1044

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 11,

NOVEMBER 2017

Using Natural Language Processing
to Automatically Detect Self-Admitted
Technical Debt

Everton da Silva Maldonado, Emad Shihab

, Member, IEEE, and Nikolaos Tsantalis, Member, IEEE

Abstract—The metaphor of technical debt was introduced to express the trade off between productivity and quality, i.e., when
developers take shortcuts or perform quick hacks. More recently, our work has shown that it is possible to detect technical debt using
source code comments (i.e., self-admitted technical debt), and that the most common types of self-admitted technical debt are design
and requirement debt. However, all approaches thus far heavily depend on the manual classification of source code comments. In this
paper, we present an approach to automatically identify design and requirement self-admitted technical debt using Natural Language
Processing (NLP). We study 10 open source projects: Ant, ArgoUML, Columba, EMF, Hibernate, JEdit, JFreeChart, JMeter, JRuby
and SQuirrel SQL and find that 1) we are able to accurately identify self-admitted technical debt, significantly outperforming the current
state-of-the-art based on fixed keywords and phrases; 2) words related to sloppy code or mediocre source code quality are the best
indicators of design debt, whereas words related to the need to complete a partially implemented requirement in the future are the best
indicators of requirement debt; and 3) we can achieve 90 percent of the best classification performance, using as little as 23 percent of
the comments for both design and requirement self-admitted technical debt, and 80 percent of the best performance, using as little as 9
and 5 percent of the comments for design and requirement self-admitted technical debt, respectively. The last finding shows that the
proposed approach can achieve a good accuracy even with a relatively small training dataset.

Index Terms—Technical debt, source code comments, natural language processing, empirical study

1 INTRODUCTION

DEVELOPERS often have to deal with conflicting goals that
require software to be delivered quickly, with high
quality, and on budget. In practice, achieving all of these
goals at the same time can be challenging, causing a tradeoff
to be made. Often, these tradeoffs lead developers to take
shortcuts or use workarounds. Although such shortcuts help
developers in meeting their short-term goals, they may
have a negative impact in the long-term.

Technical debt is a metaphor coined to express sub-opti-
mal solutions that are taken in a software project in order to
achieve some short-term goals [1]. Generally, these deci-
sions allow the project to move faster in the short-term, but
introduce an increased cost (i.e., debt) to maintain this soft-
ware in the long run [2], [3]. Prior work has shown that tech-
nical debt is widespread in the software domain, is
unavoidable, and can have a negative impact on the quality
of the software [4].

e E.da S. Maldonado and E. Shihab are with the Data-Driven Analysis of
Software (DAS) Lab, Department of Computer Science and Software Engi-
neering, Concordia University, Montreal, QC H4B 1R6, Canada.

E-mail: {e_silvam, eshihab}@encs.concordia.ca.

o N. Tsantalis is with the Department of Computer Science and Software
Engineering, Concordia University, Montreal, QC H4B 1R6, Canada.
E-mail: tsantalis@encs.concordia.ca.

Manuscript received 17 Dec. 2015; revised 2 Dec. 2016; accepted 6 Jan. 2017.
Date of publication 16 Jan. 2017; date of current version 20 Nov. 2017.
Recommended for acceptance by G.C. Murphy.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TSE.2017.2654244

Technical debt can be deliberately or inadvertently
incurred [5]. Inadvertent technical debt is technical debt
that is taken on unknowingly. One example of inadvertent
technical debt is architectural decay or architectural drift.
To date, the majority of the technical debt work has focused
on inadvertent technical debt [6]. On the other hand, delib-
erate technical debt, is debt that is incurred by the developer
with knowledge that it is being taken on. One example of
such deliberate technical debt, is self-admitted technical
debt, which is the focus of our paper.

Due to the importance of technical debt, a number of
studies empirically examined technical debt and proposed
techniques to enable its detection and management. Some
of the approaches analyze the source code to detect techni-
cal debt, whereas other approaches leverage various techni-
ques and artifacts, e.g.,, documentation and architecture
reviews, to detect documentation debt, test debt or architec-
ture debt (i.e., unexpected deviance from the initial architec-
ture) [7], [8].

The main findings of prior work are three-fold. First,
there are different types of technical debt, e.g., defect debt,
design debt, testing debt, and that among them design debt
has the highest impact [9], [10]. Second, static source code
analysis helps in detecting technical debt, (i.e., code
smells) [11], [12], [13]. Third, more recently, our work has
shown that it is possible to identify technical debt through
source comments, referred to as self-admitted technical
debt [14], and that design and requirement debt are the
most common types of self-admitted technical debt [15].

0098-5589 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-1285-9878
https://orcid.org/0000-0003-1285-9878
https://orcid.org/0000-0003-1285-9878
https://orcid.org/0000-0003-1285-9878
https://orcid.org/0000-0003-1285-9878
mailto:
mailto:

MALDONADO ET AL.: USING NATURAL LANGUAGE PROCESSING TO AUTOMATICALLY DETECT SELF-ADMITTED TECHNICAL DEBT

The recovery of technical debt through source code com-
ments has two main advantages over traditional approaches
based on source code analysis. First, it is more lightweight
compared to source code analysis, since it does not require
the construction of Abstract Syntax Trees or other more
advanced source code representations. For instance, some
code smell detectors that also provide refactoring recommen-
dations to resolve the detected code smells [16], [17] generate
computationally expensive program representation struc-
tures, such as program dependence graphs [18], and method
call graphs [19] in order to match structural code smell pat-
terns and compute metrics. On the other hand, the source
code comments can be easily and efficiently extracted from
source code files using regular expressions. Second, it does
not depend on arbitrary metric threshold values, which are
required in all metric-based code smell detection approaches.
Deriving appropriate threshold values is a challenging open
problem that has attracted the attention and effort of several
researchers [20], [21], [22]. As a matter of fact, the approaches
based on source code analysis suffer from high false positive
rates [23] (i.e., they flag a large number of source code ele-
ments as problematic, while they are not perceived as such by
the developers), because they rely only on the structure of the
source code to detect code smells without taking into account
the developers’ feedback, the project domain, and the context
in which the code smells are detected.

However, relying solely on the developers’ comments to
recover technical debt is not adequate, because developers
might be unaware of the presence of some code smells in
their project, or might not be very familiar with good design
and coding practices (i.e., inadvertent debt). As a result, the
detection of technical debt through source code comments
can be only used as a complementary approach to existing
code smell detectors based on source code analysis. We
believe that self-admitted technical debt can be useful to pri-
oritize the pay back of debt (i.e., develop a pay back plan), since
the technical debt expressed in the comments written by the
developers themselves might be more relevant to them. As a
matter of fact, in a recent survey [24] with 152 developers of a
large financial organization (ING Netherlands), 88 percent of
the participants responded that they annotate poor imple-
mentation choices (i.e., design technical debt) with com-
ments in the source code (i.e., self-admitted technical debt),
and when time allows, they act on them by trying to refactor
such smells using some automated tool support (71 percent),
or manually (29 percent).

Despite the advantages of recovering technical debt from
source code comments, the research in self-admitted techni-
cal debt, thus far, heavily relies on the manual inspection of
code comments. The current-state-of-the art approach [14]
uses 62 comment patterns (i.e., words and phrases) derived
after the manual examination of more than 100 K comments.
The manual inspection of code comments is subject to
reader bias, time consuming and, as any other manual task,
susceptible to errors. These limitations in the identification
of self-admitted technical debt comments makes the current
state-of-the-art approach difficult to be applied in practice.

Therefore, in this paper we investigate the efficiency of
using Natural Language Processing (NLP) techniques to
automatically detect the two most common types of self-
admitted technical debt, i.e., design and requirement debt.

1045

We analyze ten open source projects from different applica-
tion domains, namely, Ant, ArgoUML, Columba, EMF,
Hibernate, JEdit, JFreeChart, JMeter, JRuby and SQuirrel
SQL. We extract and classify the source comments of these
projects. Then, using the classified dataset we train a maxi-
mum entropy classifier using the Stanford Classifier tool [25]
to identify design and requirement self-admitted technical
debt. The advantages of the maximum entropy classifier
over keyword-based and pattern-based approaches, such as
comment patterns, are twofold. First, the maximum entropy
classifier automatically extracts the most important features
(i.e., words) for each class (i.e., design self-admitted technical
debt, requirement self-admitted technical debt, and without
technical debt) based on a classified training dataset given as
input. Second, the maximum entropy classifier, apart from
finding features that contribute positively to the classifica-
tion of a comment in a given class, also finds features that
contribute negatively to the classification of a comment in a
given class.

We perform a leave-one-out cross-project validation (i.e.,
we train on nine projects and test on one project). Our results
show that we are able to achieve an average Fl-measure of
0.620 when identifying design self-admitted technical debt,
and an average Fl-measure of 0.403 when identifying require-
ment self-admitted technical debt. We compare the perfor-
mance of our approach to a simple (random) baseline and the
state-of-the-art approach used to detect self-admitted techni-
cal debt [14]. Our results show that on average, we outper-
form the state-of-the-art by2.3 times, when detecting design
debt, and by 6 times when detecting requirement debt.

To better understand how developers express technical
debt we analyze the 10 most prevalent words appearing
within self-admitted technical debt comments. We find
that the top design debt words are related to sloppy or
mediocre source code. For example, words such as ‘hack’,
‘workaround” and ‘yuck!” are used to express design self-
admitted technical debt. On the other hand, for requirement
debt, words indicating the need to complete a partially imple-
mented requirement are the best indicators. For example,
words such as ‘todo’, ‘needed’ and ‘implementation’ are
strong indicators of requirement debt.

Finally, to determine the most efficient way to apply our
approach, we analyze the amount of training data necessary
to effectively identify self-admitted technical debt. We find
that training datasets using 23 percent of the available data
can achieve a performance equivalent to 90 percent of the
maximum F1-measure score for both design and requirement
self-admitted technical debt. Similarly, 80 percent of the max-
imum Fl-measure can be achieved using only 9 percent of
the available data for design self-admitted technical debt,
and 5 percent for requirement self-admitted technical debt.

The main contributions of our work are the following;:

e We provide an automatic, NLP-based, approach to
identify design and requirement self-admitted tech-
nical debt.

e We examine and report the words that best indicate
design and requirement self-admitted technical debt.

e We show that using a small training set of com-
ments, we are able to effectively detect design and
requirement self-admitted technical debt.

1046 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.43, NO.11, NOVEMBER 2017
Project . Manual
Source De:ta Parse Source Filter Classification NLP
Code . Code Comments Classification
Extraction

Repository

Fig. 1. Approach overview.

e We make our dataset publicly available, so that
others can advance work in the area of self-admitted
technical debt [26].

The rest of the paper is organized as follows. Section 2
describes our approach. We setup our experiment and pres-
ent our results in Section 3. We discuss the implications of
our findings in Section 4. In Section 5 we present the related
work. Section 6 presents the threats to validity and Section 7
presents our conclusions and future work.

2 APPROACH

The main goal of our study is to automatically identify self-
admitted technical debt through source code comments. To
do that, we first extract the comments from ten open source
projects. Second, we apply five filtering heuristics to remove
comments that are irrelevant for the identification of self-
admitted technical debt (e.g., license comments, commented
source code and Javadoc comments). After that, we manu-
ally classify the remaining comments into the different
types of self-admitted technical debt (i.e., design debt,
requirement debt, defect debt, documentation debt and test
debt). Lastly, we use these comments as training data for
the maximum entropy classified and use the trained model
to detect self-admitted technical debt from source code com-
ments. Fig. 1 shows an overview of our approach, and the
following sections detail each step.

2.1 Project Data Extraction

To perform our study, we need to analyze the source code
comments of software projects. Therefore, we focused our
study on ten open source projects: Ant is a build tool written
in Java, ArgoUML is an UML modeling tool that includes
support for all standard UML 1.4 diagrams, Columba is an

email client that has a graphical interface with wizards and
internationalization support, EMF is a modeling framework
and code generation facility for building tools and other
applications, Hibernate is a component providing Object
Relational Mapping (ORM) support to applications and
other components, JEdit is a text editor written in Java,
JFreeChart is a chart library for the Java platform, JMeter is
a Java application designed to load functional test behavior
and measure performance, JRuby is a pure-Java implemen-
tation of the Ruby programming language and SQuirrel
SQL is a graphical SQL client written in Java. We selected
these projects since they belong to different application
domains, are well commented, vary in size, and in the num-
ber of contributors.

