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ABSTRACT 

This paper applies genetic algorithms to the problem of 
induction motor parameter determination. Generally 
available manufacturers published data like starting 
torque, breakdown torque, full load torque, full load 
power factor etc, are used to determine the motor 
parameters for subsequent use in studying machine 
transients. Results from several versions of the genetic 
algorithm are presented as well as a comparison with the 
Newton-Raphson method. 

1. INTRODUCTION 

The industry is becoming increasingly concerned about 
the ability of motors to ride through power system 
disturbances such as voltage dips or short duration 
outages [1,2]. An improved ridethrough capability 
improves the reliability of the plant, particularly in the 
process industry where the failure of a motor can result 
in considerable downtime. The calculation of reclosing 
transients after an autoreclose for example, requires 
knowledge of the motor's electrical and mechanical 
parameters, which are not always readily available. 
From the motors' nameplate, the readily available data 
from the manufacturer are starting torque, breakdown 
torque, full load torque, full load power factor, full load 
efficiency etc. It is desirable to be able to extract the 
motor parameters from such data, which is the purpose 
of this paper. The Newton-Raphson method has been 
previously used, but with convergence problems relating 
to the initial starting points and the requirement for 
iteration [3]. In this paper, two different techniques, the 
Newton-Raphson and the genetic algorithms [SI, are used 
to extract the motor parameters from readily available 
performance data. Several different induction machines 
are tested and the results are compared. 

2. NEWTON-RAF'HSON OPTlMIZATION USING 
QUATTRO PRO 

Quattro Pro uses the Newton-Raphson method to solve 
nonlinear equations that may encompass several variables 
and constraints. The equivalent circuit parameters of an 
induction machine, which include stator and rotor 
resistances, and stator, rotor, and magnetizing 
reactances, can be obtained from Quattro Pro using its 
Newton-Raphson based optimizer function. The Quattro 

Pro spreadsheet can be set up to include the torque and 
power factor equations, an initial estimate for each 
panuneter, and relevant nameplate and performance data. 
The relevant performance data consists of full load, 
locked rotor, and breakdown torque values, full load 
power fabor, full load slip, and supply voltage. Quattro 
Pro begins by using the Newton-Raphson optimizer to 
adjust each parameter and recalculate the spreadsheet. 
Based on the new results, the optimizer continues to 
make adjustments until a solution is reached that meets all 
of the requirements. The optimiirs recommended 
solutions appear in the designated cells, but the solutions 
vary depending on the initial estimates of the equivalent 
circuit parameters. In general, the more realistic the 
starting values are, the closer the results are to the correct 
optimal solution. 

The major drawback of the Newton-Raphson method 
is that its success depends on the selection of good initial 
estimates. Although the optimization process may only 
take a few minutcs, a considerable amount of time and 
effort can be spent selecting the initial estimates which 
require familiarity with the particular machine size and 
parameters. Even when the initial solutions appear 
reasonable, the optimizer still may not converge to the 
correct solution. 

3. GENETIC ALGORITHMS 

3.1 Introduction 

The genetic algorithm is another method which may be 
used to solve a system of nonlinear equations. The 
genetic algorithm uses objective functions based on some 
performance criterion to calculate an error. However, 
the genetic algorithm is based on natural selection using 
random numbers, and does not require a good initial 
estimate. That is, solutions to complex problems could 
evolve from poor initial estimates in a game of survival 
of the fittest. Genetic algorithms manipulate strings of 
binary digits, and measures each string's strength with a 
fitness value. The stronger strings advance, and mate 
with other strong strings to produce offspring. Eventually 
one string emerges as the best. One of the most 
important advantages of the genetic algorithm over the 
Newton-Raphson technique is that they are able to find 
the global minimum instead of a local minimum and that 
the initial estimate need not be close to the actual values. 
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Another advantage is that they do not require the use of 
the derivative of the function, which is not always easily 
obtainable or may not even exist for example when 
dealing with real measurements involving noisy data. 

Str ing A 1 0 0 1 1 

Str ing B 1 0 1 0 1 

Str ing A '  1 0 0 1 1 

Str ing B 1 0 1 0 1 

3.2 The main operators 

The mechanics of the genetic algorithm are elementary, 
involving nothing more than copying strings, random 
number generation, and swapping partial strings [4]. A 
simple genetic algorithm that produces good results in 
many practical problems is composed of three operators: 

1. Reproduction 
2. Crossover 
3. Mutation 

0 0 1 

1 1 0 

1 1 0 

0 0 1 

Reproduction is a process in which individual strings 
are selected according to their fitness. The fitness is 
determined by calculating how well each string fits an 
objective function. Copying strings according to their 
fitness value implies that strings that fit the objective 
function well have a higher probability of contributing 
one or more offspring in the next generation. This 
process of reproduction is of course an artificial version 
of natural selection. Here the objective function is the 
final arbiter of the stringcreature's life or death. 

