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What Problem Are We Solving?What Problem Are We Solving?

• Increasing Size and Complexity of Critical Systems

– Safety critical, security critical, and mission critical

– Exponential growth in size and complexityp g p y

• Rapidly Growing Cost of Verification• Rapidly Growing Cost of Verification

– Exponential growth in cost

– Becoming the limiting factor in deployment
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Airborne Software Doubles Every Two Years
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J.P. Potocki De Montalk, Computer Software in Civil Aircraft, Sixth Annual Conference on 
Computer Assurance (COMPASS ’91), Gaithersberg, MD, June 24-27, 1991.



Similar Growth Has Been Seen by Boeing

Complexity Size
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• Is the Problem Important?

Criteria for Formal Verification

• Is the Problem Important?

Are High Fidelity Models Available?• Are High Fidelity Models Available?

C  th  P ti  f I t t b  F li d?• Can the Properties of Interest be Formalized?

h i h l i l il bl ?• Are the Right Analysis Tools Available?
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Rockwell Collins’ core business is based on

• Commercial/Military Avionics Systems

Rockwell Collins  core business is based on 
the delivery of High Assurance Systems

• Commercial/Military Avionics Systems

• Communications

• Navigation & Landing Systems

• Flight Control 

• Displays 

• Weapon Data Links• Weapon Data Links

“Working together creating the most trusted source of 
i ti d i ti l t i l ti ”

“Working together creating the most trusted source of 
i ti d i ti l t i l ti ”

© Copyright 2008 Rockwell Collins, Inc. 
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communication and aviation electronic solutions”communication and aviation electronic solutions”



Advanced Technology Center Automated Analysis Section

Identify, acquire, develop and transition 
value-driven technologies to support the 
continued growth of Rockwell Collins.

Technologists: 10
Administrators:   1g

37% PhD
Bachelors

37%
17%
PhD

M t
46%

Masters

Technologists: 173
Administrators:   10
T h i i 31

Applies mathematical tools and 
reasoning to the production of high 

t

© Copyright 2008 Rockwell Collins, Inc. 
All rights reserved.

12

Technicians:   31 assurance systems.                       
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What are Formal Methods?

Mathematically-based techniques for the specification, development 
and verification of software and hardware systems.

• Specification
Textual notations (Z  B  VDM  CSP  )

and verification of software and hardware systems.
Wikipedia, 8 April 2008

– Textual notations (Z, B, VDM, CSP, …)
– Tabular notations (Parnas Tables, SCR, RSML, …)
– Graphical notations (SCADE, Simulink, Statecharts …)

• Development
– Stepwise refinement with proofs of correctness
– Model-Based Development
– Automated code generation

• Verification
– Lightweight static analysis

Theorem proving (ACL2  PVS  HOL  )

© Copyright 2008 Rockwell Collins, Inc. 
All rights reserved.
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– Theorem proving (ACL2, PVS, HOL, …)
– Model-checking (SMV, SAL, Prover, …)



Specification

node Thrust_Required(
FG_Mode : FG_Mode_Type ; 
Airborne : bool ;

Textual (Z, VDM, PVS, Lustre, …) Tabular (RSML-e, SCR) 

Airborne : bool ; 
In_Flare : bool ; 
Emergency_Descent : bool; 
Windshear_Warning : bool ;   
In_Eng_Accel_Zone : bool ; 
On_Ground : bool) 

returns (IsTrue : bool) ;

let

IsTrue = 
(FG_Thrust_Mode(FG_Mode) and 
Airborne) 

oror 
(Airborne and Emergency_Descent) 

or 
Windshear_Warning

or 
((FG_Mode = ThrottleRetard) and 
In Flare) 

Graphical (SCADE, Simulink) 

_ )
or 
(In_Eng_Accel_Zone and On_Ground) ;

tel ;

© Copyright 2008 Rockwell Collins, Inc. 
All rights reserved.
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Model-Based Development

