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Abstract. The question of compatibility of differential paths plays a
central role in second order collision attacks on hash functions. In this
context, attacks typically proceed by starting from the middle and con-
structing the middle-steps quartet in which the two paths are enforced on
the respective faces of the quartet structure. Finding paths that can fit
in such a quartet structure has been a major challenge and the currently
known compatible paths extend over a suboptimal number of steps for
hash functions such as SHA-2 and HAS-160. In this paper, we investigate
a heuristic that searches for compatible differential paths. The applica-
tion of the heuristic in case of HAS-160 yields a practical second order
collision over all of the function steps, which is the first practical result
that covers all of the HAS-160 steps. An example of a colliding quartet
is provided.

1 Introduction

Whenever two probabilistic patterns are combined for the purpose of passing
through maximal number of rounds of a cryptographic primitive, a natural ques-
tion that arises is the question of compatibility of the two patterns. A notable
example is the question of compatibility of differential paths in the context of
boomerang attacks. In 2011, Murphy [25] has shown that care should be exer-
cised when estimating the boomerang attack success probability, since there may
exist dependency between the events that the two paths behave as required by
the boomerang setting. The extreme case is the impossibility of combining the
two paths, where the corresponding probability is equal to 0.

In the context of constructing second order collisions for compression func-
tions using the start-from-the-middle technique, due to availability of message
modification in the steps where the primitive follows the two paths, the above
mentioned probability plays less of a role as long as it is strictly greater than 0.
In that case, the two paths are said to be compatible. Several paths that were
previously believed to be compatible have been shown to be incompatible in the
previously described sense, e.g., by Leurent [15] and Sasaki [29] for BLAKE and
RIPEMD-160 hash functions, respectively.

The compatibility requirement in this context can be stated with more pre-
cision as follows. Let φ and ω be two differential paths over some number of
steps of an iterative function f = fj+n ◦ . . . ◦ fj . If there exists a quartet of f
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inputs x0, x1, x2 and x3 such that computations (x0, x1) and (x2, x3) follow φ
whereas (x0, x2) and (x1, x3) follow ω, we say that φ and ω are compatible. Usu-
ally the path φ is left unspecified over the last k steps (backward path) and ω is
unspecified over the remaining steps (forward path). Such paths have also been
previously called independent [4]. Another closely related notion is the concept
of non-interleaving paths in the context of biclique attacks [9].

Our Contributions. In this paper, we present a heuristic that allows us to
search for compatible differential paths. The heuristic builds on the previous
de Cannière and Rechberger automatic differential path search method. Instead
of working with pairs, our proposed heuristic operates on quartets of hash ex-
ecutions and includes cross-path propagations. We present detailed examples
of particular propagations applied during the search. As an application of our
proposed heuristic, a second order collision for the full HAS-160 compression
function is found. The best previous practical distinguisher for this function
covered steps 5 to 80 [30]. This is the first practical distinguisher for the full
HAS-160. This particular hash function is relevant as it is standardized by the
Korean government (TTAS.KO-12.0011/R1) [1].

Related Work. The differential paths used in groundbreaking attacks on
MD4, MD5 and SHA-1 [36,35] were found manually. Subsequently, several tech-
niques for automatic differential path search have been studied [31,7,32,5]. The
de Cannière and Rechberger heuristic [5] was subsequently applied to many
MDx/SHA-x based hash functions, such as RIPEMD-128, HAS-160, SHA-2 and
SM3 [21,19,20,22]. To keep track of the current information in the system, the
heuristic relies on 1-bit constraints that express the relations between pairs of
bits in the differential setting. This was generalized to multi-bit constraints by
Leurent [15], where finite state machine approach allowed uniform representa-
tion of different constraint types. Multi-bit constraints have been used in the
context of differential path search in [16].

The boomerang attack [33], originally applied to block ciphers, has been
adapted to the hash function setting independently by Biryukov et al. [4] and
by Lamberger and Mendel [13]. In particular, in [4], a distinguisher for the 7-
round BLAKE-32 was provided, whereas in [13] a distinguisher for the 46-step
reduced SHA-2 compression function was provided. The latter SHA-2 result was
extended to 47 steps [3]. Subsequently, boomerang distinguishers have been ap-
plied to many hash functions, such as HAVAL, RIPEMD-160, SIMD, HAS-160,
SM3 and Skein [27,29,30,18,11,37,17]. Outside of the boomerang context, zero-
sum property as a distinguishing property was first used by Aumasson [2].

As for the previous HAS-160 analysis, in 2005, Yun et al. [38] found a prac-
tical collision for the 45-step (out of 80) reduced hash function. Their attack
was extended in 2006 to 53 steps by Cho et al. [6], however, with computa-
tional complexity of 255 53-step compression function computations. In 2007,
Mendel and Rijmen [23] improved the latter attack complexity to 235, provid-
ing a practical two-block message collision for the 53-step compression function.
Preimage attacks on 52-step HAS-160 with complexity of 2152 was provided in
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2008 by Sasaki and Aoki [28]. Subsequently, in 2009, this result was extended
by Hong et al. to 68 steps [8] where the attack required a complexity of 2156.3.
In 2011, Mendel et al. provided a practical semi-free-start collision for 65-step
reduced compression function [19]. Finally, in 2012, Sasaki et al. [30] provided a
theoretical boomerang distinguisher for the full HAS-160 compression function,
requiring 276.6 steps function computations. In the same work, a practical second
order collision was given for steps 5 to 80 of the function.

Paper Outline. In the next section, we provide the review of boomerang
distingiushers and the recapitulation of the de Cannière and Rechberger search
heuristic, along with the HAS-160 specification. In Section 3, the general form of
the our search heuristic is provided and its application to HAS-160 is discussed.
The three propagation types used in the heuristic are explained in Section 4.
Concluding remarks are given in Section 5.

