
Twenty Years of Theorem Proving for HOLs
Past, Present and Future

◮ Past
◮ see “From 1988 to 2008” in my abstract in the Proceedings

◮ Present
◮ see tutorials on ACL2, Coq, HOL4, Isabelle and PVS

◮ Future
◮ what I’ll concentrate on!

TPHOLs 2008 1 / 80



Twenty Years of Theorem Proving for HOLs
Past, Present and Future

◮ Past
◮ see “From 1988 to 2008” in my abstract in the Proceedings

◮ Present
◮ see tutorials on ACL2, Coq, HOL4, Isabelle and PVS

◮ Future
◮ what I’ll concentrate on!

TPHOLs 2008 2 / 80



Twenty Years of Theorem Proving for HOLs
Past, Present and Future

◮ Past
◮ see “From 1988 to 2008” in my abstract in the Proceedings

◮ Present
◮ see tutorials on ACL2, Coq, HOL4, Isabelle and PVS

◮ Future
◮ what I’ll concentrate on!

TPHOLs 2008 3 / 80



Twenty Years of Theorem Proving for HOLs
Past, Present and Future

◮ Past
◮ see “From 1988 to 2008” in my abstract in the Proceedings

◮ Present
◮ see tutorials on ACL2, Coq, HOL4, Isabelle and PVS

◮ Future
◮ what I’ll concentrate on!

TPHOLs 2008 4 / 80



Twenty Years of Theorem Proving for HOLs
Past, Present and Future

◮ Past
◮ see “From 1988 to 2008” in my abstract in the Proceedings

◮ Present
◮ see tutorials on ACL2, Coq, HOL4, Isabelle and PVS

◮ Future
◮ what I’ll concentrate on!

TPHOLs 2008 5 / 80



First ... let’s celebrate some Amazing Achievements!

◮ Powerful automatic theorem proving
◮ SAT, decision procedures, SMT, first-order reasoners

◮ Logic extensions for modelling
◮ type classes, locales, nominal logic, reflection, HOL-Omega

◮ New interactive proof methodologies
◮ declarative proof, Quickcheck, SAT refutate

◮ Impressive theorems
◮ four colour, Jordan curve, fundamental theorem of calculus
◮ multivariate analysis, measure theory

◮ Applications
◮ Java, Ada, C, C++, compilers, OS fragments, Z, OWR, FEF
◮ floating point, security protocols, air traffic control

◮ Theorem prover as implementation platform
◮ executable logic, verifiers as derived rules
◮ links to external tools, e.g. Vampire, Simulink, LabVIEW

TPHOLs 2008 6 / 80



First ... let’s celebrate some Amazing Achievements!

◮ Powerful automatic theorem proving
◮ SAT, decision procedures, SMT, first-order reasoners

◮ Logic extensions for modelling
◮ type classes, locales, nominal logic, reflection, HOL-Omega

◮ New interactive proof methodologies
◮ declarative proof, Quickcheck, SAT refutate

◮ Impressive theorems
◮ four colour, Jordan curve, fundamental theorem of calculus
◮ multivariate analysis, measure theory

◮ Applications
◮ Java, Ada, C, C++, compilers, OS fragments, Z, OWR, FEF
◮ floating point, security protocols, air traffic control

◮ Theorem prover as implementation platform
◮ executable logic, verifiers as derived rules
◮ links to external tools, e.g. Vampire, Simulink, LabVIEW

TPHOLs 2008 7 / 80



First ... let’s celebrate some Amazing Achievements!

◮ Powerful automatic theorem proving
◮ SAT, decision procedures, SMT, first-order reasoners

◮ Logic extensions for modelling
◮ type classes, locales, nominal logic, reflection, HOL-Omega

◮ New interactive proof methodologies
◮ declarative proof, Quickcheck, SAT refutate

◮ Impressive theorems
◮ four colour, Jordan curve, fundamental theorem of calculus
◮ multivariate analysis, measure theory

◮ Applications
◮ Java, Ada, C, C++, compilers, OS fragments, Z, OWR, FEF
◮ floating point, security protocols, air traffic control

◮ Theorem prover as implementation platform
◮ executable logic, verifiers as derived rules
◮ links to external tools, e.g. Vampire, Simulink, LabVIEW

TPHOLs 2008 8 / 80



First ... let’s celebrate some Amazing Achievements!

◮ Powerful automatic theorem proving
◮ SAT, decision procedures, SMT, first-order reasoners

◮ Logic extensions for modelling
◮ type classes, locales, nominal logic, reflection, HOL-Omega

◮ New interactive proof methodologies
◮ declarative proof, Quickcheck, SAT refutate

◮ Impressive theorems
◮ four colour, Jordan curve, fundamental theorem of calculus
◮ multivariate analysis, measure theory

◮ Applications
◮ Java, Ada, C, C++, compilers, OS fragments, Z, OWR, FEF
◮ floating point, security protocols, air traffic control

◮ Theorem prover as implementation platform
◮ executable logic, verifiers as derived rules
◮ links to external tools, e.g. Vampire, Simulink, LabVIEW

TPHOLs 2008 9 / 80



First ... let’s celebrate some Amazing Achievements!