Table 1 provides details about each of the projects used in
our study. The columns of Table 1 present the release used,
followed by the number of classes, the total source lines of
code (SLOC), the number of contributors, the number of
extracted comments, the number of comments analyzed
after applying our filtering heuristics, and the number of
comments that were classified as self-admitted technical
debt together with the percentage of the total project com-
ments that it represent. The final three columns show the
percentage of self-admitted technical debt comments classi-
fied as design debt, requirement debt, and all other remain-
ing types of debt (i.e., defect, documentation and test debt),
respectively.

Since there are many different definitions for the SLOC
metric we clarify that, in our study, a source line of code
contains at least one valid character, which is not a blank
space or a source code comment. In addition, we only use
the Java files to calculate the SLOC, and to do so, we use the
SLOCCount tool [27].

TABLE 1
Details of the Studied Projects
Project Project Details Comments Details Technical Debt Details
Release #of SLOC # of # of # of #,(%) of % of % of % of
Classes Contributors Comments Comments TD Comments Design Requirement Other
After Filtering Debt Debt Debt
Ant 1.7.0 1,475 115,881 74 21,587 4,137 131 (0.60) 72.51 09.92 17.55
ArgoUML 0.34 2,609 176,839 87 67,716 9,548 1,413 (2.08) 56.68 29.08 14.22
Columba 1.4 1,711 100,200 9 33,895 6,478 204 (0.60) 61.76 21.07 17.15
EMF 241 1,458 228,191 30 25,229 4,401 104 (0.41) 75.00 15.38 09.61
Hibernate 3.3.2GA 1,356 173,467 226 11,630 2,968 472 (4.05) 75.21 13.55 11.22
JEdit 4.2 800 88,583 57 16,991 10,322 256 (1.50) 76.56 05.46 17.96
JFreeChart 1.0.19 1,065 132,296 19 23,474 4,423 209 (0.89) 88.03 07.17 04.78
JMeter 2.10 1,181 81,307 33 20,084 8,162 374 (1.86) 84.49 05.61 09.89
JRuby 1.4.0 1,486 150,060 328 11,149 4,897 622 (5.57) 55.14 17.68 27.17
SQuirrel 3.0.3 3,108 215,234 46 27,474 7,230 286 (1.04) 73.07 17.48 09.44
Average 1,625 146,206 91 25,923 6,257 407 (1.86) 71.84 14.24 13.89
Total 16,249 1,462,058 909 259,229 62,566 4,071 (-) - - -

MALDONADO ET AL.: USING NATURAL LANGUAGE PROCESSING TO AUTOMATICALLY DETECT SELF-ADMITTED TECHNICAL DEBT

The number of contributors was extracted from OpenHub,
an on-line community and public directory that offers analyt-
ics, search services and tools for open source software [28]. It
is important to note that the number of comments shown for
each project does not represent the number of commented
lines, but rather the number of Single-line, Block and Javadoc
comments. In total, we obtained 259,229 comments, found in
16,249 Java classes. The size of the selected projects varies
between 81,307 and 228,191 SLOC, and the number of contrib-
utors of these projects ranges from 9 to 328.

2.2 Parse Source Code

After obtaining the source code of all projects, we extract the
comments from the source code. We use JDeodorant [29], an
open-source Eclipse plug-in, to parse the source code and
extract the code comments. JDeodorant provides detailed
information about the source code comments such as: their
type (i.e., Block, Single-line, or Javadoc), their location (.e.,
the lines where they start and end), and their context (i.e.,
the method/field /type declaration they belong to).

Due to these features, we adapted JDeodorant to extract
the aforementioned information about source code com-
ments and store it in a relational database to facilitate the
processing of the data.

2.3 Filter Comments

Source code comments can be used for different purposes in
a project, such as giving context, documenting, expressing
thoughts, opinions and authorship, and in some cases, dis-
abling source code from the program. Comments are used
freely by developers and with limited formalities, if any at
all. This informal environment allows developers to bring
to light opinions, insights and even confessions (e.g., self-
admitted technical debt).

As shown in prior work [15], part of these comments may
discuss self-admitted technical debt, but not the majority of
them. With that in mind, we develop and apply five filtering
heuristics to narrow down the comments eliminating the
ones that are less likely to be classified as self-admitted tech-
nical debt.

To do so, we developed a Java based tool that reads from
the database the data obtained by parsing the source code.
Next, it executes the filtering heuristics and stores the
results back in the database. The retrieved data contains
information like the line number that a class/comment
starts/ends and the comment type, considering the Java
syntax (i.e., Single-line, Block or Javadoc). With this infor-
mation we process the filtering heuristics as described next.

License comments are not very likely to contain self-
admitted technical debt, and are commonly added before
the declaration of the class. We create a heuristic that
removes comments that are placed before the class declara-
tion. Since we know the line number that the class was
declared we can easily check for comments that are placed
before that line and remove them. In order to decrease the
chances of removing a self-admitted technical debt com-
ment while executing this filter we calibrated this heuristic
to avoid removing comments that contain one of the prede-
fined task annotations (i.e., “TODQ:”, “FIXME:", or “XXX:”)
[30]. Task annotations are an extended functionality pro-
vided by most of the popular Java IDEs including Eclipse,

1047

Inteli] and NetBeans. When one of these words is used
inside a comment the IDE will automatically keep track of
the comment creating a centralized list of tasks that can be
conveniently accessed later on.

Long comments that are created using multiple Single-
line comments instead of a Block comment can hinder the
understanding of the message considering the case that the
reader (i.e., human or machine) analyzes each one of these
comments independently. To solve this problem, we create
a heuristic that searches for consecutive single-line com-
ments and groups them as one comment.

Commented source code is found in the projects due to
many different reasons. One of the possibilities is that the
code is not currently being used. Other is that, the code is
used for debugging purposes only. Based on our analysis,
commented source code does not have self-admitted techni-
cal debt. Our heuristic removes commented source code
using a simple regular expression that captures typical Java
code structures.

Automatically generated comments by the IDE are fil-
tered out as well. These comments are inserted as part of
code snippets used to generate constructors, methods and
try catch blocks, and have a fixed format (i.e., “Auto-gener-
ated constructor stub”, “Auto-generated method stub”, and
“Auto-generated catch block”). Therefore our heuristic
searches for these automatically generated comments and
removes them.

Javadoc comments rarely mention self-admitted technical
debt. For the Javadoc comments that do mention self-admit-
ted technical debt, we notice that they usually contain one of
the task annotations (i.e., “TODQO:.”, “FIXME:”, or “XXX:”).
Therefore, our heuristic removes all comments of the Javadoc
type, unless they contain at least one of the task annotations.
To do so, we create a simple regular expression that searches
for the task annotations before removing the comment.

The steps mentioned above significantly reduced the
number of comments in our dataset and helped us focus on
the most applicable and insightful comments. For example,
in the Ant project, applying the above steps helped to
reduce the number of comments from 21,587 to 4,137 result-
ing in a reduction of 80.83 percent in the number of com-
ments to be manually analyzed. Using the filtering
heuristics we were able to remove from 39.25 to 85.89 per-
cent of all comments. Table 1 provides the number of com-
ments kept after the filtering heuristics for each project.

2.4 Manual Classification

Our goal is to inspect each comment and label it with a suit-
able technical debt classification. Since there are many com-
ments, we developed a Java based tool that shows one
comment at a time and gives a list of possible classifications
that can be manually assigned to the comment. The list of
possible classifications is based on previous work by Alves
et al. [9]. In their work, an ontology on technical debt terms
was proposed, and they identified the following types of
technical debt across the researched literature: architecture,
build, code, defect, design, documentation, infrastructure,
people, process, requirement, service, test automation and
test debt. During the classification process, we notice that
not all types of debt mentioned by Alves et al. [9] could be
found in code comments. However, we were able to identify

1048

the following types of debt in the source comments: design
debt, defect debt, documentation debt, requirement debt
and test debt.

In our previous work [15], we manually classified 33,093
commentsextracted from the following projects: Ant,
ArgoUML, Columba, JFreeChart and JMeter.R2 In the cur-
rent study we manually classified an additional 29,473 com-
mentsfrom EMF, Hibernate, JEdit, JRuby and SQuirrelR2,
which means that we extended our dataset of classified
comments by 89.06 percent. In total, we manually classified
62,566 comments into the five different types of self-admit-
ted technical debt mentioned above. The classification pro-
cess took approximately 185 hours in total, and was
performed by the first author of the paper. It is important to
note that this manual classification step does not need to be
repeated in order to apply our approach, since our dataset
is publicly available [26], and thus it can used as is, or even
extended with new classified comments.

Below, we provide definitions for design and require-
ment self-admitted technical debt, and some indicative com-
ments to help the reader understand the different types of
self-admitted technical debt comments.

Self-Admitted Design Debt. These comments indicate that
there is a problem with the design of the code. They can be
comments about misplaced code, lack of abstraction, long
methods, poor implementation, workarounds, or temporary
solutions. Usually these kinds of issues are resolved
through refactoring (i.e., restructuring of existing code), or
by re-implementing existing code to make it faster, more
secure, more stable and so forth. Let us consider the follow-
ing comments:

“TODO: - This method is too complex, lets break it up” -
[from ArgoUml]

“I* TODO: really should be a separate class */” - [from
ArgoUml]

These comments are clear examples of what we consider
as self-admitted design debt. In the above comments, the
developers state what needs to be done in order to improve
the current design of the code, and the payback of this kind
of design debt can be achieved through refactoring.
Although the above comments are easy to understand, dur-
ing our study we came across more challenging comments
that expressed design problems in an indirect way. For
example:

“I| I hate this so much even before I start writing it.
/| Re-initialising a global in a place where no-one will see
it just || feels wrong. Oh well, here goes.” - [from
ArgoUml]

“Ilquick & dirty, to make nested mapped p-sets work:” -
[from Apache Ant]

In the above example comments the authors are certain
to be implementing code that does not represent the best
solution. We assume that this kind of implementation will
degrade the design of the code and should be avoided.

“|| probably not the best choice, but it solves the problem of
/[relative paths in CLASSPATH” - [from Apache Ant]

“I/I can’t get my head around this; is encoding treatment
needed here?” - [from Apache Ant]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 11,

NOVEMBER 2017

The above comments expressed doubt and uncertainty
when implementing the code and were considered as self-
admitted design debt as well. The payback of the design
debt expressed in the last four example comments can be
achieved through the re-implementation of the currently
existing solution.

Self-Admitted Requirement Debt. These comments convey
the opinion of a developer supporting that the implementa-
tion of a requirement is not complete. In general, require-
ment debt comments express that there is still missing code
that needs to be added in order to complete a partially
implemented requirement, as it can be observed in the fol-
lowing comments:

“ITODO no methods yet for getClassname” - [from
Apache Ant]

“/ITODO no method for newlnstance using a reverse-
classloader” - [from Apache Ant]

“TODO: The copy function is not yet * completely imple-
mented - so we will * have some exceptions here and
there.*/” - [from ArgoUml]

“TODQO: This dialect is not yet complete. Need to provide
implementations wherever Not yet implemented appears”
- [from SQuirrel]

To mitigate the risk of creating a dataset that is biased, we
extracted a statistically significant sample of our dataset and
asked another student to classify it. To prepare the student for
the task we gave a 1-hour tutorial about the different kinds of
self-admitted technical debt, and walked the student through
a couple of examples of each different type of self-admitted
technical debt comment. The tutorial is provided online as
well [26]. The statistically significant sample was created based
on the total number of comments (62,566) with a confidence
level of 99 percent and a confidence interval of 5 percent,
resulting in a stratified sample of 659 comments. We com-
posed the stratified sample according to the percentage of each
classification found in the original dataset. Therefore, the strat-
ified sample was composed of: 92 percent comments without
self-admitted technical debt (609 comments), 4 percent design
debt (29 comments), 2 percent requirement debt (5 comments),
0.75 percent test debt (2 comments) and 0.15 percent documen-
tation debt (1 comment). Lastly, we evaluate the level of agree-
ment between both reviewers of the stratified sample by
calculating Cohen’s kappa coefficient [31]. The Cohen’s Kappa
coefficient has been commonly used to evaluate inter-rater
agreement level for categorical scales, and provides the pro-
portion of agreement corrected for chance. The resulting coeffi-
cient is scaled to range between —1 and +1, where a negative
value means poorer than chance agreement, zero indicates
exactly chance agreement, and a positive value indicates better
than chance agreement [32]. The closer the value is to +1, the
stronger the agreement. In our work, the level of agreement
measured between the reviewers was of +0.81.

