
An Artificial Life Technique for the Cryptanalysis of Simple Substitution Ciphers

Mohammad Faisal Uddint, Amr M. Yousseft

Department of Electrical and Computer Engineering'
Concordia Institute for Information Systems Engineering2

Concordia University, Montreal, Quebec, Canada
mf uddin@encs.concordia.ca, youssefgciise.concordia.ca

ABSTRACT- In this paper, we investigate the use of Ant
Colony Optimization (ACO) for automated cryptanalysis
of classical simple substitution ciphers. Based on our
experiments, ACO-based attacks proved to be very
effective on various sets of encoding keys.

Keywords: Cryptanalysis, Simple Substitution Cipher,
Ant Colony Optimization.

I. INTRODUCTION

Cryptanalysis, from the Greek kryptos, "hidden", and
analyein, "to loosen", is the art and science of breaking,
i.e., decoding ciphertext into its corresponding plaintext,
without prior knowledge of the secret key. In general,
classical ciphers operate on an alphabet of letters (e.g.,
"A-Z"), and can be implemented by hand or with simple
mechanical devices [1]. Classical ciphers are often
divided into transposition ciphers and substitution
ciphers. In a substitution cipher, letters are
systematically replaced throughout the message for other
letters. As far as security is concerned, classical ciphers
are no match for today's ciphers. However, in principles,
they have not lost their significance because most of the
commonly used modern ciphers utilize the operation of
classical cipher as their building blocks. In fact, most
complex algorithms are formed by mixing substitution
and transposition in a product cipher. Modern block
ciphers such as DES and AES iterate through several
stages of substitution and transposition.

Ant Colony Optimization (ACO) [2], a recently
proposed population based optimization technique
inspired the behavior of real ant colonies, has been used
to solve different discrete optimization problems. In this
paper, we investigate the use of ACO in automated
cryptanalysis of classical substitution ciphers. Based on
our experiments, ACO-based cryptanalysis proved to be
very effective on various sets of encoding keys.

The rest of the paper is organized as follows. In
section II, we briefly review some of the previous work
related to cryptanalysis of classical ciphers. In section III,
we outline the simple substitution cipher. Section IV

1-4244-0038-4 2006 1
IEEE CCECE/CCGEI, Ottawa, May 2006

summarizes the n-gram statistics and the cost function
used in our attack. In Section V, we review the ACO
algorithm and describe how it is adopted for the
cryptanalysis of substitution ciphers. In section VI, we
explain our experimental setup and report the obtained
results. Finally, section VII is the conclusion.

II. PREVIOUS WORKS

The Arabs were the first to make significant advances
in cryptanalysis. Early in the 15th century, an Arabic
author, Qalqashandi, wrote down a technique for solving
ciphers using the average frequency of each letter of the
language [1].
Over the last twenty-five years, several optimization
heuristics have shown promise for automated
cryptanalysis of classical ciphers [3]. One of the early
proposals was given by Peleg and Rosenfeld [4]. They
modeld the problem of breaking substitution ciphers as a
probabilistic labeling problem. Every coded alphabet
was assigned probabilities of representing plaintext
alphabets. These probabilities were updated using the
joint letters. Using this scheme in an iterative way they
were able to break the cipher. Carrol and Martin [5]
developed an expert system approach to solve simple
substitution ciphers using hand-coded heuristics. Forsyth
and Safavi-Naini [6] recast the problem as a
combinatorial optimization problem and presented an
attack on simple substitution cipher using simulated
annealing algorithm. Spillman et. al [7] presented an
attack on simple substitution cipher using genetic
algorithm. Clerk [3] re-implemented the genetic
algorithm and simulated annealing attack in order to
compare them and also evaluate a third technique using
tabu search. Bahler and King [8] used trigram statistics
and relaxation scheme to iterate towards the most
probable key as previously done by Peleg and Rosenfeld.
Lucks [9] used a word pattern dictionary and search over
it with the constraint that all ciphertext characters must
decrypt to the same plaintext character. Hart [10]
improved upon this method by directing this
combinatorial search towards more frequent English

582

words. Recently, Ant Colony Optimization (ACO) was

used successfully in breaking transposition ciphers [11].

