
Chapter 6

6.1 (a) The elementsβ, β2 andβ4 have the same minimal polynomialφ1(X). From table 2.9, we

find that

φ1(X) = 1 + X3 + X4

The minimal polynomial ofβ3 = α21 = α6 is

φ3(X) = 1 + X + X2 + X3 + X4.

Thus

g0(X) = LCM(φ1(X), φ2(X))

= (1 + X3 + X4)(1 + X + X2 + X3 + X4)

= 1 + X + X2 + X4 + X8.

(b)

H =




1 β β2 β3 β4 β5 β6 β7 β8 β9 β10 β11 β12 β13 β14

1 β3 β6 β9 β12 β15 β18 β21 β24 β27 β30 β33 β36 β39 β42




H =




1 1 1 0 1 0 1 1 0 0 1 0 0 0 1

0 1 0 0 0 1 1 1 1 0 1 0 1 1 0

0 0 0 1 1 1 1 0 1 0 1 1 0 0 1

0 1 1 1 1 0 1 0 1 1 0 0 1 0 0

1 0 1 0 0 1 0 1 0 0 1 0 1 0 0

0 0 1 0 1 0 0 1 0 1 0 0 1 0 1

0 1 1 0 0 0 1 1 0 0 0 1 1 0 0

0 1 1 1 1 0 1 1 1 1 0 1 1 1 1




.
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(c) The reciprocal ofg(X) in Example 6.1 is

X8g(X−1) = X8(1 + X−4 + X−6 + X−7 + X−8

= X8 + X4 + X2 + X + 1 = g0(X)

6.2 The table forGF (s5) with p(X) = 1 + X2 + X5 is given in Table P.6.2(a). The minimal

polynomials of elements inGF (2m) are given in Table P.6.2(b). The generator polynomials

of all the binary BCH codes of length 31 are given in Table P.6.2(c)

Table P.6.2(a) Galois Field GF(25) with p(α) = 1 + α2 + α5 = 0

0 (0 0 0 0 0)

1 (1 0 0 0 0)

α (0 1 0 0 0)

α2 (0 0 1 0 0)

α3 (0 0 0 1 0)

α4 (0 0 0 0 1)

α5 = 1 + α2 (1 0 1 0 0)
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Table P.6.2(a) Continued

α6 = α + α3 (0 1 0 1 0)

α7 = α2 + α4 (0 0 1 0 1)

α8 = 1 + α2 + α3 (1 0 1 1 0)

α9 = α + α3 + α4 (0 1 0 1 1)

α10 = 1 + α4 (1 0 0 0 1)

α11 = 1 + α + α2 (1 1 1 0 0)

α12 = α + α2 + α3 (0 1 1 1 0)

α13 = α2 + α3 + α4 (0 0 1 1 1)

α14 = 1 + α2 + α3 + α4 (1 0 1 1 1)

α15 = 1 + α + α2 + α3 + α4 (1 1 1 1 1)

α16 = 1 + α + α3 + α4 (1 1 0 1 1)

α17 = 1 + α + α4 (1 1 0 0 1)

α18 = 1 + α (1 1 0 0 0)

α19 = α + α2 (0 1 1 0 0)

α20 = α2 + α3 (0 0 1 1 0)

α21 = α3 + α4 (0 0 0 1 1)

α22 = 1 + α2 + α4 (1 0 1 0 1)

α23 = 1 + α + α2 + α3 (1 1 1 1 0)

α24 = α + α2 + α3 + α4 (0 1 1 1 1)

α25 = 1 + α3 + α4 (1 0 0 1 1)

α26 = 1 + α + α2 + α4 (1 1 1 0 1)

α27 = 1 + α + α3 (1 1 0 1 0)

α28 = α + α2 + α4 (0 1 1 0 1)

α29 = 1 + + α3 (1 0 0 1 0)

α30 = α + α4 (0 1 0 0 1)
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Table P.6.2(b)

Conjugate Roots φi(X)

1

α, α2, α4, α8, α16

α3, α6, α12, α24, α17

α5, α10, α20, α9, α18

α7, α14, α28, α25, α19

α11, α22, α13, α26, α21

α15, α30, α29, α27, α23

1 + X

1 + X2 + X5

1 + X2 + X3 + X4 + X5

1 + X + X2 + X4 + X5

1 + X + X2 + X3 + X5

1 + X + X3 + X4 + X5

1 + X3 + X5

Table P.6.2(c)

n k t g(X)

31 26 1 g1(X) = 1 + X2 + X5

21 2 g2(X) = φ1(X)φ3(X)

16 3 g3(X) = φ1(X)φ3(X)φ5(X)

11 5 g4(X) = φ1(X)φ3(X)φ5(X)φ7(X)

6 7 g5(X) = φ1(X)φ3(X)φ5(X)φ7(X)φ11(X)

