
Generalized MitM Attacks on Full TWINE

Mohamed Tolba, Amr M. Youssef∗

Concordia Institute for Information Systems Engineering,
Concordia University, Montréal, Québec, Canada.

Abstract

TWINE is a lightweight block cipher which employs a generalized Feistel structure with 16 nibble-blocks. It

has two versions: TWINE-80 and TWINE-128, both have a block length of 64 bits and employ keys of length

80 and 128 bits, respectively. In this paper, we propose a low data complexity key recovery attack on the full

cipher. This attack is inspired by the 3-subset Meet-in-the-Middle (MitM) attack. However, in our attack,

we remove the restrictions of the 3-subset MitM by allowing the key to be partitioned into n ≥ 3 subsets

and by not restricting these subsets to be independent. To improve the computational complexity of the

attack, we adopt a recomputation strategy similar to the one used in the original biclique attack. Adopting

this approach, we present a known plaintext key recovery attack on TWINE-80 and TWINE-128 with time

complexities of 278.74 and 2126.1, respectively. Both attacks require only two plaintext-ciphertext pairs.

Furthermore, by combining our technique with a splice-and-cut approach, we gain a slight improvement in

the time complexity of the attack at the expense of increasing the number of required plaintext-ciphertext

pairs.

Keywords: Cryptanalysis, Meet-in-the-Middle, Low data complexity attacks, TWINE, Bicliques

1. Introduction

Recently, there has been a rapid increase in uti-

lizing resource constrained devices such as wireless

sensor networks and RFIDs. The limited resources

(e.g., memory, battery life and processing power)

available on these devices impose challenging re-

quirements on the cryptographic primitives that

can be deployed on them. Over the past few years,

several new lightweight block ciphers were pro-

∗Corresponding author
Email address: youssef@ciise.concordia.ca (Amr M.

Youssef )

posed (e.g., PRESENT [5], KATAN/KTANTAN

[8], Zorro [11], HIGHT [12], and TWINE [15] [16]).

These ciphers use new design concepts that aim to

reduce the algorithm footprints on resource con-

strained devices. In particular, the majority of

these lightweight ciphers tend to employ simple

key schedules with relatively slow diffusion. There-

fore, it seems intuitive to develop advanced vari-

ants of the basic MitM attack in order to eval-

uate the security margins of these ciphers. At

the ECRYPT workshop on lightweight cryptogra-

phy, TWINE was proposed by Suzaki et al [15].

Preprint submitted to Elsevier September 19, 2015



Afterwards, it was presented at SAC 2012 [16].

TWINE adopts a generalized Feistel structure with

16 nibble-blocks. It has two versions: TWINE-80

and TWINE-128, both with a block length of 64

bits, iterate over 36 rounds, and employ keys of

length 80 and 128 bits, respectively. While the en-

cryption/decryption structure of both variants of

the cipher are identical, each variant has its own

key scheduling algorithm.

In this paper, we present a low data complex-

ity attack on both TWINE-80 and TWINE-128 in

the single key attack model. Our attack can be

seen as a generalization of the 3-subset MitM at-

tack that partitions the key into 3 disjoint subsets

[6]. In this generalized attack, we allow the key to

be partitioned into n ≥ 3 subsets and we do not

restrict these subsets to be independent. These n

subsets are used in the forward and backward com-

putations of the MitM attack, and the effect of de-

pendency is handled by a re-computation technique

in a manner similar to the recomputation phase of

the biclique cryptanalysis [3] [4] [17]. Using this ap-

proach, we present a known plaintext key recovery

attack on TWINE-80 and TWINE-128 with time

complexities of 278.74 and 2126.1, respectively. Both

attacks require only two plaintext-ciphertext pairs,

which is equal to the unicity distance of the cipher.

Furthermore, by combining our technique with a

splice-and-cut approach, we can gain a slight im-

provement in the time complexity of the attack at

the expense of increasing the number of required

plaintext-ciphertext pairs. In particular, using 232

chosen plaintext-ciphertext pairs, the time com-

plexity is reduced to 278.63 and 2125.97 for TWINE-

80 and TWINE-128, respectively.