2 Review of Related Work and the Specification of
HAS-160

In the following subsections, we provide a description of a commonly used strat-
egy to construct second order collisions, an overview of the de Cannière and
Rechberger path search heuristic and finally the specification of HAS-160 hash
function.

2.1 Review of Boomerang Distinguishers for Hash Functions

First, we provide a generic definition of the property used for building compres-
sion function distinguishers. Let h be a function with n-bit output. A second
order collision for h is a set {x,Δ,∇} consisting of an input for h and two
differences, such that

h(x+Δ+∇)− h(x+Δ)− h(x+∇) + h(x) = 0 (1)

As explained in [3], the query complexity for finding a second order collision is
3 · 2n/3 where n denotes the bit-size of the output of the function f . By the
query complexity, the number of queries required to be made to h function is
considered. On the other hand, for the computational complexity, which would
include evaluating h around 3 · 2n/3 times and finding a quartet that sums to 0,
the best currently known algorithm runs in complexity no better than 2n/2. If for
a particular function a second order collision is obtained with a complexity lower
than 2n/2, then this hash function deviates from the random function oracle.

Next, we explain the strategy to construct quartets satisfying (1) for Davies-
Meyer based functions, as commonly applied in the previous literature. An
overview of the strategy is provided in Fig. 1. We write h(x) = e(x) + x, where
e is an iterative function consisting of n steps. The goal is to find four inputs
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Fig. 1. Start-from-the-middle approach for constructing second-order collisions

xA, xB, xC and xD that constitute the inputs in (1) according to Fig. 1 (c). In
particular, the goal is to have

xA − xD = xB − xC

e(xA)− e(xB) = e(xD)− e(xC)
(2)

where the two values specified by (2) are denoted respectively by α and β in
Fig. 1 (c). In this case, we have h(xA) − h(xB) + h(xC) − h(xD) = e(xA) +
xA − e(xB) − xB + e(xC) + xC − e(xD) − xD = 0. Now, one can put xA = x,
Δ = xD − xA and ∇ = xB − xA and (1) is satisfied.

A preliminary step is to decide on two paths, called the forward path and
the backward path. As shown on Fig. 1, these paths are chosen so that for some
n0 < n1 < n2 < n3 < n4 < n5, the forward path has no active bits between
steps n3 and n4 and the backward path has no active bits between steps n1

and n2. The forward path is enforced on faces (xA, xB) and (xD, xC) (front
and back) whereas the backward differential is enforced on faces (xA, xD) and
(xB , xC) (left and right). In the case of MDx-based designs, the particular n
values depend mostly on the message schedule specification.

The procedure can be summarized as follows:

(a) The first step is to construct the middle part of the quartet structure, as
shown in Fig. 1 (a). The forward and backward paths end at steps n3 and
n2, respectively. On steps n2 to n3, the two paths need to be compatible for
this stage to succeed.

(b) Following Fig. 1 (b), the paths are extended to steps n1 backward and to
n4 forward with probability 1, due to the absence of disturbances in the
corresponding steps.

(c) Some of the middle-step words are randomized and the quartet is recomputed
backward and forward, verifying if (2) is satisfied. If yes (see Fig. 1 (c)),
return the quartet, otherwise, repeat this step.
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This strategy, with variations, has been applied in several previous works, such
as [3,30,29,27]. In Table 1, we provide the forward/backward path parameters
for the previous boomerang distinguishers on some of the MDx/SHA-x based
compression functions following the single-pipe design strategy.

Table 1. Overview of some of the previously used boomerang paths

Compression function n0 n1 n2 n3 n4 n5 Reference Message block size

SHA-2 0 6 22 31 47 47 [3] 16× 32

HAVAL 0 2 61 97 157 160 [27] 32× 32

HAS-160 5 13 38 53 78 80 [30] 16× 32

In [3,30], the number of steps in the middle was 9 and 16 steps, respectively.
It can be observed that these number of middle steps are suboptimal, since
the simple message modification allows trivially satisfying 16 steps in case of
SHA-2 and HAS-160. Since the forward and the backward paths are sparse
towards steps n3 and n2, one can easily imagine satisfying more than 16 steps,
while there remains enough freedom to randomize the inner state although some
penalty in probability has to be paid. In case of HAVAL [27], the simple message
modification allows passing through 32 steps and the middle part consists of as
many as 36 steps. However, it should be noted that this is due to the particular
property of HAVAL which allows narrow paths [10].

2.2 Review of de Cannière and Rechberger Search Heuristic

This search heuristic is used to find differential paths that describe pairs of
compression function executions. The symbols used for expressing differential
paths are provided in Table 2. For example, when we write -x-u, we mean a set
of 4-bit pairs

-x-u = {T, T ′ ∈ F 4
2 |T3 = T ′

3, T2 �= T ′
2, T1 = T ′

1, T0 = 0, T ′
0 = 1}

where Ti denotes i-th bit in word T .

Table 2. Symbols used to express 1-bit conditions [5]

δ(x,x′) meaning (0,0) (0,1) (1,0) (1,1)

? anything
√ √ √ √

- x = x′ √
- -

√
x x �= x′ -

√ √
-

0 x = x′ = 0
√

- - -
u (x, x′) = (0, 1) -

√
- -

n (x, x′) = (1, 0) - -
√

-
1 x = x′ = 1 - - -

√
# - - - -

δ(x,x′) meaning (0,0) (0,1) (1,0) (1,1)

3 x = 0
√ √

- -
5 x′ = 0

√
-

√
-

7
√ √ √

-
A x′ = 1 -

√
-

√
B

√ √
-

√
C x = 1 - -

√ √
D

√
-

√ √
E -

√ √ √
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Next, an example of condition propagation is provided. Suppose that a small
differential path over one modular addition is given by

----+ ---x = ---x (3)

Here (3) describes a pair of additions: x + y = z and x′ + y′ = z′, and from
this “path” we have that x = x′ and also that y and y′ are different only on
the least significant bit (same for z and z′). However, this can happen only if
x0 = x′

0 = 0, i.e. if the lsb of x and x′ is equal to 0. We thus propagate a condition
by substituting (3) with

---0+ ---x = ---x

The de Cannière and Rechberger heuristic [5] searches for differential paths over
some number of compression function steps. It starts from a partially specified
path which typically means that the path is fully specified at some steps (i.e.,
consisting of symbols {-,u,n}) and unspecified at other steps (i.e., symbol ‘?’).
The heuristic attempts to complete the path, so that the final result is non-
contradictory by proceeding as follows:

- Guess: select randomly a bit position containing ‘?’ or ‘x’. Substitute the
symbol in the chosen bit position by ‘-’ and {u,n}, respectively.

