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Abstract— In this paperwe studythe securityof SubstitutionPermutatiorEncryptionNetworks
(SPNs)with randomly selectedbijective substitutionboxesand a randomly selectednvertible
linear transformationlayer. In particular, our resultsshow that for sucha 64—bit SPN using
8 x 8 s-boxes,the numberof s-boxesinvolvedin any 2 roundsof a linear approximationor a
differentialcharacteristiés equalto 8 with probabilityexceeding).8. FortheseSPNsthenumber
of plaintext/ciphertexipairs that are requiredfor the basiclinear and differential cryptanalysis
exceed2%* within 6 rounds. We also provide two constructionmethodsfor involution linear
transformationdbasedon Maximum DistanceSeparableCodes.

1 Introduction

Heys and Tavares [3][4][5] showed that replacing the permutation layer of Substitution
Permutationencryption Networks (SPNs)with a diffusive linear transformationimprovesthe
avalanchecharacteristicof the cipher and increaseghe cipher’s resistanceo differential and
linear cryptanalysis Linear [8] anddifferential [1] cryptanalysisaretwo of the mostpowerful
attackson block ciphers.In particularit wasshown[3][4] thatwith sucha lineartransformation
we can develop upper bounds on the differential characteristicprobability [1] and on the
probability of a linear approximation[9] as a function of the numberof roundsof substitution.
Theseboundsare achievedby choosingthe linear transformationin sucha way that we can
have a lower bound on the number of s-boxesinvolved in any 2 rounds of a differential
characteristior linear approximationexpressionLetting N representhe block size of an SPN
consistingof R roundsof n x n s-boxes(M per round), a simple exampleof an SPN with

N=16 n=4,M =% =4, andR = 3 is illustratedin Figure1.

n

An interestingclassof linear transformationss the one basedon Maximum DistanceSeparable
(MDS) codes[7]. The useof suchlinear transformationsvas first proposedby Vaudenayin
[13] and then utilized in the cipher SHARK [12] and later in the cipher SQUARE [2]. This
classof linear transformationhasthe advantagehat the numberof s-boxesinvolved in any 2
roundsof a linear approximationor in any 2 roundsof a differential characteristids equalto
M + 1 which is the maximum theoreticallypossiblenumber.

In this paperwe study the securityof SPNswith randomlyselectedn-bit bijective substitution

boxes and a randomly selectedlinear transformationlayer over GGF'(2"). We also provide
two constructionmethodsfor involution linear transformationshbasedon Maximum Distance
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Figure 1 SPNwith N = 16, » = 4, and R = 3.

Separabl€odes.Involution lineartransformationfavethe advantagehatthe resultingnetwork
can be usedto perform both the encryptionand the decryptionoperationg16].

Rijmen et al [12] notedthatthe frameworkof linearcodesover G F'(2") providesanelegantway
to constructthe linear transformationlayer. More detailsaboutthe theory of error correcting
codescan be found in [7].

Let C bea (2M, M, d) codeover GF(2"). Let G = [I|A] be the generatomatrix in echelon
form where A is a nonsingularM x M matrix and [ is the M x M identity matrix. Then A
definesan invertible linear mapping

GFWM - gremM . X 5 v = AX. (1)

If the matrix A is usedin the implementatiorof the linear transformatiorof the SPN,thenit is
easyto seethatthe numberof s-boxeanvolvedin any2 roundsof a differentialcharacteristior
linear approximationexpressiors lower boundedby d, the minimum distanceof the code[12].
The minimum distanceof the code is equal to the minimum number of linearly dependent
columnsin its null matrix (also known as the parity-checkmatrix). For an MDS code with
parameters2M, M, d), the minimum distanced is equalto M + 1. Throughoutthis paperwe
assumethat M is an even number.

2 Randomly Selected Linear Transformations

Lemma 1

Let ¢ = [I|A] bethe generatomatrix of a codein echelonform where A is arandomlyselected
M x M nonsingulamatrixand/ is the M x M identity matrixwith elementoverG'F(q),q = 2".

Then the probability that this codehasa minimum distanced > r, 2 < r < M + 1, is lower



boundedby

j=r—1

ﬁllq)f[l(qM T—:(M-H—1>q_1 S (Z.l)ql)) )

where
M—1

v(M,q) =[] (qM —qi) 3)
i=0
is the numberof nonsingularM x M matricesover GF(q).

