Note
 Generalized hyper-bent functions over $G F(p)$

A.M. Youssef
Concordia Institute for Information Systems Engineering, Concordia University, Montreal, QC, H3G 1M8, Canada

Received 19 January 2006; received in revised form 3 October 2006; accepted 26 November 2006
Available online 22 January 2007

Abstract

In this paper, we extend the concept of binary hyper-bent functions introduced by Carlet to functions defined over $G F(p)$. We show that such functions must be quadratic. We also provide the necessary and sufficient conditions on the symmetric coefficient matrix corresponding to the quadratic form of $f: Z_{p}^{n} \rightarrow Z_{p}$ that guarantee that f is a hyper-bent function.

 © 2006 Elsevier B.V. All rights reserved.Keywords: Cryptography; Hyper-bent functions; Quadratic forms; Finite fields

1. Introduction

Binary bent functions, defined and first analyzed by Rothaus [12], exist for even values of n and achieve the maximum possible nonlinearity [9]. These functions have been the subject of great interest in several areas including cryptography [10]. In fact, the Canadian government block cipher standard (CAST [1]) is designed based on these functions.

Adams and Tavares [2] introduced two subclasses of binary bent functions: the bent-based functions and the linearbased functions. For $f: Z_{2}^{n} \rightarrow Z_{2}$, the first ones (resp. the second ones) are the concatenations of 2^{n-2} bent (resp. linear) subfunctions of length 4 . Bent-based bent functions are interesting from a cryptographic point of view, since fixing the coordinates of a cryptosystem is a well-known cryptanalysis method.

Carlet noted that there is no reason to prefer the first $(n-2)$ coordinates to the others and, from a cryptanalytic point of view, we need to consider the possibility of fixing less coordinates than $n-2$ [4]. Based on this argument, Carlet introduced a new class of binary bent functions, which he called hyper-bent functions. Binary hyper-bent ${ }^{1}$ functions are those Boolean functions with n inputs (n even) such that, for a given even integer $k(2 \leqslant k \leqslant n-2)$, any of the Boolean functions obtained by fixing k coordinates of the variable is bent.

The main purpose of this note is to generalize the concept of hyper-bent functions to functions defined over $G F(p)$, $p \geqslant 3$. In particular, we show that such functions must be quadratic. We also provide the necessary and sufficient conditions on the symmetric coefficient matrix corresponding to the quadratic form of $f: Z_{p}^{n} \rightarrow Z_{p}$ that guarantee that f is a hyper-bent function.

[^0]
2. Algebraic preliminaries

In this section, we present some definitions and algebraic preliminaries required to prove our result. The reader is referred to [8] for the theory of finite fields.

Definition 1. Let p be a prime and denote the set of integers modulo p by Z_{p}. Let $u=\mathrm{e}^{\mathrm{i}(2 \pi / p)}$ be the p th root of unity in C, where $\mathrm{i}=\sqrt{-1}$. The Fourier transform of a function $f: Z_{p}^{n} \rightarrow Z_{p}$ is defined as

$$
F(w)=\frac{1}{\sqrt{p^{n}}} \sum_{x \in Z_{p}^{n}}(u)^{f(x)-w \cdot x},
$$

where $w \in Z_{p}^{n}$ and $w \cdot x$ denotes the dot product between w and x, i.e., $w \cdot x=\sum_{i=1}^{n} w_{i} x_{i} \bmod p$.
Definition 2. A function $f: Z_{p}^{n} \rightarrow Z_{p}$ is bent if $|F(w)|=1$ for all $w \in Z_{p}^{n}$ [7].
Throughout the rest of this paper, let p denote an odd prime. Unlike binary bent functions which exist for even values of n, p-ary bent functions exist for both even and odd values of n.

Definition 3. A polynomial f over a finite field F is called a difference permutation polynomial [6] (or perfect nonlinear function [11]) if the mapping $x \rightarrow f(x+a)-f(x)$ is a permutation of F for each nonzero element a of F.

Definition 4. A quadratic form [8] in n indeterminates over $G F(p)$ is a homogeneous polynomial in $F_{p}\left(x_{1}, \ldots, x_{n}\right)$ of degree 2 or the zero polynomial. Since $2^{-1} \bmod p$ always exists, we can write the mixed terms $b_{i j} x_{i} x_{j}$ as $\frac{1}{2} b_{i j} x_{i} x_{j}+$ $\frac{1}{2} b_{i j} x_{j} x_{i}$, and this leads to the representation

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}
$$

with $a_{i j}=a_{j i}$ for any quadratic form over $G F(p)$. The symmetric $n \times n$ matrix A whose (i, j) entry is $a_{i j}$ is called the coefficient matrix of f.

