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Absiracf: In this paper we present two methods for 
constructing highly nonlinear injective s-boxes. Both of 
these methods, which are based on exponential sums, 
outperform previously proposed methods. In particular, we 
are able to obtain injective 8 x 32 s-boxes with nonlinearity 
equal to 80 and maximum XOR table entry of 2. We 
also re-evaluate the resistance of the CAST-like encryption 
algorithms constructed using randomly selected s-boxes to 
the basic linear cryptanalysis. 

1. Introduction 
Differential cryptanalysis 131 and linear cryptanalysis [71 
are powerful cryptanalytic attacks on private-key block 
ciphers. The complexity of differential cryptanalysis 
depends on the size of the largest entry in the XOR table, 
the total number of zeroes in the XOR table, and the 
number of nonzero entries in the first column in that table 
[3], [12]. The complexity of linear cryptanalysis depends 
on the size of the largest entry in the linear approximation 
table &AT) [8]. 
One way to reduce the size of the largest entry in the XOR 
table is to use injective substimtion boxes (s-boxes) such 
that the number of output bits of the s-box is suf3iciently 
larger than the number of input bits. In this way, it 
is very likely that the entries in the XOR distribution 
table of a randomly chosen injective s-box will have 
only small values, making the block cipher resistant to 
differential cryptanalysis. Some proposed block ciphers, 
such as CAST [11 and Blowfish [ll], take advantage of 
this property. 
On the other hand, Bihm proved that if for an n x m 
s-box described by f : Z; -+ Z r  we have m 2 2n - n, 
then at least one linear combination of the output bits must 
be an afline combination of the input bits and the block 
cipher can be trivially broken by linear cryptanalysis. 
Highly nonlinear 8 x 32 s-boxes are particularly interesting 
because some practical ciphers are based on s-boxes with 
these dimensions [l], [ll]. The expected value of the 
nonlinearity of randomly selected injective s-boxes is 
studied in [141 where it was found that the expected 
nonlinearity of a randomly selected 8 x 32 s-boxes is 
about 72. 

Mister and Adams [9] presented a construction method for 
injective s-boxes from bent functions. Although their basic 
objective was to obtain highly nonlinear 8 x 32 s-boxes, 
they were only able to achieve nonlinearity of 74 or less. 
In this paper we present two construction methods for 
injective s-boxes. Both of these methods outperform 
previously proposed methods. In particular, we are able to 
obtain injective 8 x 32 s-boxes with nonlinearity equal to 
80. We also re-evaluate the resistance of the CAST-like 
encryption algorithms to the basic linear cryptanalysis. 

Throughout this paper we assume a field of characteristic 
2. Our construction methods are based on the following 
Lemmas. 

Lemma I(Carlia and Uchiyama bound [4]) 
If F ( x )  is a polynomial over GF(2") of degree T such 
that F ( x )  # G ( x ) ~  + G ( x )  + b for a l l  polynomials G ( x )  
over GF(2*) and constants b E GF(2"), then 

I 
n-1 

i = O  
where TT(x) = x2' is the trace of x E CF(2*). 

Le" 2(IuoOsterman sum [13],[4]) 

Note that a function, F, over GF(2") can also be 
expressed as a function over GF(2)^ ,  i.e., as n functions 
over GF(2).  For 2 = (21,. - ,  2,) let 

f(z) = (fi(z), * 7 fn(2) )  
be a function over GF(2)", let B = {a,, . . . , a,} be any 
basis of GF(2*) over GF(2) ,  then the function 

n 

(3) 
i=l 

n 

i=l  
where x = Z;Q~ E GF(2"). This means that there 
is a one-to-one correspondence between the functions of 

CCECE'97 0-7803-3716-6 /97/$5.00 0 1997 IEEE 

http://adonis


33 1 

(-1) Tr(x+++;e;)  

xEGF( 2")\{O,a} 

GF(2") and those of GF(2)" under a chosen basis of 
GF(2n) over GF(2). If we let {a;, . , a;} be the dual 
basis of B, then each component of f(x) can be expressed 

(4) 
as 

fj(x) = T r ( F ( x ) a r ) .  
Nonlinearity: The nonlinearity of the function f(z) = 
(f1 (z), - * . , fn(Z)) is defined as the minimum Hamming 
distance between the set of affine functions and every 
nonzero linear combination of the output coordinates of 
f ,  i.e., 

(5 )  

where U E Zz, w E Z;\{O}, b E Z2 and w - x denotes the 
dot product between w and x over Z2. 