Company Product Tools Specified & Autocoded Benefits Claimed 
Airbus A340 SCADE 

With Code 
G t

• 70% Fly-by-wire Controls  
• 70% Automatic Flight Controls  

• 20X Reduction in Errors  
• Reduced Time to Market 

p

Generator • 50% Display Computer  
• 40% Warning & Maint Computer  

Eurocopter EC-155/135 
Autopilot 

SCADE 
With Code 
Generator 

• 90 % of Autopilot  
  

• 50% Reduction in Cycle Time 

GE & FADEDC Engine ADI Beacon • Not Stated • Reduction in ErrorsGE & 
Lockheed 
Martin 

FADEDC Engine 
Controls 

ADI Beacon • Not Stated 
  

• Reduction in Errors 
• 50% Reduction in Cycle Time 
• Decreased Cost 

Schneider 
Electric 

Nuclear Power 
Plant Safety 
Control 

SCADE 
With Code 
Generator 

• 200,000 SLOC Auto Generated 
from 1,200 Design Views 

  

• 8X Reduction in Errors while 
Complexity Increased 4x 

 
US 
Spaceware 

DCX Rocket MATRIXx • Not Stated  
  

• 50-75% Reduction in Cost  
• Reduced Schedule & Risk 

PSA Electrical 
Management 
System 

SCADE 
With Code 
Generator 

• 50% SLOC Auto Generated • 60% Reduction in Cycle Time 
• 5X Reduction in Errors 

CSEE S b SCADE 80 000 C SLOC A t G t d I d P d ti it fCSEE 
Transport 

Subway 
Signaling System

SCADE
With Code 
Generator 

• 80,000 C SLOC Auto Generated • Improved Productivity from 
20 to 300 SLOC/day 

Honeywell 
Commercial 
Aviation 

Primus Epic 
Flight Control 
System 

MATLAB 
Simulink 

• 60% Automatic Flight Controls • 5X Increase in Productivity 
• No Coding Errors 
• Received FAA Certification

© Copyright 2008 Rockwell Collins, Inc. 
All rights reserved.
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Systems 
y Received FAA Certification

 
 



Verification - Rockwell Collins Translation FrameworkVerification Rockwell Collins Translation Framework

© Copyright 2008 Rockwell Collins, Inc. 
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T l  O i i  f  S ifi  A l i  T l

CPU Time

Translators Optimize for Specific Analysis Tools

Model

C U e

(For NuSMV to Compute 
Reachable States)

Improvement

Before After

Mode1 > 2 hours 11 sec > 650x

Mode2 > 6 hours 169 sec > 125x

Mode3 > 2 hours 14 sec > 500x

Mode4 8 minutes < 1 sec 480x

Arch 34 sec < 1 sec 34x

WBS 29+ hours 1 sec 105,240x

© Copyright 2008 Rockwell Collins, Inc. 
All rights reserved.
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FCS 5000 Flight Control Mode Logic

Mode Controller A Modeled in Simulink

Translated to NuSMV

6.8 x 1021 Reachable States

Mode Controller B

Example Requirement
M d A1 > M d B1

Counterexample Found in
Less than Two Minutes

Mode A1 => Mode B1

© Copyright 2008 Rockwell Collins, Inc. 
All rights reserved.

21

Found 27 Errors
in Early Requirements Models



ADGS-2100 Adaptive Display & Guidance Systemp p y y

Modeled in Simulink

Translated to NuSMV

4,295 Subsystems

16,117 Simulink Blocks

Over 1037 Reachable States

Example Requirement:
Drive the Maximum Number of Display Units 

Given the Available Graphics Processors 

Counterexample Found in 5 Seconds

Checked 573 Properties -
F d d C t d 98 E

© Copyright 2008 Rockwell Collins, Inc. 
All rights reserved.
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Found and Corrected 98 Errors 
in Early Design Models



AAMP7G Certified Microprocessor

• Rockwell Collins proprietary microprocessor

• Formal proof of the MILS security partitioning 
implemented in the AAMP7G microprocessorimplemented in the AAMP7G microprocessor

• Example of the industrial use of theorem 
proving using ACL2

• Developed formal description of separation for 
uniprocessor  multipartition system (GWV)uniprocessor, multipartition system (GWV)

• Modeled trusted AAMP7G microcode in ACL2

• Constructed machine-checked proof of 
separation of the AAMP7G model using ACL2