Table 1: Summary of the current cryptanalysis results on
TWINE-80 (KP: Known Plaintext. CP: Chosen Plaintext)

Attack # Rounds Time Data Memory Reference

Bilcique 36 279.1 260CP 28 [9]

Generalized MitM 36 278.74 2KP 29 Section 4

Generalized MitM

with splice-and-cut
36 278.63 232CP 29 Section 5

Table 2: Summary of the current cryptanalysis results on
TWINE-128 (KP: Known Plaintext. CP: Chosen Plaintext)

Attack # Rounds Time Data Memory Reference

Biclique 36 2126.82 260CP 28 [9]

Generalized MitM 36 2126.1 2KP 29 Section 4

Generalized MitM

with splice-and-cut
36 2125.97 232CP 29 Section 5

It should be noted that biclique cryptanalysis

of TWINE was presented in [9] [13] and a mul-

tidimensional MitM attack was presented in [7]

(see also [18]). Recently, Biryukov et al. pre-

sented a MitM attack on TWINE-128 reduced to

25 rounds. The attack data, time and memory

complexities are given by 248, 2124.7 and 2109, re-

spectively [2]. The only attack that considers the

full versions of TWINE-80 and TWINE-128 is the

biclique cryptanalysis in [9] with time complexity

279.1, and 2126.82, respectively. The data complex-

ity of this attack is 260 for the two variants of

TWINE which is clearly not practical given the na-

ture of the lightweight environment in which these

ciphers are likely to be deployed. Tables 1 and 2

contrast our results with the previous cryptanalytic

results, in the single key model, on the full versions

of TWINE-80 and TWINE-128, respectively.

The rest of the paper is organized as follows. Sec-

tion 2 presents an overview of the original 3-subset

MitM attack. In section 3, we provide the notation

used throughout the rest of this paper and a brief

2



description of TWINE. Our attack is presented in

section 4. The combination of our new attack with

the splice-and-cut attack is presented in section 5.

Finally, we conclude our work in section 6.

2. An overview of the three-subset Meet-in-

the-Middle attack

A 3-subset MitM attack [6] is a generalization of

the basic MitM which was originally proposed by

Diffie and Helman [10]. The two main stages of

this attack are:

1. MitM stage: which is responsible for filtering

out some wrong key candidates, thereby reduc-

ing the remaining key search space.

2. Key testing stage: which is responsible for find-

ing the right key among the remaining key can-

didates in a brute force manner.

Let EK : {0, 1}b → {0, 1}b be an r rounds block

cipher with b-bit block length, and k-bit key. EK

can be decomposed into two sub-ciphers as follows:

EK = GK2 ◦ FK1(x), x ∈ {0, 1}
b,

where FK1 is a sub-cipher that uses a set of key bits,

K1, and GK2 is a sub-cipher that uses a set of key

bits, K2. Let A0 = K1 ∩K2 be the set of common

key bits that are used in the two sub-ciphers and let

A1 = K1\K1∩K2 and A2 = K2\K1∩K2 denote the

set of key bits that are used only in FK1 and GK2 ,

respectively. The MitM stage, which requires only

one plaintext-ciphertext pair, can be summarized

as follows:

• Create an empty table tcnd which will contain

the surviving key candidates after this stage.

• For each key value in A0

– Create an empty table taux.

– Compute v = FK1(P ) for each key value

in A1, and add a new entry (v,A1) to the

table taux indexed by v.

– Compute u = G−1
K2

(C) for each key value

in A2, and search for u in taux. If exists,

add a new entry (K1,K2) to tcnd.

Let |Ai| denote the size of Ai in bits. Then, af-

ter this stage, the number of surviving keys ≈

(2|A1|+|A2|/2b) × 2|A0| = 2k−b. In the key testing

stage, the remaining key candidates are tested in

an exhaustive manner using additional plaintext-

ciphertext pairs. Uniquely determining the right

key requires about ⌈l/b⌉ known plaintext-ciphertext

pairs, where l = k −m, and m is the length of the

matching variable in bits. Thus, the time complex-

ity of the attack is given by:

Tc =

MitM stage
︷ ︸︸ ︷

2|A0|(2|A1| + 2|A2|)+

Key testing stage
︷ ︸︸ ︷

(2k−b + 2k−2b + .....)