We also measured the level of agreement in the classifica-
tion of design and requirement self-admitted technical debt
individually. This is important because the stratified sample
contains many more comments without self-admitted tech-
nical debt than the other types of debt, and therefore, the
coefficient reported above could indicate that the reviewers
are agreeing on what is not self-admitted technical debt,

MALDONADO ET AL.: USING NATURAL LANGUAGE PROCESSING TO AUTOMATICALLY DETECT SELF-ADMITTED TECHNICAL DEBT

instead of agreeing on a particular type of debt. However,
we achieved a level of agreement of +0.75 for design self-
admitted technical debt, and +0.84 for requirement self-
admitted technical debt. According to Fleiss [33] values
larger than +0.75 are characterized as excellent agreement.

2.5 NLP Classification

Our next step is to use the classified self-admitted technical
debt comments as a training dataset for the Stanford Classi-
fier, which is a Java implementation of a maximum entropy
classifier [25]. A maximum entropy classifier, in general,
takes as input a number of data items along with a classifi-
cation for each data item, and automatically generates fea-
tures (i.e., words) from each datum, which are associated
with positive or negative numeric votes for each class. The
weights of the features are learned automatically based on
the manually classified training data items (supervised
learning). The Stanford Classifier builds a maximum entropy
model, which is equivalent to a multi-class regression model,
and it is trained to maximize the conditional likelihood of
the classes taking into account feature dependences when
calculating the feature weights.

After the training phase, the maximum entropy classifier
can take as input a test dataset that will be classified accord-
ing to the model built during the training phase. The output
for each data item in the test dataset is a classification, along
with the features contributing positively or negatively in
this classification.

In our case, the training dataset is composed of source
code comments and their corresponding manual classifica-
tion. According to our findings in previous work [15], the
two most common types of self-admitted technical debt are
design and requirement debt (defect, test, and documenta-
tion debt together represent less that 10 percent of all self-
admitted technical debt comments). Therefore, we train the-
maximum entropy classifier on the dataset containing only
these two specific types of self-admitted technical debt
comments.

In order to avoid having repeated features differing only
in letter case (e.g., “Hack”, “hack”, “HACK"), or in preced-
ing/succeeding punctuation characters (e.g., “/hack”,
“hack,”), we preprocess the training and test datasets to
clean up the original comments written by the developers.
More specifically, we remove the character structures that
are used in the Java language syntax to indicate comments
(i.e, *//" or ‘//* and "*/’), the punctuation characters (i.e.,
7,000,), and any excess whitespace characters (e.g., “ 7,
\t’, \n’), and finally we convert all comments to lowercase.
However, we decided not to remove exclamation and inter-
rogation marks. These specific punctuations were very use-
ful during the identification of self-admitted technical debt
comments, and provide insightful information about the
meaning of the features.

3 EXPERIMENT RESULTS

The goal of our research is to develop an automatic way to
detect design and requirement self-admitted technical debt
comments. To do so, we first manually classify a large num-
ber of comments identifying those containing self-admitted
technical debt. With the resulting dataset, we train the

1049

maximum entropy classifier to identify design and require-
ment self-admitted technical debt (RQ1). To better under-
stand what words indicate self-admitted technical debt, we
inspect the features used by the maximum entropy classifier
to identify the detected self-admitted technical debt. These
features are words that are frequently found in comments
with technical debt. We present the 10 most common words
that indicate design and requirement self-admitted techni-
cal debt (RQ2). Since the manual classification required to
create our training dataset is expensive, ideally we would
like to achieve maximum performance with the least
amount of training data. Therefore, we investigate how var-
iations in the size of training data affects the performance of
our classification (RQ3). We detail the motivation, approach
and present the results of each of our research questions in
the remainder of this section.

RQL1. Is it possible to more accurately detect self-admitted tech-
nical debt using NLP techniques?

Motivation. As shown in previous work [15], self-admit-
ted technical debt comments can be found in the source
code. However, there is no automatic way to identify these
comments. The methods proposed so far heavily rely on the
manual inspection of source code, and there is no evidence
on how well these approaches perform. Moreover, most of
them do not discriminate between the different types of
technical debt (e.g., design, test, requirement).

Therefore, we want to determine if NLP techniques such
as, the maximum entropy classifier, can help us surpass
these limitations and outperform the accuracy of the current
state-of-the-art. The maximum entropy classifier can auto-
matically classify comments based on specific linguistic
characteristics of these comments. Answering this question
is important, since it helps us understand the opportunities
and limitations of using NLP techniques to automatically
identify self-admitted technical debt comments.

Approach. For this research question, we would like to
examine how effectively we can identify design and
requirement self-admitted technical debt. Therefore, the
first step is to create a dataset that we can train and test the
maximum entropy classifier on. We classified the source
code comments into the following types of self-admitted
technical debt: design, defect, documentation, requirement,
and test debt. However, our previous work showed that the
most frequent self-admitted technical debt comments are
design and requirement debt. Therefore, in this paper, we
focus on the identification of these two types of self-admit-
ted technical debt, because 1) they are the most common
types of technical debt, and 2) NLP-based techniques
require sufficient data for training (i.e., they cannot build an
accurate model with a small number of samples).

We train the maximum entropy classifier using our man-
ually created dataset. The dataset contains comments with
and without self-admitted technical debt, and each com-
ment has a classification (i.e., without technical debt, design
debt, or requirement debt). Then, we add to the training
dataset all comments classified as without technical debt
and the comments classified as the specific type of self-
admitted technical debt that we want to identify (i.e., design
or requirement debt). We use the comments from 9 out of
the 10 projects that we analyzed to create the training data-
set. The comments from the remaining one project are used

1050 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.43, NO.11, NOVEMBER 2017
TABLE 2
Comparison of F1-Measure Between the NLP-Based, the Comment Patterns and the Random
Baseline Approaches for Design and Requirement Debt
Project Design Debt Requirement Debt
Our Comment Random Imp.Over Imp.Over Our Comment Random Imp.Over Imp.Over
Approach Patterns Classifier Comment Random Approach Patterns Classifier Comment Random
Patterns Classifier Patterns Classifier
Ant 0.517 0.237 0.044 2.1x 11.7x 0.154 0.000 0.006 - 25.6%
ArgoUML 0.814 0.107 0.144 7.6X 5.6% 0.595 0.000 0.079 - 7.5x%
Columba 0.601 0.264 0.037 2.2x 16.2x 0.804 0.117 0.013 6.8x 61.8x%
EMF 0.470 0.231 0.034 2.0x 13.8% 0.381 0.000 0.007 - 54.4x
Hibernate 0.744 0.227 0.193 3.2x 3.8x 0.476 0.000 0.041 - 11.6x
JEdit 0.509 0.342 0.037 1.4x 13.7x 0.091 0.000 0.003 - 30.3x
JFreeChart 0.492 0.282 0.077 1.7x 6.3x 0.321 0.000 0.007 - 45.8%
JMeter 0.731 0.194 0.072 3.7x 10.1x 0.237 0.148 0.005 1.6x 47 4%
JRuby 0.783 0.620 0.123 1.2x 6.3x 0.435 0.409 0.043 1.0x 10.1x
SQuirrel 0.540 0.175 0.055 3.0x 9.8x 0.541 0.000 0.014 - 38.6%
Average 0.620 0.267 0.081 2.3x% 7.6X 0.403 0.067 0.021 6.0x 19.1x

to evaluate the classification performed by the maximum
entropy classifier. We choose to create the training dataset
using comments from 9 out of 10 projects, because we want
to train the maximum entropy classifier with the most
diverse data possible (i.e., comments from different
domains of applications). However, we discuss the implica-
tions of using training datasets of different sizes in RQ3. We
repeat this process for each one of the ten projects, each
time training on the other 9 projects and testing on the
remaining 1 project.

Based on the training dataset, the maximum entropy
classifier will classify each comment in the test dataset. The
resulting classification is compared with the manual classifi-
cation provided in the test dataset. If a comment in the test
dataset has the same manual classification as the classifica-
tion suggested by the maximum entropy classifier, we will
have a true positive (tp) or a true negative (tn). True posi-
tives are the cases where the maximum entropy classifier
correctly identifies self-admitted technical debt comments,
and true negatives are comments without technical debt
that are classified as being as such. Similarly, when the clas-
sification provided by the tool diverges from the manual
classification provided in the test dataset, we have false pos-
itives or false negatives. False positives (fp) are comments
classified as being self-admitted technical debt when they
are not, and false negatives (fn) are comments classified as
without technical debt when they really are self-admitted
technical debt comments. Using the tp, tn, fp, and fn values,
we are able to evaluate the performance of different detec-

tion approaches in terms of precision (P = -2.), recall

tp+

(R=52) and Fl-measure (F =2 x 5. To cﬁtermine
how effective the NLP classification is, we compare its F1-
measure values with the corresponding Fl-measure values
of the two other approaches. We use the F1-measure to com-
pare the performance between the approaches as it is the
harmonic mean of precision and recall. Using the F1-mea-
sure allows us to incorporate the trade-off between preci-
sion and recall and present one value that evaluates both
measures.

The first approach is the current state-of-the-art in detect-
ing self-admitted technical debt comments [14]. This
approach uses 62 comment patterns (i.e., keywords and

phrases) that were found as recurrent in self-admitted tech-
nical debt comments during the manual inspection of
101,762 comments. The second approach is a simple (ran-
dom) baseline, which assumes that the detection of self-
admitted technical debt is random (this approach is used as
a F1 lower bound). The precision of this approach is calcu-
lated by taking the total number of self-admitted technical
debt over the total number of comments of each project. For
example, project Ant has 4,137 comments, of those, only 95
comments are design self-admitted technical debt. The
probability of randomly labelling a comment as a self-
admitted technical debt comment is 0.023 (i.e., 43%). Simi-
larly, to calculate the recall we take into consideration the
two possible classifications available: one is the type of self-
admitted technical debt (e.g., design) and the other is with-
out technical debt. Therefore, there is a 50 percent chance
that the comment will be classified as self-admitted techni-
cal debt. Thus, the F1-measure for the random baseline for
project Ant is computed as 2 x §:5355:2 = 0.044.
Results—Design Debt. Table 2 presents the F1-measure of
the three approaches, as well as the improvement achieved
by our approach compared to the other two approaches. We
see that for all projects, the Fl-measure achieved by our
approach is higher than the other approaches. The F1-mea-
sure values obtained by our NLP-based approach range
between 0.470-0.814, with an average of 0.620. In compari-
son, the Fl-measure values using the comment patterns
range between 0.107-0.620, with an average of 0.267, while
the simple (random) baseline approach achieves Fl-mea-
sure values in the range of 0.034-0.193, with an average of
0.081. Fig. 2a visualizes the comparison of the Fl-measure
values for our NLP-based approach, the comment patterns
approach, and the simple (random) baseline approach. We
see from both, Table 2 and Fig. 2a that, on average, our
approach outperforms the comment patterns approach by
2.3 times and the simple (random) baseline approach by 7.6
times when identifying design self-admitted technical debt.
It is important to note that the comment patterns
approach has a high precision, but low recall, i.e., this
approach points correctly to self-admitted technical debt
comments, but as it depends on keywords, it identifies a
very small subset of all the self-admitted technical debt

MALDONADO ET AL.: USING NATURAL LANGUAGE PROCESSING TO AUTOMATICALLY DETECT SELF-ADMITTED TECHNICAL DEBT

Q.
B NLP-based
[0 Comment patterns

0.8

[0 Random classifier

LLLEE

Ant ArgoUML Columba EMF Hibernate JEdit JFreeChart JMeter

(a) Design Debt

F1-Measure
0.6

0.4

0.2

0.0

JRuby SQuirrel

Fig. 2. Visualization of the F1-measure for different approaches.

comments in the project. Although we only show the F1-
measure values here, we present the precision and recall
values in Table 9 in the Appendix section.

Results—Requirement Debt. Similarly, the last five col-
umns of Table 2 show the Fl-measure performance of the
three approaches, and the improvement achieved by our
approach over the two other approaches. The comment pat-
terns approach was able to identify requirement self-admit-
ted technical debt in only 3 of the 10 analyzed projects. A
possible reason for the low performance of the comment
patterns in detecting requirement debt is that the comment
patterns do not differentiate between the different types of
self-admitted technical debt. Moreover, since most of the
debt is design debt, it is possible that the patterns tend to
favor the detection of design debt.