• Model subject of intensive code-to-spec review 
with AAMP7G microcode

• Satisfied formal methods requirements for NSA 
AAMP7G certification awarded in May 2005

- “capable of simultaneously processing 
unclassified through Top Secret Codeword 
Information”

- “verified using Formal Methods techniques 

© Copyright 2008 Rockwell Collins, Inc. 
All rights reserved.
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- verified using Formal Methods techniques 
as specified by the EAL-7 level of the 
Common Criteria”



Greenhills Integrity-178B Real-Time OS Evaluation

• Formal proof of the MILS security partitioning 
implemented in the Integrity-178B Real-Time OS

K

P1

• Example of the industrial use of theorem proving 
using ACL2

• Generalized the formal description of separation 
to describe the more dynamic scheduling 

K P2

P3
to describe the more dynamic scheduling 
managed by the OS (GWVr2)

• Modeled in ACL2 the target-independent C code 
implementing the Integrity-178B kernel.

• Constructed machine-checked proof of separation 
for the Integrity-178B kernel

• Model, analysis approach and proofs subject to 
intensive multi-national review

• Satisfied US Government SKPP (EAL6+), as well 
as Common Criteria v2.3 EAL7 ADV requirements

– Final certification pending NSA penetration 
testing

© Copyright 2008 Rockwell Collins, Inc. 
All rights reserved.
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Turnstile High Integrity Guard

• High-assurance cross domain platform that provides secure 
communication between different security classification 
domains ranging from top secret to unclassified.

Accreditable to DCID 6/3 PL-5.

• Core guard application is based 
on the NSA certified AAMP7G

OETOP OEGuard
on the NSA certified AAMP7G.

• I/O processing is relegated to Offload 
Engines (OE) that do not have to be as 
highly trusted

SECRET

highly trusted.

• System integrator can add function to the 
OE without compromising the guard 
function. AAMP7G

© Copyright 2008 Rockwell Collins, Inc. 
All rights reserved.
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• Certification based on ACL2 theorem prover



CerTA FCS Phase I

• Sponsored by the Air Force Research Labs
– Air Vehicles (RB) Directorate - Wright Patterson

I ti t  R l  f T ti  d F l V ifi ti• Investigate Roles of Testing and Formal Verification
– Can formal verification complement or replace some testing? 

• Example Model – Lockheed Martin Adaptive UAV Flight Control System
Redundancy Management Logic in the Operational Flight Program (OFP)– Redundancy Management Logic in the Operational Flight Program (OFP)

– Well suited for verification using the NuSMV model-checker

Lockheed Martin Aero Rockwell Collins

• Enhanced During CerTA FCS

• Based on Testing

– Graphical Viewer of Test Cases – Support for Simulink blocks
• Enhanced During CerTA FCS

• Based on Model-Checking

p
– Support for XML/XSLT Test Cases
– Added C++ Oracle Framework

• Developed Tests from Requirements • Developed Properties from Requirements

pp
– Support for Stateflow
– Support for Prover model-checker

© Copyright 2008 Rockwell Collins, Inc. 
All rights reserved.
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• Executed Tests Cases on Test Rig • Proved Properties using Model-Checking
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CerTA FCS Phase I - OFP Redundancy Management Logic

For Each of Ten Control Surfaces

• Triplex Voter 
Input monitor  sensor fusion  and 

[C]

[B]

[status_a]

[DSTi]
[MS]

[trigger]

[trigger]

[status b]

[status_a]

[A]

Index
Vector

mon_failure_report

status_a

status b

Extract Bits
[0 3]

Extract Bits

double

DST

Data Store
Read

5

status a

4

input_c

3

input_b

2

input_a

1

sync
sync<> Failure Isolation

– Input monitor, sensor fusion, and 
failure isolation

• Failure Processing
– Logs failures into a data store 2

persistence_cnt

1

failure_report

pc

input_a

input_b

input_c

trip_level

failreport

pc

trip_level

trip_level1

[DSTi]

[status_c]

[status_b]

[DSTi][A]

[prev_sel]

[trigger]

[status_c]

[status_b]

[A]

[C]

[B]

[C]