III. SIMPLE SUBSTITUTION CIPHER

Simple substitution cipher is a well-known
cryptosystem. It is the simplest form of substitution
ciphers. Each symbol in the plaintext maps to a different
symbol in the ciphertext [1]. The simple substitution
cipher used in this work operates on the English alphabet
of 26 letters ("A-Z"). We assume that all the
punctuations and structure (sentences/paragraphs, space

characters, and newline characters) are removed from
the plaintext in order to hide these obvious statistics
from the ciphertext.

Table 1: Example of a Simple Substitution Cipher

Let x be an n-character alphabet {Xo,XI,x2,x3xn-}
andy is also an n-character alphabet fK(xo), K(X1), K(x2),
K(x3), , K(Xn 1)}, where K: x-*y is a one to one

mapping of every alphabet of x to the corresponding
alphabets ofy. Here 'K' is the cipher key function which
can be looked at as a permutation of the 26 character.
The transmitter enciphers the plaintext into ciphertext
with a predetermined key function (K) and sends it to the
receiver. The receiver deciphers the ciphertext to
plaintext with the inverse key function (K-').
An example for a simple substitution cipher key and
encryption operation is shown in Table 1.

IV. N-GRAM STATISTICS AND COST FUNCTION

There exists 26! 4.03291461 x 1026 288 possible

keys for a simple substitution cipher with alphabet size
of 26 characters. This number is obviously too large to
allow any kind of exhaustive search.
However, one special property of simple substitution
cipher that makes it relatively easy to cryptanalyze, is
that the language statistics remain unchanged by the
encryption process and hence frequency analysis
presents a basic tool for breaking classical ciphers. In
natural languages, certain letters of the alphabet appear
more frequently than others. The n-gram statistics

indicates the frequency distribution of all possible
instances of n adjacent characters [1]. For example 'E' is
the most common unigram (1-gram) in English language,
and one of the common bigram (2-gram) in English
language is 'TH'. These n-gram statistics can be used to
measure the fitness of a suggested decryption key.
In our case we have only considered unigram and bigram
statistics for deciphering the ciphertext. These statistics
can be easily calculated from any large English corpus.

For our experiments, these statistics were generated
from an online version of the book "Twenty Thousand
Leagues Under the Sea" by Jules Verne.

Let RU,RB and DkJ,DKB be the reference language
unigram and bigram statistics and decrypted message

unigram and bigram statistics (using a key K)
respectively. Then, our cryptanalysis problem
corresponds to finding a decryption key, K, that
minimizes the following weighted objective function

Cost(K) Ru DK +(C (Ci,C
(c (c) (R

ce{IA,B,...,Z} cl ,c2e{fA,B,...,Z}

V. ANT COLONY OPTIMIZATION (ACO)

Ant Colony Optimization [2] is a heuristic
optimization method for solving different combinatorial
optimization problems. It is a population based approach
which borrows ideas from biological ants. The social
behaviors of ants have been much studied by the
scientists and from their behavior the computer scientists
came up with the idea of this optimization. Experiments
with real ants showed that ants go from the nest to the
food source and backwards, then after a while, the ants
prefer the shortest path from the nest to the food source.

Real ants are capable of finding the shortest path from
their nest to a food source without using visual cue [12].
Ants have a special way of communicating information
concerning food sources. While walking, ants secrete an

aromatic essence on the ground, called pheromone. The
other ants will follow the path of greater pheromone trail
with higher probability and as they will follow the path
they as well will secrete pheromone there. So the
pheromone of that path which greater number of ants are

following will increase and as the pheromone trail of
that path increases more ants will follow that path. Since
ants passing through food source by shorter path will
come back to the nest sooner than ants passing through
longer paths, the shorter path will have a higher traffic
density than that of the longer one. Thus a single ant will
follow the shortest path with higher probability [2].
Dorigo and Gambardella [13] presented ant colony
system (ACS) for solving traveling salesman problem
(TSP). For the TSP, the Euclidean distance between two
cities, d(i, j), is used to represent the a priori knowledge