Example 1. Consider the quadratic form $f\left(x_{1}, x_{2}\right)=3 x_{1}^{2}+4 x_{2}^{2}+5 x_{1} x_{2}$ over $G F(7)$. Then the associated coefficient matrix is given by

$$
A=\left(\begin{array}{cc}
a_{11} & 2^{-1} a_{12} \\
2^{-1} a_{12} & a_{22}
\end{array}\right)=\left(\begin{array}{ll}
3 & 6 \\
6 & 4
\end{array}\right),
$$

and we have

$$
\left(x_{1} x_{2}\right)\left(\begin{array}{ll}
3 & 6 \\
6 & 4
\end{array}\right)\binom{x_{1}}{x_{2}}=3 x_{1}^{2}+4 x_{2}^{2}+5 x_{1} x_{2}=f\left(x_{1}, x_{2}\right) .
$$

3. Results

Here, we generalize the concept of hyper-bent functions to functions defined over $\operatorname{GF}(p)$.
Definition 5. A function $f: Z_{p}^{n} \rightarrow Z_{p}$ is said to be hyper-bent if any of the functions obtained by fixing $k<n$ coordinates of the input variables is bent.

Note that, unlike binary hyper-bent functions, for $p \geqslant 3$, both n and k can be even or odd integers.
Lemma 1. Let $f: Z_{p} \rightarrow Z_{p}$ be given by

$$
f(x)=a_{0}+a_{1} x+\cdots+a_{t} x^{t} \bmod p, \quad a_{t} \neq 0
$$

Then f is bent implies that $t=2$, i.e., for $n=1$, only quadratic functions can be bent.

Proof. A perfect nonlinear function is bent and the converse is also true over $G F(p)$ [11]. The lemma follows by noting that difference permutation polynomials over $G F(p)$ are only quadratic [6].

Lemma 2. Let A denote the coefficient matrix corresponding to the quadratic form of f. Then f is bent if and only if $\operatorname{rank}(A)=n$.

Proof. Every quadratic form over $G F(p)$ is equivalent (under a linear transformation) to a diagonal quadratic form [8, Theorem 6.21]. Thus, if $\operatorname{rank}(A)=n$, then f is in the same linear equivalence class as

$$
g(x)=\sum_{i=1}^{n} a_{i i} x_{i}^{2}, \quad a_{i i} \neq 0
$$

The rest of the proof follows by noting that $g(x)-g(x+w)$ is an affine balanced function and hence g is perfect nonlinear. On the other hand, if $\operatorname{rank}(A)=r<n$, then f is in the same linear equivalence class as the degenerate function

$$
d(x)=\sum_{i=1}^{n} a_{i i} x_{i}^{2}
$$

where $a_{i i}=0$ for $n-r$ values of i. Since we can choose $w=\left(0 \cdots w_{j} \cdots 0\right), w_{j} \neq 0, j \in\left\{i \mid a_{i i} \neq 0\right\}$ to obtain $d(x)-d(x+w)=0$. Thus $d(x)$ is not perfect nonlinear and hence f is not bent since it belongs to the same linear equivalence class of g.

From Lemma 2 and by noting that the nonlinearity of f does not change by adding any affine function to it, we have:
Corollary 1. The number of quadratic bent functions over $G F(p)$ is equal to $p^{n+1} \times$ the number of nonsingular symmetric matrices over $G F(p)$.

The number of nonsingular symmetric matrices over $\operatorname{GF}(p)$ is already determined in [3,5].
Let $T_{i_{1}}(A)$ denote the matrix obtained by deleting the i_{1} th row and i_{1} th column from A. Consequently, $\left(T_{i_{2} i_{1}}(A)\right)=$ $T_{i_{2}}\left(T_{i_{1}}(A)\right)$ denote the matrix obtained by deleting the i_{2} th row and i_{2} th column from $T_{i_{1}}(A)$ and so on.

Theorem 1. Let A denote the coefficient matrix corresponding to the quadratic form of the function

$$
f(x)=\sum_{i, j=1}^{n} a_{i, j} x_{i} x_{j}
$$

Let $h(x)$ denote any affine function over $G F(p)$, then $g(x)=f(x)+h(x)$ is a hyper-bent function over $G F(p)$ if and only if $\operatorname{rank}(A)=n$ and $\operatorname{rank}\left(T_{i_{k} \cdots i_{1}}(A)\right)=n-k, 1 \leqslant k \leqslant n-1,1 \leqslant i_{j} \leqslant n-j+1$.

