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Abstract

In this paper, the classical least squares (LS) and recursive least squares (RLS) for parameter estima-
tion have been re-examined in the light of the present day computing capabilities. It has been demon-
strated that for linear time-invariant systems, the performance of blockwise least squares (BLS) is
always superior to that of RLS. In the context of parameter estimation for dynamic systems, the current
computational capability of personal computers are more than adequate for BLS. However, for time-
varying systems with abrupt parameter changes, standard blockwise LS may no longer be suitable
due to its inefficiency in discarding “old” data. To deal with this limitation, a novel sliding window
blockwise least squares approach with automatically adjustable window length triggered by a change
detection scheme is proposed. Two types of sliding windows, rectangular and exponential, have been
investigated. The performance of the proposed algorithm has been illustrated by comparing with the
standard RLS and an exponentially weighted RLS (EWRLS) using two examples. The simulation results
have conclusively shown that: (1) BLS has better performance than RLS; (2) the proposed variable-
length sliding window blockwise least squares (VLSWBLS) algorithm can outperform RLS with forget-
ting factors; (3) the scheme has both good tracking ability for abrupt parameter changes and can ensure
the high accuracy of parameter estimate at the steady-state; and (4) the computational burden of
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VLSWBLS is completely manageable with the current computer technology. Even though the idea pre-
sented here is straightforward, it has significant implications to virtually all areas of application where
RLS schemes are used.

© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Since Karl Gauss proposed the technique of least squares around 1795 to predict the motion of
planets and comets using telescopic measurements, least squares (LS) and its many variants have
been extensively applied to solving estimation problems in many fields of application [6,7,9,11-13].
The classical formula of least squares is in batch or block form, meaning that all measurements are
collected first and then processed simultaneously. Such a formula poses major computational
problems since the computational complexity is in the order of O(N?) which grows continuously
with the number of data collected, where N is the number of parameters to be estimated. Because
of its non-iterative nature, block/batch LS algorithms are often regarded to be less desirable for
on-line applications.

To increase the efficiency of LS algorithms, a recursive variant, known as recursive least squares
(RLS), has been derived. The computational complexity of RLS is in the order of O(N?).
Although RLS algorithm is theoretically equivalent to a block LS, it suffers from the following
shortcomings: (1) numerical instability due to round-off errors caused by its recursive operations
in a finite-word length environment; (2) slow tracking capability for time-varying parameters; and
(3) sensitive to the initial conditions of the algorithm.

To improve the numerical properties, several numerically more robust variants based on QR
decomposition, U-D factorization and singular value decomposition (SVD) implementations of
RLS algorithms have been developed [2,9,11]. To improve the tracking capability of RLS, tech-
niques based on variable/time-varying forgetting factors [5,11,15], covariance matrix re-setting/
modification [6,8,14], and sliding window [3,4,10,13] have been developed.

It is true that the computational complexity of an estimation algorithm was the main concern
ten to twenty years ago, but it is no more! To date, benefiting from rapid advance in computer
technology, the computational complexity of LS becomes much less an issue. One may choose
to view the advancement in computer technology being relative to the complexity of the problem
that we are able to solve with RLS. In the context of dynamic system identification, the fact of
matter is that for any practical system with more than two dozen of unknown parameters, the
requirement on the system input to be persistently exciting is so high that most of the LS-based
schemes will no longer provide accurate parameter estimate anyway. For systems with fewer
parameters, the computational power of existing personal computers will be far more adequate
for block LS. It is under this circumstance that the research reported in this paper has been carried
out.

By simply extending the block least squares to blockwise least squares (BLS), the classical LS
algorithm can be easily extended to on-line applications. Leaving the computational issues aside,
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this paper has shown that BLS leads to superior performance to standard RLS in time-invariant
parameter estimation problems.