That said, we find that for all projects, the Fl-measure
values obtained by our approach surpass the Fl-measure
values of the other approaches. Our approach achieves F1-
measure values between 0.091-0.804 with an average of
0.403, whereas the comment pattern approach achieves F1-
measure values in the range of 0.117-0.409 with an average
of 0.067, while the simple (random) baseline ranges between
0.003-0.079, with an average of 0.021. Fig. 2b visualizes the
performance comparison of the two approaches. We also
examine if the differences in the Fl-measure values
obtained by our approach and the other two baselines are
statistically significant. Indeed, we find that the differences
are statistically significant (p<0.001) for both baselines and
both design and requirement self-admitted technical debt.

Generally, requirement self-admitted technical debt is less
common than design self-admitted technical debt, which
makes it more difficult to detect. Nevertheless, our NLP-
based approach provides a significant improvement over the
comment patterns approach, outperforming it by 6 times, on
average. Table 2 only presents the F1-measure values for the
sake of brevity, however, we present the detailed precision
and recall values in the Appendix section, Table 10.

We find that our NLP-based approach, is more accurate in identi-
fying self-admitted technical debt comments compared to the cur-
rent state-of-art. We achieved an average F1-measure of 0.620
when identifying design debt (an average improvement of 2.3 x
over the state-of-the-art approach) and an average F1-measure of
0.403 when identifying requirement debt (an average improve-
ment of 6x over the state-of-the-art approach).

1051

<,
B NLP-based
[0 Comment patterns

0.8

[0 Random classifier

L LLLLhﬂL

Ant ArgoUML Columba EMF Hibernate JEdit JFreeChart JMeter JRuby SQuirrel

(b) Requirement Debt

F1-Measure
0.6

0.4

0.2

0.0

RQ2. What are the most impactful words in the classification
of self-admitted technical debt?

Motivation. After assessing the accuracy of our NLP-
based approach in identifying self-admitted technical debt
comments, we want to better understand what words
developers use when expressing technical debt. Answer-
ing this question will provide insightful information that
can guide future research directions, broaden our under-
standing on self-admitted technical debt and also help us
to detect it.

Approach. The maximum entropy classifier learns optimal
features that can be used to detect self-admitted technical
debt. A feature is comment fragment (e.g., word) that is
associated with a specific class (i.e., design debt, require-
ment debt, or without technical debt), and a weight that rep-
resents how strongly this feature relates to that class. The
maximum entropy classifier uses the classified training data
to determine the features and their weights. Then, these fea-
tures and their corresponding weights are used to deter-
mine if a comment belongs to a specific type of self-
admitted technical debt or not.

For example, let us assume that after the training, the maxi-
mum entropy classifier determines that the features “hack”
and “dirty” are related to the design-debt class with weights
5.3 and 3.2, respectively, and the feature “something” relates
to the without-technical-debt class with a weight of 4.1. Then, to
classify the comment “this is a dirty hack it’s better to do
something” from our test data, all features present in the com-
ment will be examined and the following scores would be cal-
culated: weightaesign-aerr = 8.5 (i.e., the sum of “hack” and
“dirty” feature weights) and weightyithout-technica-dert = 4.1.
Since weightrlesign-debt is lal'ger than weightmithmbt-techniml-debt/ the
comment will be classified as design debt.

For each analyzed project, we collect the features used to
identify the self-admitted technical debt comments. These
features are provided by the maximum entropy classifier as
output and stored in a text file. The features are written in
the file according to their weights in descending order
(starting from more relevant, ending to less relevant fea-
tures). Based on these files, we rank the words calculating
the average ranking position of the analyzed features across
the ten different projects.

Results. Table 3 shows the top-10 textual features used to
identify self-admitted technical debt in the ten studied proj-
ects, ordered by their average ranking. The first column
shows the ranking of each textual feature, the second col-
umn lists the features used in the identification of design

1052

TABLE 3
Top-10 Textual Features Used to Identify Design
and Requirement Self-Admitted Technical Debt

Rank Design Debt Requirement Debt
1 hack todo

2 workaround needed

3 yuck! implementation
4 kludge fixme

5 stupidity XXX

6 needed? ends?

7 columns? convention

8 unused? configurable

9 wif? apparently

10 todo fudging

self-admitted technical debt, and the third column lists the
textual features used to identify requirement self-admitted
technical debt.

From Table 3 we observe that the top ranked textual fea-
tures for design self-admitted technical debt, i.e., hack, work-
around, yuck!, kludge and stupidity, indicate sloppy code, or
mediocre source code quality. For example, we have the fol-
lowing comment that was found in JMeter:

“Hack to allow entire URL to be provided in host field”

Other textual features, such as needed?, unused? and wtf?
are questioning the usefulness or utility of a specific source
code fragment, as indicated by the following comment also
found in JMeter:

“TODO: - is this needed?”

For requirement self-admitted technical debt, the top
ranked features, i.e., todo, needed, implementation, fixme and
xxx indicate the need to complete requirements in the future
that are currently partially complete. An indicative example
is the following one found in JRuby:

“TODOQ: implement, won’t do this now”

Some of the remaining lower ranked textual features,
such as convention, configurable and fudging also indicate
potential incomplete requirements, as shown in the follow-
ing comments:

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 11,

NOVEMBER 2017

“Need to calculate this... just fudging here for now”
[from JEdit]

“could make this configurable” [from JFreeChart]

“TODQ: This name of the expression language should be
configurable by the user” [from ArgoUML]

“TODO: find a way to check the manifest-file, that is
found by naming convention” [from Apache Ant]

It should be noted that the features highlighted in bold in
Table 3 appear in all top-10 lists extracted from each one of
the ten training datasets, and therefore can be considered as
more universal/stable features compared to the others.

We also observe that it is possible for a single textual fea-
ture to indicate both design and requirement self-admitted
technical debt. However, in such cases, the ranking of the
feature is different for each kind of debt. For example, the
word “todo” is ranked tenth for design debt, whereas it is
ranked first for requirement debt. This finding is intuitive,
since requirement debt will naturally be related to the
implementation of future functionality.

It is important to note here that although we present only
the top-10 textual features, the classification of the com-
ments is based on a combination of a large number of tex-
tual features. In fact, two different types of textual features
are used to classify the comments, namely positive and neg-
ative weight features. Positive weight features will increase
the total weight of the vote suggesting that the classification
should be equal to the class of the feature (i.e., design or
requirement debt). On the other hand, negative weight fea-
tures will decrease the total weight of the vote suggesting a
classification different from the class of the feature. On aver-
age, the number of positive weight features used to classify
design and requirement debt is 5,014 and 2,195, respec-
tively. The exact number of unique textual features used to
detect self-admitted technical debt for each project is shown
in Table 4. The fact that our NLP-based approach leverages
so many features helps to explain the significant improve-
ment we are able to achieve over the state-of-the-art, which
only uses 62 patterns. In comparison, our approach lever-
ages 35,828 and 34,056 unique textual features for detecting
comments with design and requirement debt, respectively.

TABLE 4
Number of Unique Textual Features Use to Detect Design and Requirement Debt for Each Project
Design Debt Requirement Debt

Positive Negative # of Positive Negative # of
Project Weight Weight Features Weight Weight Features

Features Features Features Features
Ant 5,299 23,623 28,922 1,812 27,673 29,485
ArgoUML 3,917 26,012 29,929 2,779 27,260 30,039
Columba 5,255 24,182 29,437 2,433 27,561 29,994
EMF 5,346 23,667 29,013 1,889 27,637 29,526
Hibernate 4914 24,070 28,984 2,748 26,654 29,402
JEdit 5,042 24,644 29,686 1,831 28,267 30,098
JFreeChart 5,361 23,530 28,891 1,902 27,439 29,341
JMeter 5,172 23,916 29,088 1,893 27,716 29,609
JRuby 4,856 24,553 29,409 2,850 27,085 29,935
SQuirrel 4,982 25,146 30,128 1,814 26,914 28,728
Average 5,014 24,334 29,348 2,195 27,420 29,615
Total unique 6,327 31,518 35,828 4,015 32,954 34,056

MALDONADO ET AL.: USING NATURAL LANGUAGE PROCESSING TO AUTOMATICALLY DETECT SELF-ADMITTED TECHNICAL DEBT

1053

1.0

0.8
L

0.6
L

F1-Measure

3900 9700

0.0

1.0

0.8
L

0.6

F1-Measure

P by oy,

)
-3

00 11800

0.0

T T T T
20000 30000 40000 50000

Comments used in training dataset

(a) Design Debt

T
0 10000

T T T T
20000 30000 40000 50000

Comments used in training dataset

(b) Requirement Debt

T
0 10000

Fig. 3. F1-measure achieved by incrementally adding batches of 100 comments in the training dataset.

We find that design and requirement debt have their own tex-
tual features that best indicate such self-admitted technical
debt comments. For design debt, the top textual features indi-
cate sloppy code or mediocre code quality, whereas for require-
ment debt they indicate the need to complete a partially
implemented requirement in the future.

RQ3. How much training data is required to effectively detect
self-admitted technical debt?

Motivation. Thus far, we have shown that our NLP-based
approach can effectively identify comments expressing self-
admitted technical debt. However, we conjecture that the per-
formance of the classification depends on the amount of train-
ing data. At the same time, creating the training dataset is a
time consuming and labor intensive task. So, the question that
arises is: how much training data do we need to effectively
classify the source code comments? If we need a very large
number of comments to create our training dataset, our
approach will be more difficult to extend and apply for other
projects. On the other hand, if a small dataset can be used to
reliably identify comments with self-admitted technical debt,
then this approach can be applied with minimal effort, i.e.,
less training data. That said, intuitively we expect that the per-
formance of the maximum entropy classifier will improve as
more comments are being added to the training dataset.

Approach. To answer this research question, we follow a
systematic process where we incrementally add training
data and evaluate the performance of the classification.
More specifically, we combine the comments from all proj-
ects into a single large dataset. Then, we split this dataset
into ten equally-sized folds, making sure that each partition
has the same ratio of comments of self-admitted technical
debt and without technical debt as the original dataset.
Next, we use one of the ten folds for testing and the remain-
ing nine folds as training data. Since we want to examine
the impact of the quantity of training data on performance,
we train the classifier with batches of 100 comments at a
time and test its performance on the testing data. It is impor-
tant to note that even within the batches of 100 comments,
we maintain the same ratio of self-admitted technical debt

and non technical debt comments as in the original dataset.
We keep adding comments until all of the training dataset
is used. We repeat this process for each one of the ten folds
and report the average performance across all folds.

We compute the Fl-measure values after each iteration
(i.e., the addition of a batch of 100 comments) and record
the iteration that achieves the highest F1-measure. Then we
find the iterations in which at least 80 and 90 percent of the
maximum Fl-measure value is achieved, and report the
number of comments added up to those iterations.

Results—Design Debt. Fig. 3a shows the average F1-mea-
sure values obtained when detecting design self-admitted
technical debt, while adding batches of 100 comments. We
find that the F1-measure score improves as we increase the
number of comments in the training dataset, and the highest
value (i.e., 0.824) is achieved with 42,700 comments. How-
ever, the steepest improvement in the Fl-measure perfor-
mance takes place within the first 2K-4K comments.
Additionally, 80 and 90 percent of the maximum F1-mea-
sure value is achieved with 3,900 and 9,700 comments in the
training dataset, respectively. Since each batch of comments
consists of approximately 5 percent (i.e., 52&;7102?’2) comments
with design self-admitted technical debt, the iteration
achieving 80 percent of the maximum Fl-measure value
contains 195 comments with design self-admitted technical
debt, while the iteration achieving 90 percent of the maxi-
mum Fl-measure value contains 485 such comments. In
conclusion, to achieve 80 percent of the maximum F1-mea-
sure value, we need only 9.1 percent (i.e., 20) of the train-
ing data, while to achieve 90 percent of the maximum F1-
measure value, we need only 22.7 percent (i.e., i)é?;)ooo) of the
training data.

Results—Requirement Debt. Fig. 3b shows the average F1-
measure values obtained when detecting requirement self-
admitted technical debt, while adding batches of 100 com-
ments. As expected, the Fl-measure increases as we add
more comments into the training dataset, and again the
steepest improvement takes place within the first 2-3K com-
ments. The highest F1-measure value (i.e., 0.753) is achieved
using 51,300 comments of which 675 are requirement self-
admitted technical debt. Additionally, 80 percent of the
maximum Fl-measure score is achieved with 2,600

1054

comments, while 90 percent of the maximum Fl-measure
score with 11,800 comments in the training dataset. Each
batch contains two comments with requirement self-admit-
ted technical debt, since the percentage of such comments is
1.3 percent (i.e., 5gﬁ722) in the entire dataset. As a result, the
iteration achieving 80 percent of the maximum F1-measure
value contains 52 comments with requirement self-admitted
technical debt, while the iteration achieving 90 percent of
the maximum Fl-measure value contains 236 such com-
ments. In conclusion, to achieve 80 percent of the maximum
F1-measure value, we need only 5 percent (i.e., %) of the
training data, while to achieve 90 percent of the maximum
F1-measure value, we need only 23 percent (i.e., 11800y f the

. 51,300
training data.