1583

Key:
ABCDE FGHI J K LMNOPQRST UVWXYZ
XNYAHPOGZQWBT S FLRCVMUE K J D I

Encryption:
Plaintext:
ANTCOLONYOPTIMIZATIONISAPOWERFULTOOL
Ciphertext:
XSMYFBFSDFLMZTZIXMZFSZVXLFKHCPUBMFFB

of desirability of choice of a particular city while the
ants are in some particular city. For our cryptanalysis
problem each complete path constructed by ants is a
permutation of the nodes (alphabetic characters)
corresponding to a key. So in our algorithm, we use the
distance between the unigram frequency of the reference
language statistics and the target test key to represent the
a priori desirability of choice of a particular key element,
i. e., we set d(i, j) = R(u) - DK(u)
In what follows we describe how we adopted the ACO
to our cryptanalysis problem.

The system is initialized with a group of ants moving
across a fully connected bidirectional graph of 26 nodes
(nl, n2 , ... n26). A tabu list is maintained to prevent any
ant from visiting the same node twice. Every possible
decryption key K = (kl, k2,...,k26) corresponds to a
unique path along this graph
(ni < nk1l'n2 < nk2 I ... n26 < nk26)

The algorithm proceeds by iterating through the
following three basic steps:

1. Construct a solution for all ants: At each node, each
ant has to make a (statistical) decision regarding the next
node to visit. At the first iteration, all the ants will move
randomly. However, on subsequent iterations, the ants'
choices will be influenced by the intensity of the
pheromone trails left by preceding ants during previous
iterations. A higher level of pheromone on a given path
gives an ant a stronger stimulus and thus a higher
probability to follow this path. In particular, at node i,
the ant expand its tour to nodej with probability p that is
given by:

0, node j already visited

p(i < J) = (i,J) d(i,J) otherwise.
| -(i,k) ad(i,k)-
k not visited

Setting o =0 in the above equation corresponds to the
system that relies only on the unigram statistics for the
cryptanalysis. For the bigram based system, the optimum
value of o and /3 is found by a heuristic trial and error.

2. Do a global pheromone update: Once the tour is
completed, every ant updates the pheromone r(i, j) over
the arc (i - j) along its visited path as follows:

r(i,j) = r(i,j) AA(i,j)
where

Ar(i, j) =1/ Cost(K)

3. Evaporate pheromone: After each iteration, a portion
of the pheromone of the edge is evaporated according to
a local updating rule,

T(i,j) = px(i, j), p<,
such that the probability of the selection of that edge by
other ants decreases. This prevents construction of
similar paths by the set of ants and increases the
diversity of the system. The rate of evaporation provides
a compromise between the rate of convergence and
reliability of convergence. Fast evaporation causes the
search algorithm to be stuck at local optima, while slow
evaporation lowers the rate of convergence. After
enough iteration of the algorithm, the pheromone of the
good edges which are used in constructing of low-cost
paths will increase and the pheromone of the other edges
will evaporate. Thus, in the higher iterations the
probability of constructing low-cost paths increases.

VI. EXPERIMENTAL RESULTS

Throughout all of our experiments, the number of
ANTS was set to 1000. The rest of the parameters were
varied in an ad-hoc way to optimize the results.

Figure 1 shows how the average (over 100 randomly
selected keys) number of corrected key elements varies
with the amount of known ciphertext. Similarly, Figure 2
shows the percentage of corrected characters versus the
amount of known ciphertext. Figure 3 shows the error
distribution for 100 randomly selected keys when the
amount of known ciphertext is 900 characters. For this
case, the average and variance of the number of errors in
the recovered key characters are 1.72 and 2.9303
respectively.

