
Defaming Botnet Toolkits:

A Bottom-Up Approach to Mitigating the Threat

Thomas Ormerod, Lingyu Wang, Mourad Debbabi,

Amr Youssef, Hamad Binsalleeh, Amine Boukhtouta, and Prosenjit Sinha

National Cyber-Forensics and Training Alliance CANADA

Computer Security Laboratory, Concordia University

Montreal, Quebec, Canada, H3G 2W1

Email: {t ormero,wang,debbabi,youssef,h binsal,a boukh,p sinh}@ciise.concordia.ca

Abstract—Botnets have become one of the most prevailing
threats to today’s Internet partly due to the underlying
economic incentives of operating one. Botnet toolkits sold
by their authors allow any layman to generate his/her own
customized botnet and become a botmaster; botnet services

sold by botmasters allow any criminal to steal identities and
credit card information; finally, such stolen credentials are sold
to end-users to make unauthorized transactions. Many existing
botnet countermeasures meet inherent difficulties when they
choose to target the botmasters or authors of toolkits, because
those at the highest levels of this food chain are also the
most technology-savvy and elusive. In this paper, we propose
a different, bottom-up approach. That is, we defame botnet
toolkits through discouraging or prosecuting the end-users
of the stolen credentials. To make the concept concrete, we
present a case study of applying the approach to a popular
botnet toolkit, Zeus, with two methodologies, namely, reverse
engineering and behavioural analysis.

Keywords-botnet; network security, identity theft; reverse
engineering; Zeus.

I. INTRODUCTION

Botnets, networks of compromised machines controlled

by botmasters, have become the leading threat to Internet

security by providing an ideal platform for DDoS extortion,

click fraud, SPAM, identity theft, and so on [1]. The success

of botnets is partly due to a strong economic incentive

underlying every level of the food chain: botnet toolkits sold

by their authors allow any layman to generate his/her own

customized botnet and become a botmaster; botnet services

sold by botmasters allow any criminal to steal identities and

credit card information; finally, such stolen credentials are

sold to end-users to make unauthorized transactions.

The defence against botnets has drawn significant at-

tention. Both network and host-based intrusion detection

approaches have shown some success in detecting botnets

(a more detailed review of related work will be given in

Section II). However, misuse detection can be evaded by

altering signature patterns, and anomaly detection suffers

from high false positives when botnets mimic ordinary

system behaviours. Although some preliminary efforts also

exist on botmaster trace back, a countermeasure meets sig-

nificantly more difficulties when the objective is to capture

the botmaster or authors of a toolkit, because those at the

highest levels of the food chain are also the most technology-

savvy and elusive.

Inspired by the bottom-up control of a biological food

chain [2], we propose an approach of defeating a botnet

toolkit through discouraging or prosecuting its end-users. We

first present a generic framework describing the proposed

approach and its two variations that defame a botnet toolkit

from the security and profitability perspective, respectively.

To make the concepts more concrete, we present a case

study of the approach on the Zeus botnet toolkit, which is

ranked as a top threat in the United States with more than

3.6 million infected systems [3]. For extracting necessary

information for the defaming approach, we demonstrate two

methodologies, namely, reverse engineering and behavioural

analysis in the case study.

The advantage of our approach is that it targets the

weakest point of a botnet food chain (the end-users). The

cascading effect will eventually affect the top level of the

chain (the toolkit author) by diminishing his/her profits when

selling updates to existing users and new users. In addition,

since we are attacking the business model, malware authors

would need to change how they do business to circumvent

our attack, which is more difficult than modifying the

implementation of their toolkits.

The remainder of this paper is organized as follows.

Section II discusses related work. Section III describes the

generic framework of our approach. Section IV describes

our findings from the case study of Zeus and the reverse en-

gineering and behavioural methodologies. Finally, Section V

concludes the paper and discusses future work.

