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Abstract. It is argued that a boolean function f : Z~ ~ Z~ is resistant 
to statistical analysis if there is no significant static and dynamic leakage 
between its inputs and outputs. In this paper, we derive expressions for 
the expected value of the information leakage of randomly selected boolean 
functions and for the interesting cases of randomly selected balanced, and 
randomly selected injective boolean functions. It is shown that the expected 
value of different forms of information leakage decreases dramatically with 
the number of input variables n. For example, for a single output boolean 
function, we show that the expected value of different forms of leakage goes 
down exponentially with n. 

1 Introduct ion  

Several cryptographic criteria have been previously proposed as a measure of the 
strength of  cryptographic functions. Among these criteria are balance, correlation im- 
munity[ 18], resiliency[4], nonlinearity[ 12], Strict Avalanche Criterion (SAC)[2 I], higher 
order SAC[7], Propagation Criterion (PC), higher order PC[14], Bit Independence Cri- 
terion [20], and Completeness[10]. 

The above set of  cryptographic criteria are not independent of each other and a crypto- 
graphic function that satisfies all these criteria would be a golden one. Unfortunately, it 
can be proven that no function can satisfy all the above set of criteria simultaneously. 
This can be considered as the main motive for proposing a new set of criteria based on 
information theory. 

Several design criteria, based on information theory, have been proposed in [6],[8], [19], 
and [24]. 

In [24] Information leakage was proposed as a measure of  the performance of crypto- 
graphic functions. Information Leakage can be classified into two classes: Static infor- 
mation leakage and dynamic information leakage. It is argued in [24] that a boolean 
function is resistant to statistical analysis (e.g., differential cryptanalysis [2], linear crypt- 
analysis [11], and Siegenthaler 's correlation attack [17]) if there is no significant static 
and dynamic information leakage between its inputs and outputs. In [22], the authors 
studied the relation between the spectral properties and information leakage of  multi- 
output boolean functions. 
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Gordon and Retkin [9] conjectured that good substitution boxes (S-boxes) may be built 
by choosing a random reversible mapping of sufficient size. Their argument is based 
on the observation that the probability of accidental linearity occurring in such S-boxes 
decreases dramatically as the size of the S-box increases. Here in this paper, we provide 
further evidence that bigger S-boxes (by bigger we mean S-boxes with a larger number 
of inputs) are better by showing that the expected value of information leakage of a 
randomly selected boolean function decreases rapidly with the number of input variables. 

It is worth noting that Brynielsson[3] gives an approximate expression for the expected 
value of the mutual information between the output and input subvectors for multi-output 
boolean functions. Here we follow the definition of information leakage given in [24] and 
give an exact expression for the expected value of different forms of these information 
leakages for a randomly selected multi-output boolean function and for some other 
combinatorial structures of interest such as regular mappings, and injective mappings. 

2 Definitions 
Throughout this paper, let Y be the output of a boolean function f : Z~ --~ Z~,  then 
we have: 

Static Information Leakage: the static information leakage of Y, given input subvector 
Xk E Z~ (i.e., given that we know k bits of the n-bit input vector), is defined by 

SL(Y IXk )  = m -- H(YlXk) ,  (1) 

where H ( Y  ] Xk)  is the conditional entropy of Y given Xk. 

Remark: It is easy to show that 

SL(Y IXk )  = m - H(Y )  + I (Y;  Xk), (2) 

where I (Y;  Xk)  is the mutual information between Y and Xk. Note that if the mutual 
information I (Y;  Xk) is used to define the static information leakage, then the minimum 
of I (Y;  Xk) can be achieved while H(Y)  = 0 which contradicts our objective. For a 
good general reference for information theory, see [5]. 

Dynamic Information Leakage: the dynamic information leakage of AY, given the 
input change vector A X  is defined by: 

D L ( A Y I A X )  = m - H ( A Y I A X ) ,  (3) 

where A y  = Y ( X )  ~ Y ( X  @ A X ) .  

The self static information leakage of Y is defined as: 

S S L ( Y )  = m - H(Y) .  (4) 

It is clear that S S L ( Y )  = S L ( Y  I Xo). We note that the static information leakage 
S L ( Y  [ Xk) = 0 is achieved by /d h order resilient functions (see [4], [18] for the 
definition and properties of resilient functions), while zero dynamic information leakage 
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for all values of A X  :fi 0 is achieved only by perfect nonlinear functions (see [13], [16] 
for the definition and properties of both bent and perfect nonlinear functions). 

