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Abstract—The processing and communication capabilities of the
smart grid provide a solid foundation for enhancing its efficiency
and reliability. These capabilities allow utility companies to ad-
just their offerings in a way that encourages consumers to reduce
their peak hour consumption, resulting in a more efficient system.
In this paper, we propose a method for scheduling a community’s
power consumption such that it becomes almost flat. Our method-
ology utilizes distributed schedulers that allocate time slots to soft
loads probabilistically based on precalculated and predistributed
demand forecast information. This approach requires no commu-
nication or coordination between scheduling nodes. Furthermore,
the computation performed at each scheduling node is minimal.
Obtaining a relatively constant consumption makes it possible to
have a relatively constant billing rate and eliminates operational
inefficiencies. We also analyze the fairness of our proposed ap-
proach, the effect of the possible errors in the demand forecast,
and the participation incentives for consumers.

Index Terms—Load balancing, probabilistic scheduling, smart
grid, water-filling.

I. INTRODUCTION

HE architecture of the power grid in use today follows the

design proposed by Nikola Tesla over a century ago. At
that time, electricity was considered a luxury that was primarily
used for lighting. Today, the power grid is a critical infrastruc-
ture upon which most, if not all, other systems rely.

Historically, the electric grid was developed to deliver the
power generated at remote power plants to the consumers. At
that time, achieving this objective alone was a great success.
Issues such as efficiency, greenness, and reliability were not a
priority and addressing them was not feasible.

On the other hand, today’s technologies allow much more.
The smart grid, or the smarter grid, is about improving the effi-
ciency of the existing power grid by employing state-of-the-art
technologies [1]. Step by step, the grid will be enhanced to
become an interconnected system of systems. This will allow
real-time control of resources, better management and conse-
quently, a more efficient system. The smart grid will enable
participating parties to operate more efficiently which, in turn,
will contribute to reducing both the financial and environmental
costs of power generation and consumption [2], [3].
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Fig. 1. Power demand during a typical summer weekday in Ontario, Canada

[5].

The power grid can be made smarter in many ways, namely
improving its efficiency and reliability, supporting distributed
generation and storage, and facilitating consumption manage-
ment for consumers [4]. The move towards a smarter power
system is driven by many factors such as the high fuel prices,
increasing energy demands, increasing environmental concerns,
and the emergence of electric vehicles.

One area of inefficiency arises from the trend of the daily
power consumption of a community. Fig. 1 shows the power
consumption for the province of Ontario, Canada, on a typ-
ical summer weekday. As shown in the figure, the consumption
ranges between 13 500 MW at about 4 A.M. and 21 000 MW
at about 6 P.M. with the difference being about 65%. The con-
sumption is lowest in the early hours of the morning, as most
people are asleep. Then, it increases throughout the day peaking
at about 6 P.M.. This is when people return home from work
and add their home loads to the grid [5]. Furthermore, the figure
shows that it is possible to forecast the power consumption with
fair accuracy. In the figure, the black curve shows the forecasted
consumption and the grey curve shows the actual (measured)
consumption. In our work, we utilize the fact that it is possible to
forecast the overall power consumption for a given community
in order to develop a scheduler that doesn’t require real-time
data communication between the consumers’ nodes.

With the current architecture of the grid, electric power must
be consumed the instant it is generated. Because of this, power
plants must have the capacity to support peak demand hours.
This additional capacity becomes idle during low demand hours
which results in operational inefficiency. Furthermore, at peak
hours, high demand causes the utility companies to purchase
power at higher rates. On the other hand, power is typically
sold to consumers at a fixed rate. With such a setup, the time
at which power is consumed is of no significance to the con-
sumer. Therefore, consumers have no incentive to adjust their
power consumption for a better bulk purchase rate.
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Utilizing the capabilities of a smarter grid, utility companies
are moving towards billing for power on a “time of use” basis.
For example, Hydro One, which delivers electricity across the
Canadian province of Ontario, is introducing a pricing scheme
where each day is divided into on-peak hours, mid-peak hours
and off-peak hours. In this scheme, power rates are most expen-
sive during peak hours and less expensive during off-peak hours
[5].

In this paper, we propose enhancing the power grid by en-
abling consumers to benefit from the capabilities of the smart
grid. Specifically, we propose a method that allows consumers
to shift part of their load to off-peak hours in a way that results
in a relatively constant overall power demand profile. This re-
sults in a more efficient system, and a seemingly uniform pricing
scheme.