To improve the tracking capability of BLS for estimating parameters in time-varying systems,
certain techniques to effectively discard “old” data is necessary. In view of this, a new sliding-win-
dow blockwise least squares (SWBLS) algorithm is developed in this paper. Furthermore, to ob-
tain parameter estimates with both good parameter tracking and high accuracy at the steady-state
for systems with abruptly changed parameters, an automatically adjustable window length sliding
window BLS technique (abbreviated as VLSWBLYS) is also proposed. The window length adjust-
ment is triggered by a parameter change detection scheme. In addition, the added advantages of
the developed algorithm are: (1) simpler to implement and (2) no need to specify the initial condi-
tions. The use of forgetting factor within the sliding window has also been investigated to further
increase the tracking capability. The paper has shown that the VLSWBLS can significantly out-
perform the existing RLS algorithms with forgetting factors, even for time-varying systems.

The performance of the newly developed algorithms has been evaluated in comparison with
that of the existing ones for estimating parameters of time-invariant and time-varying systems,
and the superior performance has been obtained in all cases.

It is important to emphasize also that the results presented in this paper have tremendous impli-
cations. The paper may prompt those who are relying on RLS now to re-think about other op-
tions in their own field of applications.

2. Review of block and recursive least squares

Let us consider a discrete dynamic system described by

V(k) = 7 (k — 1)0
z(k) = y(k) + v(k) 0
¢ (k—1)=[—z(k—1),...,—z(k —n),u(k = 1),...,u(k — m)]

0T: [alv"'aambla"'abm]

where u(k) and y(k) are the system input and output, respectively. z(k) is measured system output
and v(k) is a zero-mean white Gaussian noise term which counts for measurement noise and mod-
elling uncertainties. ¢’ (k — 1) and 6 are the information vector and the unknown parameter vec-
tor, respectively. The parameters in 6 can either be constant or subject to infrequent jumps. The
number of parameters to be estimated is denoted as N =n + m.

2.1. Block and blockwise least squares

To estimate the parameter vector, 0, using all available measurements up to the current instant,
j=1,2,...k, one can first define the following cost function:

J

J0.5) = )_lz2) = ¢'(j— 1oy’ (2)
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Differentiating J (0, k) with respect to 6 and setting the derivative to zero will lead to the well-
known LS solution [6,11]:

0= qu(/— D" (j — 1)] [ZM— 1>z</>] (3)

where 0 is known as the least squares estimate of 0. A
Since 6 is obtained using the sample data up to the time instant £, it is often denoted as (k). An
alternative compact matrix-vector form can be written as follows:

0(k) = [@]®,] "' [0]z] (4)
where
= [z(1) z(2) 2(k) T
[ 6"(0) T [ -=(0) —z(1=n)  u(0) u(l—m) ]
o' (1) —z(1) —z2(2—=n)  u(1) u(2 —m)
(Dk = ) =
L' (k—1)]  [-z(k=1) - —z(k—n) u(k—1) - ulk—m)], \

If this formulation of LS is used for on-line parameter estimation, one has to re-calculate the
Eq. (4) each time when a new measurement becomes available. This style of implementation is
referred to as BLS in this paper. To circumvent the problem of re-calculating Eq. (4), a recursive
version of the above scheme has been derived.

2.2. Recursive least squares

The basic idea behind a RLS algorithm is to compute the parameter update at time instant k by
adding a correction term to the previous parameter estimate (k — 1) once the new information
becomes available, rather than re-calculating Eq. (4) with the entire measurements. Such reformu-
lation has reduced the computational requirement significantly, making the RLS extremely attrac-
tive in the last three decades for on-line parameter estimation applications.

Derivation of RLS algorithms can be found in many textbooks and papers (see e.g. [6,11]). For
the sake of easy reference, a typical RLS algorithm is presented here:

0(k) = 0(k — 1) + P(k)p(k — 1)e(k) (5)

e(k) = z(k) — ¢" (k — 1)B(k — 1) (6)

_ Plk—1)¢(k—1)¢"(k—1)P(k— 1)
14+ ¢"(k—1)P(k— 1)k — 1)
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where ¢(k) is the one-step ahead prediction error. Thus, the amount of correction is proportional
to the prediction error.

It can be seen that due to its recursive nature, the complexity of the RLS has been reduced con-
siderably from O(N?) in BLS to O(N?) in each estimate update. For more details about the block
and recursive least squares algorithms, readers are referred to, for example, [6,11-13].