We find that to achieve a performance equivalent to 90 percent
of the maximum F1-measure score, only 23 percent of the com-
ments are required for both design and requirement self-admit-
ted technical debt. For a performance equivalent to 80 percent
of the maximum F1-measure score, only 9 and 5 percent of the
comments are required for design and requirement self-admit-
ted technical debt, respectively.

4 DISCUSSION

Thus far, we have seen that our NLP-based approach can
perform well in classifying self-admitted technical debt.
However, there are some observations that warrant further
investigation. For example, when it comes to the different
types of self-admitted technical debt, we find that require-
ment debt tends to require less training data, which is
another interesting point that is worth further investigation
(Section 4.1).

Moreover, we think that is also interesting to know the
performance of our approach when trained to distinguish
between self-admitted technical debt and non-self-admitted
technical debt, i.e.,, without using fine-grained classes of
debt, such as design and requirement debt (Section 4.2).

Also, when performing our classification, there are sev-
eral different classifiers that can be used in the Stanford
Classifier toolkit, hence we investigate what is the impact of
using different classifiers on the accuracy (Section 4.3).

Lastly, we analyze the overlap between the files that con-
tain self-admitted technical debt and the files that contain
code smells. This is an interesting point of discussion to pro-
vide insights on how technical debt found in comments relates
to code smells found by static analysis tools (Section 4.4).

4.1 Textual Similarity for Design and Requirement
Debt

For RQ3, we hypothesize that one of the reasons that the
detection of requirement self-admitted technical debt com-
ments needs less training data is because such comments
are more similar to each other compared to design self-
admitted technical debt comments. Therefore, we compare
the intra-similarity of the requirement and design debt
comments.

We start by calculating the term frequency-inverse docu-
ment frequency (tf-idf) weight of each design and require-
ment self-admitted technical debt comment. Term
frequency (ff) is the simple count of occurrences that a term

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 11,

NOVEMBER 2017

0.04 0.06 0.08
I I I

Cosine Similarity

0.02
I

0.00
I

T T
Design Requirement

Fig. 4. Textual similarity between design and requirement debt
comments.

(i.e., word) has in a document (i.e., comment). Inverse docu-
ment frequency (idf) takes into account the number of docu-
ments that the term appears. However, as the name implies,
the more one term is repeated across multiple documents
the less relevant it is. Therefore, let N be the total number of
documents in a collection, the idf of a term ¢ is defined as fol-
lows: idf;, = log % The total tf-idf weight of a document is
equal to the sum of each individual term #f-idf weight in the
document. Each document is represented by a document vec-
tor in a vector space model.

Once we have the tf-idf weights for the comments, we cal-
culate the cosine similarity between the comments. The
Cosine similarity can be viewed as the dot product of the nor-
malized versions of two document vectors (i.e., two com-
ments) [34]. The value of the cosine distance ranges
between 0 to 1, where 0 means that the comments are not
similar at all and 1 means that the comments are identical.

For example, the requirement self-admitted technical debt
dataset contains 757 comments, for which we generate a
757 x 757 matrix (since we compare each comment to all
other comments). Finally, we take the average cosine similar-
ity for design and requirement debt comments, respectively,
and plot their distributions. Fig. 4 shows that the median and
the upper quartile for requirement self-admitted technical
debt comments are higher than the median and upper quar-
tile for design self-admitted technical debt. The median for
requirement debt comments is 0.018, whereas, the median
for design debt comments is 0.011. To ensure that the differ-
ence is statistically significant, we perform the Wilcoxon test
to calculate the p-value. The calculated p-value is less than
2.2e-16 showing that the result is indeed statistically signifi-
cant (i.e., p < 0.001). Considering our findings, our hypothe-
sis is validated, showing that requirement self-admitted
technical debt comments are more similar to each other com-
pared to design self-admitted technical debt comments. This
may help explain why requirement debt needs a smaller set
of positive weight textual features to be detected.

4.2 Distinguishing Self-Admitted Technical Debt
from Non-Self-Admitted Technical Debt
Comments

So far, we analyzed the performance of our NLP-based

approach to identify distinct types of self-admitted technical

MALDONADO ET AL.: USING NATURAL LANGUAGE PROCESSING TO AUTOMATICALLY DETECT SELF-ADMITTED TECHNICAL DEBT 1055
TABLE 5 TABLE 6
F1-Measure Performance Considering Different Top-10 Textual Features Used to Identify Different
Types of Self-Admitted Technical Debt Types of Self-Admitted Technical Debt

Project Design Debt Requirement Debt Technical Debt Project Design Debt = Requirement Debt Technical Debt
Ant 0.517 0.154 0.512 1 hack todo hack
ArgoUML 0.814 0.595 0.819 2 workaround needed workaround
Columba 0.601 0.804 0.750 3 yuck! implementation yuck!
EMF 0.470 0.381 0.462 4 kludge fixme kludge
Hibernate 0.744 0.476 0.763 5 stupidity XXX stupidity
JEdit 0.509 0.091 0.461 6 needed? ends? needed?
JFreeChart 0.492 0.321 0.513 7 columns? convention unused?
JMeter 0.731 0.237 0.715 8 unused? configurable fixme
JRuby 0.783 0.435 0.773 9 witf? apparently todo
SQuirrel 0.540 0.541 0.593 10 todo fudging wif?
Average 0.620 0.403 0.636

debt (i.e., design and requirement debt). However, a sim-
pler distinction between self-admitted technical debt and
non-debt comments can also be interesting in the case that
those fine-grained classes of debt are not considered neces-
sary by a user of the proposed NLP-based detection
approach. Another reason justifying such a coarse-grained
distinction is that the cost of building a training dataset
with fine-grained classes of debt is more expensive, men-
tally challenging, and subjective than building a training
dataset with just two classes (i.e., comments with and with-
out technical debt).

In order to compute the performance of our NLP-based
approach using only two classes (i.e., comments with and
without technical debt), we repeat RQ1 and RQ2 with modi-
fied training and test datasets. First, we take all design and
requirement self-admitted technical debt comments and
label them with a common class i.e., technical debt, and the
remaining comments we kept them labeled as without tech-
nical debt. Second, we run the maximum entropy classifier
in the same leave-one-out cross-project validation fashion,
using the comments of 9 projects to train the classifier and
the comments from the remaining project to test the classi-
fier. We repeat this process for each of the ten projects and
compute the average Fl-measure. Lastly, we analyze the
textual features used to identify the self-admitted technical
debt comments.

Table 5 compares the F1-measure achieved when detect-
ing design debt, requirement debt, separately and when
detecting both combined in a single class. As we can see,
the performance when detecting technical debt is very simi-
lar with the performance of the classifier when detecting
design debt. This is expected, as the majority of technical
debt comments in the training dataset are labeled with the
design debt class. Nevertheless, the performance achieved
when detecting design debt was surpassed in the projects
where the classifier performed well in detecting require-
ment debt, for example, in Columba (0.601 versus 0.750)
and SQuirrel SQL (0.540 versus 0.593).

We find that the average performance when detecting
design and requirement self-admitted technical debt com-
bined is better (0.636) than the performance achieved when
detecting them individually (0.620 and 0.403 for design and
requirement debt, respectively).

Table 6 shows a comparison of the top-10 textual features
used to detect design and requirement debt comments

separately, and those used to detect both types of debt com-
bined in a single class. When analyzing the top-10 textual
features used to classify self-admitted technical debt, we
find once more, a strong overlap with the top-10 textual fea-
tures used to classify design debt. The weight of the features
is attributed in accordance to the frequency that each word
is found in the training dataset, and therefore, the top-10
features tend to be similar with the top-10 design debt fea-
tures, since design debt comments represent the majority of
self-admitted technical debt comments in the dataset.

4.3 Investigating the Impact of Different Classifiers
on the Accuracy of the Classification

In our work, the classification performed by the Stanford
Classifier used the maximum entropy classifier. However,
the Stanford Classifier can use other classifiers too. In order
to examine the impact of the underlying classifier on the
accuracy of the proposed approach, we investigate two
more classifiers, namely the Naive Bayes, and the Binary
classifiers.

Figs. 5a and 5b compare the performance between the
three different classifiers. We find that the Naive Bayes has
the worst average Fl-measure of 0.30 and 0.05 for design
and requirement technical debt, respectively. Based on our
findings, the Naive Bayes algorithm favours recall at the
expense of precision. For example, while classifying design
debt, the average recall was 0.84 and precision 0.19. The two
other algorithms present more balanced results compared
to the Naive Bayes, and the difference in their performance
is almost negligible. The Logistic Regression classifier
achieved Fl-measures of 0.62 and 0.40, while the Binary
classifier F1-measures were 0.63 and 0.40, for design and
requirement self-admitted technical debt, respectively.
Tables 11 and 12 in the Appendix section provide detailed
data for each classifier and all ten examined projects.

Although the Binary classifier has a slightly better perfor-
mance, for our purpose, the Logistical Regression classifier
provides more insightful textual features. These features
were analyzed and presented in RQ2.

According to previous work, developers hate to deal
with false positives (i.e., low precision) [35], [36], [37]. Due
to this fact, we choose to present our results in this study
using the maximum entropy classifier, which has an aver-
age precision of 0.716 throughout all projects. However,
favouring recall over precision by using the Naives Bayes
classifier might still be acceptable, if a manual process to

1.0

1056
M Logistic Regression
O Binary
[0 Naive Bayes

i

Ant ArgoUML Columba EMF Hibernate JEdit JFreeChart JMeter

F1-Measure
0.6 0.8

0.4

0.2

JRuby SQuirrel

(a) Design Debt

Fig. 5. Underlying classifier algorithms performance comparison.

filter out false positives is in place, as reported by Berry
et al. [38].

One important question to ask when choosing what kind
of classifier to use is how much training data is currently
available. In most of the cases, the trickiest part of applying
a machine learning classifier in real world applications is
creating or obtaining enough training data. If you have
fairly little data at your disposal, and you are going to train
a supervised classifier, then machine learning theory recom-
mends classifiers with high bias, such as the Naive
Bayes [39], [40]. If there is a reasonable amount of labeled
data, then you are in good stand to use most kinds of classi-
fiers [34]. For instance, you may wish to use a Support Vec-
tor Machine (SVM), a decision tree or, like in our study, a
max entropy classifier. If a large amount of data is available,
then the choice of classifier probably has little effect on the
results and the best choice may be unclear [41]. It may be
best to choose a classifier based on the scalability of training,
or even runtime efficiency.

4.4 Investigating the Overlap Between Technical
Debt Found in Comments and Technical Debt
Found by Static Analysis Tools

Thus far, we analyzed technical debt that was expressed by
developers through source code comments. However, there
are other ways to identify technical debt, such as architec-
tural reviews, documentation analysis, and static analysis
tools. To date, using static analysis tools is one of the most
popular approaches to identify technical debt in the source

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 11,

NOVEMBER 2017

2
M Logistic Regression
O Binary

[0 Naive Bayes

bl 11

Ant ArgoUML Columba EMF Hibernate JEdit JFreeChart JMeter JRuby SQuirrel

F1-Measure
0.6 0.8

0.4

0.2

(b) Requirement Debt

code [42]. In general, static analysis tools parse the source
code of a project to calculate metrics and identify possible
object oriented design violations, also known as code
smells, anti-patterns, or design technical debt, based on
some fixed metric threshold values.

We analyze the overlap between what our NLP-based
approach identifies as technical debt and what a static anal-
ysis tool identifies as technical debt. We selected JDeodorant
as the static analysis tool, since it supports the detection of
three popular code smells, namely Long Method, God
Class, and Feature Envy. We avoided the use of metric-
based code smell detection tools, because they tend to have
high false positive rates and flag a large portion of the code
base as problematic [23]. On the other hand, JDeodorant
detects only actionable code smells (i.e., code smells for
which a behavior-preserving refactoring can be applied to
resolve them), and does not rely on any metric thresholds,
but rather applies static source code analysis to detect struc-
tural anomalies and suggest refactoring opportunities to
eliminate them [29].