Proof. Let g denote the function obtained from the quadratic form f defined above by fixing the input variable x_{i}. Then g belongs to the affine equivalence class whose associated coefficient matrix is obtained from A by deleting the i th row and i th column. The rest of the proof follows directly from Lemmas 1, 2 and the definition of hyper-bent functions.

Example 2. Consider the quadratic form $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+6 x_{1} x_{2}+x_{1} x_{3}+3 x_{2} x_{3}$ over $G F(7)$. The coefficient matrix

$$
A=\left(\begin{array}{lll}
1 & 3 & 4 \\
3 & 1 & 5 \\
4 & 5 & 1
\end{array}\right) \quad \text { and } \quad T_{1}(A)=\left(\begin{array}{ll}
1 & 5 \\
5 & 1
\end{array}\right), \quad T_{2}(A)=\left(\begin{array}{ll}
1 & 4 \\
4 & 1
\end{array}\right), \quad T_{3}(A)=\left(\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right) .
$$

It is easy to verify that $\operatorname{Rank}(A)=3, \operatorname{Rank}\left(T_{i_{1}}(A)\right)=2, \operatorname{Rank}\left(T_{i_{1} i_{2}}(A)\right)=1$. Hence f is a hyper-bent function.

Example 3. Let $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+6 x_{4}^{2}+5 x_{1} x_{2}+x_{1} x_{3}+3 x_{1} x_{4}+3 x_{2} x_{3}+5 x_{2} x_{4}+3 x_{3} x_{4}$ over $G F(7)$. Then

$$
\begin{aligned}
& A=\left(\begin{array}{llll}
1 & 6 & 4 & 5 \\
6 & 1 & 5 & 6 \\
4 & 5 & 1 & 5 \\
5 & 6 & 5 & 6
\end{array}\right), \\
& T_{1}(A)=\left(\begin{array}{lll}
1 & 5 & 6 \\
5 & 1 & 5 \\
6 & 5 & 6
\end{array}\right), \quad T_{2}(A)=\left(\begin{array}{lll}
1 & 4 & 5 \\
4 & 1 & 5 \\
5 & 5 & 6
\end{array}\right), \quad T_{3}(A)=\left(\begin{array}{lll}
1 & 6 & 5 \\
6 & 1 & 6 \\
5 & 6 & 6
\end{array}\right), \quad T_{4}(A)=\left(\begin{array}{lll}
1 & 6 & 4 \\
6 & 1 & 5 \\
4 & 5 & 1
\end{array}\right) .
\end{aligned}
$$

Thus we have $\operatorname{det}(A)=6, \operatorname{det}\left(T_{1}(A)\right)=4, \operatorname{det}\left(T_{2}(A)\right)=4, \operatorname{det}\left(T_{3}(A)\right)=5, \operatorname{det}\left(T_{4}(A)\right)=5$ and hence all functions obtained by fixing one input variable of f is bent. However, we have $\operatorname{det}\left(T_{34}(A)\right)=0$ and hence f is not a hyper-bent function. This is easy to verify; by fixing $x_{3}=0, x_{4}=0$ we get $g\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}+5 x_{1} x_{2}$, which is not bent since its associated coefficient matrix $\left(\begin{array}{ll}1 & 6 \\ 6 & 1\end{array}\right)$ is singular over $G F(7)$.

Theorem 2. The above set of functions (defined in Theorem 1) constitutes the whole class of hyper-bent functions over $G F(p)$.

Proof. Any function $f: Z_{p}^{n} \rightarrow Z_{p}$ can be written as

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i_{1}, \ldots, i_{n}=1}^{n} a_{i_{1}, \ldots, i_{n}} x_{1}^{i_{1}} \ldots x_{n}^{i_{n}}
$$

If f is a hyper-bent function, then all functions obtained by fixing $n-1$ variables must be bent (and hence quadratic). Thus, we must have $a_{i_{1} \cdots i_{n}}=0$ for all $i_{j}>2,1 \leqslant j \leqslant n$, and $a_{i_{1} \cdots i_{n}} \neq 0$ for $\left(i_{1} \cdots i_{n}\right)=\pi_{n}(2,0, \ldots, 0)$, where π_{n} is any permutation of the enclosed n elements. This completes the proof for $n<3$.