- Propagate: deduce new information introduced by the Guess step.

When a contradiction is detected, the search backtracks by jumping back to one
of the guesses and attempts different choices.

2.3 HAS-160 Specification

The HAS-160 hash function follows the MDx/SHA-x hash function design strat-
egy. Its compression function can be seen as a block cipher in Davies-Meyer
mode, mapping 160-bit chaining values and 512-bit messages into 160-bit di-
gests. To process arbitrary-length messages, the compression function is plugged
in the Merkle-Damg̊ard mode.

Before hashing, the message is padded so that its length becomes multiple of
512 bits. Since padding is not relevant for this paper, we refer the reader to [1]
for further details. The underlying HAS-160 block cipher consists of two parts:
message expansion and state update transformation.

Message Expansion: The input to the compression function is a message
m = (m0, . . .m15) represented as 16 32-bit words. The output of the message
expansion is a sequence of 32-bit words W0, . . .W79. The expansion is specified
in Table 3. For example, W26 = m15.

State Update: One compression function step is schematically described by
Fig. 2 (a). The Boolean functions f used in each step are given by

f0(x, y, z) = (x ∧ y)⊕ (¬x ∧ z)

f1(x, y, z) = x⊕ y ⊕ z

f2(x, y, z) = (x ∨ ¬z)⊕ y
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Table 3. Message expansion in HAS-160

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

m8 ⊕ m9 m0 m1 m2 m3
m12 ⊕ m13 m4 m5 m6 m7

m0 ⊕ m1 m8 m9 m10 m11
m4 ⊕ m5 m12 m13 m14 m15⊕m10 ⊕ m11 ⊕m14 ⊕ m15 ⊕m2 ⊕ m3 ⊕m6 ⊕ m7

m11 ⊕ m14 m3 m6 m9 m12
m7 ⊕ m10 m15 m2 m5 m8

m3 ⊕ m6 m11 m14 m1 m4
m15 ⊕ m2 m7 m10 m13 m0⊕m1 ⊕ m4 ⊕m13 ⊕ m0 ⊕m9 ⊕ m12 ⊕m5 ⊕ m8

m4 ⊕ m13 m12 m5 m14 m7
m8 ⊕ m1 m0 m9 m2 m11

m12 ⊕ m5 m4 m13 m6 m15
m0 ⊕ m9 m8 m1 m10 m3⊕m6 ⊕ m15 ⊕m10 ⊕ m3 ⊕m14 ⊕ m7 ⊕m2 ⊕ m11

m15 ⊕ m10 m7 m2 m13 m8
m11 ⊕ m6 m3 m14 m9 m4

m7 ⊕ m2 m15 m10 m5 m0
m3 ⊕ m14 m11 m6 m1 m12⊕m5 ⊕ m0 ⊕m1 ⊕ m12 ⊕m13 ⊕ m8 ⊕m9 ⊕ m4

where f0 is used in steps 0-19, f1 is used in steps 20-39 and 60-79 and f2 is
used in steps 40-59. The constant Ki that is added in each step changes every
20 steps, taking the values 0, 5a827999, 6ed9eba1 and 8f1bbcdc. The rotational
constant si1 is specified by the following table

i mod 20 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
si1 5 11 7 15 6 13 8 14 7 12 9 11 8 15 6 12 9 14 5 13

The other rotational constant si2 changes only each 20 steps and si2 ∈ {10, 17, 25,
30}. According to the Davies-Meyer mode, the feedforward is applied and the
output of the compression is

(A80 +A0, B80 +B0, C80 + C0, D80 +D0, E80 + E0)

Alternative Description of HAS-160: In Fig. 2 (b), the compression function
is shown as a recurrence relation, where Ai+1 plays the role of A in the usual step
representation. Namely, A can be considered as the only new computed word,
since the rotation that is applied to B can be compensated by properly adjusting
the rotation constants in the recurrence relation specification. One starts from
A−4, A−3, A−2, A−1 and A0, putting these values to the previous chaining value

A B C D E

A B C D E

+

+

+

+

si1

si2

f

Ki

Wi

Ai−5

Ai−4

Ai−3

Ai−2
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Ai
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...

...

ti1

ti2

ti3

ti4

f +

+

Ki

Wi

Fig. 2. Two equivalent representations of the state update
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(or the IV for the first message block) and computes the recurrence until A80

according to

Ai+1 = Ai−4 <<< ti1+Ki+fi(Ai−1, Ai−2 <<< ti3, Ai−3 <<< ti2)+Wi+Ai <<< ti4 (4)

The rotational values tij , 1 ≤ j ≤ 4 are derived from si1 and si2, where the
constants related to the rotation of B in the usual representation change around
the steps 20× k, k = 0, 1, 2, 3. For instance, to compute A42, we have t411 = 17,
t412 = 17, t413 = 25 and t414 = 11.

3 Compatible Paths Search Heuristic and Application to
HAS-160

In this section, we provide a new search heuristic that can be used to find com-
patible paths in the boomerang setting. The particular colliding quartet found
by applying the heuristic on HAS-160 is provided in Table 4.

