Release Stabilization on Linux and Chrome

Md Tajmilur Rahman
Concordia University
Montreal, Quebec, Canada
mdt_rahm@encs.concordia.ca

An empirical study of the time and effort involved in
release stabilization on Linux and Chrome finds that a
small teams control the stabilization effort, few changes
are reverted, and much of the re-work is not done by the
original developer. Despite using regular rapid release
cycles, there is a rush period before release stabilization
begins and the length of a stabilization period can vary
by 10 days.

ARGE software projects make thousands of changes
between releases. During development, new features
and other major changes are implemented. Since
new changes have been used by relatively few devel-

opers and end users, they can have a destabilizing effect on
the overall software system. The job of a release engineer
is to select and stabilize the changes to a system before it
is released to a large user base. This article quantifies the
time and effort involved in the release stabilization of two
large successful projects — the Linux kernel and the Google
Chrome browser. We provide practitioners with our measure-
ment tools,! so that they can compare their own projects
with Linux and Chrome on the questions listed below. To
use the tool, all you need is a Git repository that contains
tags indicating the start of release stabilization and the fi-
nal release. We are willing to help practitioners make these
measurements and hope that this kind of grounded empirical
findings will help transform software development into an
engineering discipline.

How quickly do you release changes?

The longer it takes a change to transit from development
through stabilization to release, the longer users will be
waiting for bug fixes and features. In highly competitive
environments, small differences in release date can be the
difference between success and failure. We find that even
with ‘fixed’ rapid release dates, there are still slips in the
release schedule.

Do you stabilize your own code during a release?
DevOps combines operational work, including release engi-
neering, with development work. One example of a DevOps
combination is requiring developers to fix their own code dur-
ing stabilization instead of placing this effort on integrators.
We find that much of the stabilization effort is still on the
shoulders of release engineers.

Do you rush changes into a release to avoid waiting
for the next release?

! Measurement tools
tajmilur-rahman/measurements

https://github.com/

Peter C. Rigby
Concordia University
Montreal, Quebec, Canada
peter.rigby@concordia.ca

Nobody wants to wait for the next release, especially if there
is only one release per year. As a release date approaches,
developers may feel pressured to release features that are
not yet stable and well integrated. Chrome switched to
a shorter release cycle to avoid pressuring developers into
rushing unstable code into a release. Even with these short
release cycles, both Chrome and Linux see an increase of
development work right before release stabilization begins.
Some degree of rush seems unavoidable.

Release Cycle

How rapid are your releases?

Although Linux and Chrome use regular rapid release
schedules, release stabilization varies by approximately
10 days. Over time, both projects have become better
at releasing on schedule.

In the early days of Linux development releases were some-
times made more than once per day, prompting Raymond’s
mantra of “release early, release often” [9]. This trend has
continued with many projects adopting increasingly shorter
release intervals [2]. For example, Google Plus can release
new changes in 36 hours [6] and Facebook. com releases twice
a day on weekdays [10]. Firefox and Chrome operate on six
week release cycles [2, 4].

To quantify the time and effort involved in release stabiliza-
tion, we use the definitions of the development and stabiliza-
tion branches as defined by the Chrome and Linux process
documents [5, 4]. These branches can be seen in Diagrams
1 and 2. The stabilization and release tags in Git allow us
to traverse the Git DAG and identify on which branch a
change was made. We extract Churn, i.e., the number of
lines added and removed per commit, from the Git version
history. We use the Git author field and not the committer
field to credit work to developers. For more details on our
extraction process see our preliminary work [8].

The Linux release process is represented in Figure 1. Ac-
cording to the release process documents, Linux uses a flexible
time-based release schedule [5], which consists of a merge
window and stabilization period. The merge window opens
to allow developers to merge changes into the stabilization
mainline. The window is open for only two weeks with a
standard deviation of 2 days. After the window closes, the

Total Time for Release Cycle

First commit for the new release Merge Window

2]

Stabilization
Stable Release

C

Develop Period

—
N

Changes to Stabilization Line

Figure 1: Linux release process: Development of subsequent releases occurs in parallel with the stabilization

of a release.
stabilization mainline.

(a0sans |
development . .
= - 3.0 moving
on to beta B -
o - (2.0 moving
— | onto stable
Y ~ —~
2.0
T T T T T T T T Ty
6 weeks 6 weeks ’ /
g 1.0 final)
[__ version released |

Figure 2: Chrome release process: Development oc-
curs in parallel with two stabilization branches —
beta and stable. At six week intervals, each branch
is moved onto the subsequent stage, for example,
development moves to beta.

first release candidate (rcl) will indicate the start of release
stabilization. During stabilization only fixes to regressions
and isolated changes, such as device drivers, are merged into
the mainline. New release candidates will be created as re-
gressions are found and fixed. We find that on average there
will be six release candidates before the final public release.
The time period for stabilizing a release continues until no
important regressions are outstanding. Stabilization takes
on average 62 days (represented by the horizontal line in Fig-
ure 3) with a standard deviation, minimum, and maximum of
10, 45, and 93 days, respectively. Since release 2.6.31, release
stabilization has become more regular. Figure 3 shows the
variations in the Linux release cycle.