To gain a computational advantage over exhaus-

tive search, both A1 and A2 should not be empty.

The data complexity of this attack (≈ ⌈l/b⌉) is

dominated by the data required in the key testing

stage and the memory complexity is determined by

the matching step which requires saving one of the

two sets, i.e., A1 or A2. Therefore, the memory

complexity is given by min(2|A1|, 2|A2|).

3. Specifications of TWINE

The following notation will be used throughout

the rest of the paper:

3



� � � � � � � �

�

��
�
�

�
�
�

�
�

�
���

Figure 1: The TWINE round function

• K: The master key.

• RKi: The 32-bit key used in round i.

• Ki: The 80 or 128 bits generated from K after

i rounds to obtain the round key RKi.

• Ki[j]: jth nibble of Ki. The indices of the

nibbles begin from 0.

• Ki[i, j, · · · , l]: ith, jth, · · · , and lth nibbles of

Ki.

• X i: The 16 4-bit nibbles output of round i.

• X i[j]: jth nibble of X i.

• X i[i, j, · · · , l]: ith, jth, · · · , and lth nibbles of

X i.

3.1. Specifications of TWINE

Both TWINE-80 and TWINE-128 deploy the

same generalized Feistel structure where the only

difference between them is the key schedule. The

encryption/decryption operations in TWINE iter-

ate over 36 rounds where, as depicted in Figure 1,

each round consists of three operations: key addi-

tion, 4-bit s-box lookups, and a permutation oper-

ation.

The key schedule of TWINE-80 produces 36

round keys of length 32-bit from the 80-bit master

key, K, as follows:

• K1 = K

• RK1 = K1[1, 3, 4, 6, 13, 14, 15, 16]

• for i = 2, 3, ..., 36

– Ki = Ki−1

– Ki[1] = Ki[1]⊕ S(Ki[0])

– Ki[4] = Ki[4]⊕ S(Ki[16])

– Ki[7] = Ki[7]⊕ (0||CON i
H)

– Ki[19] = Ki[19]⊕ (0||CON i
L)

– Ki[0, 1, 2, 3] = Ki[0, 1, 2, 3] ≪ 4

– Ki = Ki
≪ 16

– RKi = Ki[1, 3, 4, 6, 13, 14, 15, 16]

Similarly, the key schedule for TWINE-128 pro-

duces 36 round keys of length 32-bit from the 128-

bit master key, K, as follows:

• K1 = K

• RK1 = K1[2, 3, 12, 15, 17, 18, 28, 31]

• for i = 2, 3, ..., 36

– Ki = Ki−1

– Ki[1] = Ki[1]⊕ S(Ki[0])

– Ki[4] = Ki[4]⊕ S(Ki[16])

– Ki[23] = Ki[23]⊕ S(Ki[30])

– Ki[7] = Ki[7]⊕ (0||CON i
H)

– Ki[19] = Ki[19]⊕ (0||CON i
L)

– Ki[0, 1, 2, 3] = Ki[0, 1, 2, 3] ≪ 4

– Ki = Ki
≪ 16

– RKi = Ki[2, 3, 12, 15, 17, 18, 28, 31]

where S is a 4 × 4 s-box and CON i
H , CON i

L are

predefined constants. For further details, the reader

is referred to [15].

4



4. Proposed Attack

In order to apply the 3-subset MitM attack, one

needs to find two independent subsets, A1 and A2,

from the master key bits. Finding these two subsets

is hard and possibly no two independent subsets can

cover the whole cipher. We solve this problem by re-

laxing this condition. More precisely, in our attack,

the n ≥ 3 subsets produced by the key partitioning

process are allowed to be dependent. However, us-

ing these dependent subsets raises a new problem

of how to efficiently compute the inner state nib-

bles that depend on more than one subset. The

re-computation technique utilized in the biclique

cryptanalysis [4] provides a natural solution to this

problem; we compute and store the nibbles that de-

pend on each subset, then nibbles that depend on

more than one subsets are recomputed.