Table 4. Second order collision for the full HAS-160 compression function

Message quartet

MA F6513317 810F1084 FFB71009 78CC955E C3C09F18 5379FC99 435586DA 9C9AD3B4
00440C80 E174316A 006D1670 2B5CF68A AB3DE600 02C9E9D3 5FE95AFF E351DE04

MB F6513317 810F1084 FFB71009 78CC955E C3C09f18 5379FC99 435786DA 9C9AD3B4
00440C80 E174316A 006D1670 2B5CF68A AB3FE600 02C9E9D3 5FE95AFF E351DE04

MC 76513317 010F1084 FFB71009 78CC955E 43C09F18 5379FC99 435786DA 1C9AD3B4
00440C80 E174316A 006D1670 2B5CF68A AB3FE600 02C9E9D3 5FE95AFF E351DE04

MD 76513317 010F1084 FFB71009 78CC955E 43C09f18 5379FC99 435586DA 1C9AD3B4
00440C80 E174316A 006D1670 2B5CF68A AB3DE600 02C9E9D3 5FE95AFF E351DE04

Chaining values quartet

IVA 1143BE75 9A9CA381 85B3F526 DA6ABE66 70EBE920

IVB 3AF7BD99 D08E2E63 245C2AF0 C4456954 CAC046EA

IVC 3AF7B599 D08E2E63 B45C2AF0 C425694C 3BE146F2

IVD 1143B675 9A9CA381 15B3F526 DA4ABE5E E20CE928

The heuristic uses quartets of 1-bit conditions from Table 2 to keep track of the
bit differences in each of the four compression function executions. Apart from
the single-path propagations proposed in [5], two additional types of boomerang
(cross-path) propagations are added. These boomerang propagations have been
previously listed in [15].

The forward and the backward differentials are specified next and this speci-
fication determines the initial problem on which the heuristic is applied. Let the
forward message differential consist of a one-bit difference in messages m6 and
m12 and the backward differential of a one-bit difference in m0, m1, m4 and m7,
as shown in Table 5. The particular bit-position of differences is left unspecified.
The choice of these difference positions is justified by the following start/end
points of the expanded message differences, expressed in terms of the notation
used in Fig. 1: (n0, n1, n2, n3, n4, n5) = (0, 8, 34, 53, 78, 80). It can be observed
that the middle part consists of 20 steps.

Now, the particular problem schematically described by Fig. 1 (a) is repre-
sented more specifically by Table 7, where the backward and forward message
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Table 5. Message differentials. Backward: steps 0-39, forward: steps 40-79

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

m8 ⊕ m9 m0 m1 m2 m3
m12 ⊕ m13 m4 m5 m6 m7

m0⊕m1 m8 m9 m10 m11
m4⊕m5 m12 m13 m14 m15

⊕m10 ⊕ m11 ⊕m14 ⊕ m15 ⊕m2 ⊕ m3 ⊕m6⊕m7

m11 ⊕ m14 m3 m6 m9 m12
m7 ⊕m10 m15 m2 m5 m8

m3 ⊕ m6 m11 m14 m1 m4
m15 ⊕ m2 m7 m10 m13 m0

⊕ m1⊕ m4 ⊕m13⊕ m0 ⊕m9 ⊕ m12 ⊕m5 ⊕ m8

m4 ⊕ m13 m12 m5 m14 m7
m8 ⊕ m1 m0 m9 m2 m11

m12 ⊕m5 m4 m13 m6 m15
m0 ⊕ m9 m8 m1 m10 m3⊕ m6 ⊕m15 ⊕m10 ⊕ m3 ⊕m14 ⊕ m7 ⊕m2 ⊕ m11

m15 ⊕ m10 m7 m2 m13 m8
m11⊕ m6 m3 m14 m9 m4

m7 ⊕ m2 m15 m10 m5 m0
m3 ⊕ m14 m11 m6 m1 m12

⊕m5 ⊕ m0 ⊕m1⊕ m12 ⊕m13 ⊕ m8 ⊕m9 ⊕ m4

differentials are indicated in the first and the last column, respectively. At this
point, the only information that is present in the system is that the two paths
end at the corresponding steps n2 = 34 and n3 = 53. The output of the heuristic
in case of HAS-160 is given in Table 8. The full specifications of the two paths
intersect on 5 steps, which is the number of inner state registers in HAS-160.
Provided that the paths are compatible, one can now start from step 42 and
apply the usual message modification technique to satisfy both paths, which
resolves the middle of the boomerang as shown in Fig. 1 (a).

3.1 Search Strategy

The approach consists of variating the position of the message difference bit,
gradually extending the two paths, propagating the conditions in the quartet and
backtracking in case of a contradiction. In more detail, the heuristic proceeds as
follows:

(1) Randomize the positions of active bits in the active message words.
(2) Extend the specification of the forward/backward path backward/forward,

respectively. Ensure that paths are randomized over different step invoca-
tions.

(3) Propagate all new conditions. In case of contradiction, backtrack
(4) If the two paths are fully specified on a sufficient number of steps, return

the two paths

In step (1), the message disturbance position in the two differentials is ran-
domized to achieve variation in the paths. Alternatively, one position can be
fixed to bit 31 and the other position randomized at each step invocation. As
for step (2), at the point where the probability of contradiction between the two
paths is negligible, one can extend paths simply by randomly sampling them in
required steps and discarding non-narrow ones. Once the probability of contra-
diction becomes significant, substitute/backtrack strategy according to the Table
6 is applied to the remaining steps. In step (3), apart from propagations on a
single path [5], quartet and quartet addition propagations (explained in Section
4) are applied. The heuristic ends when the full specification of two paths (con-
taining only {-,u,n}) intersects on the number of words equal to the number of
registers in the compression function inner state, as is the case in Table 8.
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Table 6. Substitution rules: adding information to the forward path (left) and back-
ward path (right)

1. ???? �→ --??