6.3 (a) Use the table forGF (25) constructed in Problem 6.2. The syndrome components of

r1(X) = X7 + X30 are:

S1 = r1(α) = α7 + α30 = α19

S2 = r1(α
2) = α14 + α29 = α7

S3 = r1(α
3) = α21 + α28 = α12
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S4 = r1(α
4) = α28 + α27 = α14

The iterative procedure for finding the error location polynomial is shown in Table P.6.3(a)

Table P.6.3(a)

µ σ(µ)(X) dµ `µ 2µ− `µ

-1/2 1 1 0 -1

0 1 α19 0 0

1 1 + α19X α25 1 1(ρ = −1/2)

2 1 + α19X + α6X2 – 2 2(ρ = 0)

Henceσ(X) = 1 + α19X + α6X2. Substituting the nonzero elements ofGF (25) into σ(X),

we find thatσ(X) hasα andα24 as roots. Hence the error location numbers areα−1 = α30

andα−24 = α7. As a result, the error polynomial is

e(X) = X7 + X30.

The decoder decodesr1(X) into r1(X) + e(X) = 0.

(b) Now we consider the decoding ofr2(X) = 1 + X17 + X28. The syndrome components of

r2(X) are:

S1 = r2(α) = α2,

S2 = S2
1 = α4,

S4 = S2
2 = α8,

S3 = r2(α
3) = α21.

The error location polynomialσ(X) is found by filling Table P.6.3(b):
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Table P.6.3(b)

µ σ(µ)(X) dµ `µ 2µ− `µ

-1/2 1 1 0 -1

0 1 α2 0 0

1 1 + α2X α30 1 1(ρ = −1/2)

2 1 + α2X + α28X2 – 2 2(ρ = 0)

The estimated error location polynomial is

σ(X) = 1 + α2X + α28X2

This polynomial does not have roots inGF (25), and hencer2(X) cannot be decoded and must

contain more than two errors.

6.4 Let n = (2t + 1)λ. Then

(Xn + 1) = (Xλ + 1)(X2tλ + X(2t−1)λ + · · ·+ Xλ + 1

The roots ofXλ + 1 are 1,α2t+1, α2(2t+1), · · · , α(λ−1)(2t+1). Hence,α, α2, · · · , α2t are roots

of the polynomial

u(X) = 1 + Xλ + X2λ + · · ·+ X(2t−1)λ + X2tλ.

This implies thatu(X) is code polynomial which has weight2t + 1. Thus the code has

minimum distance exactly2t + 1.

6.5 Consider the Galois fieldGF (22m). Note that22m − 1 = (2m − 1) · (2m + 1). Let α be

a primitive element inGF (22m). Thenβ = α(2m−1) is an element of order2m + 1. The

elements1, β, β2, β2, β3, β4, · · · , β2m are all the roots ofX2m+1+1. Letψi(X) be the minimal
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polynomial ofβi. Then at-error-correcting non-primitive BCH code of lengthn = 2m + 1 is

generated by

g(X) = LCM {ψ1(X), ψ2(X), · · · , ψ2t(X)} .

6.10 Use Tables 6.2 and 6.3. The minimal polynomial forβ2 = α6 andβ4 = α12 is

ψ2(X) = 1 + X + X2 + X4 + X6.

The minimal polynomial forβ3 = α9 is

ψ3(X) = 1 + X2 + X3.

The minimal polynomial forβ5 = α15 is

ψ5(X) = 1 + X2 + X4 + X5 + X6.

Hence

g(X) = ψ2(X)ψ3(X)ψ5(X)

The orders ofβ2, β3 andβ5 are 21,7 and 21 respectively. Thus the length is

n = LCM(21, 7, 21),

and the code is a double-error-correcting (21,6) BCH code.

6.11 (a) Letu(X) be a code polynomial andu∗(X) = Xn−1u(X−1) be the reciprocal ofu(X).

A cyclic code is said to be reversible ifu(X) is a code polynomial thenu∗(X) is also a code

polynomial. Consider

u∗(βi) = β(n−1)iu(β−i)

Sinceu(β−i) = 0 for−t ≤ i ≤ t, we see thatu∗(βi) hasβ−t, · · · , β−1, β0, β1, · · · , βt as roots
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and is a multiple of the generator polynomialg(X). Thereforeu∗(X) is a code polynomial.

(b) If t is odd,t+1 is even. Henceβt+1 is the conjugate ofβ(t+1)/2 andβ−(t+1) is the conjugate

of β−(t+1)/2. Thusβt+1 andβ−(t+1) are also roots of the generator polynomial. It follows from

the BCH bound that the code has minimum distance2t + 4 (Since the generator polynomial

has(2t + 3 consecutive powers ofβ as roots).
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