Chapter 12

Optimum Decoding of Convolutional
Codes

12.1 (Note: The problem should read “ for the (3,2,2) encoder in Example 11.2 "rather than “ for the (3,2,2)
code in Table 12.1(d)”.) The state diagram of the encoder is given by:

00/000

10/101

01/111 10/010

10/001

11/110

11/010 11/00

10/110




From the state diagram, we can draw a trellis diagram containing h+m +1 =341+ 1 =5 levels as
shown below:

Hence, for u = (11,01, 10),

v® = (1001)
v = (1001)
v(® = (0011)

and
v = (110,000,001, 111),

agreeing with (11.16) in Example 11.2. The path through the trellis corresponding to this codeword is
shown highlighted in the figure.



12.2 Note that

N-1 N-1
ca [log P(ri|v) + 1] = Z [c2log P(r|vy) + cacq]
= =0
N-1
= ¢ log P(ri|v) + Neaey.
1=0

Since

=0

N—-1 N—1
max {02 Z log P(ri|v;) + NCQCl} = ¢y max { Z log P(m|vl)} + Neaeq
1=0

if Cy is positive, any path that maximizes Zl]igl log P(r;]v;) also maximizes Zl]igl collog P(r|vy) +
01].

12.3 The integer metric table becomes:

0 02 1o 14
06 5 3 0
110 3 5 6

The received sequence is r = (171207, 171702,1117071,171717,011207, 150217, 150117). The decoded se-
quence is shown in the figure below, and the final survivor is

v = (111,010, 110,011, 000, 000, 000),
which yields a decoded information sequence of

a = (11000).
This result agrees with Example 12.1.






12.4 For the given channel transition probabilities, the resulting metric table is:

0 09 03 04 14 13 19 11
0| —-0.363 —-0.706 —-0.777 —-0.955 —1.237 —1.638 —2.097 —2.699
1]-2.699 -2.097 -1.638 —1.237 —-0.955 —-0.777 —-0.706 —0.363

To construct an integer metric table, choose ¢; = 2.699 and ¢ = 4.28. Then the integer metric table
becomes:

0y Oy 03 04 14 13 1o 14
o{iw 9 8 7 6 5 3 0
110 3 5 6 7 8 9 10

12.5 (a) Referring to the state diagram of Figure 11.13(a), the trellis diagram for an information sequence
of length h = 4 is shown in the figure below.

(b) After Viterbi decoding the final survivor is
v = (11,10,01, 00, 11, 00).
This corresponds to the information sequence

4 = (1110).
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12.6 Combining the soft decision outputs yields the following transition probabilities:

0 1
010.909 0.091
110.091 0.909

For hard decision decoding, the metric is simply Hamming distance. For the received sequence
r = (11, 10,00,01, 10,01, 00),
the decoding trellis is as shown in the figure below, and the final survivor is
v = (11,10,01,01, 00,11, 00),
which corresponds to the information sequence
a = (1110).

This result matches the result obtained using soft decisions in Problem 12.5.






12.9 Proof: For d even,

12.10

d
o= g d;l2>pd/2(1_p)d/2+ 2 (Z>pe(1_p)d_e

( e=(d/2)+1
rd
e d—e
< > ( . )p (1-p)
e=(d/2)
rd
d/2(1 _ N\d/2
< > ( . )p (1-p)
e=(d/2)
. rd
= pP(-p? Y < . >
e=(d/2)
< 2dpd/2(1 _p)d/Q
and thus (12.21) is an upper bound on P, for d even. Q. E. D.