First, we analyzed our 10 open source projects using
JDeodorant. The result of this analysis is a list of Java files
that were identified having at least one instance of the Long
Method, God Class, and Feature Envy code smells. Table 7
shows the total number of files and the number/percentage
of files that contain each of the aforementioned smells. We
find that, on average, 29.3, 5.5, 16.6 percent of all files have
at least one instance of the Long Method, Feature Envy or
God Class smells, respectively. These code smells have been

TABLE 7
Detailed Information About the Files Containing Bad Smells as Detected by JDeodorant
of % of # of % of # of % of # of % of
Project # of files Files with Files with Files with Files with Files with Files with ~ Files with Files with
Long Long Feature Feature God God Any Code Any Code
Method Method Envy Envy Class Class Smell Smell
Ant 1,475 508 344 110 7.4 365 24.7 612 414
ArgoUML 2,609 654 25.0 62 2.3 249 9.5 730 27.9
Columba 1,711 505 29.5 65 3.7 244 14.2 593 34.6
EMF 1,458 362 24.8 50 3.4 231 15.8 448 30.7
Hibernate 1,356 216 15.9 69 5.0 190 14.0 331 244
JEdit 800 268 33.5 57 7.1 133 16.6 311 38.8
JFreeChart 1,065 523 49.1 54 5.0 231 21.6 583 54.7
JMeter 1,181 487 41.2 113 9.5 241 20.4 564 47.7
JRuby 1,486 319 214 87 5.8 218 14.6 394 26.5
SQuirrel 3,108 566 18.2 204 6.5 466 14.9 825 26.5
Average 29.3 55 16.6 353

MALDONADO ET AL.: USING NATURAL LANGUAGE PROCESSING TO AUTOMATICALLY DETECT SELF-ADMITTED TECHNICAL DEBT 1057
TABLE 8
Overlap Between the Files Containing Self-Admitted Debt and the Files Containing Code Smells as Detected by JDeodorant
#of #of % of #of % of # of % of #of % of
Project Files with SATD Files SATD Files SATD Files SATD Fles SATD Files SATD Files SATD Files SATD Files
SATD with Long with Long with Feature with Feature with God with with Any with Any
Method Method Envy Envy Class God Class Code Smell Code Smell
Ant 73 57 78.0 19 26.0 42 57.5 63 86.3
ArgoUML 419 255 60.8 43 10.2 128 30.5 283 67.5
Columba 117 76 64.9 18 15.3 47 40.1 89 76.0
EMF 53 33 62.2 14 26.4 28 52.8 28 52.8
Hibernate 206 90 43.6 44 21.3 72 349 116 56.3
JEdit 108 74 68.5 23 21.2 47 43.5 82 75.9
JFreeChart 106 87 82.0 20 18.8 52 49.0 92 86.7
JMeter 200 143 71.5 41 20.5 97 48.5 161 80.5
JRuby 163 107 65.5 43 26.3 79 48.4 85 52.1
SQuirrel 156 82 52.5 32 20.5 58 37.1 99 63.4
Average 65.0 20.7 442 69.7

extensively investigated in the literature, and are considered
to occur frequently [43], [44]. Second, we created a similar
list containing the files that were identified with self-admit-
ted technical debt comments. Finally, we examined the
overlap of the two lists of files. It should be emphasized that
we did not examine if the self-admitted technical debt com-
ments actually discuss the detected code smells, but only if
there is a co-occurrence at file-level.

Table 8 provides details about each one of the projects
used in our study. The columns of Table 8 present the total
number of files with self-admitted technical debt, followed
by the number of files containing self-admitted technical
debt comments and at least one code smell instance, along
with the percentage over the total number of files with self-
admitted technical debt, for Long Method, Feature Envy,
God Class, and all code smells combined, respectively.

JMeter, for example, has 200 files that contain self-
admitted technical debt comments, and 143 of these files
also contain at least one Long Method code smell (i.e.,
71.5 percent). In addition, we can see that 20.5 percent of
the files that have self-admitted technical debt are
involved in Feature Envy code smells, and 48.5 percent of
them are involved in God Class code smells. In summary,
we see that 80.5 percent of the files that contain self-
admitted technical debt comments are also involved in at
least one of the three examined code smells. In general,
we observe from Tables 7 and 8 that the overlap between
self-admitted technical debt and code smells is higher
than the ratio of files containing code smells. This indi-
cates that there is some form of agreement between files
that have code smells and files containing self-admitted
technical debt.

We find that the code smell that overlaps the most
with self-admitted technical debt is Long Method. Intui-
tively, this is expected, since Long Method is a common
code smell and may have multiple instances per file,
because it is computed at the method level. The overlap
between files with self-admitted technical debt and Long
Method ranged from 43.6 to 82 percent of all the files
containing self-admitted technical debt comments, and
considering all projects, the average overlap is 65 percent.
In addition, 44.2 percent of the files with self-admitted
technical debt comments are also involved in God Class

code smells, and 20.7 percent in Feature Envy code
smells. Taking all examined code smells in consideration
we find that, on average, 69.7 percent of files containing
self-admitted technical debt are also involved in at least
one of the three examined code smells.

Our findings here shows that using code comments to
identify technical debt is a complementary approach to
using code smells to detect technical debt. Clearly, there is
overlap, however, each approach also identifies unique
instances of technical debt.

5 RELATED WORK

Our work uses code comments to detect self-admitted tech-
nical debt using a Natural Language Processing technique.
Therefore, we divide the related work into three sections,
namely source code comments, technical debt, and NLP in
software engineering.

5.1 Source Code Comments

A number of studies examined the co-evolution of source
code comments and the rationale for changing code com-
ments. For example, Fluri et al. [45] analyzed the co-evo-
lution of source code and code comments, and found that
97 percent of the comment changes are consistent. Tan
et al. [46] proposed a novel approach to identify inconsis-
tencies between Javadoc comments and method signa-
tures. Malik et al. [47] studied the likelihood of a
comment to be updated and found that call dependencies,
control statements, the age of the function containing the
comment, and the number of co-changed dependent func-
tions are the most important factors to predict comment
updates.

Other works used code comments to understand devel-
oper tasks. For example. Storey et al. [30] analyzed how task
annotations (e.g., TODO, FIXME) play a role in improving
team articulation and communication. The work closest to
ours is the work by Potdar and Shihab [14], where code
comments were used to identify technical debt, called self-
admitted technical debt.

Similar to some of the prior work, we also use source
code comments to identify technical debt. However, our
main focus is on the detection of different types of self-

1058

admitted technical debt. As we have shown, our approach
yields different and better results in the detection of self-
admitted technical debt.

5.2 Technical Debt

A number of studies has focused on the detection and man-
agement of technical debt. For example, Seaman et al. [2],
Kruchten et al. [3] and Brown et al. [48] make several reflec-
tions about the term technical debt and how it has been
used to communicate the issues that developers find in the
code in a way that managers can understand.

Other work focused on the detection of technical debt.
Zazworka et al. [13] conducted an experiment to compare
the efficiency of automated tools in comparison with human
elicitation regarding the detection of technical debt. They
found that there is a small overlap between the two
approaches, and thus it is better to combine them than
replace one with the other. In addition, they concluded that
automated tools are more efficient in finding defect debt,
whereas developers can realize more abstract categories of
technical debt.

In a follow up work, Zazworka et al. [49] conducted a
study to measure the impact of technical debt on software
quality. They focused on a particular kind of design debt,
namely, God Classes. They found that God Classes are
more likely to change, and therefore, have a higher impact
on software quality. Fontana et al. [42] investigated design
technical debt appearing in the form of code smells. They
used metrics to find three different code smells, namely
God Classes, Data Classes and Duplicated Code. They pro-
posed an approach to classify which one of the different
code smells should be addressed first, based on its risk.
Ernst et al. [36] conducted a survey with 1,831 participants
and found that architectural decisions are the most impor-
tant source of technical debt.

Our work is different from the work that uses code
smells to detect design technical debt, since we use code
comments to detect technical debt. Moreover, our approach
does not rely on code metrics and thresholds to identify
technical debt and can be used to identify bad quality code
symptoms other than bad smells.

More recently, Potdar and Shihab [14] extracted the
comments of four projects and analyzed 101,762 com-
ments to come up with 62 patterns that indicate self-
admitted technical debt. Their findings show that 2.4-31
percent of the files in a project contain self-admitted tech-
nical debt. Bavota and Russo [50] replicated the study of
self-admitted technical debt on a large set of Apache proj-
ects and confirmed the findings observed by Potdar and
Shihab in their earlier work. Wehaibi et al. [51] examined
the impact of self-admitted technical debt and found that
self-admitted technical debt leads to more complex
changes in the future. All three of the aforementioned
studies used the comment patterns approach to detect
self-admitted technical debt. Our earlier work [15] exam-
ined more than 33 thousands comments to classify the
different types of self-admitted technical debt found in
source code comments. Farias et al. [52] proposed a con-
textualized vocabulary model for identifying technical
debt in comments using word classes and code tags in
the process.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 11,

NOVEMBER 2017

Our work also uses code comments to detect design tech-
nical debt. However, we use these code comments to train a
maximum entropy classifier to automatically identify tech-
nical debt. Also, our focus is on self-admitted design and
requirement technical debt.

5.3 NLP in Software Engineering

A number of studies leveraged NLP in software engineer-
ing, mainly for the traceability of requirements, program
comprehension and software maintenance. For example,
Lormans and van Deursen [53] used latent semantic index-
ing (LSI) to create traceable links between requirements and
test cases and requirements to design implementations.
Hayes et al. [54], [55] created a tool called RETRO that
applies information retrieval techniques to trace and map
requirements to designs. Yadla et al. [56] further enhanced
the RETRO tool and linked requirements to issue reports.
On the other hand, Runeson et al. [57] implemented a NLP-
based tool to automatically identify duplicated issue
reports, they found that 2/3 of the possible duplicates
examined in their study can be found with their tool.
Canfora and Cerulo [58] linked a change request with the
corresponding set of source files using NLP techniques, and
then, they evaluated the performance of the approach on
four open source projects.

The prior work motivated us to use NLP techniques.
However, our work is different from the aforementioned
ones, since we apply NLP techniques on code comments to
identify self-admitted technical debt, rather than use it for
traceability and linking between different software artifacts.

6 THREATS TO VALIDITY

Construct validity. considers the relationship between the-
ory and observation, in case the measured variables do
not measure the actual factors. When performing our
study, we used well-commented Java projects. Since our
approach heavily depends on code comments, our results
and performance measures may be impacted by the quan-
tity and quality of comments in a software project. Con-
sidering the intentional misrepresentation of measures, it
is possible that even a well commented project does not
contain self-admitted technical debt. Given the fact that
the developers may opt to not express themselves in
source code comments. In our study, we made sure that
we choose case studies that are appropriately commented
for our analysis. On the same point, using comments to
determine some self-admitted technical debt may not be
fully representative, since comments or code may not be
updated consistently. However, previous work shows
that changes in the source code are consistent with com-
ment changes [14], [45]. In addition, it is possible that a
variety of technical debt that is not self-admitted is pres-
ent in the analyzed projects. However, since the focus of
this paper is to improve the detection of the most com-
mon types of self-admitted technical debt, considering all
technical debt is out of the scope of this paper.

Reliability wvalidity. The training dataset used by us
heavily relied on a manual analysis and classification of
the code comments from the studied projects. Like any
human activity, our manual classification is subject to

MALDONADO ET AL.: USING NATURAL LANGUAGE PROCESSING TO AUTOMATICALLY DETECT SELF-ADMITTED TECHNICAL DEBT

personal bias. To reduce this bias, we took a statistically
significant sample of our classified comments and asked a
Master’s student, who is not an author of the paper, to
manually classify them. Then, we calculate the Kappa’s
level of agreement between the two classifications. The
level of agreement obtained was +0.81, which according to
Fleiss [33] is characterized as an excellent inter-rater agree-
ment (values larger than +0.75 are considered excellent).
Nevertheless, due to the irregular data distribution of our
significant sample (which has many more comments with-
out technical debt, than comments with the other classes
of debt), we also measured Kappa’s level of agreement for
design and requirement self-admitted technical debt sepa-
rately. The level of agreement obtained for design and
requirement self-admitted technical debt was +0.75 and
+0.84, respectively. Also, our approach depends on the
correctness of the underlying tools we use. To mitigate
this risk, we used tools that are commonly used by practi-
tioners and by the research community, such as JDeodor-
ant for the extraction of source code comments and for
investigating the overlap with code smells (Section 4.4)
and the Stanford Classifier for training and testing the
max entropy classifier used in our approach.