II. RELATED WORK

In recent years there have been many approaches to detect

and mitigate botnets and their related attacks. Ramachandran

et al. [4] proposed using DNS blacklist counter-intelligence

to determine botnet membership. However, this is limited

to certain categories of SPAM botnets. Yen and Reiter [5]

proposed TAMD, a system to detect a botnet by aggregating

2010 Fourth International Conference on Emerging Security Information, Systems and Technologies

978-0-7695-4095-5/10 $26.00 © 2010 IEEE

DOI 10.1109/SECURWARE.2010.32

178

2010 Fourth International Conference on Emerging Security Information, Systems and Technologies

978-0-7695-4095-5/10 $26.00 © 2010 IEEE

DOI 10.1109/SECURWARE.2010.39

195

network traffic. In a similar work Gu et al. [6] proposed

BotMiner, which correlates traffic but on different character-

istics to TAMD. BotHunter, also proposed by Gu et al. [7],

is a system to passively detect individual bots by correlating

IDS alerts to a predefined infection model. Goebel and Holz

[8] created a system, Rishi, to detect IRC botnets through

signature detection on known IRC nicknames. The main

difficulty to these approaches is that botnets are constantly

changing their behaviour to circumvent such solutions.

There are several works in the research field of identity

theft analysis, detection and mitigation. Franklin et al. [9]

presented two attacks on the trust and rating system of

the Internet black market. However, their approach did not

handle the case where credentials are not sold on the black

market. Chandrasekaran et al. [10] detected phishing sites by

submitting fake credentials and monitoring site behaviour;

Holz et al. [11] analyzed data seized from 70 dropzones and

provided metrics on the wealth of the underground economy;

Birk et al. [12] used honeytokens [13] to track phishers.

Our work is complementary to this; we submit honeytokens

through botnets to attack the toolkit that created them and

incorporate legal prosecution of the end-users.

Recent work has been proposed that attacks the price

equilibrium of the Internet black market. Ford et al. [14]

presented an attack at the ad revenue stream generated by

botnets. This work justified the viability of an attack against

the botnet business model. Li et al. [15] used honeypots

to create uncertainty in the necessary rental size for a

DDoS attack. These attacks are intended to affect the profit

margins of botmasters by reducing the effectiveness of their

services. While these attacks do show promise, they have

not addressed a fundamental parameter in the existence of

botnets, which is the malware authors who have created

them. Our approach extends the economic attack to lower

the author’s profits by targeting the botnet toolkits they sell.

The closest work to ours is a framework proposed by

Li and Schmitz [16]. They utilize spam traps to submit

credentials to phishing sites and also use phoneybots to

submit credentials to botnets such as Zeus. However, their

target is the end-users, or money mules, while our intent is to

discredit a particular toolkit and the malware authors behind

it. This approach will reduce the variety of toolkits available

to potential botmasters and directly affect the widespread

use of them to perform botnet related crimes. In addition,

we utilize reverse engineering results from our analysis of

the Zeus botnet toolkit to describe in technical detail the

method to inject falsified information into the black market.

III. PROPOSED FRAMEWORK

The goal of the proposed framework is to discredit a

botnet toolkit and ultimately reduce its sales. We attack

credibility on two fronts: profitability of the toolkit in

respect to the use and sale of identity information and

security of the toolkit in respect to its ability to protect

its users from prosecution. We propose two variants to this

approach: reducing a toolkit’s profitability by flooding it

with false information, and making the toolkit insecure by

submitting honeytokens to the botnets that aid in arresting

and prosecuting the end-users of the stolen information. The

framework is illustrated in Figure 1, which shows the two

variants and the surrounding process.

A. First Variant

The first variant’s intent is to dilute the stolen identity

information from a botnet with false credentials. It works as

follows:

1) Monitor current botnet toolkit trends and select the

leading toolkit used for identity theft as our target.