Chrome’s release process consists of three channels: de-
velopment, beta, and stable. At six week intervals, the code
transitions into the subsequent channel [4]. For example,
in Figure 2 we see that when development work begins on
release 4, release 3 will be moved into the beta channel, re-
lease 2 will be moved to the stable channel, and release 1
will be published as a final production release. In our data
extraction scripts we are able to identify which channel a
commit was made on based on its version number. In this
work, we do not differentiate between beta and stable as

The two stages join during the merge window where new development is moved onto the

15
\
/

'\ /\ X /\/ N\

. o
S /\ RN

Number of Weeks

/
e <> -9, S 6-0y

2 o Yo \
\o’s ~o® o0 oo’

°

L e e e e e s e s e e e e
26.13 26.19 26.25 26.31 26.37 3.10 34 39

T T T T T
5 7 9 11 13 15 17 19 21 28 25 27 29 31 33

Releases

Figure 3: Length of stabilization and development periods for
Chrome, upper line, and Linux, lower line. Horizontal lines are
expected amount of time for release stabilization.

both channels are related to release stabilization.

We find that release stabilization takes an average of 91 days
with a standard deviation, minimum, and maximum of 11,
56, and 149, respectively. Figure 3 shows the variations in
Chrome’s release cycle and the horizontal line shows the ideal
12 week stabilization period. Immediately after adopting a
rapid release cycle, there was significant variance in release
times with some releases taking substantially longer than 12
weeks. We can see that recent releases have become much
more regular.

Effort

How much effort do you expend in stabilizing a re-
lease?

A very small group of developers control the stabilization
of a release — 23 and 10 developers for Linux and Chrome.
The majority of changes are made during development
with 9% and 7% of lines changed during stabilization,
respectively.

e Development Churn
Stabilization Chum

5M

500K
|

Number of lines changed per release (log)
50K

10K

Linux Chrome

Figure 4: Churned lines of code per release for development
and stabilization

We use three basic measures to get a sense of effort involved
in developing and releasing Linux and Chrome. We measure
the number of commits, churn (number of lines that changed),
and the number of people working on the stabilization vs.
development branches.

For Linux we find that, of the total 381k commits made to
kernel source files between 2005 and 2013, 77% of commits
are made during development and 23% are made as part of
stabilization. In Figure 4, the median development churn
per release is 834k lines compared to the stabilization churn
of 83k lines. A Wilcoxon test shows that this difference
is statistically significant with p < 0.001. In the median
case 91% of the lines changed for a release are made in
development with a ratio of 105 lines churned per commit,
while 9% of lines changed are during stabilization with 41
lines churned per commit. Linux tends to make smaller
changes during release stabilization.

For Chrome we find that, of the total 164k commits made
to source files between 2008 and 2014, 85% of the commits
are made during development and 15% are made as part of
stabilization. The median development churn per release is
808K lines compared to the stabilization churn of 51K lines
(see in Figure 4). A Wilcoxon test shows that this difference
is statistically significant with p < 0.001. In the median case
93% of the lines changed for a release are in development
with a ratio of 11 lines changed per commit, while 7% of lines
are changed during stabilization with 165 lines churned per
commit. In contrast to Linux, it is interesting that Chrome
release engineers tend to make very large changes during
release stabilization.

For the Chrome team there are 10 developers that make
80% of the changes during stabilization and 98 developers
change 80% of the lines changed during development. For
Linux, 10K developers have contributed to Linux, however,
55 developers have done 80% of the development work, while
23 developers have done 80% of the stabilization work (See
Figure 5).

This result is similar to Mockus et al.’s [7] finding that
the Apache httpd server had a core group of 15 developers
who wrote 80% of the code. Linux is a much larger project,

100

Percentage oflnes changed pr eease

1 2 5 10 20 50 100 200

Number of Developers (log)

Figure 5: Cumulative distribution of developer contributions

80 Re-worked by ofher devs e No re-work

700 Linear (Na re-work) wwvaeaneee Re-worked by same dev

o A A—

w0 / \/\ ~ ./\/ \/[f\\/f \‘/\/\,\ /\/\

Number of Developers

oo
]

26.13
26.15
28.17
2819
2621
26.23
28.25
2827
2629
26.35
2637

Releases

Figure 6: Linux developers re-working files during stabilization

we see that during stabilization 23 developers control the
stabilization process. Mockus et al. noted that as a system
grows, e.g., Mozilla, more complex mechanisms must be used
to manage it. In order to integrate the development effort
from the larger group of 55 developers that account for 80% of
the development effort a chain-of-trust is used to pass changes
from less trusted developers up to the trusted stabilization
mainline that Torvalds controls and makes releases from [5].
Stabilization work occupies the majority of Torvalds’s time
and clearly represents large contributions from other core
developers.