The rest of this paper is organized as follows. In the next sec-
tion, we briefly review some related works. In Section III, we
discuss the idea of using instantaneous power rates, rather than
fixed rates. In Section IV, we present an overview of water-
filling, a concept on which our scheduler is based. Next, in
Section V, we illustrate the logic of our scheduler. The proposed
algorithm is presented in Section VI, and the supporting simu-
lation results are presented in Section VII. In Section VIII, we
analyze the fairness of our proposed algorithm, the effect of the
possible error in demand forecast, and the participation incen-
tives for consumers. Finally, we present our conclusion and rec-
ommendations for future work in Section IX.

II. RELATED WORK

Caron and Kesidis [6] proposed a dynamic pricing scheme
that encourages consumers to adjust their power use with the
objective of getting a flat overall consumption. The authors
showed that finding an optimum schedule is NP-hard, and then
presented methodologies to study how close one can get to the
ideal case. This was done based on the amount of information
the consumers are willing to share with their utility company.
Furthermore, the authors studied the outcomes based on several
scheduling policies, namely, uniform, ALOHA I, ALOHA
II, and Time/Slackness. In their work, the authors have also
compared the performance of these scheduling policies.

Xiong et al. [14] proposed an approach based on communi-
cation protocols that reduce the power demand in an attempt
to produce a uniform power consumption over time. Similar to
other approaches, the authors divided the power consumption
into real-time loads (non-schedulable) and schedulable loads.
They also defined a “target” power level and modeled their al-
gorithm to schedule the power use such that this target is not
exceeded. The algorithm uses a specific structure that consists
of three main phases, namely power update phase, power re-
quest phase, and power scheduling phase. Furthermore, the au-
thors simulated their approach and showed that it is possible for
a consumer to keep the power demand below the defined target.

Gatsis and Giannakis [15] presented a cooperative scheduling
approach between the utility company and the consumers. In
this approach, loads are classified into loads that must run, loads

that must consume a given amount of power (e.g., a recharge-
able battery), and loads that are adjustable in power consump-
tion but the adjustment could cause consumer dissatisfaction
(e.g., climate control). This was modeled into a convex opti-
mization problem that was solved using the distributed subgra-
dient method. The authors also presented simulation results that
show that it is possible to meet the constraints above in an op-
timum way.

Chen et al. [7] proposed the use of a real-time pricing rate,
and formed a Stackelberg game [12] between the utility com-
pany and energy management controllers that are to be deployed
at each home. The game was setup such that the controllers play
the role of the follower and the utility company plays the role
of the leader. The authors simulated their proposed method-
ology and concluded that their approach saves money for the
consumers and ensures that rebound peaks do not appear.

Mohsenian-Rad et al. [8] presented an autonomous incen-
tive based algorithm for scheduling power consumption. In this
scheme, loads are classified into soft (or schedulable) consump-
tion and hard (or nonschedulable) consumption. Soft consump-
tion represents usages that do not have strict time constraints,
and hard consumption represents usages that have strict time
constraints. The authors also proposed the use of energy con-
sumption scheduling devices (ECS) as a component of the smart
meters. In this model, an ECS communicates with other ECSs
in its neighborhood sharing its scheduling information. Running
their proposed distributed algorithm, each ECS computes and
broadcasts its optimal schedule. The algorithm repeats until no
ECS announces any change of schedule.

The approaches presented above do flatten the overall de-
mand of a community. However, the need to continuously up-
date other nodes with scheduling information and to solve op-
timization problems poses a great overhead in communications
and processing. Furthermore, sharing detailed scheduling infor-
mation with other consumers presents a major privacy concern
[19]. In what follows, we propose a simple heuristic sched-
uling method that eliminates these requirements. In our pro-
posed method, consumer nodes do not need to share detailed
information with each other and they also do not perform any
complex processing. Rather, we utilize statistical information
on consumption trends that the utility companies could easily
make available to their subscribers.

III. INSTANTANEOUS POWER RATE

If consumers are billed at a constant rate, they will have no
incentive to consume power with any pattern. Let D(¢) denote
the power demand of a community throughout a time period 7°.
For our purpose, we define T to be the duration of one day, i.e.,
24 hours. With power consumed at will, D(#) gets a shape as
shown in Fig. 1. Let Pr(t) denote the corresponding price rate
as a function of time. Furthermore, let Pr(t) be a function of
the instantaneous demand. Therefore, we can define Pr(t) as

Pr(t) = F(D()) M

where F' is a function that relates price to demand.
With the communication capabilities of the smart grid, dis-
tributing real-time pricing information can be easily achieved.
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If power is priced as a real-time function of demand, it becomes
possible for a community to influence the power price rate Pr(#)
by adjusting its consumption throughout the day. As shown in
[6], [8], a coordinating community that shifts part of its con-
sumption to off-peak hours can significantly reduce its power
bill while consuming the same amount of power.

