(X) andg(X) respectively. Thus,

v∗(X) = a∗(X)g∗(X). (1)

From (1), we see that the reciprocalv∗(X) of a code polynomial inC is a code polynomial in

C∗. Similarly, we can show the reciprocal of a code polynomial inC∗ is a code polynomial in

C. Sincev∗(X) andv(X) have the same weight,C∗ andC have the same weight distribution.

5.8 Let C1 be the cyclic code generated by(X + 1)g(X). We know thatC1 is a subcode ofC

andC1 consists all the even-weight code vectors ofC as all its code vectors. Thus the weight

enumeratorA1(z) of C1 should consists of only the even-power terms ofA(z) =
∑n

i=0 Aiz
i.

Hence

A1(z) =

bn/2c∑
j=0

A2jz
2j (1)

Consider the sum

A(z) + A(−z) =
n∑

i=0

Aiz
i +

n∑
i=0

Ai(−z)i
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=
n∑

i=0

Ai

[
zi + (−z)i

]
.

We see thatzi + (−z)i = 0 if i is odd and thatzi + (−z)i = 2zi if i is even. Hence

A(z) + A(−z) =

bn/2c∑
j=0

2A2jz
2j (2)

From (1) and (2), we obtain

A1(z) = 1/2 [A(z) + A(−z)] .

5.10 Let e1(X) = X i + X i+1 ande2(X) = Xj + Xj+1 be two different double-adjacent-error

patterns such thati < j. Suppose thate1(X) ande2(X) are in the same coset. Thene1(X) +

e2(X) should be a code polynomial and is divisible byg(X) = (X + 1)p(X). Note that

e1(X) + e2(X) = X i(X + 1) + Xj(X + 1)

= (X + 1)X i(Xj−i + 1)

Sinceg(X) dividese1(X) + e2(X), p(X) should divideX i(Xj−i + 1). Howeverp(X) and

X i are relatively prime. Thereforep(X) must divideXj−i + 1. This is not possible since

j − i < 2m − 1 andp(X) is a primitive polynomial of degreem (the smallest integern such

thatp(X) dividesXn + 1 is 2m − 1). Thuse1(X) + e2(X) can not be in the same coset.

5.12 Note thate(i)(X) is the remainder resulting from dividingX ie(X) by Xn + 1. Thus

X ie(X) = a(X)(Xn + 1) + e(i)(X) (1)

Note thatg(X) dividesXn + 1, andg(X) andX i are relatively prime. From (1), we see that

if e(X) is not divisible byg(X), thene(i)(X) is not divisible byg(X). Therefore, ife(X) is

detectable,e(i)(X) is also detectable.
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5.14 Suppose that̀ does not dividen. Then

n = k · ` + r, 0 < r < `.

Note that

v(n)(X) = v(k·`+r)(X) = v(X) (1)

Sincev(`)(X) = v(X),

v(k·`)(X) = v(X) (2)

From (1) and (2), we have

v(r)(X) = v(X).

This is not possible since0 < r < ` and` is the smallest positive integer such thatv(`)(X) =

v(X). Therefore, our hypothesis that` does not dividen is invalid, hencè must dividen.

5.17 Let n be the order ofβ. Thenβn = 1, andβ is a root ofXn + 1. It follows from Theorem

2.14 thatφ(X) is a factor ofXn + 1. Henceφ(X) generates a cyclic code of lengthn.

5.18 Let n1 be the order ofβ1 andn2 be the order ofβ2. Let n be the least common multiple ofn1

andn2, i.e. n = LCM(n1, n2). ConsiderXn + 1. Clearly,β1 andβ2 are roots ofXn + 1.

Sinceφ1(X) andφ2(X) are factors ofXn + 1. Sinceφ1(X) andφ2(X) are relatively prime,

g(X) = φ1(X) · φ2(X) dividesXn + 1. Henceg(X) = φ1(X) · φ2(X) generates a cyclic

code of lengthn = LCM(n1, n2).

5.19 Since every code polynomialv(X) is a multiple of the generator polynomialp(X), every root

of p(X) is a root ofv(X). Thusv(X) hasα and its conjugates as roots. Supposev(X) is

a binary polynomial of degree2m − 2 or less that hasα as a root. It follows from Theorem

2.14 thatv(X) is divisible by the minimal polynomialp(X) of α. Hencev(X) is a code

polynomial in the Hamming code generated byp(X).