Relaxing this dependency restriction and using n

partitions for the key (which produces n subsets,

A1, A2, · · · , An, in addition to the common sub-

set A0) enable us to better minimize the compu-

tational complexity of the attack. Moreover, there

are many block ciphers with invertible r rounds

key schedule where knowing an intermediate key

Ki, i = 1, 2, .., r, allows us to recover the mas-

ter key K. Hence, guessing an intermediate key

Ki, i = 2, 3, ..., n− 1, and running the key schedule

in both directions allow us to better utilize the slow

diffusion of the key schedule to extend the number

of attacked rounds [7].

Complexity analysis:. To calculate the compu-

tational complexity of this attack, we need to count

the number of s-box lookups which correspond to

the most consuming time operations in the encryp-

tion/decryption process. Similar to the 3-subset

MitM attack, our attack also consists of MitM with

a re-computation stage, and a key testing stage.

Suppose that the key K is partitioned into n sub-

sets where each subset contains d bits of the master

key. Also assume that the total number of s-boxes

used in the full cipher and the key schedule is SS.

The complexity of the s-boxes lookup operations

during the re-computation stage is given by

Tcs =

(∑n

i=0 2
i×d × Si

SS

)

,

where Si is the number of s-boxes that depend on i

subsets, i = 0, 1, 2, ..., n. For example, if n = 3,

then S2 denotes the number of s-boxes that de-

pend on A1, and A2; A1, and A3; and A2, and A3.

Let TcL denote the computational complexity as-

sociated with accessing the pre-computation tables

during the re-computation stage. Thus, the total

computational complexity of our attack is given by

Tc = 2|K|−nd

(Re-computation stage
︷ ︸︸ ︷

Tcs + TcL +

Key testing stage
︷ ︸︸ ︷

2nd−m

)

where |K|−nd is the length of the common set A0,

and m is the length of the matching variable in bits.

The data complexity Dc of the attack is determined

by the unicity distance of the cipher = ⌈l/b⌉ and

the memory complexity is given by n × 2d, which

corresponds to the memory required to store each

subset computation so that it can be used later in

the re-computation. The computational complexity

of the attack Tc, for a given n, is optimized over the

following parameters:

1. Key index (KI): This parameter indicates

which Ki is to be partitioned into n subsets.

5



2. Matching round (MR): This parameter indi-

cates the round at which the matching takes

place (i.e., we do the matching at the end of

round MR.)

3. Matching nibbles (MN): This parameter in-

dicates which nibbles (from the 16 inner state

nibbles) are used for matching.

Since in TWINE, we have
(
16

i

)
for i = 1, 2, · · · , 16,

options to choose nibbles for matching, we re-

stricted our search program to perform partial

matching on one or two nibbles. Also, since in

TWINE, all the operations are performed on the

nibbles level, we restrict our search program to per-

form the partition on the nibble level as well.

4.1. Low data complexity attack on TWINE-80

In this section, we illustrate the application of

the proposed attack on the full round TWINE-80.

The optimized attack parameters are obtained by

performing full partitioning of the key, i.e., setting

n = 20, and then using exhaustive search to opti-

mize the time complexity of the attack over all pos-

sible values of the remaining parameters, i.e., KI,

MR, and MN . The resulting attack requires only

two plaintext-ciphertext pairs, its time complexity

is 278.74, and its memory complexity is 29.

The parameters used in this attack are:

• Ai = K20[i− 1] for i = 1, 2, ..., 20 and A0 = φ.

• KI = K20, MR = 10 and MN = X10[0, 10].

Since it is difficult to visualize the attack in this

case, we choose to visualize the attack for a sim-

pler case when n = 3. For this case, the best at-

tack found by our search corresponds to KI = K26,

��

��

��

��

��

��

��

�	

��	

���

���

���

���

���

���

���

��


��

���

���

���

���

���

���

��


���

��	

���

���

���

���

���

���

���

��


���

�
�
��

�
�
�
��
	�


�
�	�




�
�
�
�
�
�
��
��
	�


�
�	�




�
�
�
�
�
�
��
��
	�


�
�	�




��������	��

��


�
�

�
�

�
�

�
	

�



�
�

�
�

�



�
�

�
�

�
�

�
��

�
��

�
��

�
�	

�
�


�
��

�
��

�
�


�
��

�
��

�
��

�
��

�
��

�
�	

�
�


�
��

�
��

�
�


�
��

�
��

�
	�

�
	�

�
	�

�
		

�
	


�
	�

�
	�

Figure 2: Generalized Meet-in-the-Middle attack on full
TWINE-80 for n = 3

A1 = K26[11], A2 = K26[16], A3 = K26[19], A0 =

K26 \ {A1, A2, A3}, MR = 8 and MN = X8[2, 6].