The event error probability is bounded by (12.25)

P(E) < Z AaPy < A(X)|X:2w/p(17p).

d=dfrece
From Example 11.12,

X6+X7_X8

AX)="—— = — X601 3X7T45X8 +11X%94+25X10 ...
(X) T 2x %3 + + + + +e
which yields

(a) P(E) < 1.2118 x 10~* for p = 0.01,
(b) P(E) < 7.7391 x 108 for p = 0.001.
The bit error probability is bounded by (12.29)
= 1 OA(W, X)
e d=%f:ree Patie < B(X)|X:2\/m k0w X=24/p(1-p),W=1 .
From Example 11.12,
WXT 4+ W2(X6 - X¥)

AW, X) = =WX+W? (X0 + X%+ X'0)+W? (2X7 +3X7 + 33X + X¥) 4. ..
(W, X) WX ) WX +W? (X0 + X° 4+ X'0)4+W? (2X7 +3X7 43X + X1%)+
Hence,
OAW,X)  XT+2W(X®—3X8— X0 —3W?2(2X" — X9 — X1) N
ow (1—-2WX — WX3)2
and
OAW, X) 2X0 - X7 —2x8 4+ X% 4 X!

= . =2X0 4+ 7X"4+18X8 + ...
W |y, 12X _X9)2 AT
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This yields
(a) Pp(F) < 3.0435 x 10~* for p = 0.01,
(b) Py(E) < 1.6139 x 10~7 for p = 0.001.
12.11 The event error probability is given by (12.26)

dfree
o~ dfreepdiree/2
} ~ Adfree2 freep™s ce/

P(E) % Au,,.. [2V/p(1 =)
and the bit error probability (12.30) is given by

i|df7‘ee

Py(E) ~ Ba,,.. [2 (1 —p) ~ By, 20 piivee 2,

From Problem 12.10,
dﬂ"e@ =6, Adfree =1, Bdfree =2.

(a) For p =0.01,
P(E)~1-2°-(0.01)%2 =6.4x107°

Py(E)~2-2%-(0.01)%2 =1.28 x 107%.

(b) For p =0.001,
P(E)~1-2°-(0.001)%% = 6.4 x 1078

Py(E) ~2-2%-(0.001)%2 =1.28 x 107",
12.12 The (3,1,2) encoder of (12.1) has dfce = 7 and Bg,, .. = 1. Thus, expression (12.36) becomes

Pb(E) ~ Bdf 2df7‘€€/267(Rdfree/2)'(Eb/NU) _ 2(7/2)67(7/6)'(Eb/No)

and (12.37) remains

1
Py(E) ~ §e—Eb/No.

These expressions are plotted versus Ej,/N, in the figure below.
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Equating the above expressions and solving for Ej, /N, yields

o(7/2) = (T/6)-(Bu/No) %e—Eb/NU
1 = 209/2)o=(1/6)(Ey/No)
o(F1/6)(Ey/No)  —  9—(9/2)
(-1/6)(Ey/N,) = 1In(27/2)
Ey/N, = —6ln(2”%/?)=18.71,

which is E},/N, = 12.72dB, the coding threshold. The coding gain as a function of P,(E) is plotted
below.

Y 111 [ R I R S R I B S R I B S S B R B S R

Reguired SNR, Coded
Required SNR, Uncoded
Gain

E/N, (@B)

P,(E)

Note that in this example, a short constraint length code (v = 2) with hard decision decoding, the
approximate expressions for P,(FE) indicate that a positive coding gain is only achieved at very small
values of P,(F), and the asymptatic coding gain is only 0.7dB.

The (3,1,2) encoder of Problem 12.1 has dj.c. = 7 and Bg,,,, = 1. Thus, expression (12.46) for the
unquantized AWGN channel becomes

Pb(E) ~ Bdfreee_Rdf'r'eeEb/No — e—(7/3)(Eb/No)

and (12.37) remains
1
Py(E) ~ 5e*Eb/No.