◮ Powerful automatic theorem proving
◮ SAT, decision procedures, SMT, first-order reasoners

◮ Logic extensions for modelling
◮ type classes, locales, nominal logic, reflection, HOL-Omega

◮ New interactive proof methodologies
◮ declarative proof, Quickcheck, SAT refutate

◮ Impressive theorems
◮ four colour, Jordan curve, fundamental theorem of calculus
◮ multivariate analysis, measure theory

◮ Applications
◮ Java, Ada, C, C++, compilers, OS fragments, Z, OWR, FEF
◮ floating point, security protocols, air traffic control

◮ Theorem prover as implementation platform
◮ executable logic, verifiers as derived rules
◮ links to external tools, e.g. Vampire, Simulink, LabVIEW

TPHOLs 2008 10 / 80



First ... let’s celebrate some Amazing Achievements!

◮ Powerful automatic theorem proving
◮ SAT, decision procedures, SMT, first-order reasoners

◮ Logic extensions for modelling
◮ type classes, locales, nominal logic, reflection, HOL-Omega

◮ New interactive proof methodologies
◮ declarative proof, Quickcheck, SAT refutate

◮ Impressive theorems
◮ four colour, Jordan curve, fundamental theorem of calculus
◮ multivariate analysis, measure theory

◮ Applications
◮ Java, Ada, C, C++, compilers, OS fragments, Z, OWR, FEF
◮ floating point, security protocols, air traffic control

◮ Theorem prover as implementation platform
◮ executable logic, verifiers as derived rules
◮ links to external tools, e.g. Vampire, Simulink, LabVIEW

TPHOLs 2008 11 / 80



First ... let’s celebrate some Amazing Achievements!

◮ Powerful automatic theorem proving
◮ SAT, decision procedures, SMT, first-order reasoners

◮ Logic extensions for modelling
◮ type classes, locales, nominal logic, reflection, HOL-Omega

◮ New interactive proof methodologies
◮ declarative proof, Quickcheck, SAT refutate

◮ Impressive theorems
◮ four colour, Jordan curve, fundamental theorem of calculus
◮ multivariate analysis, measure theory

◮ Applications
◮ Java, Ada, C, C++, compilers, OS fragments, Z, OWR, FEF
◮ floating point, security protocols, air traffic control

◮ Theorem prover as implementation platform
◮ executable logic, verifiers as derived rules
◮ links to external tools, e.g. Vampire, Simulink, LabVIEW

TPHOLs 2008 12 / 80



First ... let’s celebrate some Amazing Achievements!

◮ Powerful automatic theorem proving
◮ SAT, decision procedures, SMT, first-order reasoners

◮ Logic extensions for modelling
◮ type classes, locales, nominal logic, reflection, HOL-Omega

◮ New interactive proof methodologies
◮ declarative proof, Quickcheck, SAT refutate

◮ Impressive theorems
◮ four colour, Jordan curve, fundamental theorem of calculus
◮ multivariate analysis, measure theory

◮ Applications
◮ Java, Ada, C, C++, compilers, OS fragments, Z, OWR, FEF
◮ floating point, security protocols, air traffic control

◮ Theorem prover as implementation platform
◮ executable logic, verifiers as derived rules
◮ links to external tools, e.g. Vampire, Simulink, LabVIEW

TPHOLs 2008 13 / 80



The future

◮ Logic programming reborn
◮ theorems provers are the the new IDE
◮ ACL2 almost as fast as C, others not far behind
◮ immediate application to new generation of verifiers

◮ Beyond Church
◮ HOL2P, HOL-Omega
◮ set theory

◮ One mathematics, many tools
◮ provers linked
◮ most ordinary mathematics machine checked
◮ tool-independent library of trustable theorems (QED)

TPHOLs 2008 14 / 80



The future

◮ Logic programming reborn
◮ theorems provers are the the new IDE
◮ ACL2 almost as fast as C, others not far behind
◮ immediate application to new generation of verifiers

◮ Beyond Church
◮ HOL2P, HOL-Omega
◮ set theory

◮ One mathematics, many tools
◮ provers linked
◮ most ordinary mathematics machine checked
◮ tool-independent library of trustable theorems (QED)

TPHOLs 2008 15 / 80



1973: programming in logic was just a dream

◮ Robert Kowalski
Predicate Logic as Programming Language

“... predicate logic is a useful and practical,
high-level, non-deterministic programming
language with sound theoretical foundations.”

◮ P.J. Hayes
Computation and Deduction

“An interpreter for a programming language, and
a theorem-proving program for a logical language,
are structurally indistinguishable. “

TPHOLs 2008 16 / 80



Logic and functional programming

◮ Logic Programming
◮ Kowalski has relational vision of programming as deduction
◮ execution by a resolution theorem prover
◮ Colmerauer develops Prolog

◮ Functional Programming
◮ Hayes has functional vision of computation as deduction
◮ execution by resolution and paramodulation
◮ rewriting-based languages (OBJ, Maude, ASF+SDF)

◮ 2008: easily programmed in a modern theorem prover

TPHOLs 2008 17 / 80



Logic and functional programming

◮ Logic Programming
◮ Kowalski has relational vision of programming as deduction
◮ execution by a resolution theorem prover
◮ Colmerauer develops Prolog

◮ Functional Programming
◮ Hayes has functional vision of computation as deduction
◮ execution by resolution and paramodulation
◮ rewriting-based languages (OBJ, Maude, ASF+SDF)

◮ 2008: easily programmed in a modern theorem prover

TPHOLs 2008 18 / 80



Logic and functional programming

◮ Logic Programming
◮ Kowalski has relational vision of programming as deduction
◮ execution by a resolution theorem prover
◮ Colmerauer develops Prolog

