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Abstract

A block cipher is considered to display good avalanche characteristics if one bit change in the
plaintext input is expected to result in close to half the ciphertext output changing. Good avalanche
characteristics are important to ensure that a cipher is not susceptible to statistical attacks, such as
clustering attacks, and the strength of a block cipher’s avalanche characteristics may be considered
as a measure of the randomnéss of the ciphertext. Elsewhere, the authors have proposed a special
class of Substitution Permutation Networks (SPNs) with the involution property. This class has the
important practical advantage that the same network can be used to perform both the encryption and the

decryption operations. In this paper, we develop an analytical model Jor the avalanche characteristics

of this class of SPNs.

1. Introduction

Feistel [2] was the first to sﬁgéest that a basic substitution-permutation network (éPN) consisting of
 iterative rounds of nonlinear substitutions (s-boxes) connected by bit permutations was a simple,
effective implementation of a private-key block cipher. The SPN structure is directly based on
Shannon’s principle of a mixing transformation using the concepts of “confusion” and “diffusion” [11].

Letting N represent the block size of a basic SPN consisting of R rounds of n x n s-boxes, a simple
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example of an SPN with N = 16, n = 4, and R = 3 is illustrated in Figure 1.
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" Figure 1: SPN with N = 16, n = 4, and B = 3.

One advantage of the basic SPN model is that it is a simple, yet elegant, structure for which it is

generally possible to prove security properties such as completeness [7], and as shown in [5], resistance

to differential cryptanalysis [1] and linear cryptanalysis [8].

The basic SPN architecture differs from a DES-like architecture in which the substitutions and
permutations, used as a mixing transfornié-tion, operate on only half of the block at a time. Since.SPNs
do not have this last property, in general, SPNs need two different modules for the encryptlon and the
- decryption operations. In an SPN, decryptlon is performed by running the data backwards through the
~ inverse network (i.e., applying the key scheduling algorithm in reverse and using the inverse s-boxes
and the inverse permutation layer). In a DES-like cipher, the inverse s-boxes and inverse permutation
are not required. Hence, a practical disadvantage of the basic SPN architecture compared with the
DES-like architecture is that both the s-boxes and their inverses must be located in the same encryption
hardware or software. The resulting extra memory or power consumption requirements may render

this solution less attractive in some situations, especially for hardware implementations.



In [13], the authors introduced a special class of substitution-permutation networks. This class has

the practical advantage that the same network can be used to perform both the encryption and the

decryption operations.

In [6], the avalanche characteristics of basic SPNs-are modelled and the effects of varying the cipher
parameters are examined. In [3], Heys extended this work and developed a model of the avalanche
characteristics of DES-like ciphers. In this paper, we develop an analytical model, supported with some
experin.lental results, for the avalanche characteristics of the §elf—reciprocal class of SPNs described
in [13]. It should be noted that while this paper deals with a topic that is closeiy related to [6], here we
develop a new avalanche model for different SPNs and present the corresponding results. In particular,
we consider a more efficient linear transformation layer that runs much faster both in sbftware and in

hardware and has improved bounds for the linear approximation and the differential characteristic.

An SPN is considered to display good avalanche characteristics if a one bit change in the plaintext input
is expected to result in close.to half the cipherte)Zt bits changing. Good avalanche characteristics are

important to ensure that a cipher is not susceptible to statistical attacks such as clustering attacks [4].

More formally, the avalanche is defined as folloWs :

Definition 1: [2]

A cipher is said to satisfy the avalanche criterion if , for each key, on average half the ciphertext bits

change when one plaintext bit is changed.

That is, E(wt(AC) | wt(AP) = 1) = N/2, where wt(-) denotes the hamming weight of the enclosed

argument, AC and AP denote the ciphertext and the plaintext change vectors, respectively.

An extension to the above definition was proposed by Webster and Tavares [12] and is referred to as

the Strict Avalanche Criterion (SAC).



Definition 2: [12]

A cipher is said to satisfy the SAC if, for each key, each ciphertext bit changes with a probability
of 1/2 when a single plaintext bit is changed. That is P(AC; =1 | wt(AP) =1) = 1 /2 where C;
denotes the ** ciphertext bit, 1 < 7 < N.

It is clear that a*network satisfying the SAC must satisfy the avalanch® criterion. Satisfaction of the

avalanche criterion does not necessarily imply satisfaction of the SAC.

While most SPNs, if treated as randomly selected boolean functions, are expected not to satisfy
the SAC [9], most of the SPNs will satisfy the avalanche criterion after sufficiently many rounds.

Also, there is no design procedure, to the authors’ knowledge, that guarantees that the resulting SPN
satigfies the SAC.