2) Acquire as many samples of botnet binaries as pos-

sible from honeynets, antivirus companies, financial

institutions and security forums.

3) Determine targeted web sites and targeted fields by

analyzing malware samples.

4) Generate false identity information.

5) Submit identity information to the botmasters through

the framework.

At this stage the framework ends and the fraudulent cre-

dentials are propagated through the black market economy.

The result of diluting the information has a cascading

effect. Each subsequent party discredits the next party in the

chain. Firstly, the information sold on the black market will

generate less than expected profits for the buyer as many of

the credentials are false. Unprofitable sales will discredit the

seller, which will have an impact on future sales. The sellers

of the information, who are also the botmasters, will attribute

their defamation to their botnet, and more specifically, the

malware toolkit used to create it. Their response will be to

discredit the toolkit they used and no longer purchase new

revisions.

Here we now have an effect not just on the economy of

the identity theft market, but on the incomes of the malware

authors. If future sales of the toolkit can be sufficiently

reduced, then the authors may decide that supporting their

toolkit is no longer profitable. We believe that the program-

mers of these toolkits are the minority of Internet criminals

and if, through these attacks, we can dissuade them from

creating botnet toolkits for material gain, we will reduce

the amount of innovation these botnets possess in future

attacks. In addition, this approach may frustrate potential

botmasters from purchasing toolkits by continually reducing

the effectiveness of the botnets that these toolkits create.

The framework repeats, re-evaluating the currently most

prevalent and dangerous botnet toolkit and reapplying the

approach. As a toolkit loses its popularity, the framework

adjusts to tackle the next leading threat.

179196

�
�
�
�
�
�
�
�
�
�
�
�
�

���������	
� �

��	������	�
�

���
�

���	�
� ���������	
�

��������
��

��		����
���	�
�
��

• �������
������������

• ������������
�� ��!�������

�������������"��
�
��

�����

�������	
�

"�����������������	
�
��

�

�����#����$��#�
��

��	�� ��%��
�

��
&�����

�����'��

����
���

	�$��������������
�����'�������

�(���������
����&�
�
�

����
����

• ����)�
• ����
• ��������	� �

�	��#����#���
��

�����

�������	
�

�����
����

Figure 1. Botnet toolkit defamation process.

B. Second Variant

The second variant of our framework is an extension of

the first one. The intent of this approach is to discredit the

security for the end-users of the stolen information. The

approach contains one additional step that occurs after the

credentials propagate through the Internet black market:

6) Monitor account usage and make arrests when funds

withdrawn and purchases received.

Coordination between law enforcement and the various

financial institutions is paramount for this approach to

succeed. The criminals must be convinced that the ac-

counts are valid and the transactions are working. This can

be accomplished by providing funds to the accounts and

through coordinating the transfers between institutions. Law

enforcement’s role is to monitor these accounts and attempt

to arrest individuals as they try to extract the funds. With

foreknowledge of the accounts being used, the success rate

of apprehending account holders should be higher.

The impact of apprehension and prosecution of end-users

of the stolen information, further adds to discrediting the

involved parties. Firstly, any arrests will remove some end-

users from further involvement in the black market. Reduc-

tion in supply of potential end-users, as well as increased

concern over security will raise the cost of “hiring” them,

which in turn reduces the future profits of the purchasers

of the stolen identities. The purchasers of stolen identity

information will continue to propagate the effects of arrests

within their ranks, by attacking the credibility of the identity

information they purchased. This impugns the reputations of

the sellers of the stolen identity information and drives down

the market price for the information. Finally, sellers of stolen

identity information, who are also botmasters, will discredit

the toolkits they used to create their botnets.

C. Technical Approach

We now discuss three methods to determine the targeted

web sites. The first method is to reverse engineer malware

samples to determine what sites they are targeting and in

particular what identity information they are after. In the case

of botnet toolkits, malware samples generated by the same

version of the toolkit will have a similar code structure even

though they may appear completely different at first glance.

