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Abstract. SPARX-64/128 is an ARX-based block cipher with 64-bit
block size and 128-bit key. It was published in Asiacrypt 2016 as one of
the instantiations of a family of ARX-based block ciphers with provable
security against single-characteristic differential and linear cryptanalysis.
In this work, we present 12 and 13-round impossible distinguishers on
SPARX-64/128 that can be used to attack 15 and 16-round SPARX-
64/128 with post-whitening keys, respectively. While the 15-round attack
starts from round 0, the 16-round one, exploiting the key schedule, has
to start from round 2.
Keywords: Block Ciphers, Impossible Differential, Miss-in-the-middle,
SPARX.

1 Introduction

SPARX is a family of ARX-based block ciphers that was published in Asiacrypt
2016 [6]. It was designed with the goal of putting forward a general strategy for
designing ARX-based symmetric-key primitives with provable security against
single-characteristic differential and linear cryptanalysis. As a dual to the wide
trail strategy [4] adopted by many S-box based block ciphers, the designers pro-
posed the long trail strategy. This strategy promotes the use of a rather weak
but large S-box, i.e., an ARX-based S-box, along with a very light linear layer.
Fostering the existence of long trails, that involve an uninterrupted sequence of
calls to the S-box interleaved with key additions, rather than having maximum
diffusion in each linear layer is at the core of this proposed strategy. The long
trail strategy allowed the designers to bound the maximum differential and lin-
ear probabilities for any number of rounds of a block cipher designed following
such strategy. SPARX-64/128 is a member of this family of block ciphers fol-
lowing the long trail strategy with 64-bit block size and 128-bit key. The only
cryptanalysis of SPARX was done by its designers as they presented a 13-round
bit-based division property distinguisher that they used to launch an integral
attack against 15-round SPARX-64/128 [5]. No other attacks were given in the
short/full versions of the design paper.

Impossible differential cryptanalysis that was independently proposed by Bi-
ham et al. [3] and Knudsen [9] is one of the most powerful cryptanalytic tech-
niques. Firstly, we try to find a certain input difference that propagates to a



specific output difference with zero probability resulting in an impossible differ-
ential distinguisher. In general, the input and output differences can be trun-
cated. Then, after finding the longest possible impossible differential, it is used in
a key recovery attack by prepending and/or appending a few additional rounds
which are usually called the analysis rounds. The attack proceeds as follows:
first, we collect pairs with certain plaintext and ciphertext differences. Then, we
guess some bits of the key material involved in the analysis rounds and if one of
the pairs satisfies the input and output differences of the impossible differential
under some subkey bits, then these subkey bits must be wrong. Thus, we discard
as many wrong keys as possible and do an exhaustive search on the surviving
ones along with the rest of the key. The early abort technique [10] allows us to
guess the involved key material on steps to discard the undesired pairs as early
as possible and therefore reduce the time complexity of the attack.

In this paper, we present a 12-round truncated impossible differential on
SPARX-64/128 that can be extended to a 13-round impossible differential with
a specific input difference and a truncated output difference. We use the 12-
round impossible differential to launch an impossible differential attack against
15-round SPARX-64/128 including the post-whitening key with data complex-
ity of 251 chosen plaintexts, time complexity of 294.1 15-round encryptions and
memory complexity of 243.5 64-bit blocks. Then, we use the 13-round impossible
differential to attack 16-round SPARX-64/128, including the post-whitening key,
starting from round 2 with data, time and memory complexities of 261.5 known
plaintexts, 294 16-round encryptions, and 261.5 64-bit blocks, respectively.

The remainder of the paper is organized as follows. In Section 2, the notations
used throughout the paper are given followed by the specification of SPARX-
64/128. Our impossible differentials are presented in Section 3. Afterwards, in
Section 4, we provide a detailed description of our impossible differential attacks
on SPARX-64/128. Finally, Section 5 concludes the paper.

2 Description of SPARX-64/128

Notations. The following notations are used throughout the paper:

– K: The master key.
– ki: The ith 16-bit of the key state, where 0 ≤ i ≤ 7.
– kji : The ith 16-bit of the key state after applying the key schedule permuta-

tion j times, where 0 ≤ i ≤ 7 and 0 ≤ j ≤ 17 for SPARX-64/128.
– RK(a,i): The 32-bit round key used at branch a of round i where 0 ≤ i ≤ 24

and a = 0 (1) denotes the left (right) branch of SPARX-64/128.
– X(a,i) (Y(a,i)): The left (right) 16-bit input at branch a of round i where

0 ≤ i ≤ 24, a = 0 (1) denotes the left (right) branch of SPARX-64/128, and
the LSB of either X(a,i) or Y(a,i) is on the right.