Proof: If ¢ = [I|A] thenthe null matrix H is given by
H=|-AT|I| = [aT)1] 4

since we are working over GF'(2"). It is clear that as A varies over al possible nonsingular
matrices, AT varies over the same set. We construct the matrix A7 column by column to
meet our criterion.

The columns of AT must not equal any linear combination of up to r — 2 of the other columns
of H, and, for AT to be invertible, no column of AZ should be a linear combination of the
other columns of AZ.

Suppose we have aready assigned i — 1 columns of AL. We may choose any of the ¢
possibilities for column ¢ except the

r—2 .
M+:-—1 ;
>, ( . )(q — 1y (5)
=0 J
linear combinations of up to » — 2 of the M + : — 1 assigned columns of H and the

-1 .

1 —1 ;
> ( . )(q—lv (6)
j=r—1 J

linear combinations of known columns of AT not counted in (5).

Note that the combinations counted in (5) and (6) may not be distinct. Thus, the number of
choices available for column : is at least

Y Z(M-i—]z—l)q_l i (z_;)q_l) -

=0 j=r—1
and hence the number of choices of A is at least
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The lemma follows by dividing the expression above by the total number of nonsingular A x M
matrices over G'I'(q). []

O’ Connor [11], and Youssef and Tavares [15], [14] studied the XOR distribution table and the
Linear Approximation Table (LAT) properties of randomly selected bijective s-boxes. From
the analysis in [11], [15] and [14] the expected value of the maximum XOR table entry of
an 8 x 8 randomly selected bijective mapping A is less than or equal to 12 and the expected
nonlinearity A'L is greater than 92.

Using an approach similar to the analysis in [4], it is possible to establish upper bounds on
the most likely differential characteristic and linear approximation expression using a randomly
selected SPN for which the number of s-boxes involved in any 2 rounds of a differential
characteristic is greater than or equal to d. The results are obtained by assuming that all the
round keys are independent.

The number of chosen plaintext/ciphertext pairs required for differential cryptanalysis of an R
round SPN (based on the best characteristic and not the best differential [10], [6]) may be
approximated by [1], [4]

ND > (P(S)al, (9)

where P; = & and
o Zd(g—l) +1. (10)

Similarly, the number of known plaintexts required for the basic linear cryptanalysis (algorithm
1in [9]) may be approximated by [4]

- ‘201—1P€oz‘2 (11)
where
P, = 2’2_127;“, (12)
and
a > dTR (13)

Letting R; and Rp denote the minimum even number of rounds required so that Ny and Np are
greater than 254, Table 1 shows Ry, and Rp asafunctionof d forn =8, A = 12 and V'L = 92.



Ry 10 10 8 8 6
Rp 10 8 8 6 6

Tablel Ry and Rp asafunctionof d (n = 8, A = 12 and NL = 92)

Table 2 shows the theoretical lower bound (equation (2) ) as well as the experimental result
(sample size = 10°) for the probability of picking a random invertible linear transformation,
with n = M = 8, for which d is lower bounded by r, 4 < r < 8.

T 4 5 6 7 8
Theoretical 1-1.58x107"2 |1 -151x10° |1-978x10" |1—4.66x10"* |0.839
bound (egn. 2)

Experimental 1.0 1.0 1.0 1—-4.6x10"* 0.844
(Random)

Experimental 1.0 1.0 1.0 1-1.18 x 10~2 0.922
(Involution)

Table 2 Lower Boundsfor P(d > r) for a RandomlyChosenLinear Transformation(n = M = 8)

3 Involution Linear Transformations based on MDS codes

In general, SPNsneedtwo differentmodulesfor the encryptionandthe decryptionoperations.
In an SPN,decryptionis performedby runningthe databackwardghroughthe inversenetwork
(i.e., applying the key schedulingalgorithm in reverseand using the inverses-boxesand the
inverselinear transformationlayer). In [16] the authorsproposeda specialclassof SPNsthat
hasthe advantagethat the samenetwork can be usedto perform both the encryptionand the
decryption operations. The basicideais to useinvolution substitutionlayers and involution
linear transformations.n this sectionwe studytwo constructionmethodsfor involution linear
transformationsbasedon MDS codes.

For alinear (n, k,d) codeover anyfield, d < n — k + 1. Codeswith d = n — k + | arecalled
Maximum DistanceSeparableCodes,or MDS codesfor short[7].

