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Abstract—The refactoring of software clones is achieved by
extracting their common functionality into a single method. Any
differences in identifiers and literals between the clones have to
become parameters in the extracted method. Obviously, a large
number of differences leads to an extracted method with limited
reusability due to the large number of introduced parameters.
We support that minimizing the differences between the matched
statements of clones is crucial for the purpose of refactoring and
propose an algorithm that treats the matching process as an
optimization problem.

I. INTRODUCTION

The problem of source code matching or differencing has
been investigated within the context of various applications,
including change evolution analysis, plagiarism detection, code
reuse, aspect mining, clone detection and refactoring. However,
current approaches either do not explore the entire search
space of possible matches, and thus may return non-optimal
solutions, or face scalability issues due to the problem of
combinatorial explosion. To facilitate the refactoring of dupli-
cated code, an optimal solution should not only contain the
maximum number of possible mapped statements, but also
the minimum number of differences between them. To this
end, we propose an algorithm to tackle both optimality and
scalability issues. The contributions of the paper are: (a) we
support that the problem of finding a mapping between the
statements of two clones is an optimization problem with
two objectives, namely maximizing the number of mapped
statements and at the same time minimizing the number of
differences between the mapped statements, (b) we express
this optimization problem as finding the Maximum Common
Subgraph (MCS) with the minimum number of differences in
the Program Dependence Graphs (PDGs) of the clones, and (c¢)
we apply a bottom-up mapping process based on the control
dependence structure of the PDGs. This divide-and-conquer
approach breaks the initial mapping problem into smaller sub-
problems and avoids the risk of combinatorial explosion that
might occur in the initial problem.

II. RELATED WORK

Komondoor and Horwitz [1] apply slicing on PDGs to find
isomorphic subgraphs that represent code clones. The advan-
tage of this approach is the detection of non-contiguous clones
(i.e., clones with gaps), clones with re-ordered statements, and
clones intertwined with each other. Two nodes are matched if
the corresponding statements are syntactically identical (i.e.,
their AST representation has the same structure) allowing only
for differences in variable names and literal values. Krinke [2]
proposed an approach to identify code clones by finding the
maximal similar subgraphs in two PDGs by induction from
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a pair of starting vertices. To reduce the complexity of the
algorithm, he considers only a subset of vertices (i.e., predicate
vertices) as starting points, and restricts the maximum length
of the explored paths using a k-limit. One important limitation
is that the running time of the algorithm explodes as k-
limit increases. Another limitation is that the use of k-limit
may lead to an incomplete solution (i.e., the selected k-limit
is insufficient for detecting all possible matching vertices).
Shepherd et al. [3] implemented an automated aspect mining
technique exploiting the PDG and AST representations of a
program. The proposed algorithm, inspired by [2] and [1],
starts by matching the control dependence subgraphs of two
compared PDGs to extract all possible matching solutions.
Next, it filters out the undesirable matching solutions based
on data dependence information. A limitation is that the
algorithm always starts from the method entry nodes, and
thus will fail to match control dependence subgraphs nested
in different levels. More recently, Higo and Kusumoto [4]
improved Komondoor’s technique [1] by extending the PDG
representation and introducing some heuristics to enhance code
clone detection. The common limitation of all aforementioned
techniques is that they do not explore the entire search space
of possible solutions and therefore may return a non-optimal
solution. In contrast to MCS approach that builds a search tree
examining all possible combinations in the case of multiple
node matches, the aforementioned techniques always select
one match for each node, essentially exploring only a single
path of the entire search tree.