◮ Functional Programming
◮ Hayes has functional vision of computation as deduction
◮ execution by resolution and paramodulation
◮ rewriting-based languages (OBJ, Maude, ASF+SDF)

◮ 2008: easily programmed in a modern theorem prover

TPHOLs 2008 19 / 80



Logic and functional programming

◮ Logic Programming
◮ Kowalski has relational vision of programming as deduction
◮ execution by a resolution theorem prover
◮ Colmerauer develops Prolog

◮ Functional Programming
◮ Hayes has functional vision of computation as deduction
◮ execution by resolution and paramodulation
◮ rewriting-based languages (OBJ, Maude, ASF+SDF)

◮ 2008: easily programmed in a modern theorem prover

TPHOLs 2008 20 / 80



Computation = Logic + Control

◮ Classic functional and logic programming
◮ programming is writing logic formulas
◮ control of execution implicit in form of formula
◮ execution using a “uniform proof procedure”
◮ efficient formulas might lose declarative clarity

◮ Programming in logic using a theorem prover
◮ programming is still writing logic formulas
◮ execution by user-customised proof procedure
◮ efficiency requires ingenuity by proof script programmer
◮ formulas optimised for declarative clarity not efficiency

TPHOLs 2008 21 / 80



Computation = Logic + Control

◮ Classic functional and logic programming
◮ programming is writing logic formulas
◮ control of execution implicit in form of formula
◮ execution using a “uniform proof procedure”
◮ efficient formulas might lose declarative clarity

◮ Programming in logic using a theorem prover
◮ programming is still writing logic formulas
◮ execution by user-customised proof procedure
◮ efficiency requires ingenuity by proof script programmer
◮ formulas optimised for declarative clarity not efficiency

TPHOLs 2008 22 / 80



Computation = Logic + Control

◮ Classic functional and logic programming
◮ programming is writing logic formulas
◮ control of execution implicit in form of formula
◮ execution using a “uniform proof procedure”
◮ efficient formulas might lose declarative clarity

◮ Programming in logic using a theorem prover
◮ programming is still writing logic formulas
◮ execution by user-customised proof procedure
◮ efficiency requires ingenuity by proof script programmer
◮ formulas optimised for declarative clarity not efficiency

TPHOLs 2008 23 / 80



Computation = Logic + Control

◮ Classic functional and logic programming
◮ programming is writing logic formulas
◮ control of execution implicit in form of formula
◮ execution using a “uniform proof procedure”
◮ efficient formulas might lose declarative clarity

◮ Programming in logic using a theorem prover
◮ programming is still writing logic formulas
◮ execution by user-customised proof procedure
◮ efficiency requires ingenuity by proof script programmer
◮ formulas optimised for declarative clarity not efficiency

TPHOLs 2008 24 / 80



Computation = Logic + Control

◮ Classic functional and logic programming
◮ programming is writing logic formulas
◮ control of execution implicit in form of formula
◮ execution using a “uniform proof procedure”
◮ efficient formulas might lose declarative clarity

◮ Programming in logic using a theorem prover
◮ programming is still writing logic formulas
◮ execution by user-customised proof procedure
◮ efficiency requires ingenuity by proof script programmer
◮ formulas optimised for declarative clarity not efficiency

TPHOLs 2008 25 / 80



A theorem prover is a programming environment

◮ Modern provers all support programming in logic
◮ ACL2, Coq, Isabelle, HOL (various), PVS

◮ Good efficiency
◮ especially ACL2, Coq, PVS

◮ Programs as logic terms have a tractable semantics
◮ unlike modern logic and functional programming languages

◮ Already substantial examples of programs written in logic
◮ Compcert Clight compiler
◮ processor models (ARM, Rockwell Collins)

◮ Can interface to external solvers
◮ BDD, SAT, SMT, FOL
◮ special purpose tools (e.g. CIL, GNU assembler)

TPHOLs 2008 26 / 80



A theorem prover is a programming environment

◮ Modern provers all support programming in logic
◮ ACL2, Coq, Isabelle, HOL (various), PVS

◮ Good efficiency
◮ especially ACL2, Coq, PVS

◮ Programs as logic terms have a tractable semantics
◮ unlike modern logic and functional programming languages

◮ Already substantial examples of programs written in logic
◮ Compcert Clight compiler
◮ processor models (ARM, Rockwell Collins)

◮ Can interface to external solvers
◮ BDD, SAT, SMT, FOL
◮ special purpose tools (e.g. CIL, GNU assembler)

TPHOLs 2008 27 / 80



A theorem prover is a programming environment

◮ Modern provers all support programming in logic
◮ ACL2, Coq, Isabelle, HOL (various), PVS

◮ Good efficiency
◮ especially ACL2, Coq, PVS

◮ Programs as logic terms have a tractable semantics
◮ unlike modern logic and functional programming languages

◮ Already substantial examples of programs written in logic
◮ Compcert Clight compiler
◮ processor models (ARM, Rockwell Collins)

◮ Can interface to external solvers
◮ BDD, SAT, SMT, FOL
◮ special purpose tools (e.g. CIL, GNU assembler)

TPHOLs 2008 28 / 80



A theorem prover is a programming environment

◮ Modern provers all support programming in logic
◮ ACL2, Coq, Isabelle, HOL (various), PVS

◮ Good efficiency
◮ especially ACL2, Coq, PVS

◮ Programs as logic terms have a tractable semantics
◮ unlike modern logic and functional programming languages