5.20 Let v(X) be a code polynomial in bothC1 andC2. Thenv(X) is divisible by bothg1(X) and

g2(X). Hencev(X) is divisible by the least common multipleg(X) of g1(X) andg2(X),

i.e. v(X) is a multiple ofg(X) = LCM(g1(X),g2(X)). Conversely, any polynomial of

degreen − 1 or less that is a multiple ofg(X) is divisible byg1(X) andg2(X). Hence

v(X) is in bothC1 andC2. Also we note thatg(X) is a factor ofXn + 1. Thus the code
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polynomials common toC1 andC2 form a cyclic code of lengthn whose generator polynomial

is g(X) = LCM(g1(X),g2(X)). The codeC3 generated byg(X) has minimum distance

d3 ≥ max(d1, d2).

5.21 See Problem 4.3.

5.22 (a) First, we note thatX2m−1 + 1 = p∗(X)h∗(X). Since the roots ofX2m−1 + 1 are the

2m − 1 nonzero elements in GF(2m) which are all distinct,p∗(X) andh∗(X) are relatively

prime. Since every code polynomialv(X) in Cd is a polynomial of degree2m − 2 or less,

v(X) can not be divisible byp(X) (otherwisev(X) is divisible byp∗(X)h∗(X) = X2m−1+1

and has degree at least2m − 1). Suppose thatv(i)(X) = v(X). It follows from (5.1) that

X iv(X) = a(X)(X2m−1 + 1) + v(i)(X)

= a(X)(X2m−1 + 1) + v(X)

Rearranging the above equality, we have

(X i + 1)v(X) = a(X)(X2m−1 + 1).

Sincep(X) dividesX2m−1 + 1, it must divide(X i + 1)v(X). Howeverp(X) andv(X) are

relatively prime. Hencep(X) dividesX i + 1. This is not possible since0 < i < 2m − 1 and

p(X) is a primitive polynomial(the smallest positive integern such thatp(X) dividesXn +1

is n = 2m−1). Therefore our hypothesis that, for0 < i < 2m−1, v(i)(X) = v(X) is invalid,

andv(i)(X) 6= v(X).

(b) From part (a), a code polynomialv(X) and its2m − 2 cyclic shifts form all the2m − 1

nonzero code polynomials inCd. These2m − 1 nonzero code polynomial have the same

weight, sayw. The total number of nonzero components in the code words ofCd isw·(2m−1).

Now we arrange the2m code words inCd as an2m× (2m− 1) array. It follows from Problem

3.6(b) that every column in this array has exactly2m−1 nonzero components. Thus the total

nonzero components in the array is2m−1 · (2m − 1). Equatingw.(2m − 1) to 2m−1 · (2m − 1),

we have

w = 2m−1.
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5.25 (a) Any error pattern of double errors must be of the form,

e(X) = X i + Xj

wherej > i. If the two errors are not confined ton− k = 10 consecutive positions, we must

have

j − i + 1 > 10,

15− (j − i) + 1 > 10.

Simplifying the above inequalities, we obtain

j − i > 9

j − i < 6.

This is impossible. Therefore any double errors are confined to 10 consecutive positions and

can be trapped.

(b) An error pattern of triple errors must be of the form,

e(X) = X i + Xj + Xk,

where0 ≤ i < j < k ≤ 14. If these three errors can not be trapped, we must have

k − i > 9

j − i < 6

k − j < 6.

If we fix i, the only solutions forj andk arej = 5 + i andk = 10 + i. Hence, for three errors

not confined to 10 consecutive positions, the error pattern must be of the following form

e(X) = X i + X5+i + X10+i
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for 0 ≤ i < 5. Therefore, only 5 error patterns of triple errors can not be trapped.

5.26 (b) Consider a double-error pattern,

e(X) = X i + Xj

where0 ≤ i < j < 23. If these two errors are not confined to 11 consecutive positions, we

must have

j − i + 1 > 11

23− (j − i− 1) > 11

From the above inequalities, we obtain

10 < j − i < 13

For a fixedi, j has two possible solutions,j = 11+i andj = 12+i. Hence, for a double-error

pattern that can not be trapped, it must be either of the following two forms:

e1(X) = X i + X11+i,

e1(X) = X i + X12+i.