These expressions are plotted versus Ej/N, in the figure below.
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Equating the above expressions and solving for Ej, /N, yields

e~ T/3BN  — L —EyN,
2
1 - 36(4/3>(EL/N0>
e@/3)(Ev/No)  _ o
(4/3)(Ey/No) = In(2)
Ey/N, = (3/4)In(2) = 0.5199,

which is Ep/N, = —2.84dB, the coding threshold. (Note: If the slightly tighter bound on Q(z) from
(1.5) is used to form the approximate expressin for Py(F), the coding threshold actually moves to
—o0o dB. But this is just an artifact of the bounds, which are not tight for small values of E,/N,.)
The coding gain as a function of P,(E) is plotted below. Note that in this example, a short constraint
length code (v = 2) with soft decision decoding, the approximate expressions for P,(FE) indicate that

a coding gain above 3.0 dB is achieved at moderate values of P,(E), and the asymptotic coding gain
is 3.7 dB.
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12.14 The IOWEF function of the (3, 1,2) encoder of (12.1) is

wWXT
1-WX -WwX3

AW, X) =

and thus (12.39b) becomes

DA(W, X) X7

1
P(FE <B(X) X=D, = 7, - : '
( ) | k aW X=Do,W=1 (]_ — WX — WX3)2 X=Dy,W=1

For the DMC of Problem 12.4, Dy = 0.42275 and the above expression becomes

Py(E) < 9.5874 x 1073,

If the DMC is converted to a BSC, then the resulting crossover probability is p = 0.091. Using (12.29)
yields

AW, X) X7

1
Py(E) < B(X)|x=p, = 7 — 50— = =3.7096x10" ",
k ow X=24/p(1-p),W=1 (1 =WX - WX |, p(1-p),W=1

about a factor of 40 larger than the soft decision case.
12.16 For the optimum (2,1,7) encoder in Table 12.1(c), dfrece = 10, Aq4,,,, =1, and By, .. = 2.

(a) From Table 12.1(c)
~ = 6.99dB.

(b) Using (12.26) yields
P(E) =~ Aq,,, 2% recptiree/2 =1.02 x 1077,

(c¢) Using (12.30) yields
Py(E) ~ By,,,, 2% reephiree/2 = 2,04 x 1077

D2
-1 _
G = { 1+D+D2}

(d) For this encoder

and the amplification factor is A = 4.
For the quick-look-in (2,1,7) encoder in Table 12.2, dfyee = 9, Aq,,.. =1, and By, = 1.

(a) From Table 12.2
v = 6.53dB.

(b) Using (12.26) yields
P(E) ~ Aq,,, 2% phiree/? =512 x 1077,

(¢) Using (12.30) yields
Py(E) =~ By,,, 2% reeptiree/2 = 512 x 1077,
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(d) For this encoder

o[}

12.17 The generator matrix of a rate R = 1/2 systematic feedforward encoder is of the form

and the amplification factor is A = 2.

G = [1 g(l)(D)} .
Letting gV)(D) = 1 + D + D? + D° + D7 achieves d . = 6 with Bg,,.. = 1and Ag,, .. = 1.
(a) The soft-decision asymptotic coding gain is
~ = 4.77dB.

(b) Using (12.26) yields
P(E) = Aq,,, 2% repire/2 = 6.4 x 107°.

(c) Using (12.30) yields
Py(E) ~ By,,, 2 pliree/? = 6.4 107°.

(d) For this encoder (and all systematic encoders)
1|1
o*=[s]

12.18 The generator polynomial for the (15,7) BCH code is

and the amplification factor is A = 1.

gX)=1+X" 4+ X+ X"+ x8
and dy = 5. The generator polynomial of the dual code is

- X141
XS+ XTH X0+ X441

h(X =X+ X+ X141

and hence d;, > 4.

(a) The rate R = 1/2 code with composite generator polynomial g(D) = 1+ D* + D% + D7 + D?® has
generator matrix
G(D)=[1+D*+D*+D* D]
and dfree > min(5,8) = 5.
(b) The rate R = 1/4 code with composite generator polynomial g(D) = g(D?)+ Dh(D?) =1+ D+
D? + DY+ D' 4+ D3 4+ D™ 4 D' + D'6 has generator matrix
G(D)=[1+D*+D*+D* 1+ D*+ D* D* D?

and dfree > min(dy + dy, 3dg, 3dp,) = min(9, 15,12) = 9.
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The generator polynomial for the (31,16) BCH code is
g(X):1+X+X2+X3+X5+X7+XS+X9+X10+X11+X15
and dy = 7. The generator polynomial of the dual code is

CXP 41

h(X) = =X X2 XM X0 X Xt X+
g(X)

and hence dj;, > 6.