◮ Already substantial examples of programs written in logic
◮ Compcert Clight compiler
◮ processor models (ARM, Rockwell Collins)

◮ Can interface to external solvers
◮ BDD, SAT, SMT, FOL
◮ special purpose tools (e.g. CIL, GNU assembler)

TPHOLs 2008 29 / 80



A theorem prover is a programming environment

◮ Modern provers all support programming in logic
◮ ACL2, Coq, Isabelle, HOL (various), PVS

◮ Good efficiency
◮ especially ACL2, Coq, PVS

◮ Programs as logic terms have a tractable semantics
◮ unlike modern logic and functional programming languages

◮ Already substantial examples of programs written in logic
◮ Compcert Clight compiler
◮ processor models (ARM, Rockwell Collins)

◮ Can interface to external solvers
◮ BDD, SAT, SMT, FOL
◮ special purpose tools (e.g. CIL, GNU assembler)

TPHOLs 2008 30 / 80



A theorem prover is a programming environment

◮ Modern provers all support programming in logic
◮ ACL2, Coq, Isabelle, HOL (various), PVS

◮ Good efficiency
◮ especially ACL2, Coq, PVS

◮ Programs as logic terms have a tractable semantics
◮ unlike modern logic and functional programming languages

◮ Already substantial examples of programs written in logic
◮ Compcert Clight compiler
◮ processor models (ARM, Rockwell Collins)

◮ Can interface to external solvers
◮ BDD, SAT, SMT, FOL
◮ special purpose tools (e.g. CIL, GNU assembler)

TPHOLs 2008 31 / 80



Moving to next generation software verifiers

◮ Now: shallow properties of real code
or
deep properties of toy code

◮ Future: shallow properties of real code
and
deep properties of real code

◮ Extend shallow analysis to full functional correctness
◮ shape analysis: result is a list
◮ full correctness: result is sorted permutation of input

◮ Future verifiers programmed in a theorem prover
◮ long-term idealism: everything programmed by deduction
◮ short-term pragmatism: trust external oracles

TPHOLs 2008 32 / 80



Moving to next generation software verifiers

◮ Now: shallow properties of real code
or
deep properties of toy code

◮ Future: shallow properties of real code
and
deep properties of real code

◮ Extend shallow analysis to full functional correctness
◮ shape analysis: result is a list
◮ full correctness: result is sorted permutation of input

◮ Future verifiers programmed in a theorem prover
◮ long-term idealism: everything programmed by deduction
◮ short-term pragmatism: trust external oracles

TPHOLs 2008 33 / 80



Moving to next generation software verifiers

◮ Now: shallow properties of real code
or
deep properties of toy code

◮ Future: shallow properties of real code
and
deep properties of real code

◮ Extend shallow analysis to full functional correctness
◮ shape analysis: result is a list
◮ full correctness: result is sorted permutation of input

◮ Future verifiers programmed in a theorem prover
◮ long-term idealism: everything programmed by deduction
◮ short-term pragmatism: trust external oracles

TPHOLs 2008 34 / 80



Moving to next generation software verifiers

◮ Now: shallow properties of real code
or
deep properties of toy code

◮ Future: shallow properties of real code
and
deep properties of real code

◮ Extend shallow analysis to full functional correctness
◮ shape analysis: result is a list
◮ full correctness: result is sorted permutation of input

◮ Future verifiers programmed in a theorem prover
◮ long-term idealism: everything programmed by deduction
◮ short-term pragmatism: trust external oracles

TPHOLs 2008 35 / 80



Moving to next generation software verifiers

◮ Now: shallow properties of real code
or
deep properties of toy code

◮ Future: shallow properties of real code
and
deep properties of real code

◮ Extend shallow analysis to full functional correctness
◮ shape analysis: result is a list
◮ full correctness: result is sorted permutation of input

◮ Future verifiers programmed in a theorem prover
◮ long-term idealism: everything programmed by deduction
◮ short-term pragmatism: trust external oracles

TPHOLs 2008 36 / 80



Beyond Church

◮ Logic programming reborn
◮ theorems provers are the the new IDE
◮ ACL2 almost as fast as C, others not far behind
◮ immediate application to new generation of verifiers

◮ Beyond Church
◮ HOL2P, HOL-Omega
◮ set theory

◮ One mathematics, many tools
◮ provers linked
◮ most ordinary mathematics machine checked
◮ tool-independent library of trustable theorems (QED)

TPHOLs 2008 37 / 80



Beyond Church

◮ Logic programming reborn
◮ theorems provers are the the new IDE
◮ ACL2 almost as fast as C, others not far behind
◮ immediate application to new generation of verifiers

◮ Beyond Church
◮ HOL2P, HOL-Omega
◮ set theory

◮ One mathematics, many tools
◮ provers linked
◮ most ordinary mathematics machine checked
◮ tool-independent library of trustable theorems (QED)

TPHOLs 2008 38 / 80



Is HOL powerful enough?

◮ Amazing what one can due even with propositional logic
◮ e.g. bit-blasting then SAT

◮ First order logic (FOL) might seem enough
◮ impressive Boyer-Moore proofs (e.g. Gödel’s theorem)
◮ can’t do standard mathematics directly (need set theory)

◮ Simple type theory (HOL) is almost enough
◮ sufficient for almost all mathematics
◮ but not for functional programs (e.g. can’t express monads)

◮ Fancier type theories plug some gaps
◮ PVS significantly more expressive than HOL
◮ Coq can express everything, but . . .