This will allow a reverse engineering analysis to be compiled

into scripts that may be run on each malware sample to

repeat the reverse engineering steps. In Section IV we

describe our results from such an analysis. In this section we

also discuss the two other methods to determine the targeted

web sites that consist of a behaviour methodologies approach

that stemmed from our analysis of Zeus and have roots

in side-channel attacks [17]. The first methodology is to

look for anomalous filesystem activity related to the browser

process to indicate when web page harvesting occurs. In

particular we are trying to determine when the malware

stores identity information on the hard drive prior to sending

it to the botmaster. The second methodology is to look for

anomalous network activity when a user browses certain

web pages. This method should better handle malware that

does not use an intermediate file store to save the stolen

credentials.

IV. ZEUS CASE STUDY

We now illustrate the technical details of the framework

through examples of how it would be applied to the Zeus

botnet toolkit. This section includes the reverse engineering

steps needed to infiltrate the botnet and inject the false

information into the black market, and the behavioural

methodologies that could be applied to future toolkits.

Zeus is an identity theft malware that can be purchased

in the underground economy. It is a fully fledged software

toolkit that is configurable, contains a user manual, and is

180197

Figure 2. The result from the second deobfuscation routine

an ideal fit for our framework. The Zeus toolkit contains

a builder executable that creates a Zeus bot executable

using the user supplied configuration files. We begin by

performing a reverse engineering analysis on the generated

Zeus executables. In this paper we focus on extracting the

encryption key and extracting the targeted website URLs for

use in our framework. With these two pieces of information

we are able to join an existing Zeus botnet, pretend to be an

active member, and submit the falsified identity information.

To join a botnet we use scripts written during the reverse

engineering analysis to automatically extract the encryption

key and the configuration information embedded in the bot

binary. This static configuration directs us to a URL, which

contains the dynamic configuration for the botnet. This file is

a list of targeted URLs and their respective extraction rules.

We then use the encryption key to decrypt the configuration

file to determine the web sites that are being targeted and

the identity information sought.

In order to extract the encryption/decryption key and the

static configuration structure we first need to remove the

obfuscation layers that Zeus employs to hide its internal code

structure.

A. Deobfuscation Process

The generated Zeus binary contains four segments: a

text/code segment, an imports segment, a resources segment,

and a data segment. We begin our analysis at the malware

Entry Point (EP), which resides in the text/code segment.

The initial analysis of the disassembly showed that only a

small portion of the text/code block contains valid com-

puter instructions. This indicates that most of the binary

is obfuscated, which means the computer cannot use this

code directly and must first use procedures in the valid code

blocks of the binary to unravel these sections.

Using the IDA Pro debugger [18], we are able to debug

the malware and step through the instructions to analyze

and understand the logic of the deobfuscation routines. Each

routine reveals some information that is used by the other

routines until all obfuscation layers are removed. The first

deobfuscation routine contains a 4-byte long decryption key

and a one-byte long seed value. These two values are used to

decrypt a block of data from the text/code segment using an

add operation and then write the decrypted data into virtual

memory. The result of the first deobfuscation routine reveals

three new deobfuscation routines. We now explain the main

logic of the first of these new routines, which we refer to as

the second deobfuscation routine.

1) First, two binary blocks from the text/code segment

are concatenated together and then written to virtual

memory. This new block has two sections; the first

contains data with many zero value bytes and the

second is used to fill these zero bytes.

2) Next, the routine scans through every byte of the first

segment and when it encounters a hole (zero byte) in

the data, it will overwrite with the next available byte

in the filler text block. This is repeated until all holes

are filled (See Figure 2).