Let Y be the output of a boolean function f (X )  and define 

N u = # { X  E Z ~ I f ( X )  : y} ,  

U ~  = # { X  e Z f  I X~ = ~, ~" = U}, 

N,x~zxu = # { X  6 Zr~ I f ( X  ~ Z~r ~ f ( X )  = Ay} ,  

(5) 

where ~:6 Z~, Ax 6 Z~, y 6 Z~ , A y E Z ~  n 

Assuming that all input vectors are equally probable, we have: 

- -  m - ~ . _ . .  - -  , SSL(Y)  
u~z T Nu 

s L ( r  I x~) : m -  2 -~ ~ Fw_~tog~ \ s~-~/ '  
yEZ2n~ 
~EZ~ 

( Nzx~zx~ 1o9~ D L ( A Y [ A X )  = m - 2  -'~ Z k, ~-Y " NZ-/zxu 
Z~xEZ~ 
~yEZ2m 

(6) 

The problem of finding the expected values of the above forms of information leakage 
is now reduced to finding the marginal probability distribution of the random variables 
Ny, N~, Nzx~zx~. 

3 Information Leakage Of a Randomly Selected Boolean Function 

Lemma 3.1: 
Let Y be the output of a randomly selected boolean function f : Z~ --+ Z~ then we 
have the following probabilities: 

= 

= i ~ -  1 -- , (7) 

= = - , A z # 0 .  

Proof" The proof of the above Lemma follows by noting that N~, Ne u, and Nzx~zxu/2 
follow the multi-nomial distribution. [ ]  
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Theorem 3.1: 

The expected values of the static and dynamic information leakage of a randomly selected 
boolean function f : Z~ ---, Z~ are given respectively by 

2--~ i i \ {2"-k~ sL(YIx ) =r -2m E 0 < k < . ,  
i=o (8) 

9 n - 1  
2"~(2n-1)  / i \ {2'~,x'~ 

DL(/XY I /XX ) = m 2" E P(NLx='xu = 2i)~ 2--Y'~-l)l~ 
i=O 

Proof" Theorem 3.1 follows directly from the definition of the expected value, and (for 
part 2) by noting that AY = 0 for A X  = O, and hence H ( A Y  I O) = O. 1-'] 
Figs. 1 and 2 show the expected value of the self static information leakage and the 
expected value of the static leakage given that half the input bits are known. From these 
graphs , it is clear that the relative dimensions of the boolean functions (i.e., the ratio 
between n, m) greatly affect different forms of information leakage. 

Based on the results above, one can not conclude that S-boxes with n > rn are better than 
S-boxes with n < m because of the method we used in the normalization step (dividing 
by the number of output bits to get information leakage per output bit). Moreover, S- 
boxes with n < m provide better diffusion characteristics, and may be used in SPNs with 
no permutation layers [1] which leads to faster software implementation. The conclusion 
that we can make at this time is that all forms of information leakage seem to decrease 
with the number of input variables. 

Using theorem 3.1, one can derive an upper bound for the information leakage of a single 
output boolean function. Single output functions are of practical interest especially for 
the combining functions in stream ciphers. 

Corollary 3.1 
Let Y be the output of a single output boolean function, then the expected values of both 
the static leakage and dynamic leakage are bounded by 

1 
S L ( Y  I Xk) < 2,~_k, 0 < k < n, 

(9) 
3 

D L ( / X Y I / X X  ) <_ 2-- z 

Proof." The above corollary follows by direct substitution into theorem 3.1 and by noting 
that for the binary entropy function 

h ( t ) =  - t  l o g 2 ( t ) - ( 1 - t ) l o g 2 ( 1 - t ) ,  (1o) 

we have 

h(t) > 4 t - 4 t  ~ , 1 > t > 0  . (11) 
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Figure 1 Expected value of SSL(Y) 
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4 Information Leakage Of a Randomly Selected Balanced Boolean Function 

In this section, we calculate the expected values of both the dynamic leakage and the static 
leakage for regular (also called balanced) functions. For balanced functions, every output 
symbol appears an equal number of  times as the input varies through all possible values. 

Lemma 4.1 

Let Y be a randomly selected balanced function f : Z~ ~ Z~ ,  n _> m, then we have 

1 
P(N~ u = i) = B(n ,  m-------~ ~ i ) 2 n-m - i (2n-m!)(2~-1)  ' 

(12) 

where B(n ,  m) = 2"! is the number of n x m balanced boolean functions. 