Stochastic sampling with replacement is the name given 
to a simple reproduction scheme. This scheme is based 
on placing the string probabilities on a weighted roulette 
wheel and spinning the wheel to select a string. The 
probabilities on the roulette wheel are determined by the 
string's fitness as a percentage of the total population 
fitness. The roulette wheel selection scheme utilizes 
random numbers to simulate a spin of the wheel. Once 
a string is selected by the reproduction operator, the 
string is copied into a mating pool and waits to be 
selected for further genetic operator action. The roulette 
wheel scheme does not guarantee that the fittest strings 
will be selected albeit their probability for selection is 
high. Therefore, this method may not produce the best 
results, especially for problems with small populations. 

Crossover is a two step process that involves mating 
and swapping of partial strings. Each time the crossover 
operator taka action, two randomly selected strings from 
the mating pool are mated. Then, in the case of simple 
crossover, a position along one string is selected at 
random, and all binary digits following the position are 
swapped with the second string. The result is two 
entirely new strings that move on to the next generation. 
This can be more clearly understood by the following 
example in which string 1 and string 2 have already been 
chosen to mate as shown in figure 3.1. 

Figure 3.1. The crossover operator 

Mutation follows crossover and protects against the 
loss of useful genetic information (1's and 0's). The 
operator works by randomly selecting one string and one 
bit location, and changing that strings bit from a 1 to a 0 
or vice versa as shown in figure 3.2. The probability for 
mutation to occur is usually very small, roughly one 
mutation per thousand bit transfers. 

B i t  selected 
for mutation 

I 
Str ing  A 1 0 0 0 1 1 0 

Str ing A'  1 0 0 0 1 1 3 

Figure 3.2. The mutation operator 

The three genetic operators, reproduction, crossover, 
and mutation, provide an effective search technique using 
natural selection and random number generation. 
Advanced operators, such as, dominance, inversion, and 
segregation exist, but are generally not essential for good 
results to many problems. In some cases the advanced 
operators can degrade the performance of the genetic 
algorithm. 

3.3 Implementation of the genetic algorithm 

The genetic algorithm can be used to calculate the 
equivalent circuit parameters of an induction machine as 
shown in figure 3.3. The locked rotor, breakdown, and 
full load torque equations form a multiobjective 
optimization problem, where each equation is a function 
of three or more machine parameters. The three torque 
functions can be written as follows. 
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Figure 3.3. Induction Motor Equivalent Circuit 

Rpm Volt R, R2 XI X, 

1750 230 0.434 0.301 2.511 24.61 

1705 460 0.087 0 . 2 2 8  0.604 13.08 

1773 2300 0.262 0.187 2.412 54.02 

where F1 is the error in the full load torque, F2 is the 
error in the locked rotor torque, F3 is the error in the 
breakdown torque, R2 is the rotor resistance, R1 is the 
stator resistance, X2 is the rotor reactance, X1 is the 
stator reactance, and Xm is the magnetizing reactance. 

For simplicity, the stator and rotor leakage reactances 
are combined into one leakage reactance (XI). The stator 
and rotor reactances can be extracted after the 
optimization by knowing the design class of the machine. 
The magnetizing reactance (Xm) can be calculated using 
the full load power factor equation after R1, R2, and X1 
have been calculated, using the genetic algorithm. 

Each parameter is coded as a 14 bit unsigned binary 
number, and together they form one 42 bit string as 
shown in figure 3.4. The maximum value each 
parameter can have, based on an accuracy of three 
decimal places, is 16.384 ohms. 

Figure 3.4. The genetic algorithm string 

In this case, the error function is chosen as the sum of 
the squares of the toque error functions, while the fitness 

function is the inverse of the error. The aim of the 
genetic algorithm is to minimize the error or to maximize 
the fitness. 

F i t n e s s  - 2 

4. RESULTS 

4.1 Steady state parameter and torque results 

(3.5) 

Three induction motors (table 4.1) with known 
equivalent circuit parameters were used to test four 
different versions of the genetic algorithm. 

Table 4.1. Actual Machine Parameters 

Each version uses the same population size, random 
number generator, string size, objective functions, and 
fitness function, yet each is slightly different in its 
approach. A description of each version follows. 

V1: Version 1 uses stochastic sampling with replacement 
(weighted roulette wheel) as described earlier for 
reproduction. Simple crossover and mutation are also 
used, that is, one randomly selected crossover point and 
one bit change per thousand bit transfers for each string. 
This version is the simple genetic algorithm. 