Balazinska et al. [5] focus on the extraction of differences
between cloned methods and their contextual dependencies as
a means to help the developer make a decision on the actual
refactoring to be performed. The comparison of the cloned
methods is based on the Dynamic Pattern Matching algorithm,
which is applied on the sequences of tokens forming the
code fragment being compared and finds an optimal distance
between them (i.e., the minimum amount of tokens that have
to be inserted, deleted, or substituted to transform one code
fragment into the other). A limitation of the algorithm is that it
does not take into account the control dependence structure of
the cloned code fragments during the token alignment process.
Liu et al. [6] developed a software plagiarism detection tool
called GPLAG. They support that the PDG structures of the
original and the plagiarized code remain invariant and exploit
this property to find plagiarism through relaxed subgraph
isomorphism testing i.e., by checking if a PDG is y-isomorphic
to another, where + is a relaxation parameter. To increase the
efficiency of the algorithm, they prune the search space (i.e.,
reduce the number of PDG pairs to be checked) by applying
some filters. Fluri et al. [7] describe an approach to extract
the fine-grained changes that occur across different versions
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of a program. Their method is based on the tree alignment
algorithm proposed by Chawathe et al. [8], which takes as
input two trees and produces a minimum edit script that can
transform one tree into the other. A limitation of the proposed
approach is that string-based similarity matching is not resilient
to extensive renaming of identifiers. In addition, the best match
approach applied for leaf level nodes may match reoccurring
statements that are not at the same position in the method
body. Cottrell et al. [9] present an approach to help developers
integrate reusable source code. Their algorithm takes as input
two ASTs and tries to produce the best correspondences
between the nodes. A limitation is that the approach is semi-
automated, since user intervention is required to resolve the
conflicts when multiple matches are found. Additionally, it
tries to find a best fit in a greedy way, which may lead to
a non-optimal solution for the entire problem.

III. MOTIVATING EXAMPLE

In this section, we will present an example that moti-
vated our research and at the same time demonstrates the
limitations of previous approaches. Figure 1 illustrates two
code fragments taken from methods drawDomainMarker
and drawRangeMarker, respectively, found in class
AbstractXYItemRenderer of the JFreeChart open-
source project (version 1.0.14). These two methods contain
over 90 duplicated statements extending through their entire
body. However, for the sake of simplicity, we have included
only a small portion of the duplicated code. Figure 1 depicts a
possible mapping of the statements as obtained from the PDG-
based clone detection approaches discussed in section II. These
techniques always select one match in the case of multiple
possible node matches (e.g., statement 67 on the left side can
be mapped to statements 68, 71, 80, and 83 on the right side),
which, in the solution of Figure 1, coincides with the ‘first’
match according to the actual order of the statements. As it
can be observed from Figure 1, the solution is maximum, since
all 25 statements have been successfully mapped; however, it
contains a large number of differences between the mapped
statements. The minimization of the differences is of key
importance for the refactoring of clones, since it directly affects
the number of parameters that have to be introduced in the
extracted method containing the common functionality, as well
as the feasibility of the refactoring transformation. Figure 2
depicts the optimal mapping solution, which is again maximum
in terms of the number of mapped statements, but it has
also the minimum number of differences between the mapped
statements. Clearly, the bodies of the 1 f/else 1if statements
in the left and right side of Figure 2 are ‘symmetrical’ to
each other. Consequently, parameterizing the differences in
the conditional expressions of the ‘symmetrical’ if/else
if statements makes easier the refactoring of the clones and
introduces less parameters to the extracted method.

IV. PROPOSED SOLUTION
A. Maximum Common Subgraph algorithm

The detection of the Maximum Common Subgraph (MCS)
is a well known NP-complete problem for which several
optimal and suboptimal algorithms have been proposed in
the literature. Conte et al. [10] compared the performance of
the three most representative optimal algorithms, which are
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based on depth-first tree search. All three algorithms have
an exponential (more precisely, factorial) worst case time
complexity with respect to the number of nodes in the graphs,
in the order of %, where N7 and N5 is the number of
nodes in graphs (G; and G, respectively [10]. The differences
among the three algorithms actually lie only in the information
used to represent each state of the search space, and in the
kind of the heuristic adopted for pruning search paths [10].
We have adopted the McGregor algorithm [11] because it is
simpler to implement and has a lower space complexity, in the
order of O(N7), since only the states associated to the nodes of
the currently explored path need to be stored in memory. The
other two algorithms require the construction of the association
graph between the two given graphs, which in the worst case
can be a complete graph with a space complexity in the order
of O(Ny - N3). Algorithm 1 is an adaptation of the McGregor
algorithm to the particular characteristics of the PDGs. More
specifically, given two PDGs, namely PDG; and PDGj,
Algorithm 1 enforces the following constraints:

D
2)

An edge of PDG, is traversed only once in each path
of the search tree (line 5).