◮ Why not set theory
◮ no set theory system as good as today’s HOL systems

TPHOLs 2008 39 / 80



Is HOL powerful enough?

◮ Amazing what one can due even with propositional logic
◮ e.g. bit-blasting then SAT

◮ First order logic (FOL) might seem enough
◮ impressive Boyer-Moore proofs (e.g. Gödel’s theorem)
◮ can’t do standard mathematics directly (need set theory)

◮ Simple type theory (HOL) is almost enough
◮ sufficient for almost all mathematics
◮ but not for functional programs (e.g. can’t express monads)

◮ Fancier type theories plug some gaps
◮ PVS significantly more expressive than HOL
◮ Coq can express everything, but . . .

◮ Why not set theory
◮ no set theory system as good as today’s HOL systems

TPHOLs 2008 40 / 80



Is HOL powerful enough?

◮ Amazing what one can due even with propositional logic
◮ e.g. bit-blasting then SAT

◮ First order logic (FOL) might seem enough
◮ impressive Boyer-Moore proofs (e.g. Gödel’s theorem)
◮ can’t do standard mathematics directly (need set theory)

◮ Simple type theory (HOL) is almost enough
◮ sufficient for almost all mathematics
◮ but not for functional programs (e.g. can’t express monads)

◮ Fancier type theories plug some gaps
◮ PVS significantly more expressive than HOL
◮ Coq can express everything, but . . .

◮ Why not set theory
◮ no set theory system as good as today’s HOL systems

TPHOLs 2008 41 / 80



Is HOL powerful enough?

◮ Amazing what one can due even with propositional logic
◮ e.g. bit-blasting then SAT

◮ First order logic (FOL) might seem enough
◮ impressive Boyer-Moore proofs (e.g. Gödel’s theorem)
◮ can’t do standard mathematics directly (need set theory)

◮ Simple type theory (HOL) is almost enough
◮ sufficient for almost all mathematics
◮ but not for functional programs (e.g. can’t express monads)

◮ Fancier type theories plug some gaps
◮ PVS significantly more expressive than HOL
◮ Coq can express everything, but . . .

◮ Why not set theory
◮ no set theory system as good as today’s HOL systems

TPHOLs 2008 42 / 80



Is HOL powerful enough?

◮ Amazing what one can due even with propositional logic
◮ e.g. bit-blasting then SAT

◮ First order logic (FOL) might seem enough
◮ impressive Boyer-Moore proofs (e.g. Gödel’s theorem)
◮ can’t do standard mathematics directly (need set theory)

◮ Simple type theory (HOL) is almost enough
◮ sufficient for almost all mathematics
◮ but not for functional programs (e.g. can’t express monads)

◮ Fancier type theories plug some gaps
◮ PVS significantly more expressive than HOL
◮ Coq can express everything, but . . .

◮ Why not set theory
◮ no set theory system as good as today’s HOL systems

TPHOLs 2008 43 / 80



Is HOL powerful enough?

◮ Amazing what one can due even with propositional logic
◮ e.g. bit-blasting then SAT

◮ First order logic (FOL) might seem enough
◮ impressive Boyer-Moore proofs (e.g. Gödel’s theorem)
◮ can’t do standard mathematics directly (need set theory)

◮ Simple type theory (HOL) is almost enough
◮ sufficient for almost all mathematics
◮ but not for functional programs (e.g. can’t express monads)

◮ Fancier type theories plug some gaps
◮ PVS significantly more expressive than HOL
◮ Coq can express everything, but . . .

◮ Why not set theory
◮ no set theory system as good as today’s HOL systems

TPHOLs 2008 44 / 80



A significant step: Peter Homeier’s HOL-Omega

◮ HOL-Omega is an extension of HOL4
◮ inspired by and extends Norbert Völker’s HOL2P
◮ but doesn’t stop at second order types

◮ Metatheory still undergoing certification!
◮ intuitively plausible, but needs formal soundness proof
◮ intented to have set-theoretic model

◮ Handles functional programming idioms impossible in HOL
◮ monads
◮ differently typed instances of a variable:

∀φ. functor(φ) = ∀f g. φ(f ◦ g) = (φ f ) ◦ (φ g)
(example from Norbert Völker’s TPHOLs 2007 paper)

◮ Available now!
◮ fully compatible with existing HOL4 system
◮ svn checkout https://hol.svn.sf.net/svnroot/hol/branches/HOL-Omega

TPHOLs 2008 45 / 80



A significant step: Peter Homeier’s HOL-Omega

◮ HOL-Omega is an extension of HOL4
◮ inspired by and extends Norbert Völker’s HOL2P
◮ but doesn’t stop at second order types

◮ Metatheory still undergoing certification!
◮ intuitively plausible, but needs formal soundness proof
◮ intented to have set-theoretic model

◮ Handles functional programming idioms impossible in HOL
◮ monads
◮ differently typed instances of a variable:

∀φ. functor(φ) = ∀f g. φ(f ◦ g) = (φ f ) ◦ (φ g)
(example from Norbert Völker’s TPHOLs 2007 paper)

◮ Available now!
◮ fully compatible with existing HOL4 system
◮ svn checkout https://hol.svn.sf.net/svnroot/hol/branches/HOL-Omega

TPHOLs 2008 46 / 80



A significant step: Peter Homeier’s HOL-Omega

◮ HOL-Omega is an extension of HOL4
◮ inspired by and extends Norbert Völker’s HOL2P
◮ but doesn’t stop at second order types