Creating the filled text segment is the main purpose of the

second deobfuscation routine. However, this text segment is

still not machine readable computer instructions. The third

deobfuscation routine is used to decrypt the filled text. This

routine is similar to the first deobfuscation routine with two

differences: it utilizes an 8-byte key, and uses an eXclusive-

OR (XOR) operation as the decryption algorithm. Finally,

the last deobfuscation routine contains heavy computations

to initialize and prepare some parameters for the rest of the

malware operations. It uses the decrypted bytes revealed by

the previous routines to modify the rest of the text/code

segment. After this routine completes execution, we have

access to the original malware machine code in its entirety.

In our extraction scripts, this portion of the deobfuscation

routine is an emulation of the disassembled code and is not

represented in a high level format.

Algorithm IV.1: DECRYPT URL(enc url)

String url = new String(enc url.length());

for i← 0 to enc url.length()

do

if (i%2 == 0)
then url[i] = (enc url[i] + 0xF6 - i * 2) % 0xFF;

else url[i] = (enc url[i] + 0x7 + i * 2) % 0xFF;

return (url)

B. Key and Configuration Extraction

As we learned from Section IV, the Zeus botnet has

a static configuration structure that includes an encryption

key and a dynamic configuration URL. During the deob-

fuscation process, this structure is recovered at memory

location (0x416000) (See Figure 3). All information in the

181198

structure is completely deobfuscated except for two URLs:

“url compip” and “url config”. These URLs can be deob-

fuscated using Algorithm IV.1. The string “url config” is the

web location to download the dynamic configuration file for

the botnet. This file contains the targeted URLs. The static

configuration structure also contains an RC4 substitution

table that was generated from an encryption key provided

by the botmaster when the Zeus payload was generated.

This substitution table is valuable because it can be used

to decrypt communications of this Zeus botnet as well as

being able to decrypt the dynamic configuration file.

We begin the process by downloading the dynamic con-

figuration file from the web location “url config”. Once

downloaded, the dynamic configuration file can be decrypted

using the RC4 algorithm with the substitution table provided.

Next, we extract the URLs that are being targeted from this

file. These URLs satisfy step 3 of our attacks and are the

input to the identity information generator in step 4. We now

use a machine infected with the binary sample from, which

we extracted the URLs, and submit our generated identity

information to those same URLs. The Zeus bot will detect

the website and the submitted credentials and send them to

the botmaster. Figure 1 outlines the rest of the propagation

process. After the botmaster receives the credentials, they

will sell the information on the black market to buyers,

or they themselves will act as buyers. The buyers next

perform transactions with other criminals, referred to as

money mules, using the credentials. In the case of credit

card numbers they will purchase goods from e-commerce

websites, in the case of online bank credentials they will

perform Internet transfers to other accounts. In the attack

the receiver of the goods can be arrested from their pickup

location, and the receiver of the transferred funds can be

arrested when they cash out the accounts.

C. Behavioural Methodologies

Reverse engineering provides us with exact results for the

targeted URLs. However, it can be a time consuming process

as malware authors utilize obfuscation techniques to prevent

binary snooping. Since we are interested in applying our

method to all makes of malware not just Zeus, we have

developed behavioural methodologies for determining the

affected URLs to handle the general malware case.

Behavioural methodologies allow us to determine the

URLs for any malware type, malware version, and individual

build of the malware, as they detect the URLs independently

of the binary structure and the obfuscation techniques em-

ployed by the malware. We employ two techniques that

cover a broader range of malware: detecting anomalous

filesystem activity and detecting anomalous network activity.