If power is priced as a function of consumption, and the con-
sumption trend has some minimum value min that occurs at
time #min, Pr(¢) will also have a minimum value at time ¢min.
Therefore, if consumers are able to shift their loads, possibly
by scheduling, it would appear that the most cost effective ap-
proach is to target tinin. However, as the number of consumers
who follow this reasoning increases, the time #min becomes a
high demand point and consequently a highly priced point.

Thus, a fair methodology is needed to allocate the low-rated
hours to consumers without creating new points of high de-
mand. A perfect situation would be one where the demand func-
tion becomes a constant which also leads to a constant price
function. In the following sections, we propose a water-filling
based method for scheduling power consumption such that the
overall demand becomes relatively constant. We also present
simulation examples to show the effectiveness of the proposed
methodology.

IV. WATER-FILLING

The classical water-filling algorithm, traditionally used in
communications theory, solves the problem of maximizing the
mutual information between the input and the output of a com-
munication channel that is composed of several subchannels
and that is subject to a global power constraint. In this section,
we first present the mathematical model for the channel power
allocation problem, its solution (the water-filling result), and
explain its implication. We then explain the analogy between
the channel power allocation problem and the load scheduling
problem illustrating how the water-filling result will be used to
build a scheduler for our purpose.

Given a communication channel with multiple sub-
channels (1,2,3...L) that are subject to noise levels
AL A AT ALY, it s desired to transmit a signal
such that the channel capacity (i.e., the information rate) is
maximized. The signal to be transmitted is subject to the
global power constraint Zle xz; < P,, where z; is the power
allocated to subchannel ¢, and Pr is the total power to be
transmitted. This problem can be modeled as the following
optimization problem

L
max

log(1 + @A) )
ek 335

subject to

L
Z Ty S Pf',
i=1
r; >0, and 1 <7< L. 3)

Using the Lagrange Multipliers method, the solution of this
problem is given by

zi=(p— AT )
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Fig. 2. Water-filling graphical illustration. More transmission power is allo-
cated to channels with less noise.

where (z)F wof max(0, x) and y is a constant chosen to satisfy
the power constraint in (3).

Equation (4) is known as the water-filling result and it im-
plies that for an optimum solution, more transmission power
should be allocated to subchannels with less noise. The constant
(¢ (called the water-level) is selected such that power constraint
is satisfied. As shown in Fig. 2, this capacity achieving solu-
tion has the visual interpretation of pouring water over the curve
given by the subchannel noise (i.e., the inverse of the subchannel
gains), and hence the name water-filling or water pouring [9],
[16], [17].

Applying the water-filling result for centralized applications
where the power allocation is performed by a single entity is a
straightforward application of (4) once the water-level is known
[10].

The water-filling approach naturally fits the load balancing
problem considered in this paper. Specifically, the hard loads
are analogues to the noise inherent in the channel, the soft loads
are analogues to the power that is to be transmitted through the
channel, and the objective is to schedule the soft loads such
that the overall energy consumption becomes flat which yields
an efficient system. Thus, similar to the classical capacity
maximizing problem above, where more transmission power
is allocated to subchannels with less noise, soft loads can be
allocated to the time slots with less hard loads. This reduces the
peak-to-average ratio and, in the event that sufficient soft loads
are available, flattens the overall energy consumption profile.
As will be explained in Section V, the main difference between
our proposed load balancing approach and the traditional
water-filling solution above is that our schedulers allocate soft
loads probabilistically following a distribution produced from
the water-filling result. This enables our protocol to eliminate
the need for continuous communication and synchronization
between scheduling nodes. As depicted in Fig. 3, our proposed
algorithm can be summarized as follows:

Demand Forecast: This is the process where the utility
company produces a forecast for the community’s power
demand.

Water Level Computation: This process computes the cor-
rect water-level for use with the forecasted demand pro-
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Fig. 3. Basic steps of our proposed algorithm.

file. In our case, as will be explained in the next section,
the water-level is set to the lowest point where a constant
demand can be achieved.

