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Abstract—Trace analysis techniques are used by software
engineers to understand the behaviour of large systems. This un-
derstanding can facilitate various software maintenance activities
including debugging and feature enhancement. However, traces
usually tend to be very large, which makes it difficult for software
engineers to unveil the key logic and functionalities embedded in
a program’s execution. Hence, it is necessary to develop methods
and tools that can efficiently identify the important information
contained in a large trace. In this paper, we propose an approach
that builds on the concept of trace segmentation to extract the
major components of a traced scenario. Our approach is based
on Gestalt theory and the Helmholtz principle. We show the
effectiveness of our approach by applying it to a dataset of large
traces.

I. INTRODUCTION

Trace analysis is essential to many software activities
including debugging [1], performance analysis [2], feature
enhancement [3], and a host of other tasks that require an
understanding of the system behaviour. However, execution
traces could be considerably large1, in which case some form
of abstraction must be used in order to analyse their content.
Many trace abstraction techniques (see [4] for a survey) exist
in the literature. They mainly focus on reducing the size of
traces by eliminating (manually or automatically) utilities and
other low-level components.

Recently, another class of trace abstraction methods has
emerged. It seeks is to segment large traces into short and
meaningful trace segments that capture the various execution
phases of the program. An execution phase is defined as a
coherent set of functions that implement a specific function-
ality of a program. For instance, a trace that is generated
during the execution of a compiler could contain the following
phases: initialisation, preprocessing, lexical analysis, syntactic
analysis, semantic analysis, etc. The main difficulty lies in
pinpointing the boundary between each segment in the trace.
This is because there is no support at the programming
language level that helps programmers indicate the beginning
and end of each phase.

Despite the fact that trace segmentation research is a
relatively new field of study, several techniques have already

1For example, the traces used in section 4 capture the functions calls
performed by JHotDraw for short scenarios, but can contain up to 50 000
function calls.

been developed (see [5], [6], [7], [8], [9]). Recently, Pirzadeh
and Hamou-Lhadj [5], [10] proposed a trace segmentation
approach inspired by Gestalt laws [11] (more precisely laws
of similarity and continuation), which are used in psychology
to describe the operational principles of the human brain,
particularly the ability of humans to visually recognize objects
and shapes as a whole and not just as points and lines.
Pirzadeh and Hamou-Lhadj designed a mathematical model
based on these laws using traces as objects and trace events as
points and lines. They were thus able to derive a method that
automatically segments large traces into phases by grouping
coherent events together using this mathematical model. Once
the phases are identified, [5], [10] showed how a “summary”
of each phase, containing its most relevant events, can be
constructed by treating each phase as a document and applying
Term Frequency-Inverse Document Frequency (TF-IDF) to
rank the functions of each trace according to its relevance.

In this paper, we seel to improve the ranking of the
most relevant functions2 using another one of Gestalt theory
principles, the Helmholtz Principle. The Helmholtz Principle is
the quantitative version of Gestalt’s general grouping law and
is usually used for image processing. In [12], the Helmholtz
Principle is used to automatically extract the keywords for
document processing. Following this study, we applied the
Helmholtz principle on execution traces, treating the trace file
as a type of document. By using this approach, we make two
important improvements to the study proposed by Pirzadeh and
Hamou-Lhadj [5], [10]:

1. We propose an alternative method to extract key ele-
ments from trace segments, based on the Helmholtz Principle
rather than on TF-IDF. This alternative method has a stronger
theoretical foundation and allows us to present an end-to-end
approach that is completely based on Gestalt theory.

2. We apply our new algorithms to the problem of program
comprehension and report the results of the experiment. We
show that after traces have been segmented, we can use the
key elements extracted from each segment to reconstruct the
probable behaviour of the original sequence. It is interesting
to note that the use of two alternative and independent key
element extraction algorithms allows for a more precise re-
construction since the results of the two algorithms can be
combined or contrasted.

2In this paper, we focus on traces of function calls.