1) Anomalous filesystem activity: To detect website har-

vesting activity for certain types of malware we can em-

ploy anomalous filesystem activity detection. This method

proves effective against Zeus, as Zeus does not immediately

��� ��� ��� ��� ��� ��� ��� ��� ���� �	�� �
�� ���� ���������
��������� ��������� ��������� ���������
��������� �� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ���

��� ��� ��� ��� �� ��� ��� ��� ��� �� ��� ��� ��� �� ��� ���
��� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� �� �� �� ��� ���
��� ��� ��� ��� �� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ���
��� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ���
��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� �� ��� ��� ���
��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��� ��� ��� ��� �� ��� �� ��� ��� ��� ��� ��� ��� �� ��� ���
��� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� �� ��� ���
��� ��� ��� ��� ��� � ��� ��� ��� ��� �� ��� ��� ��� ��� ���
��� ��� ��� �� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
�� ��� �� ��� �� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ���
��� ��� ��� ��� �� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� ���
�� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ��� �� ��� �� ��� ��� ��� �� ��� ��� ���
��� �� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ��� ��� �� ��� �� �����������	���
� ��!�����

�

 ���������	��
��������
 ������������
 ����������������
 ����������������
 ���
����������
 ���
����������
 ����
����������
 ����
����������
 �����	��������������
 �����������
����������
�
 �����	��������������
 �����������
���
 ��� ������������
 �������!"��
 ��������!"��

Figure 3. Static configuration structure

send the stolen identity information to the botmaster, but

first stores the credentials on the local hard drive. After

a configurable time interval, Zeus will send all harvested

information.

We can use this behaviour to detect when malware har-

vests page information to determine the targeted URLs. Us-

ing the Windows Performance Monitor tool [19] we monitor

the ”IO Write Bytes/sec” counter for the browser process

on both infected and clean machines to detect irregular disk

activity as an indicator that page harvesting occurred. The

method is performed on a variety of popular e-commerce

and Internet banking sites for each of the acquired malware

samples. This allows us to both group malware samples

together as potentially belonging to the same botmaster and

to determine what false identity information to generate and

submit to the botnets the malware samples were created for.

2) Anomalous network activity: Malware may not store

the harvested information, but instead transmit the infor-

mation as it is gathered. By monitoring outgoing network

activity and detecting anomalous transmissions we can deter-

mine when page information has been harvested. We, again,

interact with popular e-commerce and online banking sites

on both infected and clean machines and look for anomalous

network activity to create a list of targeted websites. This

approach may best work on malware that does not use an

intermediary file to store credentials.

V. CONCLUSION AND FUTURE WORK

In this paper we introduced a framework to combat iden-

tity theft toolkits. The technical challenge of the approach

is to determine the websites that are targeted by instances

of a botnet toolkit. We discussed reverse engineering results

from an analysis we performed on Zeus that allows us to

182199

automate this process for Zeus binary samples. In addition,

two behavioural methodologies were proposed that may

handle the general malware case.

One problem with our approach is we do not know if we

are flooding many botnets with identity information from

many botmasters or many botnets from one or a few botmas-

ters. Even if we collect many binaries that use different drop

zones, they all may belong to the same botmaster. Flooding

the botnets that belong to our collected samples may only

be affecting one or a few botmasters business models while

other botmasters that use the same toolkit are unaffected.

Currently we rely on an assumption that the most active

botnets will likely compose our acquired malware samples.

Future work will be to research additional behavioural

methodologies for use in our framework. In addition we will

look at evaluation methods to determine how much false

identity information is necessary to have a major effect on

the toolkit market. We will also discuss any legal barriers,

such as extortion laws, to our approach.

ACKNOWLEDGMENT

The authors gratefully acknowledge the continuing sup-

port from the National Cyber-Forensics and Training Al-

liance CANADA. In addition we would like to thank the

anonymous reviewers for their thoughtful comments and

critiques of this manuscript.

REFERENCES

[1] N. Kshetri, “The simple economics of cybercrimes,” IEEE
Security & Privacy, vol. 4, no. 1, pp. 33–39, Jan. 2006.

[2] J. Shurin, D. Gruner, and H. Hillebrand, “All wet or dried up?
real differences between aquatic and terrestrial food webs,”
Proceedings of the Royal Society B: Biological Sciences, vol.
273, no. 1582, pp. 1–9, 01 2006.