External validity considers the generalization of our
findings. All of our findings were derived from comments
in open source projects. To minimize the threat to exter-
nal validity, we chose open source projects from different
domains. That said, our results may not generalize to
other open source or commercial projects, projects written
in different languages, projects from different domains
and/or technology stacks. In particular, our results may
not generalize to projects that have a low number or no
comments or comments that are written in a language
other than English.

7 CONCLUSION AND FUTURE WORK

Technical debt is a term being used to express non-optimal
solutions, such as hacks and workarounds, that are applied
during the software development process. Although these
non-optimal solutions can help achieve immediate pressing
goals, most often they will have a negative impact on the
project maintainability [49].

Our work focuses on the identification of self-admit-
ted technical debt through the use of Natural Language
Processing. We analyzed the comments of 10 open
source projects namely Ant, ArgoUML, Columba, EMF,
Hibernate, JEdit, JFreeChart, JMeter, JRuby and SQuirrel
SQL. These projects are considered well commented and
they belong to different application domains. The com-
ments of these projects were manually classified into
specific types of technical debt such as design, require-
ment, defect, documentation and test debt. Next, we
selected 61,664 comments from this dataset (i.e., those
classified as design self-admitted technical debt, require-
ment self-admitted technical debt and without technical
debt) to train the maximum entropy classifier, and then
this classifier was used to identify design and require-
ment self-admitted technical debt automatically.

We first evaluated the performance of our approach by
comparing the Fl-measure of our approach with the F1-
measure of two other baselines, i.e., the comment patterns

1059

baseline and the simple (random) baseline. We have shown
that our approach outperforms the comment patterns base-
line on average 2.3 and 6 times in the identification of design
and requirement self-admitted technical debt, respectively.
Moreover, our approach can identify requirement self-
admitted technical debt, while the comment patterns base-
line fails to detect this kind of debt in most of the examined
projects. Furthermore, the performance of our approach
surpasses the simple (random) baseline on average 7.6 and
19.1 times for design and requirement self-admitted techni-
cal debt, respectively.

Then, we explored the characteristics of the features (i.e.,
words) used to classify self-admitted technical debt. We
find that the words used to express design and requirement
self-admitted technical debt are different from each other.
The three strongest indicators of design self-admitted tech-
nical debt are ‘hack’, ‘workaround” and ‘yuck!, whereas,
‘todo’, needed’ and ‘implementation” are the strongest indi-
cators of requirement debt. In addition, we find that using
only 5 and 23 percent of the comments in the training data-
set still leads to an accuracy that is equivalent to 80 and 90
percent of the best performance, respectively. In fact, our
results show that developers use a richer vocabulary to
express design self-admitted technical debt and a training
dataset of at least 3,900 comments (of which 195 comments
are design self-admitted technical debt) is necessary to
obtain a satisfactory classification. On the other hand,
requirement self-admitted technical debt is expressed in a
more uniform way, and with a training dataset of 2,600
comments (of which 52 are self-admitted technical debt) it is
possible to classify with relatively high accuracy require-
ment self-admitted technical debt.

In the future, we believe that more analysis is needed to
fine tune the use of the current training dataset in order to
achieve maximum efficiency in the detection of self-admit-
ted technical debt comments. For example, using subsets of
our training dataset can be more suitable for some applica-
tions than using the whole dataset due to domain particu-
larities. However, the results thus far are not to be neglected
as our approach has the best Fl-measure performance on
every analyzed project. In addition, we plan to examine the
applicability of our approach to more domains (than those
we study in this paper) and software projects developed in
different programming languages.

Another interesting research direction that we plan to
investigate in the future is the use of other machine learning
techniques, such as active learning to reduce the number of
labeled data necessary to train the classifier. This technique,
if proved successful, can further expand the horizon of proj-
ects that our approach can be applied to.

Moreover, to enable future research, we make the dataset
created in this study publicly available." We believe that it
will be a good starting point for researchers interested in
identifying technical debt through comments and even exper-
imenting with different Natural Language Processing techni-
ques. Lastly, we plan to use the findings of this study to build
a tool that will support software engineers in the task of iden-
tifying and managing self-admitted technical debt.

1. https:/ / github.com/maldonado/tse.satd.data

https://github.com/maldonado/tse.satd.data

1060 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO.11, NOVEMBER 2017

APPENDIX

Detailed Precision and Recall Values

In Section 3, we presented the Fl-measure values for all projects when answering our research questions. In this appendix,
we add the detailed precision and recall values that are used to compute the F1-measure values.

TABLE 9
Detailed Comparison of F1-Measure Between the NLP-Based, the Comment Patterns and the Random
Baseline Approaches for Design Debt

Project NLP-based Comment Patterns Random Baseline
Precision Recall F1 measure Precision Recall F1 measure Precision Recall F1 measure
Ant 0.554 0.484 0.517 0.608 0.147 0.237 0.023 0.5 0.044
ArgoUML 0.788 0.843 0.814 0.793 0.057 0.107 0.084 0.5 0.144
Columba 0.792 0.484 0.601 0.800 0.158 0.264 0.019 0.5 0.037
EMF 0.574 0.397 0.470 0.647 0.141 0.231 0.018 0.5 0.034
Hibernate 0.877 0.645 0.744 0.920 0.129 0.227 0.12 0.5 0.193
JEdit 0.779 0.378 0.509 0.857 0.214 0.342 0.019 0.5 0.037
JFreeChart 0.646 0.397 0.492 0.507 0.195 0.282 0.042 0.5 0.077
JMeter 0.808 0.668 0.731 0.813 0.110 0.194 0.039 0.5 0.072
JRuby 0.798 0.770 0.783 0.864 0.483 0.620 0.07 0.5 0.123
SQuirrel 0.544 0.536 0.540 0.700 0.100 0.175 0.029 0.5 0.055
TABLE 10

Detailed Comparison of F1-Measure Between the NLP-Based, the Comment Patterns and the Random
Baseline Approaches for Requirement Debt

Project NLP-based Comment Patterns Random Baseline
Precision Recall F1 measure Precision Recall F1 measure Precision Recall F1 measure

Ant 0.154 0.154 0.154 0.000 0.000 0.000 0.003 0.5 0.006
ArgoUML 0.663 0.540 0.595 0.000 0.000 0.000 0.043 0.5 0.079
Columba 0.755 0.860 0.804 0.375 0.069 0.117 0.007 0.5 0.013
EMF 0.800 0.250 0.381 0.000 0.000 0.000 0.004 0.5 0.007
Hibernate 0.610 0.391 0.476 0.000 0.000 0.000 0.022 0.5 0.041
JEdit 0.125 0.071 0.091 0.000 0.000 0.000 0.001 0.5 0.003
JFreeChart 0.220 0.600 0.321 0.102 0.266 0.148 0.003 0.5 0.007
JMeter 0.153 0.524 0.237 0.000 0.000 0.000 0.003 0.5 0.005
JRuby 0.686 0.318 0.435 0.573 0.318 0.409 0.022 0.5 0.043
SQuirrel 0.657 0.460 0.541 0.000 0.000 0.000 0.007 0.5 0.014

Detailed Precision and Recall Values When Using Different Classifiers
When discussing the results in Section 4.3, we only presented the Fl1-measure values. Here, we present the detailed preci-
sion and recall values that are used to compute the F1-measure values presented earlier.

TABLE 11
Comparison Between Different Classifiers for Design Debt
Project Maximum Entropy Naive Bayes Binary
Precision Recall F1 measure Precision Recall F1 measure Precision Recall F1 measure

Ant 0.554 0.484 0.517 0.072 0.874 0.134 0.620 0.516 0.563
ArgoUML 0.788 0.843 0.814 0.358 0.985 0.525 0.790 0.858 0.822
Columba 0.792 0.484 0.601 0.181 0.786 0.294 0.840 0.500 0.627
EMF 0.574 0.397 0.470 0.057 0.872 0.106 0.633 0.397 0.488
Hibernate 0.877 0.645 0.744 0.288 0.890 0.435 0.895 0.670 0.767
JEdit 0.779 0.378 0.509 0.227 0.791 0.353 0.807 0.342 0.480
JFreeChart 0.646 0.397 0.492 0.140 0.560 0.224 0.658 0.397 0.495
JMeter 0.808 0.668 0.731 0.224 0.801 0.350 0.819 0.671 0.737
JRuby 0.798 0.770 0.783 0.275 0.971 0.429 0.815 0.808 0.811
SQuirrel 0.544 0.536 0.540 0.133 0.947 0.233 0.567 0.550 0.558

Average 0.716 0.5602 0.6201 0.1955 0.8477 0.3083 0.7444 0.5709 0.6348

MALDONADO ET AL.: USING NATURAL LANGUAGE PROCESSING TO AUTOMATICALLY DETECT SELF-ADMITTED TECHNICAL DEBT 1061
TABLE 12
Comparison Between Different Classifiers for Requirement Debt

Project Maximum Entropy Naive Bayes Binary

Precision Recall F1 measure Precision Recall F1 measure Precision Recall F1 measure
Ant 0.154 0.154 0.154 0.007 0.769 0.013 0.188 0.231 0.207
ArgoUML 0.663 0.540 0.595 0.119 0.808 0.207 0.659 0.569 0.611
Columba 0.755 0.860 0.804 0.030 0.930 0.057 0.755 0.860 0.804
EMF 0.800 0.250 0.381 0.009 1.000 0.018 0.800 0.250 0.381
Hibernate 0.610 0.391 0.476 0.041 0.781 0.078 0.615 0.375 0.466
JEdit 0.125 0.071 0.091 0.011 0.857 0.022 0.143 0.071 0.095
JFreeChart 0.220 0.600 0.321 0.009 0.800 0.018 0.179 0.467 0.259
JMeter 0.153 0.524 0.237 0.011 0.952 0.022 0.180 0.524 0.268
JRuby 0.686 0.318 0.435 0.058 0.836 0.109 0.679 0.327 0.442
SQuirrel 0.657 0.460 0.541 0.018 0.900 0.036 0.455 0.500 0.476
Average 0.4823 0.4168 0.4035 0.0313 0.8633 0.058 0.4653 0.4174 0.4009
REFERENCES [18] J. Graf, “Speeding up context-, object- and field-sensitive SDG

1]

[2]

[3]

[4]

[5]

(6]

(7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

W. Cunningham, “The WyCash portfolio management system,”
in Proc. Object-Oriented Program. Syst. Languages Appl., 1992,
pp- 29-30.

C. Seaman and Y. Guo, “Chapter 2—measuring and monitoring
technical debt,” in Advances in Computers, vol. 82, M. V. Zelkowitz,
Ed. Amsterdam, The Netherlands: Elsevier, 2011, pp. 25-46.

P. Kruchten, R. L. Nord, I. Ozkaya, and D. Falessi, “Technical
debt: Towards a crisper definition report on the 4th International
Workshop on Managing Technical Debt,” ACM SIGSOFT Softw.
Eng. Notes, vol. 38, pp. 51-54, 2013.

E. Lim, N. Taksande, and C. Seaman, “A balancing act: What soft-
ware practitioners have to say about technical debt,” IEEE Softw.,
vol. 29, no. 6, pp. 22-27, Nov./Dec. 2012.

M. Fowler, “Technical debt quadrant,” (2009). [Online]. Available:
http://martinfowler.com/bliki/TechnicalDebtQuadrant.html,
Accessed on: Jun. 09, 2016.

R. L. Nord, I. Ozkaya, P. Kruchten, and M. Gonzalez-Rojas, “In
search of a metric for managing architectural technical debt,” in
Proc. Joint Work. IEEE/IFIP Conf. Softw. Archit. Eur. Conf. Softw.
Archit., 2012, pp. 91-100.

N. Alves, T. Mendes, M. G. de Mendonca, R. Spinola, F. Shull, and
C. Seaman, “Identification and management of technical debt: A
systematic mapping study,” Inf. Softw. Technol., vol. 70, pp. 100-
121, 2016.

L. Xiao, Y. Cai, R. Kazman, R. Mo, and Q. Feng, “Identifying and
quantifying architectural debt,” in Proc. 38th Int. Conf. Softw. Eng.,
2016, pp. 488—-498.

N. Alves, L. Ribeiro, V. Caires, T. Mendes, and R. Spinola,
“Towards an ontology of terms on technical debt,” in Proc. 6th Int.
Workshop Manag. Tech. Debt, 2014, pp. 1-7.

R. Marinescu, “Assessing technical debt by identifying design
flaws in software systems,” IBM |. Res. Develop., vol. 56, pp. 1-13,
2012.

