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Abstract

In this paper, we extend the concept of binary hyper-bent functions introduced by Carlet to functions defined over GF(p). We
show that such functions must be quadratic. We also provide the necessary and sufficient conditions on the symmetric coefficient
matrix corresponding to the quadratic form of f : Zn

p → Zp that guarantee that f is a hyper-bent function.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Binary bent functions, defined and first analyzed by Rothaus [12], exist for even values of n and achieve the
maximum possible nonlinearity [9]. These functions have been the subject of great interest in several areas including
cryptography [10]. In fact, the Canadian government block cipher standard (CAST [1]) is designed based on these
functions.

Adams and Tavares [2] introduced two subclasses of binary bent functions: the bent-based functions and the linear-
based functions. For f : Zn

2 → Z2, the first ones (resp. the second ones) are the concatenations of 2n−2 bent (resp.
linear) subfunctions of length 4. Bent-based bent functions are interesting from a cryptographic point of view, since
fixing the coordinates of a cryptosystem is a well-known cryptanalysis method.

Carlet noted that there is no reason to prefer the first (n− 2) coordinates to the others and, from a cryptanalytic point
of view, we need to consider the possibility of fixing less coordinates than n − 2 [4]. Based on this argument, Carlet
introduced a new class of binary bent functions, which he called hyper-bent functions. Binary hyper-bent1 functions
are those Boolean functions with n inputs (n even) such that, for a given even integer k (2�k�n − 2), any of the
Boolean functions obtained by fixing k coordinates of the variable is bent.

The main purpose of this note is to generalize the concept of hyper-bent functions to functions defined over GF(p),
p�3. In particular, we show that such functions must be quadratic. We also provide the necessary and sufficient
conditions on the symmetric coefficient matrix corresponding to the quadratic form of f : Zn

p → Zp that guarantee
that f is a hyper-bent function.

E-mail address: youssef@ciise.concordia.ca.
1 This should not be confused with the hyper-bent functions introduced in [13].
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2. Algebraic preliminaries

In this section, we present some definitions and algebraic preliminaries required to prove our result. The reader is
referred to [8] for the theory of finite fields.

Definition 1. Let p be a prime and denote the set of integers modulo p by Zp. Let u= ei(2�/p) be the pth root of unity
in C, where i = √−1. The Fourier transform of a function f : Zn

p → Zp is defined as

F(w) = 1√
pn

∑
x∈Zn

p

(u)f (x)−w·x ,

where w ∈ Zn
p and w · x denotes the dot product between w and x, i.e., w · x =∑n

i=1wixi mod p.

Definition 2. A function f : Zn
p → Zp is bent if |F(w)| = 1 for all w ∈ Zn

p [7].

Throughout the rest of this paper, let p denote an odd prime. Unlike binary bent functions which exist for even values
of n, p-ary bent functions exist for both even and odd values of n.

Definition 3. A polynomial f over a finite field F is called a difference permutation polynomial [6] (or perfect nonlinear
function [11]) if the mapping x → f (x + a) − f (x) is a permutation of F for each nonzero element a of F .

Definition 4. A quadratic form [8] in n indeterminates over GF(p) is a homogeneous polynomial in Fp(x1, . . . , xn) of
degree 2 or the zero polynomial. Since 2−1 mod p always exists, we can write the mixed terms bij xixj as 1

2bij xixj +
1
2bij xj xi , and this leads to the representation

f (x1, . . . , xn) =
n∑

i,j=1

aij xixj ,

with aij = aji for any quadratic form over GF(p). The symmetric n × n matrix A whose (i, j) entry is aij is called the
coefficient matrix of f .

Example 1. Consider the quadratic form f (x1, x2) = 3x2
1 + 4x2

2 + 5x1x2 over GF(7). Then the associated coefficient
matrix is given by

A =
(

a11 2−1a12
2−1a12 a22

)
=
(

3 6
6 4

)
,

and we have

(x1x2)

(
3 6
6 4

)(
x1
x2

)
= 3x2

1 + 4x2
2 + 5x1x2 = f (x1, x2).

3. Results

Here, we generalize the concept of hyper-bent functions to functions defined over GF(p).

Definition 5. A function f : Zn
p → Zp is said to be hyper-bent if any of the functions obtained by fixing k < n

coordinates of the input variables is bent.

Note that, unlike binary hyper-bent functions, for p�3, both n and k can be even or odd integers.

Lemma 1. Let f : Zp → Zp be given by

f (x) = a0 + a1x + · · · + atx
t mod p, at �= 0.

Then f is bent implies that t = 2, i.e., for n = 1, only quadratic functions can be bent.



1068 A.M. Youssef / Discrete Applied Mathematics 155 (2007) 1066–1070

Proof. A perfect nonlinear function is bent and the converse is also true over GF(p) [11]. The lemma follows by noting
that difference permutation polynomials over GF(p) are only quadratic [6]. �

Lemma 2. Let A denote the coefficient matrix corresponding to the quadratic form of f. Then f is bent if and only if
rank(A) = n.

Proof. Every quadratic form over GF(p) is equivalent (under a linear transformation) to a diagonal quadratic form
[8, Theorem 6.21]. Thus, if rank(A) = n, then f is in the same linear equivalence class as

g(x) =
n∑

i=1

aiix
2
i , aii �= 0.