Figures 2 and 3 depict this generalized MitM at-

tack on full TWINE-80 and the key schedule de-

pendency, respectively.

The computational complexity of the attack

is calculated by counting the number of s-boxes

needed for computing the matching variables v and

u. This number is then normalized by dividing it by

the number of s-boxes used in 36-rounds of TWINE-

80 (358 s-boxes) to determine how many encryption

operations are needed. The following color notation

6



�

�

�

�

�

�

�

�

�

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

� � � � � � � � � � �� �� �� �� �� �� �� �� �� ��

��

��

Figure 3: Key schedule dependency for TWINE-80

is used in Figures 2 and 3:

• Yellow: denotes the nibbles that are not af-

fected by changing any of the key subsets A1,

A2 and A3 but are effected by changing the

common subset A0. Thus, these nibbles are

computed once for each value of A0.

• Blue, green and red: denote the nibbles that

are affected by changing either A1, A2 or A3,

respectively. Thus, these nibbles are computed

24 times for every value of A0.

• Purple: denotes the nibbles that are affected

by changes in any combination of the two key

subsets Ai and Aj . Thus, these nibbles are

computed 28 times for every value of A0.

• Black: denotes the nibbles that are affected by

changes in the three key subsetsA1, A2 andA3.

Thus, these nibbles are computed 212 times for

every value of A0.

• White: denotes the nibbles that do not affect

the calculation of the matching nibbles and,

hence, they do not need to be calculated.

The aim of the MitM with re-computation stage

is to filter the key space. Any key candidate is

rejected if the condition
−−−−−→
X8[2, 6] =

←−−−−−
X8[2, 6] does

not hold.

The forward computation required to calculate
−−−−−→
X8[2, 6] from P proceeds as shown in Algorithm 1.

The same strategy can be applied to the back-

ward computation in order to calculate
←−−−−−
X8[2, 6]

from C.

The number of s-boxes that are calculated in the

cipher and the key schedule in the forward and

backward directions for each value of A0 is given by:

3 (for the forward computation)+3 (for the back-

ward computation) + 33 for the key schedule =39

s-boxes which are computed once, 4+28+33= 65

s-boxes which are computed 24 times, 16+25+4=

45 s-boxes which are computed 28 times and

21+136+0=157 s-boxes which are computed 212

times.

In the key testing stage, the number of surviv-

ing candidates for each value of A0 is given by

212−8 = 24 since we have 212 keys in each A0 and

we match on 8 bits. Therefore, we have 268+4 =

272 surviving candidates for all the values of A0.

These surviving candidates need to be tested using

⌈l/b⌉ = ⌈72/64⌉ = 2 additional plaintext-ciphertext

pairs to uniquely determine the key.

In each iteration of the first for loop in Algorithm

1, we need to access ti for 15 times to store the re-

computed nibbles. Then, in each iteration of the

second for loop in Algorithm 1, we need to access

7



Algorithm 1: Forward computation for n=3

forall the values of A0 do
/* Perform the base computation */

Partially encrypt P with the bits of

A1, A2, andA3 set to zero to obtain
−−−−−→
X8[2, 6];

Store all the intermediate (base)
computation;
for i = 1, 2, 3 do

/* Iteration i = 1 computes the blue

nibbles; and the purple and black

nibbles that are affected by changing

A1 */

/* Iteration i = 2 computes the green

nibbles; and the purple and black

nibbles that are affected by changing

A2 */

/* Iteration i = 3 computes the red

nibbles; and the purple and black

nibbles that are affected by changing

A3 */

/* The total memory requirement for all

the iterations in this loop is 3× 24

*/

forall the non-zero values in Ai do
Re-compute the nibbles that are
affected by changes in Ai (while the
bits corresponding to the other two
sets are set to zero);
Store the recomputed nibbles in
table ti (ti contains 2