◮ Metatheory still undergoing certification!
◮ intuitively plausible, but needs formal soundness proof
◮ intented to have set-theoretic model

◮ Handles functional programming idioms impossible in HOL
◮ monads
◮ differently typed instances of a variable:

∀φ. functor(φ) = ∀f g. φ(f ◦ g) = (φ f ) ◦ (φ g)
(example from Norbert Völker’s TPHOLs 2007 paper)

◮ Available now!
◮ fully compatible with existing HOL4 system
◮ svn checkout https://hol.svn.sf.net/svnroot/hol/branches/HOL-Omega

TPHOLs 2008 47 / 80



A significant step: Peter Homeier’s HOL-Omega

◮ HOL-Omega is an extension of HOL4
◮ inspired by and extends Norbert Völker’s HOL2P
◮ but doesn’t stop at second order types

◮ Metatheory still undergoing certification!
◮ intuitively plausible, but needs formal soundness proof
◮ intented to have set-theoretic model

◮ Handles functional programming idioms impossible in HOL
◮ monads
◮ differently typed instances of a variable:

∀φ. functor(φ) = ∀f g. φ(f ◦ g) = (φ f ) ◦ (φ g)
(example from Norbert Völker’s TPHOLs 2007 paper)

◮ Available now!
◮ fully compatible with existing HOL4 system
◮ svn checkout https://hol.svn.sf.net/svnroot/hol/branches/HOL-Omega

TPHOLs 2008 48 / 80



A significant step: Peter Homeier’s HOL-Omega

◮ HOL-Omega is an extension of HOL4
◮ inspired by and extends Norbert Völker’s HOL2P
◮ but doesn’t stop at second order types

◮ Metatheory still undergoing certification!
◮ intuitively plausible, but needs formal soundness proof
◮ intented to have set-theoretic model

◮ Handles functional programming idioms impossible in HOL
◮ monads
◮ differently typed instances of a variable:

∀φ. functor(φ) = ∀f g. φ(f ◦ g) = (φ f ) ◦ (φ g)
(example from Norbert Völker’s TPHOLs 2007 paper)

◮ Available now!
◮ fully compatible with existing HOL4 system
◮ svn checkout https://hol.svn.sf.net/svnroot/hol/branches/HOL-Omega

TPHOLs 2008 49 / 80



The lure of Set Theory

◮ Standard
◮ widely taught in schools and university
◮ what mathematicians view as foundation

◮ Underlies popular specification methods
◮ Z, VDM, TLA+

◮ Well understood axiomatisations (e.g. ZFC)
◮ stable compared with type theory

◮ More expressive than HOL
◮ Scott domains (D∞), category theory (monads)

◮ Potential lingua franca
◮ classical HOL logics can be embedded in set theory

TPHOLs 2008 50 / 80



The lure of Set Theory

◮ Standard
◮ widely taught in schools and university
◮ what mathematicians view as foundation

◮ Underlies popular specification methods
◮ Z, VDM, TLA+

◮ Well understood axiomatisations (e.g. ZFC)
◮ stable compared with type theory

◮ More expressive than HOL
◮ Scott domains (D∞), category theory (monads)

◮ Potential lingua franca
◮ classical HOL logics can be embedded in set theory

TPHOLs 2008 51 / 80



The lure of Set Theory

◮ Standard
◮ widely taught in schools and university
◮ what mathematicians view as foundation

◮ Underlies popular specification methods
◮ Z, VDM, TLA+

◮ Well understood axiomatisations (e.g. ZFC)
◮ stable compared with type theory

◮ More expressive than HOL
◮ Scott domains (D∞), category theory (monads)

◮ Potential lingua franca
◮ classical HOL logics can be embedded in set theory

TPHOLs 2008 52 / 80



The lure of Set Theory

◮ Standard
◮ widely taught in schools and university
◮ what mathematicians view as foundation

◮ Underlies popular specification methods
◮ Z, VDM, TLA+

◮ Well understood axiomatisations (e.g. ZFC)
◮ stable compared with type theory

◮ More expressive than HOL
◮ Scott domains (D∞), category theory (monads)

◮ Potential lingua franca
◮ classical HOL logics can be embedded in set theory

TPHOLs 2008 53 / 80



The lure of Set Theory

◮ Standard
◮ widely taught in schools and university
◮ what mathematicians view as foundation

◮ Underlies popular specification methods
◮ Z, VDM, TLA+

◮ Well understood axiomatisations (e.g. ZFC)
◮ stable compared with type theory

◮ More expressive than HOL
◮ Scott domains (D∞), category theory (monads)

◮ Potential lingua franca
◮ classical HOL logics can be embedded in set theory

TPHOLs 2008 54 / 80



The lure of Set Theory

◮ Standard
◮ widely taught in schools and university
◮ what mathematicians view as foundation

◮ Underlies popular specification methods
◮ Z, VDM, TLA+

◮ Well understood axiomatisations (e.g. ZFC)
◮ stable compared with type theory

◮ More expressive than HOL
◮ Scott domains (D∞), category theory (monads)

◮ Potential lingua franca
◮ classical HOL logics can be embedded in set theory

TPHOLs 2008 55 / 80



An old dream

◮ Best of both worlds: type theory on top of set theory

◮ Soft types defined as sets
◮ typechecking becomes ordinary theorem proving
◮ types are first class (quantified, passed as parameters etc.)
◮ higher order types (HOL-Omega) just definable