V2: Version 2 is identical to version 1 except that 
deterministic sampling is used instead of stochastic 
sampling for its reproduction scheme. The deterministic 
sampling scheme calculates the probabilities of selection 
as usual, the string fitness divided by the total fitness. 
Then each string is assigned an expected number based 
on its probability of selection. The actual number of 
times a string is copied into the mating pool is found from 
the integer part of the expected number. If additional 
strings are needed to fill the new population then the 
fractional parts of the expected number are sorted and the 
strings are selected from the top of the sorted list. This 
selection scheme has proved superior to straight roulette 
wheel selection since it guarantees that tit strings will be 
copied into the mating pool. 

V3 : Version 3 uses the deterministic sampling scheme 
with two-point crossover. The two-point crossover 
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operator swaps all binary digits between two randomly 
selected points along the string. 

V 4  Version 4 uses the deterministic sampling selection 
scheme with a crossover operator for each parameter. 
This means that there is one randomly selected crossover 
point for each parameter or three crossover points along 
the entire string. This algorithm is superior to the other 
three since it produces consistently good results. 

The results of each version of the genetic algorithm are 
given in the tables below. Comparisons can be made 
with table 1 which shows the actual equivalent circuit 
parameters for each induction machine. In addition, 
results from Quattro Pro's Newton-Raphson search 
routine is provided. 

The results in using version 1 of the genetic algorithm 
are shown in table 4.2 for 3 different horsepower sizes. 
The estimated parameters are compared with the actual 
parameters and the errors calculated. Considerable 
errors are produced for some parameters, for example 
85% error in R1 and even larger errors in R2. This 
version would be unacceptable. Table 4.3 has the 
parameter results using version 2. Although the 
parameter errors are not as large as for version 1, they 
are still considerable. Version 3 does not produce 
substantially better results than version 2 as shown in the 
parameter errors of table 4.4. Version 4 has the best 
results with acceptable errors in R2, X1, and Xm as 
shown in table 4.5. Larger errors were produced in R1 
for the small and large motors. However, table 4.6 
shows that errors in R1 do not affect the torque 
calculations sigruficantly. For example, while there were 
15% and 24% errors in R1, for the 5 hp and 500 hp 
motors, the maximum error produced in the estimation of 
any toque is 2%. This is not unexpected since the error 
function was defined to minimize the torques, not the 
electrical parameters. Tables 4.7 and 4.8 show that 
acceptable results are obtainable using Newton-Raphson 
techniques provided good initial estimates of parameters 
are used. However table 4.9 shows that a slight change 
in the initial estimate of a parameter can cause the 
Newton-Raphson to converge to an entirely wrong 
solution as shown for the leakage and magnetizing 
reactances. The genetic algorithm is more robust in this 
regard. 

Table 4.2. Results of genetic algorithm VI 

Table 4.3. Results of genetic algorithm V2 

Table 4.4. Results of genetic algorithm V3 
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Table 4.5. Results of genetic algorithm V4 

Table 4.6. Torque errors for genetic algorithm V4 

Table 4.7. Results of Newton-Raphson search method 

Table 4.8. Torque errors for Newton-Raphson method 

Table 4.9. Divergence of Newton-Raphson method 

The performance of the error function when each 
version of the genetic algorithm is used is compared in 
figurt 4.1. The results show that all versions eventually 
converge, thus producing low errors in the torques, but 
not nGccssarily low errors in the parameters. Version 4 
however converges fastest with acceptable errors in the 
parameters as well as the torquea. Figure 4.2 shows the 
convergence of machine paramders using the Newton- 
Raphson method. Two cases are used to test the 
convergence of the Newton-Raphson method. In case 1 
the initial guess of the machine parameters was good, and 
the optimizer converged to the c o m t  machine 
parameten. In case 2 the paramder xl was changed from 
1.05 to 1.00 while all other parameters remained the 
same, and the optimizer failed to converge. 
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Figure 4.1. Convergence of parameters using genetic 
algorithms 

Figure 4.3. Backemf using actual parameters 

240 

186 

3 132 

70 

5 24 

-30 
n 

- 

1 

-a4 

- 1  38 

-1 92 

-246 

-300 
0.0 0.2 0.3 0.5 0.6 0.8 0.9 1.0 1.2 1.3 1.5 

time (sec) 

iteration 

Figure 4.2. Convergence of parameters using Newton- 
Raphson parameters 

Figure 4.4. Backemf using genetic algorithm V4 

While the backemf waveforms are virtually identical, 
the torque-speed curves are slightly dissimilar, mainly 
due to the differences in the rotor resistance. This is 
apparent in figures 4.5 and 4.6 for the genetic generated 
parameters and the actual parameters respectively. 