This paper is organized as follows: in Section II, we discuss
in more detail the trace segmentation approach proposed by
Pirzadeh et al., on which our method is built. In Section III,
we analyse the use of the Helmholtz principle for key trace
elements extraction, while experimental results are given in
Section IV. Related work is presented in Section V. Con-
cluding remarks and insights for future work are presented
in Section VI.

II. THE GESTALT THEORY AND THE TRACE ANALYSIS

Gestalt (a German word for form or shape) psychology
is a theory of perceptual understanding. “Gestalt psychology
seeks to understand the laws that govern our ability to acquire
and maintain meaningful perceptions in an apparently chaotic
world”, and the way our perceptual systems follow certain
grouping principles (e.g., good continuation, proximity, and
similarity properties of the elements) [11].

In previous research, [5], [10], Pirzadeh et al. proposed
an approach for analysing execution traces and extracting key
information of each trace phase. This approach operates in two
stages and is inspired by the Gestalt theory. The first stage,
called trace segmentation, deals with the automatic division
of the trace into phases with re-grouped and clustered trace
elements. In the second stage, called key trace elements ex-
traction, a “summary” is extracted from each of the segments,
generated from stage 1, consisting of the most representative
and meaningful trace elements according to their weighted
value. In [10], this step was accomplished using a TF-IDF
algorithm for content prioritization. In this paper, we propose
an alternative method to accomplish this task, based on Gestalt
theory.

The trace segmentation process itself operates in two steps
namely 1) phase detection and 2)phase boundary identification.
In the first step, trace elements are grouped into candidate
phases using gravitational schemes that apply the technique
based on Gestalt laws of perception (principle similarity and
good continuation). The second step consists in identifying the
boundary of each phase using a k-means clustering algorithm.

In [10], the phase detection and segmentation algorithm
was successfully applied to large traces captured from two
object-oriented systems.

III. THE HELMHOLTZ PRINCIPLE FOR KEY TRACE
ELEMENTS EXTRACTION

After the trace has been divided into several meaningful
segments using the approach described above, it is still too
large to be understood by a programmer. There is thus a
need for an algorithm that can easily identify the major
program functionalities present in each phase. In this paper, we
develop an approach inspired by Helmholtz Principle, that can
automatically extract the key trace elements, i.e., the elements
that are most meaningful to the execution phase.

According to the Helmholtz principle, “we [humans] im-
mediately perceive whatever could not happen by chance”[13].
This means that a structure is easily recognized when it
exhibits a large deviation from randomness. For example in
Figure 1, a group of five aligned dots appears in both images.
These dots can be easily perceived in the right hand side image

because it exibits a large deviation from randomness, which is
unlikely to happen by chance. By contrast, the same aligned
dots are difficult to identify in the left hand side image, where
they are submerged by a large quantity of random information.

Fig. 1. The Helmholtz principle in human perception (from [12])

In order to evaluate the degree of deviation of a trace
event, we introduce a universal variable, called Number of
False Alarms (NFA), which represents the expectation of the
number of occurrences of an event. When NFA is less than ε,
we say that this event is “ε-meaningful”. Intuitively, ε fixes an
upper bound on how likely it is that a pattern being observed—
in our case the unusual frequency of a given function call—is
actually due to chance.

With regard to the analysis of function calls in a trace,
we designate as a meaningful event any function call that
occurs in a given phase at a rate that exhibits a large deviation
from randomness, as compared with its rate of occurrence in
the entire trace. Dadachev et al. [12] proposed a method that
relies upon a qualitative measure of these deviations in order
to automatically extract keywords from a document. Their
method thus allows a user to extract the most meaningful
keywords from a text written in natural language, with no
preprocessing or parametrization of the algorithm. We present
their method in the remainder of this section, then show how
it can be applied to the trace segmentation problem in Section
IV.

Consider a trace T partitioned into P phases (T1, T2, . . .,
TP ), using the method given in stage 1. Let M be a function
call that is present in one or more of these P phases. Assume
that the method call M appears a total of K times in all P
phases. These occurrences of M are collected in a set SM =
{M1,M2, ...,MK}.