– w: The number of 32-bit words, i.e., w = 2 for a 64-bit block and w = 4 for
a 128-bit master key.
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– R3: The iteration of 3 rounds of SPECKEY with their corresponding key
additions.

– Lw: Linear mixing layer used in SPARX with w-word block size, thus L2

represents the linear mixing layer used in SPARX-64/128.
– ⊞: Addition mod 216.
– ⊕: Bitwise XOR.
– ≪ q (≫ q): Rotation of a word by q bits to the left (right).
– ‖: Concatenation of bits.
– 0xabcd: A 16-bit number in hexadecimal representation.

2.1 Specifications of SPARX-64/128

SPARX [6,5] is a family of ARX-based Substitution-Permutation Network (SPN)
block ciphers. It follows the SPN design construction while using ARX-based S-
boxes instead of S-boxes based on look-up tables. ARX-based S-boxes form a
specific category of S-boxes that rely solely on addition, rotation and XOR op-
erations to provide both non-linearity and diffusion. The SPARX family adopts
the 32-bit SPECKEY ARX-based S-box, shown in Fig. 1, which resembles one
round of SPECK-32 [1,2] with only one difference, that is, the key is added to
the whole 32-bit state instead of just half the state as in SPECK-32.
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Fig. 1: The SPECKEY ARX-based S-box used in the SPARX family.

For a given member of the SPARX family whose block size is n bits, the
plaintext is divided into w = n/32 words of 32 bits each. Then, the SPECKEY
S-box (S), being applied to w words in parallel, is iterated r times interleaved by
the addition of independent subkeys. Then, a linear mixing layer (Lw) is applied
to ensure diffusion between the words. The structure made of a key addition
followed by S is called a round while the structure made of r rounds followed by
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Lw is called a step, as depicted in Fig. 2. Thus, the ciphertext corresponding to
a given plaintext is generated by iterating such steps. The number of steps and
the number of rounds in each step depend on both the block size of the cipher
and the size of the key it utilizes.
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Fig. 2: SPARX structure

SPARX-64/128 is the lightest member of this family operating on 64-bit blocks
using 128-bit keys. It uses 3 rounds in each step and iterates over 8 steps, i.e., the
total number of rounds is 24. More precisely, in SPARX-64/128, 2 SPECKEY
S-boxes (S) are iterated simultaneously 3-times, while being interleaved by the
addition of the round keys and then a linear mixing layer (L2) is applied, as
shown in Fig. 3a. The structure of L2 is depicted in the dotted square in Fig. 3b.

Key schedule. The 128-bit master key instantiates the key state, denoted by
k00‖k

0
1‖k

0
2‖k

0
3‖k

0
4‖k

0
5‖k

0
6‖k

0
7. Then, the 3 × 32-bit round keys used in the left

branch of the first step are extracted. Afterwards, the permutation illustrated
in Fig. 4 is applied and then the 3× 32-bit round keys used in the right branch
of the first step are extracted. The application of the permutation and the ex-
traction of the keys are interleaved untill all the round keys encompassing the
post-whitening ones are generated. This means that, first, the round keys of a
branch of a given step j are generated and then the key state is updated. The
following observation on the key schedule is exploited in our attacks.

Observation: The last round key of a given step and the first round key of
the subsequent step can be deduced from one another. To clarify this point, we
consider the last round key of step 0 and the first round key of step 1. The
64-bit round key of the third round is k04‖k

0
5 , k

1
4‖k

1
5 and the 64-bit round key of
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(a) step
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(b) round + linear layer

Fig. 3: SPARX-64/128 structure

the fourth round is k20‖k
2
1 , k

3
0‖k

3
1. According to the key schedule: k20 = k16 = k04 ,

k21 = k17 ⊞ 2 = k05 ⊞ 2, k30 = k26 = k14 and k30 = k17 ⊞ 3 = k15 ⊞ 3.

Finally, it is to be noted that we measure the memory complexity of our attacks
in number of 64-bit blocks and the time complexity in terms of the equivalent
number of round-reduced encryptions.

3 Impossible Differentials of SPARX-64/128

A 12-round impossible differential is readily noticeable when considering SPARX-
64/128 to be a twisted variant of a Feistel construction where the two halves
undergo a keyed function before getting mixed and swapped. Indeed, as depicted
in Fig. 5, if the left branch of SPARX-64/128 at round i has a zero difference
while the right half has a nonzero difference, then after 2 steps (6 rounds), the
input at the left branch must have a nonzero difference. From the other direc-
tion, if the input of the right branch of round i+12 has a nonzero difference, i.e,
Γ and the input of the left branch at that round has a difference L2(Γ ), then
after the linear transformation, the right branch will have a zero difference which
propagates unaltered for 2 complete steps (6 rounds) and contradicts with the
forward differential at the left branch.