4 forward
computation);

for i = 1, 2 do

for j = i+ 1 to 3 do
/* Each iteration re-computes purple

nibbles and black nibbles that are

affected by Ai and Aj */

forall the non-zero values in Ai,

and Aj do
Re-compute the nibbles that are
affected by changes in both Ai

and Aj only using the
pre-computed values in ti and tj ;

forall the non-zero values in A1, A2, and

A3 do
Re-compute the nibbles that are
affected by changes in A1, A2 and A3

(i.e., the black nibbles) using the
pre-computed values in t1, t2 and t3;

ti for 15 times and tj for 152 times. Finally, in the

last for loop of Algorithm 1, we need to access t1, t2

and t3 for 15, 152 and 153 times, respectively. As-

suming that the time complexity of accessing these

lookup tables is the same as s-box lookup complex-

ity (both requires an index of size 4 bits), then the

computation complexity associated with accessing

these pre-computation tables in the MitM stage is

given by 1

268
(
15× 3 + ((15 + 152)× 3) + (15 + 152 + 153)

358

)

≈ 271.61,

The s-boxes lookup complexity in the MitM stage

is given by

268
(

39 + (24 × 65) + (28 × 45) + (212 × 157)

358

)

≈ 278.84.

Thus the total complexity of the attack is given by

271.61 + 268
(

39 + (24 × 65) + (28 × 45) + (212 × 157)

358
+ 24

)

≈ 278.85.

Note that we need a computation on purple nibbles

if we have a change in one of yellow, blue, green,

or red nibbles. The term 28 in the above equation

already accounts for these cases, i.e., for the case

where one of Ai and Aj is set to zero (a change in

blue, green or red) and the case where both of them

are set to zero (a change in yellow). Similarly, the

term 212 also accounts for the cases where all the

Ai sets are non-zeros in addition to the cases where

a subset of them is zero.

The memory complexity is upper bounded by

1In general, for n partitions, the total complexity associ-
ated with accessing the pre-computation tables is given by

2|K|−nd
×

(

∑n
i=1

(

n

i

)
∑i

j=1
(2d − 1)j

SS

)

.

8



3× 24 full TWINE-80 computations, and the data

complexity is two plaintext-ciphertext pairs.

4.2. A low data complexity attack on TWINE-128

The only difference between TWINE-80 and

TWINE-128 is the key schedule. For TWINE-

128, the best attack complexity is achieved when

we made a full partitioning to the key, i.e., by

setting n = 32. This attack requires 2126.1 full

round TWINE-128 encryption operations, its mem-

ory complexity is upper bounded by 32 × 24 = 29,

and its data complexity is two plaintext-ciphertext

pairs. The parameters obtained by our search pro-

gram are:

• Ai = K19[i− 1] for i = 1, 2, ..., 32 and A0 = φ.

• KI = K19, MR = 13, and MN = X13[2, 6].

5. A generalized MitM attack on TWINE

with splice-and-cut

Several improvements to the basic 3-subset MitM

attack have been presented. One of these improve-

ments is the splice-and-cut technique that was pro-

posed by Aoki and Sasaki [1] to present a preimage

attack on the SHA-0 and SHA-1 hash functions. As

depicted in Figure 4, this technique differs from the

basic 3-subset MitM attack in that the beginning of

the forward/backward directions is not restricted to

the plaintext/ciphertext. Instead, we may choose

any intermediate variable X , partially decrypt X

to obtain the corresponding plaintext P , and using

the encryption oracle we get its corresponding ci-

phertext C. Then, partially decrypt C to get the

matching variable u. Afterwards, we partially en-

crypt X to obtain v. The data complexity of this

��� �
��
���� 

�� X

��������	�
	����


������
��
��� ����
��
��
���

uv

Figure 4: Meet-in-the-Middle with splice-and-cut technique

attack is determined by the bits of the plaintext

that are affected when usingK2 to partially decrypt

X . It should be noted that this attack changes the

nature of the basic 3-subset MitM from a known

plaintext to a chosen plaintext attack.

In what follows, we combine the attack presented

in the previous sections with this splice-and-cut

technique. The combined attack leads to an im-

provement in the time complexity at the expense

of increasing the data complexity. Using the splice-

and-cut technique adds one more parameter XP to

our optimization problem. When XP = i, it means

that X is chosen to be the input to round i.

