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Abstract:

In this paper we present asymptotic expressions for the number of functions satisfying the Strict Avalanche

Criterion (SAC) with respect to one and two variables, previously developed by O’Connor. Cusick

recently gave a conjecture for a lower bound on the number of functions satisfying the SAC. Here, we

give a constructive proof for this conjecture. Moreover, we provide an improved lower bound.

1. Introduction

The Strict Avalanche Criterion (SAC) was introduced by Webster and Tavares [11] in a study of design

criteria for certain cryptographic functions. A boolean functionf : Zn
2 ! Z2 is said to satisfy the SAC

if complementing a single input bit results in changing the output bit with probability exactly one half.

The SAC was intended to combine two earlier criteria for cryptographic applications due to [6] and [4].

Forré [5] extended the concept by defining higher order SAC. A boolean function onn variables is said

to satisfy the SAC of orderk; 0 � k � n�2, if wheneverk input bits are fixed arbitrarily, the resulting

function of n� k variables satisfies the SAC. It is easy to see [7] that if a function satisfies the SAC of

orderk, then it also satisfies the SAC of orderj for any j = 0;1; . . . ; k � 1.

As in the case with any criterion of cryptographic significance, it is of interest to count the functions

which satisfy the criterion. Many recent papers (for example [7], [2]) have been concerned with counting

functions that satisfy the SAC of various orders. It is easier to count the functions satisfying the SAC of

the largest order, because relatively few functions exist which satisfy these stringent criteria.



2. Main Results

O’Connor [9] gave an upper bound for the number of functionsf(x), wherex = (x1; :::; xn) is in

Zn
2 , satisfying the SAC. LetS(n; k) denote the number of functions for which the output changes with

probability1=2 if any one of the input bitsx1; :::;xk is complemented. He also gave [9] explicit formulas

for S(n; 1) andS(n; 2); of course these are upper bounds for the number of functions satisfying the SAC.

In this paper we give asymptotics for the size ofS(n; 1) andS(n; 2), thus quantifying the upper bound

for the number of SAC function given in [9].

Cusick [1] gave a lower bound for the number of functions satisfying the SAC. He also gave a conjecture

that provided an improvement of the lower bound. In this paper, we give a constructive proof for this

conjecture. Moreover, we provide an improved lower bound. We also give a lower bound for the number

of balanced functions that satisfies the SAC.

Notation:

Throughout this paper, let

fn : Zn
2 ! Z2 describes a boolean function withn input variables.

V = fvi j 0 � i � 2n � 1g: denote the set of vectors inZn
2 in lexicographical order. A boolean

function fn(x) is specified byfn(x) = [b0; b1; :::; b2n�1], wherebi = fn(vi).

e: denotes any element ofZn
2 with hamming weight 1. Let�e, �vi denote then � 1 least significant

bits of e and vi respectively.

a: denotes any element ofZn�1
2 with odd hamming weight.

gn : Zn
2 ! Z2: denotes the boolean function1 � x� b, b 2 Z2. It is easy see thatgn satisfies

gn(x) = gn(x� a) : (1)

MSB(�) denotes the most significant bit of the enclosed argument.

Definition 1 [11]: A boolean functionfn : Zn
2 ! Z2 is said to satisfy SAC if complementing a single

input bit results in changing the output bit with probability exactly one half, i.e.,
2n�1X
i=0

fn(vi)� fn(vi � e) = 2n�1: (2)

Definition 2 [3], [8]: A linear structure of a boolean functionfn : Zn
2 ! Z2 is identified as a vector

c6=0 2 Zn
2 such thatfn(vi � c)� fn(vi) takes the same value (0 or 1) for all i; 0 � i � 2n � 1.

The results of O’connor [9] are quantified by the following two Lemmas.



Lemma 1

S(n; 1) � 2 ��1 22
n�n=2: (3)

Proof: Lemma 1 of [9] states

S(n; 1) =

�
2n�1

2n�2

�
22

n�1
: (4)

Applying Stirling’s formula,n! � (2�n)1=2(n=e)n, to the binomial coefficient proves the Lemma.