3. A variable-length sliding window blockwise least squares algorithm
3.1. Sliding window blockwise least squares formulation

Both of the above-discussed BLS and RLS algorithms can lead to the convergence of the
parameter estimate to their true value for time-invariant systems. However, when LS is applied
to non-stationary environments, ¢.g. system identification and parameter estimation in the pre-
sence of unknown parameter changes, forgetting factor or finite length sliding window techniques
have been widely used in association with the RLS. Such techniques can also be incorporated in
BLS.

In addition to enhancing the tracking capability of the BLS or RLS algorithm, the sliding win-
dow technique also has an inherent advantage to keep the computational complexity to a fixed
level by replacing the growing dimension in ¢, with a fixed and lower dimension matrix. To fur-
ther improve the tracking capability of the algorithm and to exploit the advantages of both sliding
window and forgetting factor techniques, an exponential weighting technique can be used within
the sliding window. Hence, a modified cost function of Eq. (2) can be described as follows:

k
Ju0.k) = > F[G) - ¢ - 1)) (8)
J=k—L+1
where L denotes the length of the sliding window. 1(0 < 4 < 1) is the forgetting factor to exponen-
tially discard the “old” data within the length of the window. The LS problem based on parameter
estimation of @ is then to minimize the above cost function with the most recent data of size L.

Following the same derivation as in the BLS, a sliding exponentially weighted window block-

wise least squares (SEWBLS) algorithm can be obtained as follows:

0, (k) = LZ 1"f¢<j—1>¢T<j—1>] LZ A" (j = 1)z()) 9)

—h—L+1 —k—L+1

or, in a compact matrix-vector form as

- -1
0..(k) = [(gpﬁ—L-«—l)TAi—L-&-]@i—L-&-l] [(¢£—L+])TA§—L+1Z£—L+1] (10)
where @, | is similarly defined as in Eq. (4), and 4;_, ,, is a L x L diagonal matrix with diagonal
elements being the forgetting factors, JE-L =2 0 00
The performance of the above algorithm will depend on the length of the sliding window.

For time-invariant systems, the longer the window length, the higher the estimation accuracy.
However, for a system with abrupt parameter changes, to achieve fast tracking of the changed
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parameters, the window length should be adjusted accordingly so that the out-of-date information
from the past measurements can be discarded effectively to assign a relatively heavier weight on
the latest measurement.

3.2. Automatic window length adjustment

To automatically initiate the window length adjustment, a change detection mechanism and a
window length adjustment strategy must be developed.

3.2.1. Change detection mechanism
There are many ways that one can detect parameter changes, an easy way to implement change
detector can be just based on the prediction error of the system within the sliding-window:

eh) =2y~ 21 =2 1 — ¢£7L+lél(k) (11)

where zf , = [z(k—L+1) z(k—L) --- z(k)]" and  ,,, is its estimated counterpart.
A decision to decrease the window length at time k = kp can be made if the following averaged
sliding-window detection index:
| k
dik)=— Y e (ie(i) (12)

i=k—M+1

exceeds a pre-set threshold p
d(k) _ p (13)

where Hy = {No change in the system parameters}, H; = {Parameter changes have occurred in
the system}. M is the window length for calculating the detection index. If the change is detected
at time kp, kp will be referred to as the detection time.

It should be noted that Eq. (12) is only a very simple scheme for change detection. There are
many other more sophisticated change detection techniques available. Detailed discussion will
be beyond the scope of this paper. Interested readers are referred to [1,7] for more information.

3.2.2. Length adjustable sliding window

To improve the tracking ability of BLS, a new window length adjustment strategy has been
developed. The essence of the proposed approach lies in its ability to quickly shrink the win-
dow length, should a change in the system parameters be detected. By using a shorter win-
dow length, it allows the algorithm to track the parameter changes quickly. From the onset
of this window shrinking, the window length will be progressively expanding and returning to
the original width to maintain the steady-state performance of the algorithm. Such a fast
shrinking and gradual expanding window makes this approach suitable for a wide range of
applications.
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(a) 4 No parameter change up to time &
» k
k-L+1 k
(b) A No parameter change up to time &
LR / —> Sliding window
» k
k-L+1 k
(c) 4 Automatic window adjustment once A short progressively-
a change has been detected at k = kp increasing variable-
length window is
® Wi applied
» k
ko-N i k=ko
(d) 4 Automatic window adjustment once
a change has been detected at kp
» k
ko-N | ko k=ko-N+L-1
(e) 4 Return to sliding window with the fixed
length
» k
ko k-L+1 k

Fig. 1. Demonstration for automatic adjustment of the window length.