[3] P. Coogan. (2009, August) Zeus, king of the underground
crimeware toolkits. Symantec. Last accessed: 19/04/2010.
[Online]. Available: http://www.symantec.com/connect/blogs/
zeus-king-underground-crimeware-toolkits

[4] A. Ramachandran, N. Feamster, and D. Dagon, “Revealing
botnet membership using dnsbl counter-intelligence,” in Pro-
ceedings of USENIX SRUTI06, July 2006, pp. 49–54.

[5] T.-F. Yen and M. K. Reiter, “Traffic aggregation for mal-
ware detection,” in Proceedings of the Fifth GI International
Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA08), 2008 2008, pp. 207–
227.

[6] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “Botminer: Clus-
tering analysis of network traffic for protocol- and structure-
independent botnet detection,” in Proceedings of the USENIX
Security Symposium. Berkeley, CA, USA: USENIX Asso-
ciation, August 2008, pp. 139–154.

[7] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee,
“Bothunter: detecting malware infection through ids-driven
dialog correlation,” in SS’07: Proceedings of 16th USENIX
Security Symposium on USENIX Security Symposium. Berke-
ley, CA, USA: USENIX Association, 2007, pp. 1–16.

[8] J. Goebel and T. Holz, “Rishi: Identify bot contaminated
hosts by irc nickname evaluation,” in Proceedings of USENIX
HotBots07. Berkeley, CA, USA: USENIX Association, 2007.

[9] J. Franklin, V. Paxson, A. Perrig, and S. Savage, “An in-
quiry into the nature and causes of the wealth of internet
miscreants,” in Proceedings of the 14th ACM Conference on
Computer and Communications Security (CCS’07), 2007, pp.
375–388.

[10] M. Chandrasekaran, R. Chinchani, and S. Upadhyaya,
“Phoney: Mimicking user response to detect phishing at-
tacks,” in Proceedings of the 2006 International Symposium
on the World of Wireless, Mobile and Multimedia Networks,
2006, pp. 5pp.–672.

[11] T. Holz, M. Engelberth, and F. Freiling, “Learning more
about the underground economy: A case-study of keyloggers
and dropzones,” University of Mannheim, Tech. Rep. Reihe
Informatik TR-2008-006, December 2008.

[12] D. Birk, S. Gajek, F. Gröbert, and A.-R. Sadeghi, “A forensic
framework for tracing phishers,” in IFIP Summer School on
The Future of Identity in the Information Society, Karlstad,
Sweden, 2007.

[13] L. Spitzner. (2003, July) Honeytokens: The other honeypot.
Symantec. Last accessed: 19/04/2010. [Online]. Avail-
able: http://www.symantec.com/connect/articles/honeytokens-
other-honeypot

[14] R. Ford and S. Gordon, “Cent, five cent, ten cent, dollar:
Hitting botnets where it really hurts,” in Proceedings of New
Security Paradigms Workshop, 2006, pp. 3–10.

[15] Z. Li, Q. Liao, and A. Striegel, “Botnet economics: Uncer-
tainty matters,” in Proceedings of the 7th Workshop on the
Economics of Information Security (WEIS’08), 2008.

[16] S. Li and R. Schmitz, “A novel anti-phisihng framework
based on honeypots,” in Proceedings of the 4th annual
Anti-Phishing Working Groups eCrime Researchers Summit,
September 2009.

[17] D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner, “The
program counter security model: Automatic detection and
removal of control-flow side channel attacks,” in Proceedings
of the 8th International Conference on Information Security
and Cryptology, Seoul, Korea, December 2005, pp. 156–168.

[18] Idapro - multi-processor disassembler and debugger. Last
accessed: 19/04/2010. [Online]. Available: http://www.hex-
rays.com/idapro/

[19] M. E. Russinovich and D. A. Solomon, Microsoft Windows
Internals: Windows Server 2003, Windows XP, and Windows
2000, 4th ed. Microsoft Press, 2004.

183200