◮ Functions are sets
◮ define λ-notation: (λx . E [x ]) = {(x , y) | y = E [x ]}
◮ define function application: f ⋄ x = εy . 〈x , y〉 ∈ f
◮ HOL logic proof infrastructure derived

TPHOLs 2008 56 / 80



An old dream

◮ Best of both worlds: type theory on top of set theory

◮ Soft types defined as sets
◮ typechecking becomes ordinary theorem proving
◮ types are first class (quantified, passed as parameters etc.)
◮ higher order types (HOL-Omega) just definable

◮ Functions are sets
◮ define λ-notation: (λx . E [x ]) = {(x , y) | y = E [x ]}
◮ define function application: f ⋄ x = εy . 〈x , y〉 ∈ f
◮ HOL logic proof infrastructure derived

TPHOLs 2008 57 / 80



An old dream

◮ Best of both worlds: type theory on top of set theory

◮ Soft types defined as sets
◮ typechecking becomes ordinary theorem proving
◮ types are first class (quantified, passed as parameters etc.)
◮ higher order types (HOL-Omega) just definable

◮ Functions are sets
◮ define λ-notation: (λx . E [x ]) = {(x , y) | y = E [x ]}
◮ define function application: f ⋄ x = εy . 〈x , y〉 ∈ f
◮ HOL logic proof infrastructure derived

TPHOLs 2008 58 / 80



An old dream

◮ Best of both worlds: type theory on top of set theory

◮ Soft types defined as sets
◮ typechecking becomes ordinary theorem proving
◮ types are first class (quantified, passed as parameters etc.)
◮ higher order types (HOL-Omega) just definable

◮ Functions are sets
◮ define λ-notation: (λx . E [x ]) = {(x , y) | y = E [x ]}
◮ define function application: f ⋄ x = εy . 〈x , y〉 ∈ f
◮ HOL logic proof infrastructure derived

TPHOLs 2008 59 / 80



I tried to implement set theory but failed!

◮ Tried to engineer too slick HOL shallow embedding
◮ needed to trust complex ML encoding polymorphism
◮ e.g. I : α → α vs. (λx : ST. x) vs. {(x , x) | x ∈ α} : ST

◮ Tempted by elegance of ZF axioms in HOL
◮ e.g. replacement: ∀f s. ∃t . ∀y . y ∈ t = ∃x ∈ s. y = f x
◮ worried about relation to standard ZF in FOL

◮ But I still think set theory should be the long term aim!

TPHOLs 2008 60 / 80



I tried to implement set theory but failed!

◮ Tried to engineer too slick HOL shallow embedding
◮ needed to trust complex ML encoding polymorphism
◮ e.g. I : α → α vs. (λx : ST. x) vs. {(x , x) | x ∈ α} : ST

◮ Tempted by elegance of ZF axioms in HOL
◮ e.g. replacement: ∀f s. ∃t . ∀y . y ∈ t = ∃x ∈ s. y = f x
◮ worried about relation to standard ZF in FOL

◮ But I still think set theory should be the long term aim!

TPHOLs 2008 61 / 80



I tried to implement set theory but failed!

◮ Tried to engineer too slick HOL shallow embedding
◮ needed to trust complex ML encoding polymorphism
◮ e.g. I : α → α vs. (λx : ST. x) vs. {(x , x) | x ∈ α} : ST

◮ Tempted by elegance of ZF axioms in HOL
◮ e.g. replacement: ∀f s. ∃t . ∀y . y ∈ t = ∃x ∈ s. y = f x
◮ worried about relation to standard ZF in FOL

◮ But I still think set theory should be the long term aim!

TPHOLs 2008 62 / 80



I tried to implement set theory but failed!

◮ Tried to engineer too slick HOL shallow embedding
◮ needed to trust complex ML encoding polymorphism
◮ e.g. I : α → α vs. (λx : ST. x) vs. {(x , x) | x ∈ α} : ST

◮ Tempted by elegance of ZF axioms in HOL
◮ e.g. replacement: ∀f s. ∃t . ∀y . y ∈ t = ∃x ∈ s. y = f x
◮ worried about relation to standard ZF in FOL

◮ But I still think set theory should be the long term aim!

TPHOLs 2008 63 / 80



One mathematics, many tools

◮ Logic programming reborn
◮ theorems provers are the the new IDE
◮ ACL2 almost as fast as C, others not far behind
◮ immediate application to new generation of verifiers

◮ Beyond Church
◮ HOL2P, HOL-Omega
◮ set theory

◮ One mathematics, many tools
◮ provers linked
◮ most ordinary mathematics machine checked
◮ tool-independent library of trustable theorems (QED)

TPHOLs 2008 64 / 80



One mathematics, many tools

◮ Logic programming reborn
◮ theorems provers are the the new IDE
◮ ACL2 almost as fast as C, others not far behind
◮ immediate application to new generation of verifiers

◮ Beyond Church
◮ HOL2P, HOL-Omega
◮ set theory

◮ One mathematics, many tools
◮ provers linked
◮ most ordinary mathematics machine checked
◮ tool-independent library of trustable theorems (QED)

TPHOLs 2008 65 / 80



Towards compatible proof systems

◮ Most of the world does mathematics in set theory
◮ that’s the official story
◮ reality unclear

◮ Coq might appear an exception
◮ but used for classical Four Color theorem, elliptic curves
◮ Coq + axioms handles classical non-constructive theorems

◮ Slurping theorems from tool A into tool B impossible today!
◮ even moving between Isabelle/HOL and other HOLs is hard
◮ worse: sharing developments in HOL, PVS, Coq, ACL2

◮ Need a lingua franca for formalised mathematics
◮ set theorem seems to me the only reasonable choice!