This 12-round truncated impossible differential can be extended to a 13-
round distinguisher with a specific input difference and truncated output dif-
ference. This is feasible by exploiting the fact that there exist differentials with
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Fig. 4: SPARX-64/128 key schedule permutation, where the counter r is initial-
ized to 0.

probability 1 for one SPECKEY round and one of these differentials is a fixed
point of L2. Particularly, if the input difference of the distinguisher is chosen to
be 0x8000 0x8000 then by propagating it backward through L2 we have the same
difference at both the right and left branches as an output for the S-box and
this output difference corresponds to the input difference 0x0040 0x0000 with
probability 1. Hence, the input of the 13-round distinguisher is 0x0040 0x0000
and 0x0040 0x0000 while the output is still truncated in the form of L2(Γ ) and
Γ .

4 Impossible Differential Cryptanalysis of SPARX-64/128

The 12 and 13-round impossible distinguishers described above can be used to
attack 15 and 16-round SPARX-64/128, respectively. Both attacks include the
post-whitening key, however, the 16-round attack starts at round 2.

4.1 15-round Impossible Differential Attack on SPARX-64/128

In this attack, we have chosen to place the 12-round distinguisher at the top, end
it with a specific difference that meets the constraint of L2(Γ ) and Γ , and then
append 3 rounds that have a high probability as shown in Fig. 6. That specific
difference at the end of the distinguisher and the 3 analysis rounds were found
using Mixed Integer Linear Programming (MILP). Specifically, we have followed
the guidelines in [7] to create an MILP model that describes SPARX-64/128 and
solved it using the publicly available MILP optimizer Gurobi [8]. The detailed
procedure of the attack is described as follows.

Data Collection. We first choose 2m structures of plaintexts where in each
structure the left 32 bits of the plaintexts take a fixed value and the right 32 bits
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Fig. 5: 12-round impossible differential SPARX-64/128

take all the 232 possible values. Each structure includes about
(

232

2

)

≈ 263 pairs
of plaintexts, therefore we have 2m × 263 = 2m+63 pairs of plaintexts in total.
We encrypt these pairs and keep the ones whose ciphertext difference matches
the difference shown in Fig. 6. The probability of such ciphertext difference is
about 2−64, therefore the expected number of remaining pairs after this phase
is about 2m+63−64 = 2m−1.
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Key Recovery. To verify if the pairs generated during the data collection phase
follow our 12-round impossible differential, we need to guess RK(0,15), RK(1,15),
RK(0,14), RK(1,14), andRK(0,13). However, as pointed out above,RK(0,15), RK(1,15)

are related to RK(0,14), RK(1,14). This means that these round keys take 296 val-
ues only. The details of this phase are as follows.
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Fig. 6: 15-round impossible differential attack on SPARX-64/128

Step 1. For all the ciphertext pairs obtained in the data collection phase, we guess
the 64-bit round keys RK(0,15) and RK(1,15), decrypt round 15 and check if
the difference matches the one shown in Fig. 6. If it is not the case, the pair
is discarded. The probability of this event is 2−7 and thus after this step the
expected number of remaining pairs is about 2m−1−7 = 2m−8.

Step 2. We deduce RK(0,14) and RK(1,14) from the guessed RK(0,15) and RK(1,15),
decrypt round 14 and check if the difference is the expected one according
to Fig. 6. If it is not the case, the pair is discarded. The probability of this
event is 2−4 and therefore the expected number of pairs surviving this step
is about 2m−8−4 = 2m−12.

8



Step 3. We guess the 32-bit RK(0,13) and partially decrypt the left branch of round
13 and check if the difference meets the impossible differential difference.
Once it is correct, we delete the 32-bit round key guesses of RK(0,13) since
such a differential is impossible; each round key guess that proposes such
a difference is a wrong key. After analyzing all the 2m−12 remaining pairs,
we output the 96-bit round keys guess of RK(0,15), RK(1,15), and RK(0,13)

as a candidate. The probability that the pairs pass this step is about 2−2,
therefore the time complexity of this step is the number of key guesses × 2
messages in each pair × the probability that the key guess is excluded after
sequentially testing it against all the surviving pairs.

The steps of the key recovery phase are described in Table 1, whereas the
second column gives the round keys to be guessed in the corresponding round for
each attack step. The third column presents the number of surviving pairs after
each step, and the fourth column is the time complexity of each step measured
in 15-round encryption.

Table 1: Key recovery process of the attack on 15-round SPARX-64/128

Attack step Guessed keys # Surviving pairs Time complexity

1
RK(0,15) 2m−1−7 = 2m−8 264 × 2× 2m−1 × 1/15 ≈ 2m+60.1

RK(1,15)

2 † 2m−8−4 = 2m−12 264 × 2× 2m−8 × 1/15 ≈ 2m+53.1

3 RK(0,13) –
296 × 2× [1 + (1− 2−2) + (1− 2−2)2

+ · · ·+ (1− 2−2)2
m−12

]× 1/(2× 15)

†: No additional key guesses needed, i.e., the round keys are deduced from the
previously guessed ones.