It is worth noting that while both the avalanche criterion and the SAC were originally defined for
block ciphers, they can be extended, in a natural way, to stream ciphers. For example, one can say
that a stream cipher satisfies the SAC if, for all seeds, flipping one bit in the seed results in a key

stream that is statistically independent of the original one.

2. SPNs with the Involution Property

It is i)ossible to construct SPNs which do not require inverse s-boxes if the s-boxes in the network
 belong to the class of functions that we refer to as semi-involution functions. Such functions have the
property that their inverses can be easily obtained by a simple XOR operation on the function input
and output. Hence, differences between the s-boxes in the encryption network and the decryption

network can be accommodated by incorporating the XOR into the application of the round key bits.



A bijective function 7 : Z3 — Z3 is called a semi-involution function if
I X)=m(X@®a)®b | (1)

for some constants a,b € Z;. In [13], the authors discuss different cryptographic properties of this

class of functions, such as nonlinearity and the maximum XOR table entry.

In order to use the same SPN to perform both the encryption and the decryption operations, the
s-box inter-connection layer should also be an involution mapping. In [5], [13] the authors show
that replacing the permutation between rounds by an appropriate linear transformation is effective in

improving the cipher security with regard to both linear [8] and differential cryptanalysis [1].

In [13], the authors show that with the use of an efficient involution linear transformation layer, this
class of self-reciprocal SPNs is resistant to both the basic linear cryptanalysis [8] and to the differential

cryptanalysig [1] based on the best (R — 1)-round characteristic.

2.1 Modelling Avalanche in Substitution Boxes

The substitution boxes (s-boxes) used in the network belong to the class of semi-involution
functions [13]. However, modelling the avalanche properties of sich s-boxes is a hard combina-

torial problem. Fortunately, experimental results show that the SPN will have the same avalanche

properties -as an SPN that uses randomly selected bijective s-boxes:

Let the s-boxes in the network be defined by a bijective mapping S : X — Y. Assume that any set
of one or more input bit changes to an s-box results in a number of output bit changes represented
by the random variable D, i.e., D = wt(AY') where AY is the output change vector of the s-box.
We assume the likelihood of a particular nonzero value for D is given by assuming that all possible

values of AY belonging to the set of 2" — 1 nonzero changes are equally likely. Hence the probability



distribution of D is given by

w1 L wt(AX) =0 .
PMD"”‘{oﬂmAmz1 | @)
and
PD—d) 0 ,wW(AX) =0 .

for 1 < d < n. Note that the above s-box model essentially represents an average over all randomly
selected s-boxes and is not intended to characterize the behavior of an actual physically realizable

s-box. However, as experimental evidence suggests, modelling the number of output changes of each

s-box as a random variable is a suitable approximation when considering an SPN constructed using

randomly selected fixed semi-involution s-boxes.

2.2 Interconnection Layer

In order to use the same SPN to perform both the encryption and the decryption operations, the s-box
inter-connection layer should also be an involution mapping. One interconnection layer with nice

cryptographic properties is the linear transformation described by [13]
M

26)= @ w), 1<i<M )
I=1,1#i

where z(z) represents the i n-bit output word of the transformation, w(%) is the i® input word, M = &
denotes the number of s-boxes, and @ denotes a bit-wise XOR operation. It is assumed that M is
even so that the linear transformation is invertible. For 8 x 8 s-boxes this is a'byte onented operation.
~ The linear transformation descrlbed above may be efficiently implemented by noting that each z(3)

could be simply determined by XORing w(i) with the XOR sum of all 2(j), 1 < j < M, i.e.,

z(1) = Q ® w(i), (5)
where

M
Q = EPuw(). 6)
1=1



Remark: The above class of linear transformations can be generalized further as follows:

26) =@ w( B, 3<k<M—1kis odd. | %)
=1 V

where z(i) represents the i output word of the transformation, w(z) is the i input word and H
denotes addition mod M. The fact that k is odd ensures that the transformation is invertible for even
M. While smaller values of k¥ might be attractive for fast hardware implementations, only the case

k = M is an involution mapping and our theoretical avalanche model is concerned with this case only.

3. Modellihg Avalanche

Let W, represent the random variable corresponding to the number of bit changes after round r given

one bit plaintext change, :.e.,

M
W, = wi(AY,,) ®)

s=1
where AY;; denotes the output change vector of the s** s-box in round r-. Hence, the expected value

of W, is given by

:EW_-,MQn—lna’ ot .
( r)—Zl(zn_l)P(sza) ®)

where P(l, = a) denotes the. probability of having a active s-boxes in round r, i.e., @ s-boxes with

- nonzero input change vectors. From the total probability theory, we have

M
P(l, =a)= > _ P(l, = all,_y = b) P(l,_y = b). (10)
. b=0

with the initial conditions

p(l1=b)={(1)’ b=1 (11

otherwsise.



