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Abstract Climent et al. (Appl Algebra Eng Commun Comput 22:91–108, 2011)
identified the elements of the endomorphisms ring End(Zp × Zp2) with elements in a
set, E p, of matrices of size 2×2, whose elements in the first row belong to Zp and the
elements in the second row belong to Zp2 . By taking advantage of matrix arithmetic,
they proposed a key exchange protocol using polynomial functions over E p defined
by polynomials in Z[X ]. In this note, we show that this protocol is insecure; it can be
broken by solving a set of 10 consistent homogeneous linear equations in 8 unknowns
over Zp2 .

Keywords Cryptanalysis · Key exchange protocol · Endomorphism ·
Noncommutative ring

1 Introduction

Climent et al. [1] identified the elements of the endomorphisms ring End (Zp × Zp2)

[2] with elements in a new set, denoted by E p, of matrices of size 2 × 2, whose
elements in the first row belong to Zp and the elements in the second row belong to
Zp2 . The following results were established in [1]:
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The set

E p =
{[

a b
pc d

]
|a, b, c ∈ Zp and d ∈ Zp2

}

is a noncommutative unitary ring where addition is defined by

[
a1 b1
pc1 d1

]
+

[
a2 b2
pc2 d2

]
=

[
(a1 + a2) mod p (b1 + b2) mod p

p(c1 + c2) mod p2 (d1 + d2) mod p2

]
,

and multiplication is defined by

[
a1 b1
pc1 d1

]
·
[

a2 b2
pc2 d2

]
=

[
(a1a2) mod p (a1b2 + b1d2) mod p

p(c1a2 + d1c2) mod p2 (pc1b2 + d1d2) mod p2

]
.

The additive and multiplicative identities of E p are given by

O =
[

0 0
0 0

]
and I =

[
1 0
0 1

]
, respectively.

Let M =
[

a b
pc pu + v

]
∈ E p with a, b, c, u, v ∈ Zp. Then M is invertible if and

only if a �= 0 and v �= 0, and in this case we have

M−1 =
[

a−1 (−a−1bv−1) mod p

p[(−a−1cv−1) mod p] p
[(

ca−1b(v−1)2 − u(v−1)2 − � vv−1

p �v−1
)

mod p
]

+ v−1

]
.

Climent et al. [1] proved that the ring End (Zp × Zp2) is isomorphic to the ring E p.
Furthermore, they proved that the fraction of invertible elements in E p is given by

(
p − 1

p

)2

≈ 1 for large p. (1)

Thus, for large values of p, almost all elements in E p are invertible.
During the last decade, several cryptographic primitives using algebraic systems

rather than traditional finite cyclic groups or finite fields have been proposed (e.g., see
[3,4]).

In this context, and by trying to take advantage of matrix arithmetic, Climent et
al. proposed a key exchange protocol using polynomial functions over E p defined
by polynomials in Z[X ]. In this note, we show that this protocol is not secure. In
particular, we show that this protocol can be broken by solving a set of 10 consistent
homogeneous linear equations in 8 unknowns over Zp2 .

2 Description of the key exchange scheme

For completeness, in this section, we briefly review the relevant details of the Climent
et al. key exchange scheme. For further details, the reader is referred to [1].
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Cryptanalysis of a key exchange protocol 145

Let f (X) = a0 + a1 X + a2 X2 + · · · + an Xn ∈ Z[X ]. For an element M ∈ E p,
the element

f (M) = a0 I + a1 M + a2 M2 + · · · + an Mn ∈ E p

where I is the multiplicative identity of E p. The key exchange protocol proposed in
[1] can be summarized as follows:

1. Alice and Bob agree on the public parameters r, s ∈ N and M, N ∈ E p for a large
prime p.

2. Alice and Bob choose their private keys f (X) and g(X) ∈ Z[X ], respectively.
3. Alice computes her public key PA = f (M)r N f (M)s and sends it to Bob.
4. Bob computes his public key PB = g(M)r Ng(M)s and sends it to Alice.
5. Alice and Bob compute SA = f (M)r PB f (M)s and SB = g(M)r PAg(M)s

respectively.
6. Finally, Alice and Bob share the secret key SA = SB .