A node from PDG, is mapped to only one node from
P DG (and vice versa) in each path of the search tree
(lines 13 and 14).



1 Function search (pState, nodeMapping)
Data: pState represents a parent state in the tree
nodeMapping represents a pair of PDG nodes
(node;, node;) that have been already mapped
Result: Builds recursively a search tree.
The leaf nodes in the deepest level are states
corresponding to maximum common subgraphs
/* get incoming & outgoing edges */
FEdges; < node;.inEdges U node;.outEdges
Edges; < node;.inEdges U node;.outEdges
foreach edge; € Fdges; do
if edge; ¢ pState.visitedEdges then
add edge; — pState.visitedEdges
foreach edge; € Edges; do
if compatibleEdges(edge;, edge;) then
vN; + edge;.otherEndPoint
vN; < edge;.otherEndPoint
if compatibleAST(vN;, vIN;) and
mappedCtrlParents(vN;, vN;) and
not alreadyMapped(vN;) and
not alreadyMapped(vN;) then
mapping < (vN;, vN;)
state «+ createState(mapping)
add state — pState.children
search (state, mapping)
end if
end if
end foreach
end if
end foreach
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Algorithm 1: Recursive function building a search tree.

3) The control dependence structure of PDG; and
PDGj is preserved throughout the mapping process.
This means that if two control predicate nodes cp; and
cp; have been mapped at a given stage of the search
process, then a node nested under cp; can only be
mapped to nodes nested under cp; (and vice versa)
at later stages of the search process (line 12).

Algorithm 1 builds recursively a search tree by visiting the
pairs of mapped PDG nodes in depth-first order. Each node in
the search tree is created when a new pair of PDG nodes is
mapped and represents a state of the search space. Each state
keeps track of all visited edges and mapped PDG nodes in its
path starting from the root state (function createState copies
the visited edges and mapped nodes from the parent state to the
child state). The leaf states in the deepest level of the search
tree correspond to the maximum common subgraphs.

B. PDG Node and Edge Compatibility

Two PDG nodes are considered compatible if they have
a compatible AST structure. AST structural compatibility
requires an identical AST tree structure and allows only for the
replacement of expressions that return values of a given type
(e.g., method call, field/variable/array access, class instance
creation, array creation, literal, infix expressions) with other
expressions (in the aforementioned list) as long as they return
the same type or types being subclasses of a common su-
perclass (excluding Ob ject). In the case of control predicate

nodes (e.g., 1 £, for statements), the part of the AST structure
being compared is only their conditional expression.

Two PDG edges are considered compatible if they connect
nodes which are compatible (i.e., the nodes in the starting and
ending points of the edges, respectively, should be compatible
with each other) and they have the same dependence type (i.e.,
they are both control or data flow dependences). In the case
of control dependences, both should have the same control
attribute (i.e., True or False). In the case of data dependences,
the data attributes should correspond to variables having the
same name, or to variables detected as renamed during the
AST compatibility check of the connected nodes. Finally, if
both data dependences are loop-carried, then the loop nodes
through which they are carried should be compatible too.

C. Divide-and-Conquer Based on Control Structure

Despite the constraints that we have set for our MCS search
algorithm, it is still subject to the combinatorial explosion
effect. As the number of possible matches for the nodes
increases, the width of the search tree grows rapidly as a result
of the numerous combinatorial considerations to be explored.
In order to reduce the risk of combinatorial explosion, we
decided to take advantage of the control dependence structure
of the two compared PDGs. More specifically, we first build
the Control Dependence Tree (CDT) of each PDG. The CDT
has exactly the same structure with the Control Dependence
Graph (CDG) with the only difference being that it includes
only the control predicate nodes of the PDG. Figure 3 shows
the CDTs for the duplicated code fragments of Figure 1. In this
particular example, the CDTs are isomorphic. In the general
case, we have to find the largest common bottom-up subtrees
[12] in the CDTs, since only complete AST-subtrees having
the same structure can be valid candidates for refactoring.