Optimal Allocation Computation: Once the water-level
and the demand forecast are known, the optimal allocation
of soft loads can be obtained as a direct application of (4).
Optimum Allocation Metrics Distribution: The optimal al-
location produced in the previous process is applicable for
a central scheduling entity. In our case, this process pro-
duces the probabilistic metrics that enable the distributed
schedulers to attain the optimum distribution.

Scheduling Algorithm Execution: The scheduling algo-
rithm, presented in detail in Section VI, uses the metrics
distributed through the previous process to achieve an
overall flat power consumption profile in a distributed
way.

V. SCHEDULING POWER USE

As mentioned previously, a method is needed to allocate con-
sumers’ soft consumption to the low priced time slots in a fair
way. The allocation strategy has to satisfy the following condi-
tions:

1 Consumers that follow the algorithm pay the same amount
for a shifted unit of power regardless of the time slots to
which their loads are allocated.

2 Itis not possible for a consumer to have a more cost effec-
tive allocation.

Both of these conditions will be satisfied if it is possible to
achieve and maintain a constant demand. To realize this, we
propose allocating soft loads to time slots probabilistically in
a way analogous to the water-filling approach described in the
previous section. That is, more loads are probabilistically al-
located to low demand hours, and less loads are probabilisti-
cally allocated to high demand hours. Once an overall constant
is achieved, the flat consumption profile is maintained by allo-
cating any additional soft loads uniformly.

Let H(#) denote a function that models the hard power con-
sumption for a community, and let its maximum value be max.
Furthermore, let S(#) denote a function that models the soft
power consumption of the community. Thus we have

D(t) = H(t) + 5(t). )

Our objective is to distributively schedule soft loads such that
the overall power demand for the community becomes a con-
stant. Therefore, after scheduling, the following equation must
be satisfied:

H(t)+ 5(t) = D(t) = Constant. 6)

We then evaluate a Scheduling Distribution (.S D) that, when
followed, complements the hard loads’ consumption such that
the total consumption becomes a constant. Similar to water-
filling, we relate SD to the difference between the hard loads
and the value max. Let C(#) denote the function that comple-
ments H (#) to the value max. Thus we have

C(t) = max —H(¢). @)

Having C(t), we define SD as a probability distribution that
produces C(#) when followed randomly for a sufficiently large
number of times. We can obtain S D by normalizing C(t) such
that the area under its curve is 1. Thus we have

C(t)

[ owa

SD(#) = ®)

Equation (5) shows that the demand D(t) is a sum of both,
the hard and the soft power consumption S(t) and H (%), respec-
tively. Therefore, strictly following (8), the shape of D(z) will
either be a constant, or inclined towards H (¢) or S(¢). This de-
pends on the ratio of the total hard consumption to the total soft
consumption. We summarize the possible outcomes as follows:

1. If the amount of soft consumption is too small compared
to the hard consumption, scheduling following S() will
have a minimum effect since H (#) will dominate. There-
fore, D(¢) will have the shape of H (#) rather than a con-
stant. In this case, scheduling can reduce the peak-to-av-
erage ratio of the consumption profile, but cannot flatten
it.

2. If the amount of soft consumption is too large with re-
spect to hard consumption, scheduling following S(D)
will cause the scheduled loads to dominate, which results
in D(t) following the shape of C(%) rather than a constant
(i.e., causing an overshot).

3. If the ratio of the soft consumption to the hard consump-
tion equals the ratio of the area under C(#) to the area
under H(t), scheduling following the distribution stated
will complement H (%) causing D(%) to become flat.

With the increased demand for electric vehicles, which are
a form of energy storage and can usually be scheduled, it is
expected that the energy consumption of an average home will
double [11]. This suggests that having a large amount of soft
consumption is a reasonable assumption which eliminates the
first outcome above.
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Having a large amount of soft consumption, it becomes pos-
sible to adjust the second outcome to result in an overall con-
sumption that is constant. This can be done by having each node
schedule its soft loads partially following S and partially fol-
lowing a uniform distribution. More precisely, SD should be
followed to a point where it complements the hard consump-
tion to the water-level. After this point, to maintain the overall
constant demand, nodes should schedule any remaining soft
loads uniformly. For each node, a threshold defines the point
of switching from scheduling following S D to scheduling uni-
formly. This threshold is computed as a factor R of the node’s
hard consumption. The value of R is to be provided by the utility
company and its computation is presented in the Appendix.