3 The proposed attack

The main idea of the attack is based on the following lemma.

Lemma 1 Let

W1 =
[

a1 b1
pc1 d1

]
and W2 =

[
a2 b2
pc2 d2

]

be two matrices in E p such that

W1 M = MW1 (2)

W2 M = MW2 (3)

PB W2 = W1 N . (4)

Then we have

SA = SB = W1 PAW −1
2 .

Proof Note that Wi , i = 1, 2, commutes with M implies that Wi commutes with
f (M) and consequently Wi commutes with f (M)h for any h ∈ N. Also Wi com-
mutes with M implies that W −1

i commutes with M (This follows by noting that
Wi M = MWi ⇒ Wi MW −1

i = M ⇒ MW −1
i = W −1

i M). Thus we have

W1 PAW −1
2 = W1 f (M)r N f (M)s W −1

2
= f (M)r W1 N W −1

2 f (M)s

= f (M)r PB f (M)s

= SA.

�	
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It is easy to verify that W1 = g(M)r and W2 = g(M)−s is a valid solution to the
system of equations in Lemma 1. Thus, this linear system of equations is consistent
and consequently the attacker is guaranteed to find at least one solution for it. In what
follows we show how the attacker can solve this system of equations. Let

M =
[

m1 m2
pm3 m4

]
∈ E p.

Because of the structure of the elements in E p, it is easy to verify that the equation
resulting from equating the top left element on both sides of the resulting matrices
products in (2) does not add any constraints to the system of equations and hence it
can be eliminated (In other words, (a1m1 + pb1m3) ≡ (a1m1 + pm2c1) mod p is
always satisfied for all choices of a1 and b1). Consequently, (2) leads to the following
three equations:

a1m2 + b1m4 − b1m1 − d1m2 ≡ 0 mod p
p(c1m1 + d1m3 − a1m3 − c1m4) ≡ 0 mod p2

p(c1m2 − b1m3) ≡ 0 mod p2
(5)

with unknowns a1, b1, c1 ∈ Zp and d1 ∈ Zp2 . Similar argument applies to (3) (note,
however, that (4) leads to 4 equations).

The solution for the above system of equations can be obtained by solving it over Zp2

and then reducing the obtained solution for ai , bi and ci modulo p, i = 1, 2 (recall that,
for any multivariate polynomial f, f (x1, . . . , xn) ≡ 0 mod p2 ⇒ f (x1, . . . , xn) ≡
0 mod p.)

Thus the solution for the system of 3 + 3 + 4 = 10 equations corresponding to
Lemma 1 can be obtained by solving all equations over Zp2 and then reducing the
obtained solution for ai , bi and ci modulo p, i = 1, 2. Based on our experimental
results, this system of equations is always under-determined and many solutions exist
for W1 and W2. Choosing any solution such that W2 is invertible leads to the right key.
Note that for large p, which is the case of interest for this cryptosystem, our experi-
mental results confirmed this condition practically holds for almost all valid solutions
(also see (1)). We illustrate our attack using the same toy example that was provided
in [1] to explain the steps of the protocol.

Example 1 Assume that Alice and Bob agree on p = 11, r = 3, s = 5,

M =
⎡
⎣ 5 8

44 102

⎤
⎦ and

⎡
⎣ 10 3

77 37

⎤
⎦ .