Lemma 2

For n � 2;

S(n; 2) > 22
n�n: (5)

Proof: Lemma 2 of [9] gives the formula

S(n; 2) =
2n�3X
i=0

�
2n�2

2i

�
23 � 2

n�2�4i
iX

j=0

�
2i

2j

��
2j

j

��
2i� 2j

i� j

�
: (6)

Expanding the binomial coefficients shows that the inner sum is equal to the binomial coefficient sum

m(i) given by

m(i) =
iX

j=0

�
i

j

�2�2i

i

�
=

�
2i

i

�2

: (7)

It is easy to prove by induction thatm(i) > 24i�2=i for i � 2. Thus we have

S(n; 2) >
2n�3X
i=0

1

i

�
2n�2

2i

�
23 � 2n�2�2: (8)

By noting that

[M=2]X
i=0

(2i+ 1)�1

�
M

2i

�
x2i+1

=
1

2
(M +1)�1

�
(1 + x)M+1 � (1� x)M+1

� (9)

and takingM = 2n�2 and x = 1, we have

2n�3X
i=0

1

i

�
2n�2

2i

�
> 2

2n�3X
i=0

(2i+1)�1

�
2n�2

2i

�
= (2i+ 1)�122

n�2+1 (10)

which proves the Lemma.



If we use Lemma 1 and Lemma 2 in the inequality (8) of [9], we have that the fraction of functions

satisfying the SAC is asymptotically less than

2��1=2 n�1 2�n=2: (11)

Now we turn to the problem of lower bounds.

The following conjecture was given in [1] without proof. This conjecture implies that there are at least

22
n�1

boolean functions ofn variables which satisfy the SAC.

Conjecture [1]: Given any choice of the valuesfn(vi); 0 � i � 2n�1 � 1, there exists a choice of

fn(vi); 2n�1 � i � 2n � 1, such that the resulting functionfn(x) satisfies the SAC.

Forn = 1, it is trivial to show that iff1(1) = f1(0)�1 then the resulting function satisfies the SAC. In the

following Lemma we prove that, forn � 2, there exist at least two choices forfn(vi); 2n�1 � i � 2n�1,

such that the resulting function satisfies the SAC.

Lemma 3:

Let fn = [hn�1 [hn�1 � gn�1]] wherehn�1 is an arbitrary boolean function withn� 1 input variables,

n � 2, andgn�1 is constructed as above to satisfy equation (1), thenfn satisfies the SAC.

Proof:

Case 1: MSB(e) = 0:

2n�1X
i=0

fn(vi)� fn(vi � e)

=
2n�1�1X
i=0

fn(vi)� fn(vi � e) +
2n�1X
i=2n�1

fn(vi)� fn(vi � e)

=
2n�1�1X
i=0

hn�1(�vi)� hn�1(�vi � �e)

+
2n�1�1X
i=0

hn�1(�vi)� hn�1(�vi � �e)� gn�1(�vi)� gn�1(�vi � �e)

=
2n�1�1X
i=0

hn�1(�vi)� hn�1(�vi � �e) +
2n�1�1X
i=0

(hn�1(�vi)� hn�1(�vi � �e))

= 2n�1:



Case 2: MSB(e) = 1:

2n�1X
i=0

fn(vi)� fn(vi � e)

= 2
2n�1�1X
i=0

fn(vi)� fn(vi � e)

= 2
2n�1�1X
i=0

hn�1(�vi)� hn�1(�vi)� gn�1(�vi)

= 2
2n�1�1X
i=0

gn�1(�vi)

= 2n�1:

which proves the Lemma.

From Lemma 3 above, and by noting that we have two choices forgn, we conclude that, forn � 2, the

number of function satisfying the SAC is lower bounded by22
n�1+1. Using the following Lemma, one

can provide some improvement to the above bound.

Lemma 4:

Let fn = [hn�1 [ln�1 � gn�1]] wherehn�1 is an arbitrary boolean function withn� 1 input variables,

ln�1(x) = hn�1(x� a), n � 2, andgn�1 is constructed as above to satisfy equation (1), thenfn satisfies

the SAC.

Proof:

Case 1: MSB(e) = 0:
2n�1X
i=0

fn(vi)� fn(vi � e)

=
2n�1�1X
i=0

fn(vi)� fn(vi � e) +
2n�1X
i=2n�1

fn(vi)� fn(vi � e)

=
2n�1�1X
i=0

hn�1(�vi)� hn�1(�vi � �e)

+
2n�1�1X
i=0

hn�1(�vi � a)� hn�1(�vi � a� �e)� gn�1(�vi)� gn�1(�vi � �e)

=
2n�1�1X
i=0

hn�1(�vi)� hn�1(�vi � �e) +
2n�1�1X
i=0

(hn�1(�vi)� hn�1(�vi � �e))