To illustrate this concept clearly, consider five snap-shots shown in Fig. 1. If there are no de-
tected changes, a sliding window of length L is used. This situation is shown in Fig. 1(a) and (b).
Suppose some parameters of the system have undergone changes, and they are detected at kp. At
this point, the window length is reduced drastically to discount the measurements in the subse-
quent LS calculations. This case is illustrated in Fig. 1(c). As new data becomes available, the win-
dow size will increase step-by-step until it again reaches the full length L. Thereafter, the original
sliding window scheme resumes as shown in Fig. 1(d) and (e).

As we know, the window size for a LS calculation has to be greater than the number of param-
eters to be estimated. In this case, the minimum window length will be N + 1. Furthermore, at the
instant of the window shrinking, &%, .1 may still contain some data prior to the parameter
change. One way to further improving the performance of this scheme is to use an exponential
weighting within this shrunk window. However, our experience indicates that, because of the rela-
tively short window length at the initial stage of shrinking, the effect of such weighting is not
significant.

4. Illustrative examples

To illustrate the concepts presented in this paper, two systems with respective time-invariant
and abrupt change parameters have been used in this section.
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The purpose of the first example is to compare the performance of a RLS algorithm and a sim-
ple BLS. The second example is to demonstrate the capability of the proposed VLSWBLS algo-
rithms in comparison with RLS-type algorithms in the presence of parameter changes.

4.1. Example 1: parameter estimation of a time-invariant system

A second order system from [11] is adopted here. The system is described by the following dif-
ference equation:

y(k) = —ayy(k — 1) — ayy(k — 2) + byu(k — 1) + byu(k — 2)
z(k) = y(k) + v(k)

where
@ =—15, a, =07 b =10, by=05

and y(k) is the output of the system, z(k) the measured output, and u(k) the input. v(k) is zero-
mean white Gaussian noise sequence with variance o> = 0.01. The external input u(k) is also a
zero-mean white Gaussian sequence with unit variance > = 1.0, independent of v(k).

In an ideal situation, if there were no noise and a perfect initial parameter vector were available
for RLS, both RLS and BLS algorithms would have produced a perfect parameter estimation.
However, in reality, there are always some measurement noises presented in the system. Further-
more, the initial settings for the estimated parameter vector and covariance matrix cannot be speci-
fied accurately. All these facts have contributed negatively on the performance of RLS. It can be
seen in Table 1 and Fig. 2 that, compared with the results of RLS, much higher estimation accu-
racy has been obtained by using the BLS. Note that all curves in Figs. 2, 3 and 5 represent the
norm of the parameter estimation error defined by

(14)

1 Nrun

eg(k) =

A (15)

run *T 2

These results are drawn based on 100 independent runs, i.e. N,,, = 100 for 1000 measurement
data points.

Table 1

Comparison of estimation accuracy between RLS and BLS

Algorithms Cases a a» by by AE STD

RLS Noise free —1.4980 0.6974 0.9990 0.5009 1.5706 x 102 1.9375x 107!
With noise —1.4978 0.6972  0.9980  0.5021 1.6655x 1072 1.9369 x 107!
0,=0 —1.4986 0.6984  0.9985 0.5018 9.1101x 1073 9.7834 x 1072
Larger P, —1.4998 0.6998 0.9990 0.5012 1.3638 x 102 1.8703 x 107!

BLS Noise free —1.5000 0.7000 1.0000 0.5000 8.9727 x 107 1% 7.2497 x 1071
With noise —1.4999 0.6999 1.0001 0.5000 1.9741 x 1073 4.0577%x 1073

True parameters —1.5 0.7 1.0 0.5

AE, average error of ey(k), kK = 1000; STD, standard deviation.
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Fig. 2. Trajectories of averaged estimation error.