For $n \geqslant 3$, the rest of the proof follows by showing that $a_{i_{1} \cdots i_{n}}=0$ for $\sum_{j=1}^{n} i_{j}>2,0 \leqslant i_{j} \leqslant 1$. Assume that $a_{i_{1} \cdots i_{n}} \neq 0$ for $\sum_{j=1}^{n} i_{j}>2,0 \leqslant i_{j} \leqslant 1$. Then we can fix $n-3$ variables and choose one of the remaining three variables such that the rank of the coefficient matrix corresponding to the quadratic form of the remaining two variables is less than 2 which contradicts the assumption that f is a hyper-bent function. To illustrate this last point, suppose w.l.o.g. that $f\left(x_{1}, x_{2}, x_{3}, 0 \cdots 0\right)=a_{1} x_{1}^{2}+a_{2} x_{2}^{2}+a_{3} x_{3}^{2}+2 x_{1} x_{2} x_{3}$, then we can fix one of the three variables so that at least one of the following matrices

$$
A_{12}=\left(\begin{array}{ll}
a_{1} & x_{3}^{\prime} \\
x_{3}^{\prime} & a_{2}
\end{array}\right), \quad A_{13}=\left(\begin{array}{ll}
a_{1} & x_{2}^{\prime} \\
x_{2}^{\prime} & a_{3}
\end{array}\right), \quad A_{23}=\left(\begin{array}{ll}
a_{2} & x_{1}^{\prime} \\
x_{1}^{\prime} & a_{3}
\end{array}\right)
$$

is singular. Ignoring the constant term, we note that A_{12} is the coefficient matrix corresponding to $f\left(x_{1}, x_{2}, x_{3}^{\prime}, 0 \cdots 0\right)$, $x_{3}^{\prime} \in G F(p)$. Similarly, A_{13} and A_{23} are the coefficient matrices corresponding to $f\left(x_{1}, x_{2}^{\prime}, x_{3}, 0 \cdots 0\right)$ and $f\left(x_{1}^{\prime}, x_{2}, x_{3}\right.$, $0 \cdots 0$), respectively. If $x_{3}^{\prime 2}=a_{1} a_{2} \bmod p$ has no solution, then either a_{1} or a_{2} is a quadratic non-residue but not both; similarly for the other two equations (Note that $a_{i} \times a_{j}$ is a quadratic non-residue if and only if either a_{i} or a_{j} is a quadratic non-residue but not both). Hence we can always find $x_{1}^{\prime}, x_{2}^{\prime}$ or x_{3}^{\prime} such that at least one of the above three matrices is singular over $G F(p)$.

Open problem: Providing an exact count for the number of hyper-bent functions over $G F(p)$ is an interesting combinatorial problem.

Acknowledgments

The author would like to thank the anonymous reviewers for fixing some typographical errors in the original manuscript. This work was partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Grant N00930.

References

[1] C. Adams, Constructing symmetric ciphers using the CAST design procedure, Designs, Codes Cryptog. 12 (3) (1997) 283-316.
[2] C.M. Adams, S.E. Tavares, Generating and counting binary bent sequences, IEEE Trans. Inf. Theory 36 (5) (1990).
[3] R.P. Brent, B.D. McKay, On determinants of random symmetric matrices over Z_{m}, Ars Combin. 26A (1988) 57-64.
[4] C. Carlet, Hyper-bent functions, Proceedings of Pragocrypt'96, Czech Technical University Publishing House, Prague, 1996, pp. 145-155.
[5] L. Carlitz, Representation by quadratic forms in a finite field, Duke Math. J. 21 (1954) 123-137.
[6] D. Gluck, A note on permutation polynomials and finite geometeries, Discrete Math. 80 (1990) 97-100.
[7] P.V. Kumar, R.A. Scholtz, L.R. Welch, Generalized bent functions and their properties, J. Combin. Theory Ser. A 40 (1985) $90-107$.
[8] R. Lidel, H. Niederreiter, Finite fields, Encyclopaedia of Mathematics and Its Applications, Addison-Wesley, Reading, MA, 1983.
[9] W. Meier, O. Staffelbach, Nonlinearity criteria for cryptographic functions, Proceedings of Eurocrypt '89, Lecture Notes in Computer Science, vol. 434, Springer, Berlin, 1990, pp. 549-562.
[10] A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied Cryptography, CRC Press, Boca Raton, 1996.
[11] K. Nyberg, Construction of bent functions and difference sets, Proceedings of Eurocrypt'90, Lecture Notes in Computer Science, vols. 2045, 473, Springer, Berlin, 1991, pp. 151-160.
[12] O.S. Rothaus, On bent functions, J. Combin. Theory 20 (A) (1976) 300-305.
[13] A.M. Youssef, G. Gong, Hyper-bent functions, Proceedings of Eurocrypt' 2001, Lecture Notes in Computer Science, vol. 2045, Springer, Berlin, 2001, pp. 406-419.

[^0]: E-mail address: youssef@ciise.concordia.ca.
 ${ }^{1}$ This should not be confused with the hyper-bent functions introduced in [13].