= 2n�1:



Case 2: MSB(e) = 1:

2n�1X
i=0

fn(vi)� fn(vi � e)

= 2
2n�1�1X
i=0

hn�1(�vi)� hn�1(�vi � a)� gn�1(�vi)

=
2n�1�1X
i=0

hn�1(�vi)� hn�1(�vi � a)� gn�1(�vi)

+
2n�1�1X
i=0

hn�1(�vi � a)� hn�1(�vi)� gn�1(�vi � a)

=
2n�1�1X
i=0

hn�1(�vi)� hn�1(�vi � a)� gn�1(�vi)

+
2n�1�1X
i=0

hn�1(�vi � a)� hn�1(�vi)� gn�1(�vi)

= 2n�1:

which proves the Lemma.

Note that if the functionfn�1 does not have any linear structures, then all the functions generated by

ln�1�gn�1 will be unique for all the2n�2 choices ofa. From Lemma 3 and Lemma 4 we have2n�1+2

distinct choices forfn�1(vi), 2n�1 � i � 2n � 1. Thus we have the following corollary:

Corollary 1:

The number of functions satisfying the SAC is lower bounded by�
22

n�1 �LSn�1
��

2n�1 + 2
�
+2LSn�1 (16)

whereLSn�1 is the number of functions withn � 1 input bits having any linear structure. An exact

count forLSn is given in [10]. It can also be shown [10] thatLSn is asymptotic to(2n � 1)22
n�1+1:

One should note that while this bound provides some improvement over the proved bound in [1],

exhaustive search (see Table 1) shows that the quality of this bound degrades asn increases. One

can improve this bound slightly by identifying special classes of functionsfn(vi), 0 � i � 2n�1 � 1

for which there is a large number of choices forfn(vi), 2n�1 � i � 2n � 1 such that the resulting

function, fn, satisfies the SAC. For example, if the functionhn�1 satisfies the SAC, then the function

fn = [hn�1[hn�1 � c�x� b]], b 2 Z2 also satisfies the SAC. Thus our bound is slightly improved to�
22

n�1 �LSn�1 � SACn�1
��

2n�1 + 2
�
+2nSACn�1+2LSn�1 (17)



whereSACn�1 is the number of functions withn � 1 input bits that satisfy the SAC.

We now give a lower bound on the number of balanced functions that satisfy the SAC.

Lemma 5

Let fn = [hn�1 [ln�1 � gn�1]] wherehn�1 is an arbitrary boolean function withn � 1 input variables

that satisfies
P

wt(vi) odd

hn�1(vi) = 2n�3, ln�1(x) = h(x� a), n � 2, andgn�1 is constructed as above

to satisfy equation (1), thenfn is a balanced function that satisfies the SAC.

Proof:

From Lemma 5, it follows thatfn satisfies the SAC. Here we will prove thatfn is a balanced function.

2n�1X
i=0

fn(vi) =
2n�1�1X
i=0

hn�1(�vi) +
2n�1�1X
i=0

hn�1(�vi � a)� gn�1(�vi)

=

2n�1�1X
i=0

hn�1(�vi) +
2n�1�1X
i=0

hn�1(�vi)� gn�1(�vi � a)

=
2n�1�1X
i=0

hn�1(�vi) +
2n�1�1X
i=0

hn�1(�vi)� 1 � �vi

=
2n�1�1X

wt( �vi) even

�
hn�1(�vi) + hn�1(�vi)

�
+ 2

2n�1�1X
wt( �vi) odd

hn�1(�vi)

= 2n�2 + 2 � 2n�3

= 2n�1:

which proves the Lemma.

Similarly, one can also show that the functionfn = [hn�1 [hn�1 � gn�1]] wherehn�1 is an arbitrary

boolean function that satisfies
P

wt(vi) even

hn�1(vi) = 2n�3 is a balanced function that satisfies the SAC.

From the Lemma above, it follows that the number of balanced SAC functions is lower bounded by

�
2n�2

2n�3

�
22

n�2+1: (19)



n 2 3 4 5

LSn�1 4 8 128 4,992

Old Bound [1] 2 4 16 256

New Bound (exp. (16) ) 8 64 1,536 1,099,776

New Bound (exp. (17)) 8 64 1,920 1,157,568

Exact Number 8 64 4,128 27,522,560

Table 1 : Exact number of functions satisfying SAC versus the derived lower bounds.
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