[B]

failure_report

dst_index

Failure_Processing

status_b

status_c

prev_sel

input_a

input_b

input_c

failure_report

Failure_Isolation

DOC

Text

8

dst_index

7

status_c

6

status_b

status_a

trip_level

persistence_cnt<pc>

failreport

Failure 
Processing• Reset Manager

– Reset logic for sensors and control 
surfaces (not shown)

S b t / Ch t / T th T bl R h bl

4

input_sel

3

totalizer_cnt

trigger

input_a

input_b

input_c

DST_index

input_sel

triplex_input_selector

persist_lim

MS

tc

triplex_input_monitor

persist_lim

persistence limit
[A]

[trigger]

[MS]

[prev_sel][DSTi]

[C]

[B]

persist_lim

totalizer_cnt<tc>

Input Monitor

Processing

Sensor Fusion
 Subsystems /  

Blocks 
Charts / 

Transitions  
Truth Table 

Cells 
Reachable 

State Space Properties

Triplex voter 10 / 96 3 / 35 198 6.0 * 1013 48 

Failure 4Failure 
processing 7 / 42 0 / 0 0 2.1 * 104 6

Reset 
manager 6 / 31 2 / 26 0 1.32 * 1011 8 

© Copyright 2008 Rockwell Collins, Inc. 
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Total 23 / 169 5 / 61 198 N/A 62 
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CerTA FCS Phase I -

70

Testing and Model Checking Recurring Costs

50

60

C
os

ts

Test: time to run 
the tests. 

MC: running the 
tools, analyzing 
and e plaining

Test: time spent 

Spent ~50% more 
time testing than 
model-checking.

30

40

l R
ec

ur
rin

g 
C and explaining 

counter-
examples to LM 
Aero, and 
creating a 
revised model

fixing errors in test 
cases.

MC: time to repeat 
analysis.

model checking.

10

20

%
 T

ot
alTest:  time 

to write the 
tests

MC: time to 
it th

revised model.

0
Preparation Initial Test Rework Grand Total

write the 
properties 
and set up 
the models 
for analysis
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Testing Model-Checking
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CerTA FCS Phase I – Errors Found

Errors Found in Redundancy Manager
Model Checking Testing

T i l  V tErrors Found in Redundancy ManagerTriplex Voter

Failure Processing

Reset Manager

3
5

4

0
0
0Reset Manager

Total

4
12

0
0

• Model-Checking Found 12 Errors that Testing Missed

• Spent More Time on Testing than Model-Checking
– 60% of total on testing vs. 40% on model-checking

Model-checking was more cost effective
th  t ti  t fi di  d i

© Copyright 2008 Rockwell Collins, Inc. 
All rights reserved.
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than testing at finding design errors.
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CerTA FCS Phase II

• Sponsored by the Air Force Research Labs
– Air Vehicles (RB) Directorate - Wright Patterson

• Can Model-Checking be Used on Infinite State Systems?• Can Model-Checking be Used on Infinite State Systems?
– Large, numerically intensive, non-linear systems

• Example Model
– Lockheed Martin Adaptive UAV 

Flight Control System
– Effector Blender (EB) 
– Generates actuator commands 

fo  ai c aft cont ol s facesfor aircraft control surfaces
– Matrix arithmetic of floating 

point numbers

• Challenges
– Identifying the right properties to verify
– Verification of floating point numbers

Verification of Stateflow flowcharts with cyclic transition paths

© Copyright 2008 Rockwell Collins, Inc. 
All rights reserved.
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– Verification of Stateflow flowcharts with cyclic transition paths
– Compositional verification to scale to entire Effector Blender

WPAFB 08-5183 RBO-08685 8/20/2008



CerTA FCS Phase II – Effector Blender

• Generates Actuator Commands
– Six control surfaces
– Adapts its behavior as aircraft 1Effector

Bl d

4

3

2

1

Adapts its behavior as aircraft 
state changes

– Iterative algorithm that 
repeatedly manipulates a 3 x 6 
matrix of floating point numbers

f l f i l il

Blender

10

9

8

7

6

5

• Large Complex Model
– Inputs 

• 32 floating point inputs
3  6 t i  f fl ti  i t l

Surf1 left vertical tail
surf2 right vertical tail
surf3 left flap
surf4 right flap
surf5 left outboard spoiler
surf6 right outboard spoiler23