Ownership
Do you stabilize your own code during a release?

Many developers have their files modified by another
developer during stabilization. Few commits are reverted
during stabilization.

The Linux Kernel has a policy that ‘the original developer
should continue to take responsibility for the code [they
contribute]’ [5]. Chrome also has this expectation [4]. We
expect developers who modify files during development to fix
any problems with those files that arise during stabilization.
Of the files that are modified in both periods, we measure
the proportion that are done by the original developer vs.
those that are modified by other developers and integrators.

>>>>>> Re-woked by other devs
,,,,,,,,,,,,,,, Linear (Re-woked by other devs)
m 500 No re-work
G | mmme— Re-worked by same dev
5
z
300
e %\ e "'*.—/f
=) T Sl
g
£
3
Z 100

0
5 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Releases

Figure 7: Chrome developers re-working files during stabiliza-
tion

For Linux and Chrome, respectively, we find in the median
case per release there are 161 and 258 developers who mod-
ified the same files they changed during development, 480
and 307 developers who had their files modified by other
developers during stabilization, and 171 and 322 developers
whose changes did not require any modification during stabi-
lization. These sets of developers are not mutually exclusive.
Figures 6 and 7 depicts this situation for Linux and Chrome,
respectively. From these numbers, it would appear that many
developers do not take on the responsibility to fix their bugs
for a release. Since the number of developers making changes
is much larger than the core group of developers, it is likely
that many of these changes are made by transient developers
who do not remain to fix bugs in their small code contribu-
tion. Instead a small group of integrators (See Figure 5) is
responsible for integration and bug fixes of regressions during
stabilization.

An alternative explanation, and threat to validity, is that
integrators are working in other areas of the file and are
not modifying code lines related to the changes made during
development. While a fine-grained, line level analysis is left
to future work, it is surprising that the majority of files that
need modification during stabilization were modified by a
different developer.

For Linux, the amount of re-work done by other developers
fluctuates dramatically from 214 to 667 and does not show
a clear trend. However, the number of developers who’s
files do not need to be re-worked shows a clear increasing
trend line with an adjusted R? = .97 and p < 0.001. This
trend likely shows a maturing in the selection of code from
external contributors. For Chrome, all three categories are
increasing, indicating an increase in the number of developers
contributing to Chrome, but obscuring other patterns.

Although a large number of files are modified by release
engineers, few changes are reverted during stabilization. For
Linux and Chrome, in the median case, their are 104 and 3
reverts per stabilization period. This accounts for only 2.3%
and less than 1% of total stabilization commits for Linux
and Chrome. For Linux 55% of reverts are made during
stabilization, while for Chrome, the majority of reverts, 76%,
are made during development.

Transit time in days (log)

= Changes during development
Changes during stabilization

T
Linux Chrome

Figure 8: Transit time for the commits to stabilization branch
and release

Speed

How quickly do you release changes?

Changes made during stabilization (e.g., fixes to regres-
sions) are integrated and released much more quickly
than development changes.

We want to understand how quickly bugs are fixed during
stabilization and new development incorporated into Linux
and Chrome. We define transit time as the number of days
it takes for a change to be (1) integrated in the stabilization
branch or (2) included in a final release. Previous work
measured the transit time for a change to be released [1], but
ignored the different purposes of changes and found large
variations in transit times (3 to 6 months). By differentiating
between change types we find that most of the variation can
be explained by whether the change was a fix made during
stabilization or a change made during normal development.

In Figure 8, for Linux and Chrome, we see that stabilization
changes (fixes to regressions) take a median of only 8 days and
less than 1 day to be included in a stabilization branch. In
contrast, development changes take 35 and 21 days to reach
the stabilization branch for Linux and Chrome, respectively.
A Wilcoxon test shows that these differences are statistically
significant at p < 0.001.

For Linux and Chrome, the transit time for a stabilization
change to be released is 47 and 78 days, while a development
change takes 97 to 109 days, respectively. Although Chrome
starts release stabilization every six weeks and produces a
new release every six weeks, changes to Chrome take longer to
reach the user than Linux changes because Chrome stabilizes
two releases at a time while Linux stabilizes only one release.

Rush

Do you rush changes into a release to avoid waiting
for the next release?

Two weeks before stabilization begins, the daily churn
rate increases by 20% and 21% for Linux and Chrome,
respectively.