(~~~~~~~~J ~~ ~ ~ ~ E bigram
20-

unigram

- 15

E
CDii

CD

50 100 200 300 400 500 600 700 600 900 1066
Amount of Known Ciphertext

Figure 1: Number of corrected key elements versus the
amount of known ciphertext

1584

100

90

80

60

50

40

30

20

10

0

bigram
unigram

0 0 0 4 6 7 I
50 100 200 300 400 500 600 700 800 900 lO000

Amount of Known Ciphertext

Figure 2: Percentage of corrected characters versus the
amount of known ciphertext

[2] M. Dorigo, V. Maniezzo, and A. Colorni, "The ant
system: Optimization by a Colony of Cooperating
Agents," IEEE Transactions on Systems, Man, and
Cybernetics. B, vol.26, no.2, pp. 29-41, 1996.

[3] A. Clerk, "Optimisation Heuristics for Cryptology,"
PhD thesis, Queensland University of Technology, 1998.

[4] S. Peleg and A. Rosenfeld, "Breaking substitution
ciphers using a relaxation algorithm," Communications
of the ACM, vol. 22(11), pp.598-605, 1979.

[5] J. Carrol and S. Martin, "The automated
cryptanalysis of substitution ciphers," Cryptologia,
vol. 10(4), pp.193-209, 1986.

1o 11111111

O 1 2 3 4 5 6
N unm be r of Erro-rs

Figure 3: Error distribution for bigram based system
(100 random keys and 900 known ciphertext characters)

VII. CONCLUSIONS

ACO provides a very powerful tool for the
cryptanalysis of simple substitution ciphers using a

ciphertext only attack. Given the noticeable accuracy

gain of the bigram based attack as compared to the
unigram based one; it is interesting to try the trigram in
the evaluation function. We only investigated the two
cases corresponding to (A&,42) = (1,0) and (A&,42) = (0,1) .

One may also try to use a cost function that is based on a

weight combination of the different n-gram statistics.
One main disadvantage of heuristic optimization

techniques (including ACO) is its large sensitivity to
parameter variations (e.g., p, a, and , in ACO).
Although fine tuning of these parameters can be done by

trial and error, it is interesting to find analytical formula
for the optimal (regions) of these parameters.

REFERENCES

[1] D. Kahn, "The Code breakers: the story of secret
writing," revised edition, 1996.

[6] W. S. Forsyth and R. Safavi-Naini,
cryptanalysis of substitution ciphers,"
vol.17(4), pp.407-418, 1993.

"Automated
Cryptologia,

[7] R. Spillman, M. Janssen, B. Nelson and M. Kepner,
"Use of a genetic algorithm in the cryptanalysis of
simple substitution ciphers," Cryptologia, vol.17(1),
pp.31-44, 1993.

[8] D. Bahler and J. King, "An implementation of
probabilistic relaxation in the cryptanalysis of simple
substitution systems," Cryptologia, vol.16(3), pp.219-
225, 1992.

[9] M. Lucks, "A constraint satisfaction algorithm for
the automated decryption of simple substitution
Ciphers," In Proceedings of CRYPTO'88, pp. 132-144,
1988.

[10] G. W. Hart, "To decode short cryptograms,"
Communications of the ACM, vol.37(9), pp.102-108,
1994.

[11] M.D. Russell, J.A. Clark, and S. Stepney, 'Making
the most of two heuristics: breaking transposition
ciphers with ants," The Congress on Evolutionary
Computation (CEC '03), Vol. 4, pp.2653- 2658,2003.

[12] R. Beckers, J.L. Deneubourg and S. Goss, "Trails
and U-turns in the selection of the shortest path by the
ant Lasius Niger," Journal of Theoretical Biology,
vol.159, pp.397-415, 1992.

[13] M. Dorigo, L.M. Gambardella, "Ant colony system:
a cooperative learning approach to the traveling
salesman problem," IEEE Transactions on Evolutionary
Computation, vol. 1, no. 1, pp.53-66, 1997.

1585