For the RLS algorithm in Table 1, the first row represents the case with no measurement noise
and randomly chosen initial parameter vector 6, and covariance matrix Py = 10/, while the second
row shows the result with the addition of measurement noise of 62 = 0.01 to the Ist case (this cor-
responds to a signal-noise-ratio (SNR) of 20 dB for the simulated example). To demonstrate the
performance of the RLS with different initial parameter vectors and initial covariance matrices,
additional cases are analyzed. The 3rd row presents a case which uses the same initial covariance
matrix as in the second case but with 8, = 0, while the 4th row uses the same 6, as in 2nd case but
with a larger Py = 10°I. For the BLS algorithm, the two cases shown in the table are under the
same conditions as in the first two cases in RLS, respectively. It can be seen that RLS is very sen-
sitive to the initial conditions. However, there is no initial condition issue for BLS. The results in
Table 1 clearly indicate that BLS outperforms RLS in every case in terms of estimation accuracy.

To evaluate the sensitivity of the RLS and BLS algorithms to different SNR levels, the system in
Eq. (14) has been simulated at different noise levels. The results are shown in Table 2. The input to
the system is still a zero-mean white Gaussian sequence with a fixed unit variance of ¢2 = 1.0,
while the variance of the noise term v(k) has been adjusted to count for the different levels of

Table 2
Comparison of estimation accuracy at different SNRs
SNR (dB) RLS BLS
AE STD AE STD

30.0 1.5711 x 1072 1.9375%x 107! 1.9710x 10~* 40528 x 107*
20.0 1.6655 % 1072 1.9369 x 107! 1.9741 x 103 4.0577%x 1073
10.0 3.8487 x 1072 1.9383%x 107! 2.7867 x 1072 9.6821x 1072

5.0 1.7060 x 107! 1.9387 x 107! 1.6165x 107! 1.3146 x 107!

1.0 6.7118 x 107! 1.8474 x 107! 6.6664 x 107! 2.1505 % 107!
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the measurement noise. It can be observed that for different levels of noise intensity, the BLS can
still achieve much better estimation accuracy.

It is also interesting to compare the required CPU time per run (CTPR) for BLS and RLS algo-
rithms running on a relatively older and a relatively newer computer. This figure of merit is mea-
sured in terms of the MATLAB function cputime. Again, the results are obtained by an average
of 100 independent runs using 1000 data points. The CTPRs using the older computer with CPU
200 MHz and RAM 64 KB and the newer computer with CPU 1.7 GHz and RAM 256 KB are
listed in Table 3.

It can be seen that using the newer computer, the required CTPR of the BLS is even signifi-
cantly lower than that of the RLS in the older computer. This observation re-affirms our view
on replacing RLS by BLS for achieving better performance.

4.2. Example 2: systems with abrupt parameter changes

In this example, the performance of BLS and RLS for systems with abruptly changed param-
eters is examined. The system used in Example 1 has been modified by introducing parameter
changes at k = 500. These changes are described by

{a1:—1.5, a> =07, b =10, b, =05 0<Fk< 500

16
a=—12, ay =05 b =07, by=03; 500 <k < 1000 (16)

4.2.1. Comparison between the proposed and the RLS-type algorithms

To compare the estimation accuracy and the tracking performance, the norm of the estimation
error using the variable-length sliding rectangular window blockwise least squares (VLSRWBLS),
the exponentially weighted recursive least squares (EWRLS) and the RLS are shown in Fig. 3. In
the EWRLS, a constant forgetting factor of A = 0.95 is used for improving the tracking perform-
ance. It can be seen that significantly better tracking performance has been achieved by the
VLSRWBLS algorithm. The estimate converges quickly to the new parameter values and the pro-
posed scheme also results in a much smaller steady-state estimation error in comparison to the
other two RLS algorithms. Compared with the estimation error prior to the change occurrence,
almost the same level of the estimation accuracy has been obtained for post-changed parameters.
However, RLS without forgetting factor simply could not track the changed parameters.
Although the EWRLS can still track the new parameters, the rate of convergence is significantly
slower and the steady-state estimation error is relatively larger.