Therefore, for a given node & with a total hard consumption,
Hj., and a total soft consumption, St, the threshold is given by
W, where

Wy = R x Hy. C)
Specifically,
T
C(t)di
W, = ’OT# x Hy. (10)
fo H(t)dt

Therefore, each node will schedule an amount, W;., of its soft
loads following S D, and any remaining soft loads, (S, — W4.),
uniformly. Scheduling loads as described above results in an
overall flat consumption.

VI. PROPOSED DISTRIBUTED ALGORITHM

In this section, we present an algorithm for scheduling the soft
loads throughout the day to achieve the objectives described in
the previous section. Our algorithm is based on a probabilistic
model that uses forecasted approximations (or projections) of
consumption trends rather than real-time computed values. In
this section, we describe the environment, the information avail-
able to each consumer (scheduling node), and the proposed al-
gorithm. In the following section, we present a simulation of
this algorithm for a small residential community.

The main advantage in having participating nodes schedule
probabilistically following a centrally computed distribution is
to eliminate the need for continuous communication and syn-
chronization between nodes. Furthermore, this also reduces the
processing required at each node. This approach is possible pro-
vided that some basic information related to the overall usage
trend can be made available to each scheduling node.

Obtaining perfectly accurate values for C(t) would re-
quire gathering and processing the community’s demand in
real-time. This would cause a large overhead in communica-
tions and would have to be made available upfront. Fortunately,
a community’s overall consumption follows a trend, which, as
shown in Fig. 1, is fairly predictable [20]. Using a projection
may introduce a margin of error (see Section VIII), but it elimi-
nates the need of gathering and distributing consumer’s data in
real-time. Furthermore, in practice, loads to be scheduled may
not be equal in power demand or in the duration of operation.
Therefore, scheduling loads to obtain a perfect complementing
function C'(#) may not be possible as this would require loads
to be infinitely small and have no operation time restrictions
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whatsoever. Despite these limitations, as shown by our simula-
tions, scheduling following the proposed method significantly
reduces the peak-to-average ratio of the overall demand. This
is due to the fact that the power consumption of individual ap-
pliances are significantly small in comparison with the overall
power demand of a community.

In what follows we assume that the following information can
be made available to each scheduling node:

1. A distribution (S D) that, when followed, complements the

trend of the hard consumption towards a constant.
2. A ratio R for computing the threshold that indicates how
much of the soft load should be scheduled following SD.

The algorithm below reflects the methodology discussed in
Section V. At each scheduling node, the initialization phase ac-
quires the centrally computed scheduling information. At this
point, an accumulator is defined to keep track of how much
load had already been scheduled. If the total amount of sched-
uled loads is less than the threshold, the next load will be sched-
uled following and the accumulator will be incremented by the
weight of this load. When the threshold is exceeded, the next
item to be scheduled will be scheduled uniformly across all time
slots.

Algorithm 1 Scheduling Soft Loads to Flatten the Overall
Power Consumption Profile

Scheduling Algorithm

Initialization
Acquire SD
Acquire Threshold
Reset Accumulator

For each Soft Load, weighted W
If (Accumulator < Threshold)
Schedule Soft Load following S D
Accumulator = Accumulator + W
Else
Schedule Soft Load uniformly
Accumulator = Accumulator + W
End If
End For

VII. SIMULATION RESULTS

To demonstrate the effectiveness of our proposed algorithm,
we simulate the basic power consumption of a residential com-
munity. Initially, we simulate the normal use pattern where each
home consumes power without scheduling any loads. These ini-
tial rounds resemble historic data used in demand forecasting by
the utility company. Next, we use the simulated data to compute
S D as described in Section V. Finally, we simulate the commu-
nity’s power consumption when following the proposed algo-
rithm and present our results.

To do this, we first define a selection of appliances avail-
able in most homes and assign them their typical power ratings.
Table I shows some of the basic attributes of these appliances.
We approximate the operation time for each appliance in the
second column. The third column shows whether this load can
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TABLE I
SIMULATED HOUSEHOLD APPLIANCES
Appliance Operation Soft Continuous
Time Load Use
Clothes Dryer 1 hour Yes Yes
Electric Vehicle 5 hour Yes No
Clothes Washer 0.5 hour Yes Yes
Climate Control 5 hour No N/A
Water Heater 6 hour No N/A
Range (1* run) 1 hour No N/A
Range (2™ run) 1 hour No N/A
Electronics 5 hour No N/A
Lighting 6 hour No N/A
Fridge 24 hour No N/A
Kitchen App. (1% run) 1 hour No N/A
Kitchen App. (2™ run) 1 hour No N/A
TABLE II