22

21

20

19

18

• 3 x 6 matrix of floating point values

– Outputs
• 1 x 6 vector of floating point values

– 166 Simulink subsystems
2000+ basic Simulink blocks

surf6 right outboard spoiler

28

27

26

25

24

– 2000+ basic Simulink blocks
– Huge reachable state space

• Completely Functional
– No internal state

Control Effector
Arrangement

Spoilers (L&R)

Flaps (L&R)

29

15

14

13

12

11

© Copyright 2008 Rockwell Collins, Inc. 
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– No internal state Spoilers (L&R)

V-Tail Rudders (L&R)
17

16

WPAFB 08-5183 RBO-08685 8/20/2008



CerTA FCS Phase II – What to Verify?

• No Explicit Requirements for the Effector Blender Model
– Requirements defined for Effector Blender + aircraft model
– Addition of aircraft model pushes verification beyond current tools

y

Addition of aircraft model pushes verification beyond current tools

• Avoid Properties Verifiable by Other Means
– Control theory – stability, tracking performance, feedback design …
– Simulation – design validationg
– Implementation – code generation/compilation, scheduling, …

• Focus on the Consistency of the Effector Blender Model
– Relationships the model should always maintain
– Partial requirements specification

• Preservation of Control Surface Limits
– EB computes upper and lower limits for each control surface command
– Function of aircraft design, aircraft state, and max extension per cycle
– Commanded extension should always be between these limits

© Copyright 2008 Rockwell Collins, Inc. 
All rights reserved.
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CerTA FCS Phase II – Verification of Floating Point Numbers

• Floating Point Numbers
– Fixed number of bits with a movable decimal (radix) point
– No decision procedures for floating point numbers availableNo decision procedures for floating point numbers available

• Real Numbers
– Real numbers have unbounded size and precision
– Would hide errors caused by limitations of floating point arithmeticy g p
– Control theory problems are inherently non-linear
– Decision procedures for non-linear real numbers have exponential cost

• Solution - Translate Floating Point Numbers into Fixed Point
– Extended translation framework to automate this translation
– Convert floating point to fixed point (scaling provided by user)
– Convert fixed point into integers (use bit shifting to preserve magnitude)
– Shift from NuSMV (BDD-based) to Prover (SMT-solver) model checker( ) ( )

• Advantages & Issues
– Use bit-level integer decision procedures for model checking
– Results unsound due to loss of precision

© Copyright 2008 Rockwell Collins, Inc. 
All rights reserved.
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– Highly likely to find errors – very valuable tool for debugging 
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CerTA FCS Phase II – Verification of Stateflow Flowcharts

• Stateflow Flowcharts
– No explicit stateso e p c t states
– Stateflow junctions
– Cyclic paths
– Transitions modify local 

state variablesstate variables
– Imperative programming

• Solution
– Extend translator to 

support flowcharts
– Require a parameter that 

specifies the maximum 
i l ill btimes any cycle will be 

executed

© Copyright 2008 Rockwell Collins, Inc. 
All rights reserved.
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CerTA FCS Phase II – Compositional Verification

Typical Specification
– Models are typically organized in a hierarchy of subsystems
– Subsystems are often nested several levels deep
– Most of the complexity is in the leaf subsystems
– Leaf subsystems can often be verified through model checking

Composition of Subsystems

1
Out1

1
In1

In_B1

In_B2
Out_BIn_A1

Out_A

P2 & P3 -> Q1

Q2

P1 & Q1 -> Q2

Q1

p y
– Tends to be simple
– Lends itself well to theorem proving

P2 & P3 => Q1 P1 & P2 & P3 => Q=>

Q

P1

P2 & P3 Out1
2

In2
Subsystem BIn_A2

_

Subsystem A

Q1 P1 & Q1 => Q2
P1 & P2 & P3  Q

Issues
– Need to avoid circular reasoning to ensure soundness

– Can be ensured by eliminating cyclic dependencies between atomic subsystems

– Identifying the right leaf level invariants to support composition
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– Complexity of the proof obligations for the intermediate levels

– Lack of a unified automated verification system 
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CerTA FCS Phase II - Results