Now our problem is reduced to calculating the conditional probability P(l, = a|l,_; = b), ie., the
probability of having a active s-boxes in round r given that we have b active s-boxes in round r — 1.

This is equivalent to calculating P(ty = a | ¢z = b) in the following problem:

Let Y = AX where Y! = (Y1,Y3,....¥n),Y; € Z%, X! = (X1,X2,..., Xm), Xi € Z? and ‘A is
an m x m matrix in which all elements are ones except the diagonal elements are all zeroes. Let
ty = #{i| Yi # 0}, t; = #{i | Xi # 0}, and 0 < ¢ < m. The probability P(t, = a | t, = b) could
be computed by examining all possible values of X : However, for most SPNs of practical size, this

is very computationally intensive since there are 27X™ possible values of X. Lemmas 1 and 2 below

show how this probability can be efficiently calculated.

Lemma 1

. - -~

Let ¥(n, k) be the number of choices of k nonzero elements of 73 which sum to zero, then

k-1
U(n, k) = (-1)F + Y~ (—1)’(f)zn(k—'r—1) (12)

r=0
Proof: Let Q(n, k,r) denote the number of ways to choose & elements of Zy which sum to zero such

that » or more of them are zero. Thus

k n —-r—
Q(n,k,r)z{l(r)z(k ) 0<r<k

13
,r=k. . :( )
Using the inclusion exclusion principle [10], we have
k
U(n, k) = Z (=1)"Q(n, k,r) T 14)
r=0
which proves the Lemma ’ ]

Lemma 2

P{ty=a|t, = b} = (&; + &3)/(2" — 1)} (15)



where

1 = U(n, b)é(a = b), (16)

and
' b 1 _
2 = ‘f’(” ~Latb- m) (m _ a)(2" —1) (2““’""‘1 +.§(~1)” '6(a+b= m)). 17

Proof: Since any choice which b z’s are nonzero is equally likely we may assume the first b are
nonzero. Thus the last (m — b) y’s are all the same. ®; counts the number of ways this could give
rise to the last (m — b) y ’s being zero. If the last (m — b) y’s are not zero then we are basically
reduced to considering the first b y’s and basically we need to compute p(ty = a + b — mlt, = b) for
m = b. In this case we have (ml_’_ a) ways to choose which (m — a) of the remaining b y’s should be
zero. These must correspond to equal values of z and we have (2" — 1) ways to choose which value
they have. Call this value w and split Z} as < w > +Z7 . The remaining z’s cannot be 0 or w so
they must have nonzero projection on Z’Z"1 which add to 0. Finally the projections of the remaining
z’s on < w > must add to (b — 1)w. There are 2™ choices for the projections onto < w > and if
a+b # m then exactly half of these will have the correct sum. If @ + b = m the sum will always be 0
which is only correct if b is odd. Thus we have 2a+b-m-1 + %(—1)b-15(a + b = m) ways to choose
the remaining z’s. The conditional probability is obtained by dividing by the total number, (2" — l)b,

of nonzero z’s . N

* By numerical substitution in the formula above, one can show that the for a 64-bit SPN with
M = n = 8, the expected number of bit changes after the third round is given by 32 — 2735 which

implies that the SPN avalanche characteristics are almost ideal after three rounds,
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Figure 2 : Average Number of Bit Changes Versus the Number of Rounds for a 64-bit SPN

Figure 2 shows the experimental results for the average number of output bit changes as a function of
the number of rounds for a 64-bit SPN with permutation layers or linear transformation layers. One
thousand random chosen input pairs, different in one randomly selected bit, were used to obtain the
result. The SPN used for the experiments employed 8 x 8 :random inyolution s-boxes, nonlinearity
of 96, maximum XOR table entry of 10. The permutation layer used in the experiment is described
by: output bit z of s-box j at round r is connected to input bit j of s-box ¢ at round r +1. In
Fiéuré 2, LT (k) denotes a linear transformation in equati(;n (,7) with parameter k. Figure 2 also shows
~ the expected value estimated from our model. Both the theoretical and experimental curves overlap,
which confirms the accuracy of the model. They also show that the appropriate linear transformation
significantly improves the avalanche characteristics of the cipher after a small number of rounds.
Experimental results also show that, after four rounds and for different inter-connection layers, the
probability distributions of the number of bit changes are almost indistinguishable. They all follow

closely a binomial distribution with mean ~ 32 and variance ~ 4.



4. Conclusion

We have presented an analytical model for the avalanche characteristics of a new class of substitution-
permutation network. The results indicate that networks using a diffusive linear transformation between
rounds achieves good avalanche characteristics in fewer rounds. Moreover, the result shows that, for

a 64-bit SPN using 8 x 8 s-boxes, the avalanche characteristics are almost ideal after three rounds.
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