APPLIANCE OPERATION TIME SELECTION METHODOLOGY

Appliance
Clothes Dryer
Electric Vehicle
Clothes Washer
Climate Control

Starts Following
Normal dist. mean at SPM
Normal dist. mean at 6PM
Normal dist. mean at SPM

Uniform dist. over 24 hours

Water Heater Uniform dist. from 8AM to 12AM
Range (1% run) Normal dist. mean at IPM
Range (2“Cl run) Normal dist. mean at 6PM

Electronics Uniform dist. from 3PM to 1AM
Lighting Uniform dist. from 8AM to 1AM
Fridge Uniform dist. over 24 hours

Kitchen Appliances (1% run) Normal dist. mean at 1PM

Normal dist. mean at 6PM

Kitchen Appliances (2™ run)

be shifted or not based on its nature of use, i.e., if it is a soft load.
The last column shows if the time slots have to be allocated con-
tinuously. That is, if the nature of the appliance dictates that all
the required slots must be scheduled back to back. This is only
considered for schedulable appliances.

In our simulation, we divide the scheduling interval into
30-minute time slots and the appliances are turned on for the
duration of a multiple of these slots. Each appliance is turned
on probabilistically at a time slot either following a uniform or
a normal distribution. The details of the distributions used for
each appliance are shown in Table II.

Appliances that are modeled by a uniform distribution are
constrained with a time frame. That is, they can only operate
during that time frame. Furthermore, appliances that are mod-
eled by a normal distribution are constrained with a mean value.
Therefore, most of the time, these appliances will be turned on
at the time that corresponds to the mean. If an appliance is to
be simulated for two operating periods, we list it twice. For
example, we assume that kitchen appliances are used twice a
day and, consequently, they have two entries with two different
mean values.
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Fig. 4. Average power consumption for the simulated community over

50 rounds without scheduling (mean = 524, standard deviation = 226.8,
peak-to-average ratio = 1.47).
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Fig. 5. The Scheduling Distribution (SD).

Following Tables I and II, simulating the power consump-
tion for a community of a thousand homes (nodes) results in
the overall power demand shown in Fig. 4. In this figure, the
upper curve shows the total consumption, i.e., the summation
of the soft consumption and the hard consumption. The figure
also shows the hard consumption component of the total use.

The hard consumption component is used to compute SD as
described in (7) and (8). S, shown in Fig. 5, is computed once
based on an average case and is made available to all nodes.
As the figure shows, a node scheduling loads following this
distribution has a higher probability of scheduling at 5 A.M. in
comparison to 6 P.M.. Moreover scheduling loads is not lim-
ited to off-peak hours, rather, it extends throughout the day with
varying probabilities.

The results corresponding to the case when following our
scheduling algorithm are shown in Fig. 6. The figure shows
the overall hard loads of the community being low in the early
hours of the morning and increasing throughout the day. It also
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Fig. 6. A single round power consumption for the simulated community with
scheduling (mean = 523, standard deviation = 15.8, peak-to-average ratio =
1.069).

shows the overall scheduled consumption and the total use. As
depicted in the figure, the distributed schedulers clearly counter
the hard consumption by scheduling most loads towards the
early morning hours. Furthermore, the schedulers prevent a
peak-hour from appearing at low demand hours and maintain an
overall relatively flat consumption. Our approach significantly
reduces the peak-to-average ratio (to 1.069 from 1.47) and the
standard deviation (to 15.8 from 226) with a relatively small
processing and communication overhead. Furthermore, it en-
sures that consumers pay relatively the same amount (per unit
of power) regardless of the time slot their loads were allocated.

Fig. 7 shows the average power consumption profile obtained
by repeating the simulation for 50 runs. As shown in the figure,
the average power consumption is much closer to a constant
with minimal peak-to-average ratio of 1.02, and a standard de-
viation of 6.1. Fig. 8 shows the breakdown of how the com-
munity’s loads were scheduled in the average case. As shown, a
portion of the soft loads are scheduled following S D and any re-
maining loads are scheduled uniformly. Furthermore, the figure
shows that scheduling nodes can be enhanced to accommodate
further operation time constraints. For example, in the portion
scheduled uniformly, a scheduler could locally swap loads to
accommodate additional time constraints.