There are a total of 23 error patterns of double errors that can not be trapped.

5.27 The coset leader weight distribution is

α0 = 1, α1 =

(
23

1

)
, α2 =

(
23

2

)
, α3 =

(
23

3

)

α4 = α5 = · · · = α23 = 0

The probability of a correct decoding is

P (C) = (1− p)23 +

(
23

1

)
p(1− p)22 +

(
23

2

)
p2(1− p)21
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+

(
23

3

)
p3(1− p)20.

The probability of a decoding error is

P (E) = 1− P (C).

5.29(a) Consider two single-error patterns,e1(X) = X i ande2(X) = Xj, wherej > i. Suppose

that these two error patterns are in the same coset. ThenX i + Xj must be divisible by

g(X) = (X3 + 1)p(X). This implies thatXj−i + 1 must be divisible byp(X). This is

impossible sincej − i < n andn is the smallest positive integer such thatp(X) divides

Xn + 1. Therefore no two single-error patterns can be in the same coset. Consequently, all

single-error patterns can be used as coset leaders.

Now consider a single-error patterne1(X) = X i and a double-adjacent-error patterne2(X) =

Xj + Xj+1, wherej > i. Suppose thate1(X) and e2(X) are in the same coset. Then

X i +Xj +Xj+1 must be divisible byg(X) = (X3 +1)p(X). This is not possible sinceg(X)

hasX + 1 as a factor, howeverX i + Xj + Xj+1 does not haveX + 1 as a factor. Hence no

single-error pattern and a double-adjacent-error pattern can be in the same coset.

Consider two double-adjacent-error patterns,X i +X i+1 andXj +Xj+1 wherej > i. Suppose

that these two error patterns are in the same cosets. ThenX i + X i+1 + Xj + Xj+1 must be

divisible by(X3 + 1)p(X). Note that

X i + X i+1 + Xj + Xj+1 = X i(X + 1)(Xj−i + 1).

We see that forX i(X + 1)(Xj−i + 1) to be divisible byp(X), Xj−i + 1 must be divisible

by p(X). This is again not possible sincej − i < n. Hence no two double-adjacent-error

patterns can be in the same coset.

Consider a single error patternX i and a triple-adjacent-error patternXj + Xj+1 + Xj+2. If

these two error patterns are in the same coset, thenX i +Xj +Xj+1 +Xj+2 must be divisible

by (X3 + 1)p(X). But X i + Xj + Xj+1 + Xj+2 = X i + Xj(1 + X + X2) is not divisible by

X3 +1 = (X +1)(X2 +X +1). Therefore, no single-error pattern and a triple-adjacent-error

pattern can be in the same coset.

Now we consider a double-adjacent-error patternX i+X i+1 and a triple-adjacent-error pattern
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Xj + Xj+1 + Xj+2. Suppose that these two error patterns are in the same coset. Then

X i + X i+1 + Xj + Xj+1 + Xj+2 = X i(X + 1) + Xj(X2 + X + 1)

must be divisible by(X3+1)p(X). This is not possible sinceX i +X i+1+Xj +Xj+1+Xj+2

does not haveX+1 as a factor butX3+1 hasX+1 as a factor. Hence a double-adjacent-error

pattern and a triple-adjacent-error pattern can not be in the same coset.

Consider two triple-adjacent-error patterns,X i + X i+1 + X i+2 andXj + Xj+1 + Xj+2. If

they are in the same coset, then their sum

X i(X2 + X + 1)(1 + Xj−i)

must be divisible by(X3 + 1)p(X), hence byp(X). Note that the degree ofp(X) is 3 or

greater. Hencep(X) and(X2 + X + 1) are relatively prime. As a result,p(X) must divide

Xj−i + 1. Again this is not possible. Hence no two triple-adjacent-error patterns can be in the

same coset.

Summarizing the above results, we see that all the single-, double-adjacent-, and triple-

adjacent-error patterns can be used as coset leaders.
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