As a release date approaches, developers may feel pressured
to release features that are not yet be stable and well inte-
grated. This pressure increases with long release cycles as
developers may rush changes into a release to avoid waiting
for the next release. Our goal is to empirically test whether
developers rush changes in right before release stabilization
and feature freeze. To test this, we define the churn rate as
the number of lines changed per day. We define the rush
period as two weeks before release stabilization begins. The
rush period corresponds to the Linux merge window and is
one third of the Chrome development period. The normal
development period is defined as the period between releases
before the rush period begins. On Linux, this is the two
months before the merge window opens and on Chrome it is
the first four weeks of the development cycle. Since we are
interested in development and not integration, we excluded
all merge commits. We also used the author date instead
of the committer date so that ‘cherrypicked’ changes will
be counted during the development period not when they
are picked. We hypothesize that the churn rate in the rush
period will be higher than the churn rate during normal
development.

To test this hypothesis, we use the non-parametric Wilcoxon
test to compare the churn rate of the two distributions.
For Linux and Chrome, we find a statistically significant
difference in daily churn rate between normal development
and the two weeks before stabilization begins (p = 0.007
and p = 0.0008, respectively). In Figure 9, we see that in
the median case, Linux developers change 5k and 6k lines
per day for normal and rush period respectively. The values
for Chrome are 14k and 17k. These differences represent a
20% and 21% increase in median daily churn during the rush
period for Linux and Chrome, respectively. Despite have a
rapid release cycle, there is still some degree of rush before
release stabilization begins.

examined are the three factors that Chuck Rossi, the
lead release engineer at Facebook, considers when
creating a release: the schedule, the quality, and the feature
set [10]. All three cannot be optimized at the same time, so
Chuck sacrifices the feature set, but releases stable features
on schedule and drops any feature that would reduce quality.

CROSSCUTTING the time and effort measure we have

Quality is paramount to Linus Torvalds who’s main job is
integration and release stabilization. He ranks first in terms
of number of integration merges and 52nd in terms of the
number of changes made to Linux.

150k
|

5k 20k

Churn per day (log)
00

1

- - e=== Normal development
Two weeks before stabilization
T T
Linux Chrome

Figure 9: Distribution of daily churn during normal develop-
ment (left) and two weeks before stabilization (right)

“I'm not claiming this [change ...] is really any bet-
ter/worse than the current behaviour from a theoret-
ical standpoint, but at least the current behaviour is
tested, which makes it better in practice. So if we
want to change this, I think we want to change it to
something that is _obviously_ better.”

—Torvalds, [11]

Likewise, in an article titled “release early, release often,”
Anthony Laforge, who introduced rapid release to Chrome
development, states:

“While pace is important to us, we are all committed

to maintaining high quality releases — if a feature is

not ready, it will not ship in a stable release.”
—Laforge, [3]

Chrome and Linux value quality over schedule and sched-
ule over features.

1. REFERENCES

[1] Y. Jiang, B. Adams, and D. M. German. Will my patch
make it? and how fast?: case study on the linux kernel.
In Proceedings of Mining Software Repositories, pages
101-110. IEEE Press, 2013.

[2] F. Khomh, T. Dhaliwal, Y. Zou, and B. Adams. Do
faster releases improve software quality? an empirical
case study of mozilla firefox. In Proceedings of Mining
Software Repositories, pages 179-188, June 2012.

[3] A. Laforge. Release Early, Release Often.
http://blog.chromium.org/2010/07/
release-early-release-often.html, July 2010.

[4] A. Laforge. Chrome release cycle. bit.ly/1qz4ATj,
January 2011.

[5] Linux. The linux kernel development process.
https://www.kernel.org/doc/Documentation/
development-process/2.Process Accessed February
2013.

[6] J. Micco. Tools for Continuous Integration at Google

7]

[10]

11

Scale. Google Tech Talk, Google Inc., 2012.

A. Mockus, R. T. Fielding, and J. Herbsleb. Two case
studies of open source software development: Apache
and Mozilla. ACM Transactions on Software
Engineering and Methodology, 11(3):1-38, 2002.

M. T. Rahman and P. C. Rigby. Contrasting
Development and Release Stabilization Work on the
Linux Kernel. In International Workshop on Release
Engineering 2014, 2014.

E. S. Raymond. The Cathedral and the Bazaar.
O’Reilly and Associates, 1999.

C. Rossi. Native mobile app releases.
https://www.youtube.com/watch?v=Nffzkkdq7GM,
April 2014.

L. Torvalds. “Re: TRQF_DISABLED problem
[maintaining status quo unless change is obviously
better]”. Linux Kernel Mailing List
http://kerneltrap.org/mailarchive/
linux-kernel/2007/7/26/122293, 2007.