VIII. ALGORITHM ANALYSIS

In this section, we present our analysis of the proposed ap-
proach from various perspectives. Specifically, we analyze the
fairness of the algorithm, the effect of errors in demand fore-
casting, and the participation incentives for consumers from a
game theoretic perspective.

A. Fairness

The fairness of the proposed approach is an important factor
that would determine the willingness of consumers to follow
the scheduling algorithm. To assess the fairness, we use the dif-
ference between the starting time for soft load devices without
any scheduling and after following the scheduling algorithm as
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Fig. 7. Average power consumption for the simulated community over 50 runs
with scheduling (mean = 524, standard deviation = 6.1, peak-to-average ratio =
1.021).
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Fig. 8. Average scheduled power consumption for the simulated community
over 50 runs.

a measure of inconvenience amongst all users. A scheduling al-
gorithm would be considered unfair if some users would have a
significantly larger difference compared to others. On the other
hand, if all users have relatively the same average change in
time, then the algorithm would be considered fair.

More precisely, let A; denote the average absolute value of
change in the starting time of the scheduled soft loads belonging
to the i*" user (reference to the case without scheduling). In
other words, A; is a measure of the inconvenience caused to
the i*" user for opting to follow the scheduling algorithm. Let
A denote the average of A;’s for all users. Fig. 9 below shows
the average deviation of A; from A obtained by simulating our
scheduling algorithm with a thousand users for a thousand runs.

As shown in the figure, on average, the discrepancy among
users is very low, i.e., the soft loads of most users are shifted by
almost the same amount of time which reflects the fairness of
the proposed approach.
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Fig. 9. Fairness of the proposed algorithm. A low deviation from average
amongst all users indicates a fair algorithm.

B. Effect of Errors in the Demand Forecast

The proposed algorithm relies on historical power consump-
tion data to forecast the consumption for the upcoming day.
This information is used to compute S D that guides scheduling
nodes in distributing their loads throughout the day. Therefore,
the effectiveness of the scheduling algorithm depends on the ac-
curacy of the forecasted demand.

As Fig. 1 shows, utility companies have the ability to fore-
cast the power demand of a community with good accuracy.
Furthermore, typical demand forecasting performance indica-
tors that are available in the public domain (e.g., see [20]) show
that when the projection is made a day ahead, the estimation
error is usually within £10%.

To evaluate the robustness of our proposed approach against
errors in the demand forecast, we introduced a uniformly dis-
tributed error between e and —e to the forecasted data; where
e is determined as a percentage of the instantaneous consump-
tion at a given time slot. This can be seen as an extreme case as
it introduces random errors at all time slots. Fig. 10 shows the
effect of error on the peak-to-average ratio of the community’s
demand after scheduling.

As shown in the figure, the peak-to-average ratio of the de-
mand profile after scheduling remains below 1.1 when the error
is bounded to £10% which reflects the effectiveness and ro-
bustness of using forecasted data in scheduling soft loads. Fur-
thermore, the figure shows that the peak-to-average ratio of the
scheduling community is not affected by errors up to about 5%.
This can be attributed to the inherent difference between runs
used to produce S D and runs used to simulate the community’s
consumption, i.e., due to the probabilistic nature of our proposed
approach and simulations.

C. Participation Incentives

To further examine the consumer’s participation in the pro-
posed scheme, we analyze the incentives of participation from

Peakto Average Ratio

0 5 10 15 20
Percentage Error

Fig. 10. The effect of error in consumption forecast on the peak-to-average
ratio after scheduling. The peak-to-average ratio remains within 1.1 for up to
about £10% in error.

a game theoretic perspective. We take two main factors into ac-
count, namely the action of the community and the inconve-
nience introduced by scheduling.

A consumer’s utility from scheduling consumption is directly
related to the community’s trend of power usage. If the commu-
nity does not shift its consumption, a consumer would have a
greater incentive in shifting loads towards lower demand hours.
On the other hand, if sufficient consumers shift their consump-
tion, a consumer would have less incentive in shifting his/her
loads.

Allocating utilities for savings in power costs and possible
inconvenience of the scheduling process is a great challenge. In
what follows, we focus on the outcome for an individual in the
proposed setup. The consumer’s incentive would be in reducing
his/her electric bill, taking the convenience of this reduction as
a main factor. That is, a consumer could decide to schedule or
not to schedule soft loads in an environment where the commu-
nity schedules or does not schedule. In our analysis, we use the
following notation. If the community does not shift loads, the
savings introduced by the consumer’s action are represented by
S, and savings missed are represented by —.S. Furthermore, if
the community does shift its loads, the introduced savings are
represented by O, and savings missed by —O. We represent the
inconvenience of scheduling by —I. Thus, the possible combi-
nations, summarized in Table III, are:

1. The consumer follows the scheduling algorithm in an en-
vironment that follows the algorithm. In this case, the con-
sumer’s soft loads draw power at their allocated time. This
results in the near optimum overall consumption, which of-
fers the community the best possible rate. We represent the
incentive of this outcome by O — 1.