NLf = min #{x E Z;lu. f(z) # w. x @ b } ,  
a,b,w 

< 2n/2+2, (12) 

From the above, one can easily prove that the nonlinearity 
of the function f that corresponds to the function F is 
given by 

min d(Tr(cF(x)) ,  Tr(wx)@b)  N L ( f )  = c#O,w,b 

- - 2"-1 - " /c (-1)WcW)+wx) 1, 
cf0,w 

where c, w E GF(2"), b E GF(2) and 

d(fl,f2) = #{z E z; I f l ( Z )  # fd.)). (7) 

2. Results 

2.1 Construction Method I 
This construction method is based on the observation 
that highly nonlinear injective s-boxes may be obtained 
by adding the coordinate functions of highly nonlinear 
bijective s-boxes. 
Given the distinct bijective functions Fi, 1 5 i 5 M, 
over GF(2") an injective s-box G with n inputs and nM 
outputs can be obtained by setting 

G = (J'illF211 ---llFiw). (8) 
In this method we use the inversion mapping proposed by 
Nyberg [lo1 

where x E GF(2"). 
Using Lemma 2, it is easy to see that the nonlinearity of 
the function Fj is lower bounded by 2"-' - 2"12. 
Experimental results show that injective 8 x 16 s-boxes 
constructed by this method always have nonlinearity of 
96. For 8 x 24 ana 100 random choices of U, pairs, we 
found 57,40 and 3 s-boxes with AfL = 86,84 and 80 
respectively. The only 8 x 32 s-box tested to date has 
nonlinearity of 76. 

2.2 Construction Method II 
This method is also based on the observation that highly 
nonlinear injective s-boxes may be obtained by adding 
the coordinate functions of highly nonlinear s-boxes (not 
necessary bijective). 
If the concatenated functions Fi's are distinct polynomials 
over GF(2") such that 

M 

wx + z a i F i ( x )  # U ( X ) ~  + U ( X )  + b (13) 

for all polynomials V ( x )  over GF(2'") and constants 
E GF(2") \ {0 } ,  b, w E GF(2") then the Carlitz and 

Uchiyama bound can be used to provide a lower bound 
the nonlinearity of the resulting s-box as follows. 
If r = mq(degree(Fj) )  then the nonlinearity of the 
resulting finction is lower bounded by 

(14) 
Using the Carlitz and Uchiyama bound it is easy to check 
that the nonlinearity of the function F ( x )  = x3,x E 
GF(28) is lower bounded by 112. Also the nonlinearity 
of the function G(x) = (x311x5),x E GF(28) is lower 
bounded by 96. 
Our basic result is based on the experimental observation 
that the Carlitz and Uchiyama bound is not tight for higher 
values of r. In this paper we consider the following five 
constructions 

i= l  

N.& 2 2"-' - 2"I2-l(r - 1). 

G1 = ( x ~ ~ ~ x ~ ~ ~ x " ] ~ x ' ~ ) ,  
G2 = ( ~ ~ 1 1 ~ ~ 1 1 x " l l x ' ~ ) ,  
G3 = ( ~ ~ ( 1 ~ ~ 1 1 ~ " l l ~ ' ~ ) ,  (15) 
Gq = ( ~ ~ 1 1 ~ ~ 1 1 ~ ~ 1 1 ~ ' ~ ) ,  
G5 = ( ~ ~ 1 1 ~ ~ 1 1 ~ ~ 1 1 ~ ~ ' ) .  

Using the Carlitz and Uchiyama bound we have 

(16) 
32, i = 1,2,3,4, 

AfLG, 2 { 48, i = 5 .  
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Experimental results shows that 

Let Fi = for i = 1,2,3,4,5 
respectively. By noting that Fi is bijective for i = 3 ,4 ,5  
then any construction that includes any of Fi, i = 3 ,4  or 
5 will be injective. In fact, it is not hard to see that all 
the s-boxes below are injective. 
Table 1 below shows the nonlinearity and the maximum 
XOR table entry, XOR*, for the injective 8 x 16 s-boxes 
constructed by this method by concatenating Fi with Fj. 
Table 2 shows similar results for the 8 x 24 s-boxes. 