Lemma 2[7]:

An (n, k,d) codewith generatomatrix G = [I|A], where A is a k x (n — k) matrix, is MDS
if andonly if every squaresubmatrix(formed from any : rows and any : columns,for any
i = 1,2,---,min{k,n — k}) of A is nonsingular.



3.1 Random Construction
One way to obtain an involution matrix A which satidies the above constraintis to pick a
randominvolution matrix and testit for the aboveconstraint.

Let " "
A= | ] 14
[A21 Ao (14)

bean M x M randommatrix where A1, A12, A21 and Ay, are nonsingular% X % matrices.
An involution matrix is one which satisfiesA? = I, andthus A is an involution iff

A11A12 © ApAz =0, (15)
Al @ AppAg =1, (16)
Ag1 Ay B App Az =0, (17)
A A @ A3, = 1. (18)

If we let Ay = Ay thenequation(15) is satisfiediff A;; and A;; commutewith eachother.
To achievethiswe let Ay = Al‘ll. For thesechoicesof A1, and Aj;, equationg16), (17) and
(18) are linearly dependentwith the solution Az = A3, & Ay;.
Thus the M x M matrix

A1 Al_ll

A=
A‘(fl@An A ]’

(19)

where A1; is a randomnonsingular’ x 2 matrix, is an involution over GF (2").

For n = 8, a randomsearchfor a matrix A, with the structurein equation(19), that satisfies
the condition in lemma 2, terminateswithin a few secondsfor evenvaluesof M, M < 6.

For M = 8 we were unableto obtain any matrix that satigies the conditionsin lemma?2 by

randomsearch. Table 2 showsthe experimentalresultsfor 10° randomly choseninvolution

linear transformationsn the form of equation(19) for M = n = 8.

3.2 Algebraic Construction
In this sectionwe show how to obtain an involution matrix satisfyinglemma?2 by a simple
algebraic construction.

Lemma 3[7]:
Givenxg, -, X,_y, andyg, - - -, y,—, thematrix A = [a;;],0 < 1,7 <n—1 wherea;; = xi—y}
is called a Cauchymatrix. It is known that
(% —x)(y; — i)
0<i<j<n—1
det(A) = . (20)
” T ity

0<i,j<n—1



Hence,providedthe x; are distinct, the y; are distinct, andx; + y; # 0 for all i, j, it follows
that any squaresubmatrixof a Cauchymatrix is nonsingularover any field.

Let

x; =1,

. 21
yi=19r, ()
where -
i=(00---0ir---irig) € GF(2"), ) 2l =i, 7 = [logap] — 1, (22)
1=0
and the least significant logz (M) bits of r # 0 are zeros.
For A> = H = [h;;] we have
M-1 1 Mél 1 ) )
hij = D ; : = T (23)
k=0
Pt iekdr)jokdr) 0. P4

wherei, j andk areevaluatedasin equation(22). Thusthematrix A will satisfyA? = ¢2I, ¢ =

@ a2, over GF'(2"). Dividing (division over GF'(2")) eachelementof A by
i=1

M-1 1 n
\/E:% (k@r)zgalia (24)

we obtain an involution matrix for which every squaresubmatrixis nonsingularover G'F'(2").
Figure 2 showsan examplefor M = n = 8, usingthe irreducible polynomial 11d'.

93 13 57 da 58 A7 ¢ 1f
13 93 da 57 47 58 1f ¢
57 da 93 13 ¢ 1f 58 4T
da 57 13 93 1f ¢ 47 58
58 47 ¢ 1f 93 13 57 da
A7 58 1f ¢ 13 93 da 57
¢ 1f 58 47 57 da 93 13
1f ¢ 47 58 da 57 13 93

Figure 2 Involution Linear TransformationrBasedon MDS Codes(M = n = 8, Irreducible Polynomial= 11d)

T All numbersarein hexadecimaformat



Conclusions

In this paperwe studiedSPNswith randomlyselecteds-boxesanda randomlyselectednvertible

lineartransformatiorlayer. Theresultsof our analysisshowthat SPNswith goodcryptographic
propertiescan be obtainedusing this random constructionapproach. Although this random
constructioncan be usedto implementan actual cipher, the analysisin this paperwas aimed
to prove the robustnessf the SPN model.

We alsoprovidedtwo constructiormethodsfor involution linear transformationdbasedon MDS

codes. Involution linear transformationshave the advantagehat the resulting network can be
usedto performboththe encryptionandthe decryptionoperationswhich enhanceshe practical
aspectsof this the classof SPN ciphers.
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