TPHOLs 2008 66 / 80



Towards compatible proof systems

◮ Most of the world does mathematics in set theory
◮ that’s the official story
◮ reality unclear

◮ Coq might appear an exception
◮ but used for classical Four Color theorem, elliptic curves
◮ Coq + axioms handles classical non-constructive theorems

◮ Slurping theorems from tool A into tool B impossible today!
◮ even moving between Isabelle/HOL and other HOLs is hard
◮ worse: sharing developments in HOL, PVS, Coq, ACL2

◮ Need a lingua franca for formalised mathematics
◮ set theorem seems to me the only reasonable choice!

TPHOLs 2008 67 / 80



Towards compatible proof systems

◮ Most of the world does mathematics in set theory
◮ that’s the official story
◮ reality unclear

◮ Coq might appear an exception
◮ but used for classical Four Color theorem, elliptic curves
◮ Coq + axioms handles classical non-constructive theorems

◮ Slurping theorems from tool A into tool B impossible today!
◮ even moving between Isabelle/HOL and other HOLs is hard
◮ worse: sharing developments in HOL, PVS, Coq, ACL2

◮ Need a lingua franca for formalised mathematics
◮ set theorem seems to me the only reasonable choice!

TPHOLs 2008 68 / 80



Towards compatible proof systems

◮ Most of the world does mathematics in set theory
◮ that’s the official story
◮ reality unclear

◮ Coq might appear an exception
◮ but used for classical Four Color theorem, elliptic curves
◮ Coq + axioms handles classical non-constructive theorems

◮ Slurping theorems from tool A into tool B impossible today!
◮ even moving between Isabelle/HOL and other HOLs is hard
◮ worse: sharing developments in HOL, PVS, Coq, ACL2

◮ Need a lingua franca for formalised mathematics
◮ set theorem seems to me the only reasonable choice!

TPHOLs 2008 69 / 80



Towards compatible proof systems

◮ Most of the world does mathematics in set theory
◮ that’s the official story
◮ reality unclear

◮ Coq might appear an exception
◮ but used for classical Four Color theorem, elliptic curves
◮ Coq + axioms handles classical non-constructive theorems

◮ Slurping theorems from tool A into tool B impossible today!
◮ even moving between Isabelle/HOL and other HOLs is hard
◮ worse: sharing developments in HOL, PVS, Coq, ACL2

◮ Need a lingua franca for formalised mathematics
◮ set theorem seems to me the only reasonable choice!

TPHOLs 2008 70 / 80



Challenges for a mathematical lingua franca

◮ Need a concrete sytax
◮ easy to parse and print

◮ Need method of storing proofs
◮ hard to make this tool independent

◮ Need proof of concept
◮ maybe one pioneer enough!

◮ Eventually need “buy in” from main tool developers
◮ the hardest challenge of all!

TPHOLs 2008 71 / 80



Challenges for a mathematical lingua franca

◮ Need a concrete sytax
◮ easy to parse and print

◮ Need method of storing proofs
◮ hard to make this tool independent

◮ Need proof of concept
◮ maybe one pioneer enough!

◮ Eventually need “buy in” from main tool developers
◮ the hardest challenge of all!

TPHOLs 2008 72 / 80



Challenges for a mathematical lingua franca

◮ Need a concrete sytax
◮ easy to parse and print

◮ Need method of storing proofs
◮ hard to make this tool independent

◮ Need proof of concept
◮ maybe one pioneer enough!

◮ Eventually need “buy in” from main tool developers
◮ the hardest challenge of all!

TPHOLs 2008 73 / 80



Challenges for a mathematical lingua franca

◮ Need a concrete sytax
◮ easy to parse and print

◮ Need method of storing proofs
◮ hard to make this tool independent

◮ Need proof of concept
◮ maybe one pioneer enough!

◮ Eventually need “buy in” from main tool developers
◮ the hardest challenge of all!

TPHOLs 2008 74 / 80



Challenges for a mathematical lingua franca

◮ Need a concrete sytax
◮ easy to parse and print

◮ Need method of storing proofs
◮ hard to make this tool independent

◮ Need proof of concept
◮ maybe one pioneer enough!

◮ Eventually need “buy in” from main tool developers
◮ the hardest challenge of all!

TPHOLs 2008 75 / 80



Summary

◮ Logic programming reborn
◮ proof scripting in theorem provers

◮ Beyond Church
◮ HOL2P, HOL-Omega, ST

◮ One mathematics, many tools
◮ provers linked via universal library of theories

TPHOLs 2008 76 / 80



Summary

◮ Beyond Church
◮ HOL2P, HOL-Omega, ST

TPHOLs 2008 77 / 80



Summary

◮ One mathematics, many tools
◮ provers linked via universal library of theories

TPHOLs 2008 78 / 80



Summary

◮ Logic programming reborn
◮ proof scripting in theorem provers

◮ Beyond Church
◮ HOL2P, HOL-Omega, ST

◮ One mathematics, many tools
◮ provers linked via universal library of theories

TPHOLs 2008 79 / 80



Summary

◮ Logic programming reborn
◮ proof scripting in theorem provers

◮ Beyond Church
◮ HOL2P, HOL-Omega, ST

◮ One mathematics, many tools
◮ provers linked via universal library of theories

THE END

TPHOLs 2008 80 / 80