Table 1 hfL,XOR* for 8 x 16 S-boxes 
Obtained Using Construction Method II 

Table 2 NL,XOR* for 8 x 24 S-boxes 
Obtained Using Construction Method II 

For the 8 x 32 s-boxes, XOR* = 2 for all the constructions 
in (15) except for G1 where it is equal to 4 which may 
limit the usefulness of GI. 

Table 3 shows the best s-box nonlinearity obtained by 
different methods 

Table 3 Best S-box Nonlinearity Obtained 
by Different Construction Methods 

The construction methods proposed in this paper can be 
extended to other highly nonlinear mappings such as those 
proposed in [5],[10]. 
In order to frustrate possible algebraic attacks, the four 
8 x 32 s-boxes should be generated using different 

irreducible polynomials. When using s-boxes obtained 
from construction method 11, we recommend that the 
bytes XORed together should correspond to Merent 
degrees. For example, if G5 is used, then the 8 x 32 
s-boxes may be constructed as follows 

s1 = (x311x511x711x11), 

such that the exponents form a Latin square. 

3. Comments on the Security of CAST-like 
Encryption Algorithm 

Figure 1 CAST Round Function 

Figure 1 shows the CAST round function. In this paper 
we assume that operations a, b, c and d are XOR addition 
of 32 bit quantities. 
The resistance of CAST-like encryption algorithms [ll 
constructed using randomly generated s-boxes against the 
basic linear cryptanalysis [81 was studied in [61. The 
number of known plaintexts, Np, in a basic linear attack 
(Algorithm 1 in [8]) required to give a 97.7% confidence 
of getting the right key bit is approximately given by 

I 'I I 'I 
where y is the number of s-boxes involved in the R-round 
linear approximation expression, Ips - 31 = 2n-1-MLs 273 

and n is the number of input bits to the s-box. The bounds 



333 

for Np can be calculated by re-evaluating the expressions 
in [61 using the new 8 x 32 s-boxes nonlinearity. However, 
a better bound can be obtained by considering the 
nonlinearity of the resulting 32 x 32 s-boxes. The 
nonlinearity, NLs can be bounded using the nonlinearity, 
NL,, , 1 5 i 5 4, of the four 8 x 32 used in its construction 
as follows 

i=l 

The exact nonlinearity can be efficiently calculated using 
the Walsh transforms [2] of the four 8 x 32 s-boxes. Since 
an R-round linear approximation must involve at least 
as many s-boxes as R/2 iterations of the best 2-round 
approximation, the number of 32 x 32 s-boxes involved 
in an R-round linear approximation is at least R/2 and 
hence we have 

where NLs is the nonlinearity of the 32 x 32 s-box. 

An important observation, which was overlooked in [9] 
is that the nonlinearity of the 32 x 32 s-box depends not 
only on the nonlinearity of 8 x 32 s-boxes used in the 
construction, but it also depends on how the four 8 x 32 
s-boxes interact together. This means that improving the 
nonlinearity of the individual 8 x 32 s-boxes does not 
always guarantee improving the resistance of the cipher 
to the basic linear cryptanalysis. For example, when 
combining the output of the four CAST s-boxes [I] (each 
with nonlinearity 74) by XOR, the resulting 32 x 32 s- 
box has nonlinearity 2,132,774,912 which is less than 
2,133,721,088, the nonlinearity we got by combining four 
randomly selected s-boxes with nonlinearity less than 74. 
Using these randomly selected s-boxes, we have Np % 260 
for R = 8 which is much higher than Np % 234 estimated 
in 161. 
Finally, we note that the primary motive for this work is 
to obtain highly nonlinear injective s-boxes. We are not 
proposing the use of such s-boxes in CAST-like ciphers 
before examining their other cryptographic properties. In 
fact, we believe that randomly selected 8 x 32 s-boxes are 
a good choice for CAST-like ciphers. 
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