For TWINE-80, the parameters used in our at-

tack that utilizes full key partitioning are given by:

• Ai = K20[i− 1] for i = 1, 2, ..., 20 and A0 = φ.

• KI = K20, MR = 11, MN = X11[2, 6] and

XP = 2.

The previous parameters allow a key recovery at-

tack with computational complexity of 278.63, mem-

ory complexity of 29 and data complexity of 232

chosen plaintext.

The corresponding parameters for our attack on

TWINE-128 are given as follows:

• Ai = K20[i− 1] for i = 1, 2, ..., 20 and A0 = φ.

• KI = K20, MR = 14, MN = X14[2, 6], and

XP = 2.

9



Using these parameters allows a key recovery

attack with computational complexity of 2125.97,

memory complexity of 29 and data complexity of

232 chosen plaintext.

6. Conclusion

We presented a low data complexity key recov-

ery attack on TWINE-80 and TWINE-128. Our at-

tack generalizes the original 3-subset MitM attack

by allowing the key to be partition into, possibly

dependent, n ≥ 3 subsets. It also utilizes some

ideas from the recomputation phase of the biclique

cryptanalysis to reduce the time complexity of the

attack. Combining this attack with the splice-and-

cut technique allows for some data-time trade off.

To the best of our knowledge, both proposed at-

tacks present the best attacks on the full TWINE-

80 and TWINE-128 with respect to both the time

and data complexities.

The idea behind the proposed attack is general

enough and can be applied to other lightweight ci-

phers as well. Meanwhile, similar to the biclique

cryptanalysis, our attack can be described as a

bruteforce-like cryptanalysis [14] which is not able

to conclude that a particular primitive has some

cryptanalytic weakness. However it can help to

better understand the real security provided by

the primitive when no attack tweaks are adopted.

While most of the applications of bruteforce-like

cryptanalysis have an advantage that is sometimes

much smaller than a factor of 2, for lightweight

ciphers with key sizes of 80 bits or less, this can

be very useful to know. To this end, designers

of lightweight symmetric primitives should consider

this class of attacks during the assessment of new

designs.

7. Acknowledgements

The authors would like to thank the anonymous

reviewers for their valuable comments and sugges-

tions that helped improve the quality of the paper.

This work is supported in part by the Natural Sci-

ences and Engineering Research Council of Canada

under Grant N00930.

8. References

[1] Aoki, K., and Sasaki, Y. Meet-in-the-middle preim-

age attacks against reduced SHA-0 and SHA-1. In

CRYPTO (2009), S. Halevi, Ed., vol. 5677 of Lecture

Notes in Computer Science, Springer Berlin Heidelberg,

pp. 70–89.

[2] Biryukov, A., Derbez, P., and Perrin, L. P. Differ-

ential Analysis and Meet-in-the-Middle Attack against

Round-Reduced TWINE. In Fast Software Encryption

2015, G. Leander, Ed., vol. 9054 of Lecture Notes in

Computer Science, Springer, pp. 3–27.

[3] Bogdanov, A., Chang, D., Ghosh, M., and Sanad-

hya, S. Bicliques with minimal data and time complex-

ity for AES. In International Conference on Informa-

tion Security and Cryptology (ICISC 2014), J. Lee and

J. Kim, Eds., vol. 8949 of Lecture Notes in Computer

Science, Springer, pp. 160–174.

[4] Bogdanov, A., Khovratovich, D., and Rechberger,

C. Biclique cryptanalysis of the full AES. In Proceedings

of the 17th International Conference on The Theory

and Application of Cryptology and Information Secu-

rity (2011), ASIACRYPT’11, Springer-Verlag, pp. 344–

371.

[5] Bogdanov, A., Knudsen, L. R., Leander, G., Paar,

C., Poschmann, A., Robshaw, M. J., Seurin, Y., and

Vikkelsoe, C. PRESENT: an ultra-lightweight block

cipher. In Cryptographic Hardware and Embedded Sys-

tems - CHES 2007 (Berlin, Heidelberg, 2007), P. Pail-

10



lier and I. Verbauwhede, Eds., CHES ’07, Springer-

Verlag, pp. 450–466.