4.2 Transient torque results 

In order to demonstrate the accuracy during transient 
operation, the parameters generated by the genetic 
algorithm are used to predict the motor backemf 
waveforms for a 5 hp induction motor during a power 
outage. V4 of the genetic algorithm is used and 
compared against the results using the known original 
parameters as shown in figures 4.3 and 4.4. The 
waveforms were generated using EMTP [5,6], and it is 
clear that there is little difference between the waveforms. 
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advanced operators like dominance and segregation may 
have to be used to plr~cure reasonable results. The graph 
shows that bit sizes bedween 10 and 18 and population 
sizes between 150 to 400 would give consistently good 
results. A smaller bit size and population size has 
advantages in computer space requirements and 
processing time. 

Figure 4.5. Torquespeed curve using actual parameters Figure 4.7. Effect of bit length and population size on 
generation number 

100 

Figure 4.6. Torquespeed curve using genetic algorithm 
V4 parameters 

4.3 Effect of population size and bit length on the 
algorithm performance 

While 14 bits were used for each parameter and 
a population size of 250 strings was used in this paper, it 
is of interest to examine the effect of different bit lengths 
and population numbers on the ability of the algorithm to 
converge. The results are presented in figure 4.7 
showing a bit length variation from 8 to 18 and the 
number of strings or population size from 100 to 500 for 
version V4. The number of generations is basically an 
indication of the time to converge. If the number of bits 
is less than 10 then poor results are obtained regardless 
of the population size. If the population size is less than 
150 strings then poor results are obtained, regardless of 
the bit length. Also if the population is too large, greater 
than say 450 strings, the performance deteriorates 
regardless of bit size, indicating that perhaps other 

4.4. Manufacturer performance data 

DSerent manufacturers may calculate the performance 
data of a machine using a slightly different method. In 
addition, the designs of different manufacturers can lead 
to different errors from using the 5 parameter model used 
in this paper. Thus the performance of the genetic 
algorithm would differ for different manufacturers 
resulting in different errors in full load, locked rotor, and 
breakdown torque. This section examines these torque 
errors when using manufacturer's data of starting, full 
load, and breakdown torques. Thus no prior knowledge 
of the parameten was available. This section differs 
from section 4.1 in that there, known parameters were 
used to calculate the staxting, full load, and breakdown 
torques using the induction motor equivalent circuit. 
Thus the equivalent circuit was assumed to be exact, with 
the same parameters being applied to starting as well as 
running conditions. 

The performance data from seven different 
manufacturers was gathered from MotorMaster, a 
package developed by the Washington State Energy 
Office to collect motor manufacturer's data. This was 
used as input for genetic algorithm V4. The parameters 
for the simple equivalent circuit were calculated and the 
torques recalculated and the errors determined. Now the 
errors are larger as shown in figure 4.8 for a commercial 
5 hp motor from seven different manufacturers, as a 
result of inaccuracies in the model (constant parameters 
with 5 variables). However, in spite of the simple model, 
manufacturers M1, M3, M4, M5, and M7 all produce 
acceptable results (around 10% error or less) while the 
torque calculations for manufacturers M 2  and M 6  have 
larger errors. This indicates that either a deep bar model 
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or a 5 parameter model with variable parameters must be Critical Survey of Considerations in Maintaining Process 
used to reduce the errors in predicting the torques for Continuity during Voltage Dips while Protecting Motors 
these two manufacturers. with Reclosing and Bus-Transfer Practices", IEEE 

Transactions on Power Systems, vol. 7, no. 3, August 
1992. 

[3] B.K. Johnson and J.R. Wfis ,  "Tailoring Induction 
Motor Analytical Models to Fit Known Motor 
Performance Characteristics and Satisfy Particular Study 
Needs", IEEE Transactions on Power Sytems, vol. 6, no. 
3, August 1991. 

[4] David E. Goldberg, Genetic Algorithms in Search, 
Optimization, and Machine Learning, Addison-Wesley 
Publishing Company, Massachusetts, 1989. 

[5] EMTP Revised Rule Book Version 2.0, EPRI EL- 
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[6] G.J. Rogers and D. Shirmohammadi, "Induction 
Machine Modelling For Electromagnetic Transient 
Program", IEEE Transactions on Energy Conversion, 
vol. EC-2, no. 4, December 1987. 

Figure 4.8. Genetic performance for 5 hp induction 
machine 

5. CONCLUSION 

This paper has applied the genetic algorithm to 
the problem of motor parameter determination. Several 
different versions were examined by calculating the 
parameters for a small (5 hp), medium (50 hp), and large 
(500 hp) induction motor. Version 4 produced extremely 
good results when the torques were generated from the 
equivalent circuit with known parameters. Larger errors 
were produced when using actual data from several 
manufacturers due to the neglect of parameter variations 
and deep bar effects in the model. The results were still 
acceptable for 5 of the 7 manufacturers. The use of the 
Newton-Raphson method was also demonstrated and its 
sensitivity to the initial starting values highlighted. 
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