2. The consumer does not follow the scheduling algorithm in
an environment that follows the algorithm. In this case, the
consumer misses the slot allocated by the algorithm, and
consumes power at a different time resulting in increased
demand at that time. Because of the loss, we represent this
outcome by —O.
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TABLE III
SCHEDULING OUTCOME FOR THE CONSUMER
Consumer Consumer Does
Schedules Not Schedule
Community O-1 -0
Schedules
Community Does S-1 -S
Not Schedule

3. The consumer follows the scheduling algorithm in an en-
vironment that does not follow the algorithm. In this case,
the consumer’s soft loads are mostly moved toward low de-
mand hours. This allows the consumer to introduce savings
in power cost. We represent the incentive of this outcome
by S — 1.

4. The consumer does not follow the scheduling algorithm in
an environment that does not follow the algorithm. In this
case, neither the consumer, nor the community benefit from
the opportunity. Due to the loss, we represent the outcome

-5.
With § > O, analyzing the previous table shows that if
O > I/2, scheduling loads is a dominant strategy. That is,
the left column would always be greater than the right column.
Therefore, given the constraint above, the choice “to schedule”
would be a strongly dominant strategy and consequently, a Nash
equilibrium [12], [13].

IX. CONCLUSION AND FUTURE WORK

The communication and computation capabilities of the
smart grid make it possible to have a dynamic pricing scheme
where the rate for power is a direct function of the instantaneous
demand. In particular, it becomes possible for a community
to adjust its power consumption controlling the price rate and
eliminating operational inefficiencies in addition to benefiting
from lower power costs. Within this context, we proposed a
methodology that allows consumers to shift part of their soft
loads to off-peak hours in a probabilistic way that results in
a relatively constant overall power consumption profile. Our
results confirm the efficiency and fairness of the proposed
scheduling algorithm.

It should be noted that throughout our analysis, we have con-
sidered appliances to be either completely shiftable (soft loads),
or completely nonshiftable (hard loads). In reality, some appli-
ances can only accommodate small tolerance in their operation
time, and therefore, cannot be considered completely shiftable.
One possible area of research on this front would be to model
the constraints associated with such appliances and study their
effect on the peak-to-average ratio of the scheduling process.

APPENDIX

In this appendix, we describe the method used in computing
the ratio needed to calculate the threshold in (9). Assuming we
have a community with n nodes, let S (%) represent the soft
power consumption of the £ node as a function of time. Sim-
ilarly, let Hy(t) represent the hard power consumption for that
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Fig. 11. Complementing the hard consumption H(#) to the water-level max
using C'(t).

node. Therefore, the overall soft and the overall hard consump-
tion for all members of the community can be respectively rep-
resented by

)= Si(t) (11
k=1
and
H( = Hi(t) (12)
k=1

For the hard demand curve H (¢), its maximum value max is
the lowest value that can be used as a water-level that produces a
constant demand. This is illustrated in Fig. 11. Therefore, based
on water-filling, we define C() as the function that comple-
ments F1 (%) to max, i.e.,

C(t) = max —H(t). (13)
We define the factor R as the ratio of the area under C(#) to the
area under F7(¢). Thus we have

T
R= 7](} Ote)dt. (14)
Jo H(t)dt
From (12), we see that H(t) was formed by summing each
user’s hard component. We propose that C'(¢) be formed in a
similar way. Assuming that consumers have a sufficient amount
of soft loads, each will dedicate a portion to produce C(t) That
is

(15)

=) Hi(t)
k=1
R/O H(t)dt:RZ/o Hy(t) dt (16)

/H ) dt = /C(t)dt
/O O(t)dt:];R/:H(t)dt. (18)

Therefore, the amount of soft loads needed to form C'(¥) can
be obtained if each consumer contributes with an amount of
soft loads equivalent to a factor 2 of their hard consumption.
Scheduling these soft loads probabilistically following S D, as

C(t)dt

17
H(1) (lf {17
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defined in (8) produces C'(#), which in turn complements H (#)
to the constant max.
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