[6] Bogdanov, A., and Rechberger, C. A 3-subset meet-

in-the-middle attack: Cryptanalysis of the lightweight

block cipher KTANTAN. In Selected Areas in Cryptog-

raphy (2010), A. Biryukov, G. Gong, and D. R. Stinson,

Eds., vol. 6544 of Lecture Notes in Computer Science,

Springer Berlin Heidelberg, pp. 229–240.

[7] Boztaş, O., Karakoç, F., and Çoban, M. Mul-

tidimensional meet-in-the-middle attacks on reduced-

round TWINE-128. In Lightweight Cryptography for

Security and Privacy (2013), G. Avoine and O. Kara,

Eds., vol. 8162 of Lecture Notes in Computer Science,

Springer-Verlag Berlin Heidelberg, pp. 55–67.

[8] Cannière, C., Dunkelman, O., and Knežević, M.

KATAN and KTANTAN - A family of small and ef-

ficient hardware-oriented block ciphers. In Crypto-

graphic Hardware and Embedded Systems - CHES 2009

(2009), C. Clavier and K. Gaj, Eds., vol. 5747 of Lecture

Notes in Computer Science, Springer Berlin Heidelberg,

pp. 272–288.

[9] Çoban, M., Karakoç, F., and Özkan Boztaş. Bi-

clique cryptanalysis of TWINE. In Cryptology and Net-

work Security (2012), J. Pieprzyk, A.-R. Sadeghi, and

M. Manulis, Eds., vol. 7712 of Lecture Notes in Com-

puter Science, Springer Berlin Heidelberg, pp. 43–55.

[10] Diffie, W., and Hellman, M. E. Special feature ex-

haustive cryptanalysis of the NBS data encryption stan-

dard. Computer 10, 6 (June 1977), 74–84.

[11] Gèrard, B., Grosso, V., Naya-Plasencia, M., and

Standaert, F.-X. Block ciphers that are easier to

mask: How far can we go? In Cryptographic Hardware

and Embedded Systems - CHES 2013, Springer.

[12] Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo,

B.-S., Lee, C., Chang, D., Lee, J., Jeong, K., Kim,

H., Kim, J., and Chee, S. HIGHT: A new block ci-

pher suitable for low-resource device. In Cryptographic

Hardware and Embedded Systems - CHES 2006 (2006),

L. Goubin and M. Matsui, Eds., vol. 4249 of Lecture

Notes in Computer Science, Springer Berlin Heidelberg,

pp. 46–59.

[13] Karakoç, F., Demirci, H., and Harmanci, A. E. Bi-

clique cryptanalysis of LBlock and TWINE. Inf. Pro-

cess. Lett. 113, 12 (2013), 423–429.

[14] Rechberger, C. On bruteforce-like cryptanalysis: New

meet-in-the-middle attacks in symmetric cryptanalysis.

In International Conference on Information Security

and Cryptology (ICISC 2012) (2012), T. Kwon, M.-K.

Lee, and D. Kwon, Eds., vol. 7839 of Lecture Notes in

Computer Science, Springer, pp. 33–36.

[15] Suzaki, T., Minematsu, K., Morioka, S., and

Kobayashi, E. Twine: A lightweight, versatile block

cipher. In Proceedings of ECRYPT Workshop on

Lightweight Cryptography (2011).

[16] Suzaki, T., Minematsu, K., Morioka, S., and

Kobayashi, E. TWINE : A lightweight block cipher

for multiple platforms. In Selected Areas in Cryptog-

raphy (SAC 2012) (2013), L. R. Knudsen and H. Wu,

Eds., vol. 7707 of Lecture Notes in Computer Science,

Springer, pp. 339–354.

[17] Tao, B., and Wu, H. Improving the biclique crypt-

analysis of aes. In Information Security and Privacy,

E. Foo and D. Stebila, Eds., vol. 9144 of Lecture Notes

in Computer Science. Springer International Publish-

ing, 2015, pp. 39–56.

[18] Wen, L., Wang, M., Bogdanov, A., and Chen,

H. Note of Multidimensional MITM Attack on 25-

Round TWINE-128 . Cryptology ePrint Archive, Re-

port 2014/425, 2014.

11