2. ??-- �→ ----

3. ??xx �→ --xx

4. xx?? �→ {uu10,nn01}
5. xx-- �→ {uu10,nn01}
6. xxxx �→ {unnu,nuun}

1. ???? �→ ??--

2. --?? �→ ----

3. xx?? �→ xx--

4. ??xx �→ {01uu,10nn}
5. --xx �→ {01uu, 10nn}
6. xxxx �→ {unnu,nuun}

When new constraint information is to be added at a particular bit position,
one can either add information to the forward path or to the backward path.
Here, a clarification is necessary regarding the fact that in Table 8, four paths
are shown, whereas the heuristic searches for a pair of paths (forward and back-
ward path). This is due to the fact that the paths on the opposite faces of the
boomerang are equal (up to 0 and 1 symbols) and thus one can consider a pair
of paths. Nonetheless, the inner state of the search algorithm keeps all the four
paths explicitly.

The substitutions provided in Table 6 represent generalizations of the sub-
stitutions used in [5]. The choice whether the information will be added to the
forward or the backward path is made randomly each time. The left-hand and
the right-hand tables correspond to adding constraints to the forward and the
backward path, respectively. Consider for example rule xx-- 
→ {uu10,nn01}. In
this notation, the symbols xx-- describe a bit position for which δ[Aj

i , B
j
i ] = x,

δ[Dj
i , C

j
i ] = x, δ[Bj

i , C
j
i ] = -, δ[Aj

i , D
j
i ] = -. The rule simply substitutes the ‘x’

symbol on the forward path by ‘u’ or ‘n’, while at the same time applying the
immediate propagation of the ‘-’ symbols to ‘0’ and ‘1’, respectively. This rule
represents a generalization of the x 
→ {u,n} rule used in [5]. Other rules can be
explained in a similar manner.

One possible variation of the general heuristic above is as follows. Once the
two paths are sufficiently specified so that the contradictions are likely to occur,
instead of adding new constraints randomly, a beneficial strategy is to introduce
some graduality while extending the two paths. For example, one can choose a
parameter k and extend both paths by only k steps. If the heuristic succeeds in
extending the paths by k steps, reporting that there is no contradiction in the
system, more steps can be attempted. If in the intermediate steps of the search,
the path was in fact contradictory and this was not reported by 1-bit conditions,
further attempts to extend or find the messages satisfying the paths will fail.

3.2 Application to HAS-160

In this section, we describe how the above heuristic can be applied in the case of
HAS-160. First, we fix the position of the active bit in the backward differential
to b1 = 31. The following sequence of steps randomizes steps in the light-gray
area in Table 7:
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Table 7. Input for the search heuristic

step Δ[A,B] Δ[D,C] Δ[B,C] Δ[A,D] step

9 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 9
10 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 10
11 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 11
12 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 12
13 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 13
...

...
...

... [no difference]
...

...
29 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 29
30 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 30
31 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 31
32 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 32

33 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 33

34 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 34
35 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 35

36 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 36
37 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 37
38 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 38

39 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 39

40 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 40

41 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 41
42 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 42
43 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 43

44 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 44

45 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 45

46 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 46
47 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 47
48 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 48
49 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 49

50 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 50

51 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 51
52 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 52

53 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 53
54 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 54
...

... [no difference]
...

...
...

...
76 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 76

77 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 77

Table 8. Output of the heuristic: compatible paths for HAS-160

step Δ[A,B] Δ[D,C] Δ[B,C] Δ[A,D] step

29 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 29
30 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 30
31 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 31
32 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 32

33 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 33

34 0??????????????????????????????? 1??????????????????????????????? u------------------------------- u------------------------------- 34
35 0??????????u???????x0???x-0????? 1??????????u???????x0???x-1????? u----------1--------0-----u----- u----------0--------0-----u----- 35

36 1x????????xu?-01B?--0Bx--u0D???? 0x????????xu?-11B?--1Bx--u0D???? n----------1--u1----u----10----- n----------0--u1----u----00----- 36
37 11-0D0B??0n0?101-x-10-01u01C???x 11-0D1B??0n1?100-x-10-00u10C???x 11-0-u---00u-10n---10-0n1un----- 11-0-u---01u-10n---10-0n0un1---- 37
38 00u0nn-1n01uu000uu-011u00nnn-01- 01u0nn-1n01uu110uu-001u10nnn-11- 0u1000-100111uu011-0n11u0000-u1- 0u0011-110100uu000-0n10u0111-u1- 38

39 n101-1000100-0-0000-1---100-010n n110-0010101-0-1001-1---001-100n 01un-n0u010u-0-u00u-1---n0u-un00 11un-n0u010u-0-u00u-1---n0u-un01 39

40 1-100010001-01--0n1-u-0-00--11-1 1-010011101-00--1n1-u-0-10--11-1 1-nu001uu01-0n--u01-1-0-u0--11-1 1-nu001uu01-0n--u11-0-0-u0--11-1 40

41 u--1--00--0-01--0--0u--001-0---1 u--0--00--0-11--1--1u--001-0---1 1--n--00--0-u1--u--u1--001-0---1 0--n--00--0-u1--u--u0--001-0---1 41
42 u---1-01001-110--n01011--n10---1 u---0-11110-011--n00000--n00---0 1---n-u1uun-n1u--00n0nn--0n0---n 0---n-u1uun-n1u--10n0nn--1n0---n 42
43 n------01----0------u------00-un n------00----0------u------01-un 0????--0nD???0x?????1x??x--0u-10 1????--0nD???0x?????0x??x--0u-01 43

44 0-----10----------------1u------ 0------0----------------1u------ 0?????C0????????????????11?????x 0?????C0????????????????10?????x 44

45 ------00------------u------1---- ------00------------u------1---- ??????00????????????1??????1???? ??????00????????????0??????1???? 45

46 u------------------------------- u------------------------------- 1??????????????????????????????? 0??????????????????????????????? 46
47 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 47
48 -------u------------------------ -------u------------------------ ???????1???????????????????????? ???????0???????????????????????? 48
49 -------n------------------------ -------n------------------------ ???????0???????????????????????? ???????1???????????????????????? 49

50 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 50

51 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 51
52 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 52
53 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 53
54 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 54

- Randomize the position of the forward message difference active bit b2.