The rest of the proof follows by noting that g(x) − g(x + w) is an affine balanced function and hence g is perfect
nonlinear. On the other hand, if rank(A)=r < n, then f is in the same linear equivalence class as the degenerate function

d(x) =
n∑

i=1

aiix
2
i ,

where aii = 0 for n − r values of i. Since we can choose w = (0 · · · wj · · · 0), wj �= 0, j ∈ {i|aii �= 0} to obtain
d(x) − d(x + w) = 0. Thus d(x) is not perfect nonlinear and hence f is not bent since it belongs to the same linear
equivalence class of g. �

From Lemma 2 and by noting that the nonlinearity of f does not change by adding any affine function to it, we have:

Corollary 1. The number of quadratic bent functions over GF(p) is equal to pn+1× the number of nonsingular
symmetric matrices over GF(p).

The number of nonsingular symmetric matrices over GF(p) is already determined in [3,5].
Let Ti1(A) denote the matrix obtained by deleting the i1th row and i1th column from A. Consequently, (Ti2i1(A)) =

Ti2(Ti1(A)) denote the matrix obtained by deleting the i2th row and i2th column from Ti1(A) and so on.

Theorem 1. Let A denote the coefficient matrix corresponding to the quadratic form of the function

f (x) =
n∑

i,j=1

ai,j xi xj .

Let h(x) denote any affine function over GF(p), then g(x) = f (x) + h(x) is a hyper-bent function over GF(p) if
and only if rank(A) = n and rank(Tik ···i1(A)) = n − k, 1�k�n − 1, 1� ij �n − j + 1.

Proof. Let g denote the function obtained from the quadratic form f defined above by fixing the input variable xi .
Then g belongs to the affine equivalence class whose associated coefficient matrix is obtained from A by deleting the
ith row and ith column. The rest of the proof follows directly from Lemmas 1, 2 and the definition of hyper-bent
functions. �

Example 2. Consider the quadratic form f (x1, x2, x3) = x2
1 + x2

2 + x2
3 + 6x1x2 + x1x3 + 3x2x3 over GF(7). The

coefficient matrix

A =
(1 3 4

3 1 5
4 5 1

)
and T1(A) =

(
1 5
5 1

)
, T2(A) =

(
1 4
4 1

)
, T3(A) =

(
1 3
3 1

)
.

It is easy to verify that Rank(A) = 3, Rank(Ti1(A)) = 2, Rank(Ti1i2(A)) = 1. Hence f is a hyper-bent function.
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Example 3. Let f (x1, x2, x3, x4) = x2
1 + x2

2 + x2
3 + 6x2

4 + 5x1x2 + x1x3 + 3x1x4 + 3x2x3 + 5x2x4 + 3x3x4 over
GF(7). Then

A =
⎛
⎜⎝

1 6 4 5
6 1 5 6
4 5 1 5
5 6 5 6

⎞
⎟⎠ ,

T1(A) =
(1 5 6

5 1 5
6 5 6

)
, T2(A) =

(1 4 5
4 1 5
5 5 6

)
, T3(A) =

(1 6 5
6 1 6
5 6 6

)
, T4(A) =

(1 6 4
6 1 5
4 5 1

)
.

Thus we have det(A) = 6, det(T1(A)) = 4, det(T2(A)) = 4, det(T3(A)) = 5, det(T4(A)) = 5 and hence all functions
obtained by fixing one input variable of f is bent. However, we have det(T34(A)) = 0 and hence f is not a hyper-bent
function. This is easy to verify; by fixing x3 = 0, x4 = 0 we get g(x1, x2) = x2

1 + x2
2 + 5x1x2, which is not bent since

its associated coefficient matrix
(

1
6

6
1

)
is singular over GF(7).

Theorem 2. The above set of functions (defined in Theorem 1) constitutes the whole class of hyper-bent functions over
GF(p).

Proof. Any function f : Zn
p → Zp can be written as

f (x1, x2, . . . , xn) =
n∑

i1,...,in=1

ai1,...,inx
i1
1 . . . xin

n .

If f is a hyper-bent function, then all functions obtained by fixing n − 1 variables must be bent (and hence quadratic).
Thus, we must have ai1···in = 0 for all ij > 2, 1�j �n, and ai1···in �= 0 for (i1 · · · in)=�n(2, 0, . . . , 0), where �n is any
permutation of the enclosed n elements. This completes the proof for n < 3.

For n�3, the rest of the proof follows by showing that ai1···in =0 for
∑n

j=1ij > 2, 0� ij �1. Assume that ai1···in �= 0
for

∑n
j=1ij > 2, 0� ij �1. Then we can fix n − 3 variables and choose one of the remaining three variables such

that the rank of the coefficient matrix corresponding to the quadratic form of the remaining two variables is less than
2 which contradicts the assumption that f is a hyper-bent function. To illustrate this last point, suppose w.l.o.g. that
f (x1, x2, x3, 0 · · · 0) = a1x

2
1 + a2x

2
2 + a3x

2
3 + 2x1x2x3, then we can fix one of the three variables so that at least one

of the following matrices

A12 =
(

a1 x′
3

x′
3 a2

)
, A13 =

(
a1 x′

2
x′

2 a3

)
, A23 =

(
a2 x′

1
x′

1 a3

)

is singular. Ignoring the constant term, we note that A12 is the coefficient matrix corresponding to f (x1, x2, x
′
3, 0 · · · 0),

x′
3 ∈ GF(p). Similarly,A13 andA23 are the coefficient matrices corresponding tof (x1, x

′
2, x3, 0 · · · 0) andf (x′

1, x2, x3,

0 · · · 0), respectively. If x′
3

2 = a1a2 modp has no solution, then either a1 or a2 is a quadratic non-residue but not both;
similarly for the other two equations (Note that ai × aj is a quadratic non-residue if and only if either ai or aj is a
quadratic non-residue but not both). Hence we can always find x′

1, x
′
2 or x′

3 such that at least one of the above three
matrices is singular over GF(p). �

Open problem: Providing an exact count for the number of hyper-bent functions over GF(p) is an interesting
combinatorial problem.
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