R. Marinescu, “Detection strategies: Metrics-based rules for
detecting design flaws,” in Proc. 20th IEEE Int. Conf. Softw. Mainte-
nance, 2004, pp. 350-359.

R. Marinescu, G. Ganea, and I. Verebi, “Incode: Continuous qual-
ity assessment and improvement,” in Proc. 14th Eur. Conf. Softw.
Maintenance Reengineering, 2010, pp. 274-275.

N. Zazworka, R. O. Spinola, A. Vetro, F. Shull, and C. Seaman, “A
case study on effectively identifying technical debt,” in Proc. 17th
Int. Conf. Eval. Assessment Softw. Eng., 2013, pp. 42-47.

A. Potdar and E. Shihab, “An exploratory study on self-admitted
technical debt,” in Proc. IEEE Int. Conf. Softw. Maintenance Evol.,
2014, pp. 91-100.

E.D.S. Maldonado and E. Shihab, “Detecting and quantifying dif-
ferent types of self-admitted technical debt,” in Proc. 7th Int. Work-
shop Manag. Tech. Debt, 2015, pp. 9-15.

N. Tsantalis and A. Chatzigeorgiou, “Identification of extract
method refactoring opportunities for the decomposition of meth-
ods,”]. Syst. Softw., vol. 84, no. 10, pp. 1757-1782, Oct. 2011.

N. Tsantalis, D. Mazinanian, and G. P. Krishnan, “Assessing the
refactorability of software clones,” IEEE Trans. Softw. Eng., vol. 41,
no. 11, pp. 1055-1090, Nov. 2015.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

generation,” in Proc. 10th IEEE Work. Conf. Source Code Anal.
Manipulation, 2010, pp. 105-114.

K. Ali and O. Lhotdk, “Application-only call graph construction,”
in Proc. 26th Eur. Conf. Object-Oriented Program., 2012, pp. 688-712.
P. Oliveira, M. Valente, and F. Paim Lima, “Extracting relative
thresholds for source code metrics,” in Proc IEEE Conf. Softw.
Maintenance Reengineering Reverse Eng., 2014, pp. 254-263.

F. A. Fontana, V. Ferme, M. Zanoni, and A. Yamashita,
“Automatic metric thresholds derivation for code smell
detection,” in Proc. 6th Int. Workshop Emerging Trends Softw. Met-
rics, 2015, pp. 44-53.

F. A. Fontana, M. V. Mantyld, M. Zanoni, and A. Marino,
“Comparing and experimenting machine learning techniques for
code smell detection,” Empirical Softw. Eng., vol. 21, pp. 1-49, 2015.
F. A. Fontana, J. Dietrich, B. Walter, A. Yamashita, and M. Zanoni,
“Antipattern and code smell false positives: Preliminary concep-
tualization and classification,” in Proc. IEEE 23rd Int. Conf. Softw.
Anal. Evol. Reengineering, 2016, pp. 609-613.

C. Vassallo, F. Zampetti, D. Romano, M. Beller, A. Panichella,
M. D. Penta, and A. Zaidman, “Continuous delivery practices in
a large financial organization,” in Proc. 32nd Int. Conf. Softw.
Maintenance Evol., 2016, pp. 519-528.

C. Manning and D. Klein, “Optimization, maxent models, and con-
ditional estimation without magic,” in Proc. Conf. North Amer. Chap-
ter Assoc. Comput. Linguistics Human Language Tech., 2003, pp. 8-8.

E. Maldonado, E. Shihab, and N. Tsantalis, “Replication package
for using natural language processing to automatically detect self-
admitted technical debt,” 2016. [Online]. Available: https://
github.com/maldonado/tse_satd_data/

D. A. Wheeler, “SLOC count users guide,” 2004. [Online]. Avail-
able: http:/ /www.dwheeler.com/sloccount/sloccount.html
“OpenHub homepage,” (2016). [Online]. Available: https://
www.openhub.net/, Accessed on: Dec. 12, 2014.

N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou, “Jdeodorant:
Identification and removal of type-checking bad smells,” in Proc.
12th Eur. Conf. Softw. Maintenance Reengineering, 2008, pp. 329-331.
M. Storey, J. Ryall, R. Bull, D. Myers, and]. Singer, “Todo or to
bug,” in Proc. 30th Int. Conf. Softw. Eng., 2008, pp. 251-260.

J. Cohen, “A coefficient of agreement for nominal scales,” Educ.
Psychological Meas., vol. 20, pp. 37-46, 1960.

J. L. Fleiss and J. Cohen, “The equivalence of weighted kappa and
the intraclass correlation coefficient as measures of reliability,”
Educ. Psychological Meas., vol. 33, pp. 613-619, 1973.

J. Fleiss, “The measurement of interrater agreement,” in Statistical
Methods Rates Proportions. NewYork, NY, USA: Wiley, 1981,
pp- 212-236.

C. D. Manning, P. Raghavan, and H. Schiitze, Introduction Inf.
Retrieval. Cambridge, U.K.: Cambridge University Press, 2008.

A. Bessey, et al., “A few billion lines of code later: Using static
analysis to find bugs in the real world,” Commun. ACM, vol. 53,
pp- 66-75, 2010.

N. A. Ernst, S. Bellomo, 1. Ozkaya, R. L. Nord, and I. Gorton,
“Measure it? manage it? ignore it? software practitioners and tech-
nical debt,” in Proc. 10th Joint Meet. Found. Softw. Eng., 2015,
pp- 50-60.

http://martinfowler.com/bliki/TechnicalDebtQuadrant.html
https://github.com/maldonado/tse_satd_data/
https://github.com/maldonado/tse_satd_data/
http://www.dwheeler.com/sloccount/sloccount.html
https://www.openhub.net/, Accessed on: Dec. 12, 2014.
https://www.openhub.net/, Accessed on: Dec. 12, 2014.

1062

[371]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO.11, NOVEMBER 2017

C. Sadowski, J. V. Gogh, C. Jaspan, E. Soderberg, and C. Winter,
“Tricorder: Building a program analysis ecosystem,” in Proc.
IEEE/ACM 37th IEEE Int. Conf. Softw. Eng., 2015, pp. 598-608.

D. Berry, R. Gacitua, P. Sawyer, and S. F. Tjong, The Case for Dumb
Requirements Engineering Tools. Berlin, Germany: Springer, 2012.
G. Forman and I. Cohen, “Learning from little: Comparison of
classifiers given little training,” in Proc. 8th Eur. Conf. Principles
Practice Knowl. Discovery Databases, 2004, pp. 161-172.

A. Y. Ng and M. L. Jordan, “On discriminative versus generative
classifiers: A comparison of logistic regression and naive Bayes.”
in Proc. Neural Inf. Process. Syst., 2001, pp. 841-848.

M. Banko and E. Brill, “Scaling to very very large corpora for natu-
ral language disambiguation,” in Proc. 39th Annu. Meet. Assoc.
Comput. Linguistics, 2001, pp. 26-33.

F. Fontana, V. Ferme, and S. Spinelli, “Investigating the impact of
code smells debt on quality code evaluation,” in Proc. 3rd Int.
Workshop Manag. Tech. Debt, 2012, pp. 15-22.

S. M. Olbrich, D. S. Cruzes, and D. I. K. Sjberg, “Are all code
smells harmful? a study of god classes and brain classes in the
evolution of three open source systems,” in Proc. IEEE Int Conf.
Softw. Maintenance, Sept. 2010, pp. 1-10.

D. I Sjoberg, A. Yamashita, B. C. Anda, A. Mockus, and T. Dyba,
“Quantifying the effect of code smells on maintenance effort,”
IEEE Trans. Softw. Eng., vol. 39, no. 8, pp. 1144-1156, Aug. 2013.

B. Fluri, M. Wursch, and H. Gall, “Do code and comments co-
evolve? on the relation between source code and comment
changes,” in Proc. 14th Work. Conf. Reverse Eng., 2007, pp. 70-79.

S. H. Tan, D. Marinov, L. Tan, and G. Leavens, “@tcomment: Test-
ing javadoc comments to detect comment-code inconsistencies,”
in Proc. IEEE 5th Int. Conf. Softw. Testing Verification Validation,
2012, pp. 260-269.

H. Malik, I. Chowdhury, T. Hsiao-Ming , Z. M. Jiang, and
A. Hassan, “Understanding the rationale for updating a function
comment,” in Proc. IEEE Int. Conf. Softw. Maintenance, 2008,
pp. 167-176.

N. Brown, et al., “Managing technical debt in software-reliant sys-
tems,” in Proc. FSE/SDP Workshop Future Softw. Eng. Res., 2010,
pp. 47-52.

N. Zazworka, M. A. Shaw, F. Shull, and C. Seaman, “Investigating
the impact of design debt on software quality,” in Proc. 2nd Int.
Workshop Manag. Tech. Debt, 2011, pp. 17-23.

G. Bavota and B. Russo, “A large-scale empirical study on self-
admitted technical debt,” in Proc. 13th Int. Workshop Mining Softw.
Repositories, 2016, pp. 315-326.

S. Wehaibi, E. Shihab, and L. Guerrouj, “Examining the impact of
self-admitted technical debt on software quality,” in Proc. IEEE
23rd Int. Conf. Softw. Anal. Evol. Reengineering, 2016, pp. 179-188.
M. A. D. F. Farias, M. G. D. M. Neto, A. B. D. Silva, and R. O. Spi-
nola, “A contextualized vocabulary model for identifying techni-
cal debt on code comments,” in Proc. 7th Int. Workshop Manag.
Tech. Debt, 2015, pp. 25-32.

M. Lormans and A. Van Deursen , “Can LSI help reconstructing
requirements traceability in design and test?” in Proc. 10th Eur.
Conf. Softw. Maintenance Reengineering, 2006, pp. 47-56.

J. H. Hayes, A. Dekhtyar, and S. K. Sundaram, “Improving after-
the-fact tracing and mapping: Supporting software quality pre-
dictions,” IEEE Softw., vol. 22, no. 6, pp. 30-37, Nov./Dec. 2005.

J. H. Hayes, A. Dekhtyar, and S. K. Sundaram, “Advancing candi-
date link generation for requirements tracing: The study of meth-
ods,” IEEE Trans. Softw. Eng., vol. 32, no. 1, pp. 4-19, Jan. 2006.

S. Yadla, J. H. Hayes, and A. Dekhtyar, “Tracing requirements to
defect reports: An application of information retrieval
techniques,” Innovations Syst. Softw. Eng., vol. 1, pp. 116124, 2005.
P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of
duplicate defect reports using natural language processing,” in
Proc. 29th Int. Conf. Softw. Eng., 2007, pp. 499-510.

G. Canfora and L. Cerulo, “Impact analysis by mining software
and change request repositories,” in Proc. 11th IEEE Int. Symp.
Softw. Metrics, 2005, pp. 21-29.

Everton da Silva Maldonado received the BS
degree in information systems from the University
Impacta of Technology, Brazil, in 2009 and the
MS degree in software engineering from Concor-
dia University, Canada, in 2016. His main
research interests include mining software repos-
itories, software quality assurance, technical
debt, and software maintenance.

Emad Shihab received the PhD degree from
Queens University. He is an assistant professor in
the Department of Computer Science and Soft-
ware Engineering, Concordia University. His
research interests include software quality assur-
ance, mining software repositories, technical
debt, mobile applications, and software architec-
ture. He worked as a software research intern with
Research In Motion, Waterloo, Ontario and Micro-
soft Research, Redmond, Washington. He is a
member of the IEEE and the ACM. More informa-
tion can be found at http://das.encs.concordia.ca

Nikolaos Tsantalis received the PhD degree
in computer science from the University of
Macedonia, Thessaloniki, Greece, in 2010. He is
an assistant professor in the Department of Com-
puter Science and Software Engineering, Con-
cordia University, Montreal, Canada, and holds a
Concordia University Research Chair in Web
Software Technologies. From January 2011 until
May 2012, he was a postdoctoral fellow in the
Department of Computing Science, University of
Alberta, Edmonton, Canada. His research inter-
ests include software maintenance, empirical software engineering,
refactoring recommendation systems, and software quality assurance.
In 2016, he has been awarded with an ACM SIGSOFT Distinguished
Paper Award and an ACM SIGSOFT Distinguished Artifact Award at
FSE. He serves regularly as a program committee member of interna-
tional conferences in the field of software engineering, such as ASE,
ICSME, SANER, ICPC, and SCAM. He is a member of the IEEE and the
ACM, and holds a license from the Association of Professional Engi-
neers of Ontario.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

http://das.encs.concordia.ca

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