- With the message difference fully specified by b1, b2, sample narrow paths
in the inner state words in steps denoted by light-gray in Table 7.

- Propagate conditions w.r.t. the three propagation types explained in Section
4. This step is applied repeatedly until none of the three propagation types
can be applied on any of the bit positions.
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Here, the path sampling is performed simply by initializing randomly the two in-
stances of the path at the given step, calculating the recurrence over the required
number of steps and extracting the path. If the Hamming weight of the path
is greater than some pre-specified threshold, it is discarded and a new path is
sampled. Using the above sampling of partial solution to the paths, the following
procedure aims to find the full solution:

(1) Randomize steps in the light-gray area according to the procedure above
(steps 43-49 and 34-37 in the forward and backward paths, respectively).

(2) Randomly choose (i, j), 0 ≤ i ≤ 31, 38 ≤ j ≤ 42, a position within the
steps denoted by dark-grey in Table 7. If applicable, apply the substitution
specified by Table 6. If not, choose another position. In case there is none,
return the state.

(3) Propagate conditions and backtrack in case of contradiction. After a contra-
diction was reached a sufficient number of times, go to step (1).

After reducing the number of steps on which the two differentials meet from
5 to 3 (i.e., putting k = 4, where it should be noted that after the propagation
the number of unconstrained bits will be relatively small), we received several
paths reported as non-contradictory. At that point, there are two possible routes
to verify the actual correctness of the intermediate result. One is to switch from
1-bit conditions to multi-bit conditions (such as 1.5-bit or 2.5-bit conditions
[15]) that capture more information. ARXtools [15] can readily be used for this
purpose. Each 2.5-bit verification using ARXtools for checking the compatibility
of two paths took around 3-5 minutes. Another option is to continue with the
search heuristic towards extending the specification of the paths to more steps,
restarting always from the saved intermediate path state. As the knowledge in
the system grows, the propagations turns a high proportion of bits into 0 and 1,
which diminishes the possibility of contradiction. If the solution cannot be found
after some time threshold t, the path can be abandoned. We experimented with
both options above and concluded that both approaches are successful.

3.3 Full Complexity of Finding the HAS-160 Second Order Collision

Our implementation of the heuristic found a correct pair of compatible paths
in less than 5 days of execution on an 8-core Intel i7 CPU running at 2.67GHz.
In more detail, as explained in Section 3.2, we ran the heuristic to search for
paths that meet on 3 instead on 5 steps. It should be noted that due to many
propagations, after the search stops, the resulting paths in fact have a small
number of remaining unspecified bits in steps 38-42 (less than 32). The heuristic
yielded around 8 solutions per day and among 40 returned path pairs, one turned
out to be compatible and was successfully extended by one step more, as shown
in Table 8.

The conditions for the two paths that are not explicitly given as u,n,0,1

bits in Table 8 are provided in Tables 9 and 10. To find the quartet of message
words and inner states that follow the two differentials in steps 34 to 49, inner
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Table 9. Backward differential conditions not shown in Table 8

Step Conditions

33 A33,14 �= A32,14

34 A34,20 = A33,20

35 A35,0 �= A34,0, A35,16 �= A33,31, A35,26 �= A34,26

36 A36,3 = A35,3, A36,9 �= A35,9, A36,21 = A35,21, A36,22 = A34,5, A36,23 = A35,23

37 A37,0 = A36,0, A37,1 = A36,1, A37,2 �= A35,17, A37,13 = A36,13, A37,23 �= A36,23

38 A38,25 = A36,8

39 A39,19 ∨ A37,2 = 1

40 A40,17 ∨ A38,0 = 1, A40,30 ∨ A38,13 = 1

41 A41,16 ∨ A39,23 = 1

Table 10. Forward differential conditions not shown in Table 8

Step Conditions

37 A37,2 = A36,2, A37,3 �= A36,3, A37,10 �= A36,10, A37,13 = A36,28, A37,15 = 0, A37,25 = A36,8, A37,29 = A36,12

38 A38,0 = 1

39 A39,4 = 1, A39,8 = 0, A39,9 = 1, A39,12 = 0, A39,17 = 0, A39,19 = 1

40 A40,4 = 0, A40,5 = 0, A40,8 = 0, A40,12 = 1

41 A41,13 = 0, A41,14 = 0

42 A42,7 = 0,

43 A43,6 = 0, A43,7 ∨ A41,14 = 1

44 A44,0 = 0, A44,1 = 0, A44,4 ∨ A42,11 = 1, A44,26 ∨ A42,1 = 1

45 A45,26 = 0

46 A46,4 ∨ A44,11 = 1

47 A47,4 = 1, A47,24 ∨ A45,31 = 1, A47,31 = 1

48 A48,31 = 0

49 A49,17 = 0

50 A50,17 = 0, A50,24 = 1

51 A51,17 = 0

state registers in step 42 are chosen to follow the conditions specified by Tables
9,10 and Table 8 and then the usual message modification procedure is applied
backward and forward.

Once the middle steps of the quartet structure n2 = 34 to n3 = 53 are
satisfied, the second order collision property extends to steps n1 = 8 to n4 = 78
with probability 1 (see Fig. 1 (b)). To cover all of the compression function steps,
the middle steps are kept constant and the remaining ones are randomized until
the second order collision property is satisfied. In particular, if m6 and m15 are
randomized while m6⊕m15 is kept constant, according to the message expansion
specification, the inner state will be randomized for 54 ≤ i ≤ 80 and 0 ≤ i ≤ 35.
Similarly, if m6 and m4 are randomized where m6 ⊕ m4 is kept constant, the
randomization will happen for 52 ≤ i ≤ 79 and 0 ≤ i ≤ 34. Here, a small penalty
in probability is paid due to the fact that the paths may be corrupted towards
the start/end points. The two mentioned randomizations provide around 64 bits
of freedom.