(a) The rate R = 1/2 code with composite generator polynomial g(D) = 1+ D + D? + D3 + D5 +
D" + D® + D + D + D' 4 D' has generator matrix

G(D)=[14+D+D*+D° 1+D+D*+D*+ D"+ D’ + D]

and dfree > min(7,12) = 7.

(b) The rate R = 1/4 code with composite generator polynomial g(D) = g(D?)+ Dh(D?) =1+ D+
D2+ D3+ D*+ DS+ D°+ D04+ D" 4 D4 D8 4 DY 4 D20 4 D2 + D?2 4 D?3 has generator
matrix

GD)=[1+D+D"'+D° 1+D*+D°+D°+D® 1+D+D*+D*+D"+D°+D" 1+ D7
and dree > min(dy + dy, 3dy, 3d,) = min(13,21,18) = 13.

12.20 (a) The augmented state diagram is shown below.

The generating function is given by

ZFiAi

AW, X, L) = zT

There are 3 cycles in the graph:
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Cycle 1: 515251 Cl = WX3L2
Cycle 2:  §1535.8; Cy=W?2X*L?
Cycle 3: 5353 C3 =WXL.

There is one pair of nontouching cycles:
Cycle pair 1:  (loop 1, loop 3) C1C3 = W2X*L3,

There are no more sets of nontouching cycles. Therefore,

A = 1= Ci+) CuCy
i 7;/7‘7‘/
= 1-(WX3L2+ WXL+ WXL)+ W2X1L3.
There are 2 forward paths:

Forward path 1: 575159250 B =WX"L3
Forward path 2:  Sp51555:8, Fh=W?2X3L*%

Only cycle 3 does not touch forward path 1, and hence
Ar=1-WXL.
Forward path 2 touches all the cycles, and hence
Ay =1.
Finally, the WEF A(W, X, L) is given by

AW X,L) = WXTL3(1 — WXL) + W2X8L* B WX7L3
T IS (WXBL? + WRXAL + WXL) + W2XAL3 T 1—- WXL — WX3L?

and the generating WEF’s A;(W, X, L) are given by:

WX3L(1-WXL) WX3L(1-WXL)
AW, X, L) = A T 1 _-WXL_-WX3L2

= WX3L+W?XOL3+W3XTLA 4+ (W3X? + WAX®) L+ 2W*H X0 + WOX) LS + ...

WXPL2(1-WXL)+W2XSL® WX°L?
A T 1-WXL—-WX3L?

= WX°L?+W2XSL3+ W2X8 4+ W3 X)L+ 2W3 X + Wi X8) L°
+(W3X11 +3W4X10+W5X9)L6+---
W2X4L? W2X4L2

A 1-WXL-WX3L2
= W2XL24+W3XPL3+ (W3 X"+ WX LA+ W X3+ WP XT) LP
+(WAEX 43 WO X7+ WOXP)LO -

A2(Wa Xa L) =

As(W. X, L) =

This code has dfree = 7, SO Tpmin is the minimum value of 7 for which d(7) = dfree + 1 =
8. Examining the series expansions of A;(W, X, L), Ax(W, X, L), and As(W, X, L) above yields

Tmin — 5.
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(c) A table of d(7) and Ag() is given below.

T d(T) Ad(T)
0 3 1
1 4 1
2 ) 1
3 6 1
4 7 1
) 8 1

(d) From part (¢) and by looking at the series expansion of As(W, X, L), it can be seen that

lim d(T)=7+3.
T —o0

12.21 For a BSC, the trellis diagram of Figure 12.6 in the book may be used to decode the three possible 21-
bit subequences using the Hamming metric. The results are shown in the three figures below. Since the
r used in the middle figure (b) below has the smallest Hamming distance (2) of the three subsequences,
it is the most likely to be correctly synchronized.
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