Level 0

Ho ®

Fig. 3. The Control Dependence Trees for the code fragments of Figure 1.

Assuming that we have two isomorphic CDTs, namely
CDT; and CDT; we can apply Algorithm 2 as a divide-and-
conquer approach to the problem of PDG mapping. Starting
from the deepest level of the CDTs, at each level the algorithm
uses all possible pairwise combinations of the control predicate
nodes nested at that level as starting points for Algorithm 1.
Assuming that node cp; of CDT; is examined in the current
level, a maximum common subgraph is generated and added
in mecsStates for each starting point that cp; participates in.
After the examination of all possible matching combinations
for node c¢p;, the best solution in mcsStates (i.e., the solution
with the maximum number of mapped nodes and the minimum
number of differences between them) is appended to the final



solution. In level 2 of the CDTs (Figure 3), node 67 on the left
side can be mapped to nodes 68, 71, 80, and 83 on the right
side. Consequently, there are four possible matching nodes for
node 67 and four node pairs to be used as starting points. All
maximum common subgraphs resulting from the aforemen-
tioned starting points have the same number of mapped nodes,
but only the subgraph generated from starting point (67, 80)
has the minimum number of differences (equal to zero).

1 Function PDGMapping (ctriDepTree;, ctriDepTree;)

Data: Two isomorphic CDTs
Result: The final mapping solution as finalSolution
2 level; + ctrIDepTree;.maxLevel
3 level; «+ ctriDepTree;.maxLevel
/* an initially empty solution */
4 finalSolution + @
5 while level; > 0 and level; > 0 do
6 cpNodes; + nodes at level; of ctriDepTree;
7 cpNodesj <+ nodes at level; of ctrIDepTree;
8 foreach cp; € cpNodes; do
9 mesStates < &
10 foreach cp; € cpNodes; do
11 if compatibleAST(cp;, cp;) then
12 mapping < (cp;, cp;)
13 root < createState(mapping)
14 search (root, mapping)
15 get the maximum common subgraph
from root & add it to mcsStates
16 end if
17 end foreach
18 select the best state from mcsStates &
append it to finalSolution
19 end foreach
20 decrement level;
21 decrement level;
22 end while
23 end

Algorithm 2: A divide-and-conquer PDG mapping process
based on control dependence structure.

V. EVALUATION

To evaluate the efficiency and scalability of our algorithm
we computed the number of distinct node comparisons re-
quired for the optimal mapping of the largest method-level
clones detected by ConQAT in 4 open-source systems, namely
JFreeChart-1.0.14, Ant-1.9, JMeter-2.9, and JRuby-1.7.3. As it
can be observed from Table I, the number of node comparisons
performed by our algorithm is always significantly smaller than
the maximum number of possible node comparisons (equal to
N1 XNy, where N1 and N> is the number of nodes in each
PDG) indicating that our approach is more sophisticated and
efficient compared to exhaustive search approaches.

VI. FUTURE WORK

Our research vision is to improve the state-of-the-art in
the refactoring of clones by discovering optimal refactoring
strategies. The refactoring tool we envision should be able
to explain which clone differences can be parameterized or
not, through a sophisticated and comprehensive visualization,
suggest the changes required to make clones refactorable,
detect sub-clones within larger clones that can be directly
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TABLE L. NUMBER OF NODE COMPARISONS FOR OPTIMAL MAPPING

D Clone # PDG nodes CDT #CDT  # distinct node

Type PDG, PDG» depth leaves comparisons
1 Type-3 55 55 1 1 936
2 Type-2 50 50 3 7 603
3 Type-2 68 68 3 12 1040
4 Type-1 50 50 1 2 806
5 Type-1 67 67 1 25 1889
6 Type-3 93 94 4 11 1659
7 Type-3 51 50 4 7 455
8  Type-2 45 45 4 5 420
9 Type-2 70 70 7 8 577
10 Type-3 36 36 3 7 212
11 Type-2 42 42 7 7 235
12 Type-2 87 87 4 12 1812
13 Type-3 57 62 4 14 360
14 Type-3 42 43 5 6 136
15 Type-3 53 50 2 8 1021

refactored, and finally perform the corresponding refactoring
transformations.
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