Proof." For n x m balanced boolean functions, we have Ny = 2 n-re. If  we fix k (-) input variables, then there are 2, i k (2 ,_~, -~ '~  \ 2 . . . .  i ] ways of arranging the output such that 

Y = y when Xk = :k for i times. The remaining (2 n - 2n-re)outputs , of which there 
( 2 " - 2 " - - ) !  ways. [ ]  are only (2 n=m - 1) distinct ones, can be permuted in (2,,,,!)r 

Corollary 4.1 

Let Y be a randomly selected bijective mapping 7r : Z~ ~ Z~ then the expected value of 
the static information leakage of Y given the input subvector Xk,  0 < k < n, is given by 

S L ( Y  I Xk) = k. (13) 

Proof." The proof follows directly by substituting (12), with n = m, into (8). A simpler 
proof (independent of  Lemma 4.1) follows by noting that for any arbitrary bijective 
function, 7r : Z~ ~ Z~, if we fix k input bits, we will have 2 n - k  different output 
symbols with H ( Y  [X~)  = n - k. [ ]  

In Lemmas 4.2, 4.3, and 4.4 we will derive an expression for the marginal probability 
density function of  the random variable Nzxxzx~ for a randomly selected balanced boolean 
function. 

Let 

G(k l ,  k2 .... , k2~-t ) = C(k; k l ,  k2, ..., k2,~-, )C(2 n - 2k; Ix, 11,12,12, ..., 12,~-,, 12,~-~) , 

k! where C(k;  kl ,  k2, ...,k2,,,-1) = klr k2r ... 
then we have: 

(14) 
k2m_l:, and//  = 2 n - m - k i ,  li > O, ki ~ O, 
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Lemma 4.2 

The number of balanced functions with Nzxxz~u >_ 2k, A x  76 0, A y  76 0, is upper 
bounded by 

�9 n,~(k) = ( ~ - x )  2k ff~' G(tq, k.% ...,k2--,) , 
Z ki=k 

(15) 

where G(kx,  k~.,...,k~,,-~) is given by (14). 

Proof" By noting that we have 2 m distinct output symbols, and each of  them is repeated 
2 n-ra times, it is easy to see that for a given Atl  ~ 0,/Xx ~ 0 we have 2 m - 1  distinct 
XOR pairs, each of  them is repeated 2 n- '~  times. Group each of these 2 r ' -m pairs into 
one set. 

There is only one way to choose ki pairs from the set s , s  = 1 , 2 , . . . , 2  m - 1  ( a s  the 
pairs within a given set are indistinguishable). These k pairs can be permuted in 
C(k;  kl,  k2, ..., k ~ - l )  ways. The remaining 2 '~ - 2k output symbols can be permuted 
into C(2 '~ - 2k; I1,11,12, 12, ..., 12m-1,12m-~ ) ways, where li = 2 . . . .  k i .  Note that 

there are two possible orders for each pair, giving 2 ~ total possible orders, and (2~ - I )  

possible choices for the X positions of these k pairs. 

The construction approach described above does not guarantee that these balanced 
functions are all distinct, and so q/r~,r~(k) is an upper bound. [ ]  

Let 
D(kl ,  k2, ..., k2~- ,  ) = C(k;  kl ,  k2,  . . . ,  k2-,  ) C ( 2  r~ - 2k; 12,/2, . . . ,  12") , 

(t6) 

and li = 2 '~-'~ - 2ki, li > 0, ki _ 0 then we have: 

Lemraa 4.3 

The number of balanced functions with Nzx~o > 2k, A z  76 0,/Ny = 0, is upper bounded 
by 

where D ( k l , k 2  . . . .  , k 2 m )  is given by (16). 

D ( k l , k ~  .... ,k2~)  , (17) 

Proof" Similar to the proof of Lemma 4.2. [ ]  

Lemma 4.4 

The exact number of balanced functions with Nzxxzxu = 2k, A z  76 0,/ 'xy 76 0,, and the 
exact number of balanced functions with N,',~zxu = 2k,/Xx 76 0, A y  = 0, are given 
respectively by 
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2n-I 

An,m,zx~(k) = E ( - 1 ) i - k ( ~ )  ~n,m(i,' 
i = k  

(,) �9 A . . . .  o ( k ) =  ~ (-1) ~-~ ~ r 
i = k  

(18) 

Proof" Follows by using the inclusion-exclusion principle [15]. [ ]  

By direct substitution, the expected value of the dynamic leakage of a randomly selected 
balanced function is given by 