• Can Model-Checking be Used on Infinite State Systems?
– Large, numerically intensive, non-linear systems

Eff t  Bl d• Effector Blender
– Inputs 

• 32 floating point inputs
• 3 x 6 matrix of floating point values

O tp ts– Outputs
• 1 x 6 vector of floating point values

– 166 Simulink subsystems
– 2000+ basic Simulink blocks

• Errors Found
– Five previously unknown errors that would drive actuators past their limits
– Several implementation errors were being masked by defensive programming

• Areas for Future Research
– Decision procedures for floating point arithmetic
– Interval arithmetic 
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– Automation for compositional verification
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Presentation OverviewPresentation Overview

What Problem are We Solving?

Who Are We?

What are Formal Methods?

Examples of Using Formal Methods

Challenges and Future Directions
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Extending the Verification Domain

Theorem Provers

g

• Theorem Provers
– Deal with arbitrary models
– Concerns are ease of use and labor cost 

Non Linear Arithmetic

Floating Point

• Large Finite Systems (<10200 States)
– Implicit state (BDD) model checkers
– Easy to use and very effective

• Very Large or Infinite State Systems
– SMT-Solvers
– Large integers and reals
– Limited to linear arithmetic

SMT-Solvers

Implicit State

< 10 200 Reachable States
Model Checkers

Decision Procedures

Limited to linear arithmetic
– Ease of use is a concern

Infinite State Models
using k-Induction

< 10 Reachable States

• Floating Point Arithmetic
– Most modeling languages use floating 

point (not real) numbers

Arbitrary Models
Labor Intensive

Transcendental 
Functions

• Non-Linear Arithmetic
– Multiplication/division of real variables

Transcendental f nctions (trigonometric  )

point (not real) numbers
– Decision procedures
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– Transcendental functions (trigonometric, …)
– Essential to navigation systems



Compositional Verification

Typical Model-Based Specification
– Models are organized in a hierarchy of subsystems several levels deep
– Most of the complexity is in the leaf models
– Leaf models can often be verified through model checking

1
In1 P2 & P3 > Q1

P1 & Q1 -> Q2 Composition of Subsystems
Q

P1

1
Out1

In1

2
In2

In_B1

In_B2
Out_B

Subsystem B

In_A1

In_A2
Out_A

Subsystem A

P2 & P3 -> Q1

Q2
Q1

– Tends to be simple
– Well suited for theorem proving

P2 & P3 => Q1
P1 & Q1 => Q2

P1 & P2 & P3 => Q=>

Q

P2 & P3

P1 & Q1 => Q2

Issues
– Lack of a unified automated verification system

• Use model-checking to verify leaf models and theorem proving for composition

– Avoid circular reasoning to ensure soundness

• Can be ensured by eliminating cyclic dependencies between atomic subsystems

Identifying the right leaf level invariants to support composition
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– Identifying the right leaf level invariants to support composition

– Complexity of the proof obligations for the intermediate levels
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System Architectural Modeling & AnalysisSystem Architectural Modeling & Analysis

Simulink
Model

VAPS
Model

Level B
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 Common Computing Resource 1

Common Computing Resource 2

Common Computing Resource 3
Performance

Analysis

Model

A t
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Target Hardware

Separation Kernel

Reusable Trusted Middleware
(RTOS, I/O , RT-CORBA)

Sys Specific Middleware
(Schedule, Communication Routes)

SafetySecurity

ADL Auto
Generate

D
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Safety
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Security
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System Architecture Development



Conclusions

• Formal Methods Are Practical and Are Being Widely Used
– Model Based Development is the industrial face of formal methods

– The engineers get to pick the modeling tools!

– Semantics of some of the commercial tools could be improved

Formal Verification Tools Are Being Used in Industry• Formal Verification Tools Are Being Used in Industry
– Key is to verify the models the engineers are already building

– Large portions of existing systems can be verified with model checkers

– Model checkers are only going to get betterModel checkers are only going to get better

– Theorem proving can be used on stable industrial systems

• Directions for the Future Work
– Making verification tools more powerful and easier to use

– Addressing scalability through compositional verification

– Integration of theorem proving and model checking
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– Modeling and analysis of system architectural models
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