Attack complexity. To balance the attack complexity between the different
phases, we take m = 19. This means that after analyzing all the remaining
pairs, there will be about 296×(1−2−2)2

m−12

= 296×(0.75)128 ≈ 242.9 remaining
candidates for the 96-bit round keys. Then, we guess the 32-bit RK(1,12) which
along with the surviving candidates allows us to recover the master keyK via the
key schedule. Afterwards, we test each one of these master key candidates using
2 plaintext/ciphertext pairs to find the correct master key. The time complexity
of this exhaustive search step is 2 × 232 × 242.9 = 275.9. Therefore the time
complexity is dominated by step 3 of the attack and estimated to be 296 × 2 ×
(1/2−2) × (1/30) ≈ 294.1. The data complexity of the attack is 219+32 = 251

chosen plaintexts. The memory complexity of the attack is dominated by the
memory that is required to store the keys to be excluded, i.e., 242.9×96/64 ≈ 243.5

64-bit blocks.
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4.2 16-round Impossible Differential Attack on SPARX-64/128

Although each round of SPARX-64/128 uses a 64-bit round key, there exists 3
specific rounds that contain only 296 bits of key information as exemplified by
the ones exploited in the previous attack. Nonetheless, any 4 rounds contain
at least 128 bits of key information. Therefore, our 16-round attack on SPARX-
64/128 has to start from round 2 and in this case, we use the 13-round impossible
differential and prepend 3 rounds on its top as shown in Fig. 7. Again, we have
used the Gurobi optimizer to find these 3 rounds after creating the MILP model
that describes them.
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Fig. 7: 16-round impossible differential attack on SPARX-64/128

In this attack, we do not use data structures as they do not generate enough
pairs to launch the attack. Instead, we use known plaintexts and generate the
pairs we need probabilistically. Hence, if we have 261.5 known plaintexts, these

can generate
(

261.5

2

)

≈ 2122 pairs. Out of these pairs, we would have 2122−64 = 258

pairs that satisfy the plaintext difference shown in Fig. 7. Then, as the difference
at the end of the distinguisher is the difference in the ciphertext, we have to filter
the ciphertexts such as the right branch is a nonzero difference Γ and the left
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branch difference is L2(Γ ) which means that we have 258−32 = 226 proper pairs.

In the key recovery phase which we perform on these 226 pairs, the 3 round
keys take 296 values only and they are guessed on steps to reduce the time
complexity of the attack as listed in Table 2. It is to be noted that, according
to the key schedule, RK(0,3), RK(1,3) are deduced from the guessed RK(0,2),
RK(1,2) and that RK(1,4) is deduced from RK(0,3).

Table 2: Key recovery process of the attack on 16-round SPARX-64/128

Attack step Guessed keys # Surviving pairs Time complexity

1
RK(0,2) 226−8 = 218 264 × 2× 226 × 1/16 = 287
RK(1,2)

2 † 218−9 = 29 264 × 2× 218 × 1/16 = 279

3 † 29−2 = 27 264 × 2× 29 × 1/(2 × 16) = 269

4 RK(0,4) –
296 × 2× [1 + (1− 2−2) + (1− 2−2)2

+ · · ·+ (1− 2−2)2
7

]× 1/(2× 16)

†: No additional key guesses needed, i.e., the round keys are deduced from the
previously guessed ones.

After analyzing all the remaining pairs, there will be about 296×(1−2−2)2
7

=
296 × (0.75)128 ≈ 242.9 remaining candidates for the 96-bit round keys. Then,
we guess the remaining 32 bits of the master key and test each one of these
master key candidates using 2 plaintext/ciphertext pairs to find the correct one.
The time complexity of this exhaustive search step is 2 × 232 × 242.9 = 275.9.
Therefore the time complexity is dominated by step 4 of the attack (see Table 2)
and estimated to be 296 × 2 × (1/2−2) × (1/32) = 294. The data complexity of
the attack is 261.5 known plaintexts. In this case, the memory complexity of the
attack is dominated by the hash table [11] that is used to store the plaintexts
while generating the required pairs, i.e., 261.5 64-bit blocks.

5 Conclusion

In this paper, we have analyzed SPARX-64/128 against the impossible differ-
ential attack. We have presented 12 and 13-round impossible differential dis-
tinguishers that are used to attack 15 and 16-round SPARX-64/128 with the
post-whitening key, respectively. The (data complexity in chosen/known plain-
texts, time complexity in 15/16-round encryptions, memory complexity in 64-bit
blocks) of these attacks are (251, 294.1, 243.5) and (261, 294, 261.5), respectively.
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