Theorem 4.1 

DL(AY ] AX)  = m 

_ ~"-~ ( )t t,2,,-~, (2 n - 1)(2 m - 1) An,m,zxu(i) i 
2" E B( n, m) ~ og~ ~ ~ ) 

i = 0  

(2 1) ar,,ra,o(i) i 
-~ B(n,m) ~ ' ~  

i = 0  

(19) 

Corollary 4.2 
Let Y be a randomly selected bijective mapping 7r : Z~ ~ Z~ then the expected value 
of the dynamic information leakage given the input change vector AX,  is given by 

, -  

D L ( A Y I z ~ X )  = n ( 2 " -  1)' A., . ,au(/)  ( i ) 2 n E n! ~ ' T  Io92 . (20) 
i = 0  

where An,n,ZXy is given by (18). 

Proof." Corollary 4.2 is a special case (with n = m) of theorem 4.1. [ ]  

Remark: Note that An,n,o = 0 as each output symbol occurs once. Note also that, by 
substitution into (15) with n = m ,  q2n, n can be simplified to 

2 

(21) 

Fig.3 shows a comparison between the expected value of dynamic information leakage 
of a randomly chosen n x n bijective mapping and that of a randomly chosen function 
of the same dimensions. 
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5 I n f o r m a t i o n  L e a k a g e  O f  a R a n d o m l y  S e l e c t e d  I n j e c t i v e  B o o l e a n  F u n c t i o n  

In this section, we calculate the expected values of both the dynamic leakage and the 
static leakage for injective functions. 

Theorem 5.1 

Let Y be the output of a randomly selected injective function .f : Z~ ~ Z~ ,  n _< m, then 

S L ( Y  [ Xk )  : (ra - n) + k. (22) 

Proof" The theorem follows by noting that for any arbitrary injective function, f : 
Z~ ~ Z~ ,  if we fix k input bits, we will have 2 '~-k different output symbols with 
H ( Y  I X~) = ,~ - k. [3 

Lemma 5.1 

The number of  injective functions with Nzx~zxy _> 2k, A x  -r 0, A y  :fi 0, is upper 
bounded by 

- 2m-1"~ 

where 
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(~-l) 

In (u ,v )= 1-[ ( u - i ) .  (24) 
i=0  

Proof" Lemma 5.1 follows by using an argument similar to that used to prove Lemma 
4.2. [ ]  

Lemma 5.2 
The exact number of injective functions with Nzxrzxy = 2k, ZXx ~ 0, Ay # 0, is given by 

An,m,zxv(k) = E ( -1 ) i - k  qn,m(i). (25) 
i=k  

Remark: Note that Nzx~ o = 0 for Ax :~ 0, and hence A~,m,o = 0. 

Theorem 5.2 

DL(AY;  AX)  = m 

- ( (2 n 1)(2 m 1) An,m,zxv(i) i (26) 
- log2 

2n ~ I n ( 2 r " , 2  ") ~ k - - Z - - / '  
i=0  

where In(2 m, 2n), the number of n x rn injective boolean functions, is given by (24). 

Numerical substitution into the theorem 5.2 shows that the dynamic information leakage 
of a randomly selected injective function decreases with the number of input variables. 
This rate of decrease is very similar to that of a randomly selected boolean function with 
the same number of inputs and outputs, especially for n <<< ra. This can be explained 
by noting that for n <<< m, a randomly selected function is most likely to be injective. 

6 Conclusion 
Many of the previously known cryptographic criteria are related to information leakage. 
Most of these criteria require zero information leakage in some domain. However, they 
often constrain the function to such an extent that large information leakage of other 
types become likely. These leakages provide useful information for the cryptanalyst to 
develop attacks on the cipher. This motivates the minimization of information leakage 
as a general criterion for cryptographic functions. 

We have derived expressions for the expected values of the static and dynamic information 
leakage of randomly selected boolean functions and for randomly selected balanced, and 
injective boolean functions. Based on this we showed that the expected values of the 
information leakages decrease dramatically with the number of input variables. In some 
cases, we showed that this decrease is exponential. With the same approach developed in 
this paper, one can show that the variance of different forms of information leakage also 
decreases dramatically with the number of input variables. Using an approach similar 
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to the one developed in [23] one can also show that the expected maximum value of 
different forms of information leakage decrease with the number of input variables. This 
indicates that cryptographically strong boolean functions may be obtained by choosing 
random mappings of sufficiently large dimensions. 
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