To demonstrate the time history of the parameter estimate, Fig. 4 shows the trajectories of the
estimated parameters using these three different algorithms. It can be seen clearly that the pro-
posed approach leads to excellent estimation both in pre- and post-change periods. Excellent

Table 3

CPU time per run required by RLS and BLS

Algorithms Older computer Newer computer
RLS 1.3222 0.1483

BLS 3.6901 0.3356
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Fig. 3. Comparison between the proposed and RLS-based algorithms.
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Fig. 4. Parameter estimates via different algorithms.

tracking performance has been achieved for all four parameters. Unfortunately, the RLS scheme
cannot track the changed parameters. The EWRLS can provide somewhat acceptable results. The
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Fig. 5. Comparison between different window shapes and lengths: (a) rectangular window and (b) exponential window.

superiority of the proposed algorithm lies mainly in the effective adjustment of the sliding window
length which leads to inherently faster convergence rate.

4.2.2. Performance for fixed- and variable-length windows

To evaluate the effect of window length on the performance of the fixed-length sliding window
algorithm and to demonstrate the superiority of the variable-length window, the estimation errors
with different fixed window lengths of L = 50, 100, 200 and the one using proposed variable-length
sliding window algorithm have been shown in Fig. 5. For comparison purposes, results using rec-
tangular and exponential weighting are shown in Fig. 5(a) and (b), respectively.

For sliding window with different fixed-lengths, it can be seen that the longer the window, the
higher the estimation accuracy. However, a longer window leads to larger delay to obtain good
post-change parameter estimation. It is clearly observable that, by using a fixed window length,
one could not achieve good performance in both the steady-state and the transient periods. How-
ever, by using the proposed variable-length sliding window approach, significant improvement in
both the transient and the steady-state periods has been obtained using a rectangular window
(VLSRWBLS, Fig. 5(a)) and an exponential window (VLSEWBLS, Fig. 5(b)).

In VLSRWBLS, since there is no data prior to the change is included in the sliding window
after the change has been detected, equal weights are given to all measurements. Therefore, the
same accuracy as the one using a longer fixed-length window of L = 200 has been achieved. Fur-
thermore, due to the automatic adjustment of the window length, much faster convergence and
smaller estimation error has been obtained as shown in Fig. 5(a). By comparing the performance
between the rectangular and the exponential windows, it can be seen that excellent performance
during the transient period has also been obtained by the exponential window. However, since the
use of forgetting factor, 4 = 0.95, within the sliding window, relatively larger estimation errors at
both steady-state periods, before and after the parameter change, are also observed.

The proposed algorithms can also be extended to systems with gradual/incipient parameter
changes. However, results for such cases are not shown here due to space reason. Extension of
the developed algorithms to numerically more stable implementation, such as QR decomposition,
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U-D factorization or SVD, is relatively straightforward, which will not be elaborated further in
this paper.

5. Conclusions

With today’s readily available computing power, one could not help but to think and re-think
some of the existing computationally more efficient, numerically less perfect algorithms. In this
paper, the standard least squares (LS) parameter estimation approach has been revisited in view
of its better accuracy and simpler implementation as compared to the standard recursive least
squares (RLS) algorithm. To address the weak tracking ability of BLS, an effective sliding window
blockwise least squares approach with an adjustable window length has been proposed for exten-
ding the LS approach to parameter estimation of systems with abrupt parameter changes. The
proposed approach outperforms the RLS-type algorithms significantly and possesses both excel-
lent tracking and steady-state performance for systems with abrupt parameter changes. Simula-
tion results have also shown that the variable length sliding rectangular window algorithm
provides the best performance among tracking ability, steady-state estimation accuracy and com-
putational complexity.

The results presented in this paper is significant in the sense that one may need to re-think about
the following issue: Should we use blockwise or recursive least squares? In view of its excellent per-
formance, it is our view that the blockwise LS approaches will play even more important role in
signal processing, communication, control and other engineering applications in a very near fu-
ture in the situations where RLS algorithms have been predominant up to now.
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