The probability that one randomization explained above yields a second order
collision can be bounded from below by p2q2, where p and q are the probabilities
of two selected sparse differentials in steps 0 ≤ i ≤ n1 and n4 ≤ i < 80, respec-
tively. By counting the number of conditions in sparse paths that happened in
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Table 11. Message differences after propagation

step Δ[WA,WB] Δ[WD,WC ] Δ[WB,WC ] Δ[WA,WD]

33 1------------------------------- 0------------------------------- n------------------------------- n-------------------------------

34 1------------------------------- 0------------------------------- n------------------------------- n-------------------------------

35 -------------------------------- -------------------------------- -------------------------------- --------------------------------

36 1------------------------------- 0------------------------------- n------------------------------- n-------------------------------

37 -------------------------------- -------------------------------- -------------------------------- --------------------------------

38 -------------------------------- -------------------------------- -------------------------------- --------------------------------

39 1------------------------------- 0------------------------------- n------------------------------- n-------------------------------

40 0-------------u----------------- 1-------------u----------------- u-------------1----------------- u-------------0-----------------

41 --------0-----u----------------- --------0-----u----------------- --------0-----1----------------- --------0-----0-----------------

42 -------------------------------1 -------------------------------1 -------------------------------1 -------------------------------1

43 -------------------------------- -------------------------------- -------------------------------- --------------------------------

44 1------------------------------- 0------------------------------- n------------------------------- n-------------------------------

45 1------------------------------- 0------------------------------- n------------------------------- n-------------------------------

46 1------------------------------- 0------------------------------- n------------------------------- n-------------------------------

47 -------------------------------- -------------------------------- -------------------------------- --------------------------------

48 -------------------------------- -------------------------------- -------------------------------- --------------------------------

the quartet in Table 4, we obtain p = 2−22 and q = 2−3 and the probability
lower bound p2q2 = 2−50. The actual time of execution on the above mentioned
PC was less than two days, due to the additional differential paths which con-
tribute to the exact probability of achieving the second order collision property
(previously named amplified probability [3,15]).

4 Details on Condition Propagation

The heuristic keeps track of the current state of the system by keeping the
following information in memory:

- Four differential path tables keeping the current state of bit-conditions
- 4× r carry graphs [24] (one carry graph for each of four paths consisting of
r steps)

In our implementation, we used r = 16, keeping the information about steps
33-48. The carry graphs model the carry transitions allowed by the knowledge
present in the system. Below, the three types of knowledge propagation are
described. The propagations are applied as long as the system is not fully prop-
agated with respect to all three types below.

4.1 Single-Path Propagations

An explicit example of a single-path propagation [5] (see also [24,26]) is provided
below. The constraints and the corresponding carry graphs for at a particular
bit position are all explicitly shown. The new propagated constraints as well as
the removed carry graph edges are indicated.

Throughout the compression function execution specified by (4), for any 1 ≤
i ≤ 80 and 0 ≤ j ≤ 31, bit Aj

i is computed based on the 5 input bits in Ai−j ,
1 ≤ j ≤ 5, the message word bit as well as a particular constant bit. Moreover,
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. . .

δK 01101110110110011110101110100001

δ[WB,41, WC,41] --------0-----0-----------------
δ[B37, C37] 11-0-u---00u-10n---10-0n1un-----

δ[B38, C38] 0u1000-100111uu011-0n11u0000-u1-

δ[B39, C39] 01un-n0u010u-0-u00u-1---n0u-un00

δ[B40, C40] 1-nu001uu01-0n--u01-1-0-u0--11-1

δ[B41, C41] 1--n--00--0-u1--u--u1--001-0---1

δ[B42, C42] 1---n-u1uun-n1u--00n0nn--0n0---n

δK 01101110110110011110101110100001

δ[WB,41, WC,41] --------0-----0-----------------
δ[B37, C37] 11-0-u---00u-10n---10-0n1un-----

δ[B38, C38] 0u1000-100111uu011-0n11u0000-u1-

δ[B39, C39] 01un-n0u010u-0-u00u-1---n0u-un00

δ[B40, C40] 1-nu001uu01-0n--u01-1-0-u0--11-1

δ[B41, C41] 1--n--00--0-u1--u--u1--001-0---1

δ[B42, C42] 1---n-u1uun-n1u--00n0nn--0n0---n

. . .

c0
C

c0
B

c1
C

c1
B

c2
C

c2
B

Fig. 3. Extract of single-path path constraints

bit Aj
i depends on the carries coming from the computations at bit positions

j < k ≤ 0.
In Fig. 3, an extract of the path is provided, borrowed from the Δ[B,C]

path in Table 8. The bit positions treated in this case are δ[B1
42, C

1
42] (left) and

δ[B0
42, C

0
42] (right). The shaded bits are the bit positions participating in the

computation of the two bits. As for the carry graph, it consists of 32 subgraphs,
each comprising of 5 × 5 nodes. In Fig. 3, only the subgraphs corresponding to
bit positions 1 (left) and 0 (right) are shown. Each subgraph node represents a
particular carry configuration at the particular bit position. Due to the fact that
there is 5 summands in (4), the carry value is limited to {0, . . .4} and thus each
subgraph contains 5× 5 nodes. The edges in the graphs represent possible carry
configuration transitions from bit position i to i+ 1.

Next, the edges connecting subgraphs for bit positions i = 0 to i = 1 in Fig. 3
are explained. The shown edges and the corresponding bit-conditions are aligned
in the sense that there is no possible propagations at the particular positions
neither from the bit-conditions to graphs nor vice-versa. According to the bit-
conditions on position 0, we have

c1B|B0
42 = c1B|1 = 1 +W 0

B,41 +B15
37 + f2(1, 1, 1) + 0 = 1 +W 0

B,41 +B15
37

c1C |C0
42 = c1C |0 = 1 +W 0

C,41 + C15
37 + f2(1, 0, 1) + 0 = 1 +W 0

C,41 + C15
37 + 1

From the above two equalities, it follows that W 0
B,41 = B15

37 and W 0
C,41 = C15

37 .