Alice chooses her secret key as f (X) = 3 + 3X + 9X2 + 5X3 ∈ Z[X ] and Bob
chooses his secret key as g(X) = 9 + 6X + 5X2 ∈ Z[X ]. Thus we have

f (M) = 3 + 3M + 9M2 + 5M3 =
⎡
⎣ 10 8

44 19

⎤
⎦ ,

g(M) = 9 + 6M + 5M2 =
⎡
⎣ 10 5

88 72

⎤
⎦ .
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Cryptanalysis of a key exchange protocol 147

Alice computes her public key, PA, as

PA = f (M)3 N f (M)5 =
⎡
⎣ 10 5

110 119

⎤
⎦

and sends it to Bob. Bob computes his public key, PB , as

PB = g(M)3 Ng(M)5 =
⎡
⎣ 10 10

11 16

⎤
⎦

and sends it to Alice. Alice computes her secret key SA = f (M)3 PB f (M)5 and Bob
computes his secret key SB = g(M)3 PAg(M)5 to obtain

SA = SB =
⎡
⎣ 10 7

22 113

⎤
⎦ .

As explained above, the solution for the system of equations in Lemma 1 can be
obtained by solving⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 9 0 3 0 0 0 0
77 0 22 44 0 0 0 0
0 77 88 0 0 0 0 0
0 0 0 0 3 2 0 8
0 0 0 0 44 0 99 77
0 0 0 0 0 44 33 0
10 0 0 0 1 0 0 0
3 4 0 0 0 1 0 1
0 0 110 77 110 0 66 0
0 0 33 37 0 110 0 105

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1
b1
c1
d1
a2
b2
c2
d2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

mod 121

and then reducing the obtained solution for ai , bi and ci , i = 1, 2, modulo p. Solving
this system of linear equations, we obtain⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1
b1
c1
d1
a2
b2
c2
d2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

41z1 + z2 mod 11
3z1 + 65z2 mod 11
7z1 + 5z2 + 11z3 mod 11
43z1 + 4z2 mod 121
74z1 + 111z2 mod 11
99z1 + 88z2 mod 11
11z4 mod 11
8z1 + 12z2 mod 121

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where z1, z2, z3, z4 can assume any arbitrary values in Z121. The attacker chooses
any random values for z1, z2, z3, z4 such that W2 is invertible (which happens
with probability ≈ 1 for large values of p). In this example, suppose that
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the attacker randomly chooses [z1, z2, z3, z4]T = [1, 1, 10, 7]T , then we have
[a1, b1, c1, d1, a2, b2, c2, d2]T = [9, 2, 1, 47, 9, 0, 0, 20]T and consequently we have

W1 =
⎡
⎣ 9 2

11 47

⎤
⎦ and W2 =

⎡
⎣ 9 0

0 20

⎤
⎦ ⇒ W −1

2 =
⎡
⎣ 5 0

0 115

⎤
⎦ .

Finally, the attacker recovers the secret key by calculating

W1 PAW −1
2 =

⎡
⎣ 9 2

11 47

⎤
⎦

⎡
⎣ 10 5

110 119

⎤
⎦

⎡
⎣ 5 0

0 115

⎤
⎦ =

⎡
⎣ 10 7

22 113

⎤
⎦ = SA = SB .

4 Discussion and conclusion

The key exchange protocol proposed by Climent et al. is not secure. In fact, as noted
by one of the anonymous reviewers, Climent’s scheme can be seen as a partial gener-
alization of Stickel’s key agreement scheme [5] which was broken by Shpilrain in [6]
(see also [7–9]). In particular, Shpilrain [6] deployed the same linearization approach
used in our attack. Shpilrain [6] also suggested to use non-invertible matrices to foil
such linear algebra attacks and to repair Stickel’s scheme but his proposal has also
been broken [8]. The fact that there are so few non-invertible elements in E p is a
weakness of the scheme since it makes the attacker’s job easier.

It should also be noted that Stickel’s scheme is only an instance of the group Diffie–
Hellman scheme [10] which generalizes the original Ko et al. [11] braid group based
protocol. Later on, several braid groups were suggested as platform groups. Linear
algebra attacks on these braid-based schemes using the same techniques were also
deployed (e.g., see [12–15]).
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