Since δ[W 0
B,41,W

0
C,41] and δ[B15

37 , C
15
37 ] are set to -, the possible carry configura-

tions are (c1B , c
1
C) ∈ {(0, 1), (1, 2)}, which corresponds to the two edges between

the two subgraphs.
Whenever it is possible to deduce new information from what is already

present in the system, propagations need to be carried out until no new informa-
tion can be derived. Continuing with the setting in Fig. 3, assume that during
the heuristic, the symbol - at position δ[W 0

B,41,W
0
C,41] is substituted by 0. Then,

the propagation at this bit consists of substituting - at position δ[B15
37 , C

15
37 ] by

0 and deleting the (0, 0) 
→ (1, 2) graph edge. The edge deletion continues to
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the left and to the right. In case of Fig. 3, this amounts to deleting the edges
coming out of node (1, 2) and continuing in the same manner throughout the
rest of the subgraphs. Next, all of the influenced bit positions, either through
carry graphs or through bit-conditions, need to be repropagated similarly to the
process described above.

4.2 Quartet Propagations

This type of propagations is the simplest of all three types presented in this
section, since it does not involve the carry graphs. An example of this type of
propagation is as follows. Let (i, j) denote a specific bit position in the range
of the considered steps. Let the bit-conditions δ[Aj

i , B
j
i ], δ[D

j
i , C

j
i ], δ[B

j
i , C

j
i ],

δ[Aj
i , D

j
i ] in the four paths be equal to u, x, -, and ?, respectively. It follows

that Aj
i = 0, Bj

i = 1, Cj
i = 1 and Dj

i = 0 and thus the quartet can be readily
substituted by a new one

(ux-?) 
→ (uu10)

Given a quartet of conditions, the substitution quartet is found by going through
all the bit value quartets that satisfy the given condition quartet. The new
quartet consists of the symbols from Table 2 that represent minimal sets contain
the valid bit value pairs.

4.3 Quartet Addition Propagations

In this subsection, the following terminology is adopted: carry subgraphs as
shown in Fig. 3 are called 2-graphs. Nodes with at least one input/output edge
in the 2-graphs are called active nodes. During the execution of the heuristic,
each active 2-graph node corresponds to a possible carry configuration that has
not yet been ruled out by the heuristic.

Quartet addition propagation is illustrated in Fig. 4. The four graphs in the
top part represent a particular case of the 2-graphs that correspond to a sin-
gle bit position (i, j) on paths [A,B], [B,C], [D,C], [A,D], respectively from
left to right. The active nodes are circled and the information about the num-
ber of input/output edges is abstracted from the picture. The quartet addition
propagation is based on the fact that the four different 2-graphs may impose in-
compatible constraint on the carry configurations at the considered bit position.
For instance, according to the 2-graph corresponding to the path [D,C] (third
graph from the left in Fig. 4), since node (cD, cC) = (3, 2) is active, it follows
that having a carry equal to 3 at this bit position in the branch D is not ruled
out. However, since there is no active nodes in the third column of the (cA, cD)
graph, the node (cD, cC) = (3, 2) should be deactivated.

For the purpose of deciding which 2-carry graph nodes should be deactivated,
it is convenient to introduce another type of carry graphs that will be called
4-carry graphs. For each bit-position covered by the heuristic, the four 2-carry
graphs are represented as one 4-carry graph, as shown in the bottom part of
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cD

cA

cC

cD

cC

cB

cB

cA

propagate

cA cB

cCcD

cA cB

cCcD

Fig. 4. Example: 2-carry graphs and the corresponding 4-carry graph before and after
propagation

Fig. 4. The 4-carry graphs abstract the information about active nodes in the
2-carry graphs.

As shown in Fig. 4, the 4-carry graph has four groups of nodes that simply
represent the carry values cA, cB, cC and cD, respectively. The edges in the
4-carry graph are constructed simply by mapping the active nodes in the corre-
sponding 2-carry graphs to the edges between the corresponding node groups.
This mapping is specified by an example as follows. The active nodes in the
(cA, cD) 2-carry graph are (0, 0) and (2, 1). This is translated to the edges (0, 0)
and (2, 1) between the cA and cD branches in the 4-carry graph. The other three
2-carry graph active nodes are mapped to the edges analogously.

The 4-carry graph representation allows expressing the quartet addition prop-
agation rules in a natural way. For that purpose, let a cycle denote a closed path
connecting four nodes, where no two nodes are members of the same node group
in the 4-graph. The propagation rules are then as follows:

(R1) Remove all “dead-end” edges, i.e., the ones with an end node of degree 1
(R2) Remove all edges that do not participate in any cycle

In the case of the propagation given in Fig. 4, the quartet addition propagation
consisted of three applications of (R1) and one application of (R2). Since each 4-
graph edge corresponds to a node in the corresponding 2-graph, the edge removal
according to rules (R1) and (R2) amounts to deactivating the corresponding
nodes in the 2-graph. The node deactivation is done by deleting all input and
output edges for the corresponding 2-graph node. In the case of our HAS-160
search, implementing only rule (R1) turned out to be sufficient.
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5 Conclusion

We proposed a heuristic for searching for compatible differential paths and ap-
plied it to HAS-160. Instead of working with 0/1 bit values, we used the rea-
soning on sets of bits described by 1-bit constraints. The three types of propa-
gations used during the search (single-path propagations, quartet propagations
and quartet addition propagations) are explained through particular examples.
Using the 1-bit constraints along with these propagations yielded an acceptable
rate of false positives and the second order collision was successfully found. One
possible future research direction is to evaluate the performance of the proposed
heuristic in case of SHA-2 with a goal of improving the attack [3] and to assess
the impact of high rate of contradictory paths reported in [20] in this context.

Acknowledgments. The authors would like to thank Gaëtan Leurent for his
help related to ARXtools and the discussions on the topic.
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