Now consider the possibility that the function call M
occurs n times in some phase TP . The verification of whether
the number of occurrences of M in TP is either an unexpected
or expected event proceeds as follows:

Assume that the number of occurrences from SM are
uniformly and independently distributed into the P phases and
let Cn (with 1 ≤ n ≤ K) be an n-tuple capturing the number
of occurrences of the function calls in SM appearing in each
phase. For n-tuples of the method calls i1, i2, ..., in between
1 and K(1 ≤ i1 < i2 < ... < in ≤ K), the random variable:

Xi1,i2,...,in =

{
1 if Mi1,i2,...,in are in the same phase
0 otherwise

It follows that the definition of the variable Cn is:

Cn =
∑

1=<i1<i2<···<in<=K

Xi1,i2,...,in



Therefore the expected number of occurrences of n-
tuples of function calls is the sum of all expected values of
Xi1,i2,...,in :

E(Cn) =
∑

1=<i1<i2<···<in<=K

E(Xi1,i2,...,in)

As Xi1,i2,...,in takes only values of zero or one,
E(Xi1,i2,...,in) is equal to the probability that all
Mi1 ,Mi2 , ...,Min belong to the same phase, i.e.

E(Xi1,i2,...,in) =
1

Pn−1

From the identities given above it can be concluded that:

E(Cn) =

(
K
n

)
· 1

Pn−1

where
(
K
n

)
= K!

n!(K−n)! is a binomial coefficient.

According to [13], we can define E(Cn) as the number of
false alarms (NFA) needed to measure the “meaningfulness”of
an event with the following expression:

NFA(n,K, P ) =

(
K
n

)
· 1

Pn−1

Here K is defined as the sum of occurrences of M in trace
T , n is the sum of occurrences of M in each divided phase,
and P is the number of the total phases.

If the function call M appears n times in the same phase of
the trace, then this function call is designated as a meaningful
trace element if and only if its NFA is smaller than 1. If
the NFA is less than the threshold ε, we say that M is
ε−meaningful. Likewise, the set of ε−key elements for a trace
is the set of events for which NFA < ε. The smaller ε becomes,
the more meaningful the event is. However, calculating NFA
in practice is not easy since the values K, n, and P could
be very large. Indeed, a small change of n can lead to a
large fluctuation in NFA. For this reason, we use the following
expression, described in [13], to measure the meaningfulness
of an event:

Meaningful(n,K, P ) := − 1

n
logNFA(n,K, P )

In this case, a set of meaningful events is defined by:
Meaningful(n,K, P ) > 0. If Meaningful(n,K, P ) is greater
than ε, we call it ε−meaningful.

This algorithm is presented as Algorithm 1.

Algorithm 1 The Helmholtz principle algorithm
Require: Program segments T1 to TP , as divided in Stage 1

1: for all trace segments T1 to TP do
2: calculate the number of times K the method call M appears
3: end for
4: for each trace segment T1 to TP do
5: calculate the number of times ni the method call M appears

in the segment Ti

6: calculate Meaningful (ni,K, P )
7: if Meaningful (ni,K, P ) > ε then
8: add M to the set KM(T1, ..., TP ) and mark M as a

ε−meaningful event for Ti

9: end if
10: end for

IV. CASE STUDY

We now conduct a case study in order to assess the
effectiveness of using the Helmholtz Principle in identifying
the key elements of a trace. We also compare the results with
the TF-IDF as proposed by Pirzadeh and Hamou-Lhadj [10].

The traces used in this study are generated from JHotDraw3

(version 5.2), the target system. JHotDraw is a framework
implemented in Java for technical and structured graphics. It
consists of 11 packages, 171 classes, 1414 methods and 9419
lines of codes. We generated 40 traces from JHotDraw4 using
TPTP5, an eclipse plug-in. Each trace contained between 2 and
4 phases, with each phase consisting of drawing a single one
of 6 possible shapes namely: a rectangle, a triangle, a polygon,
a rounded-rectangle, an ellipse, or a diamond. Moreover, each
trace begins with a start-up phase, (in which the program was
launched) and ends with a shutdown phase. The traces were
then segmented using the algorithm described in [10]. In total,
the 40 traces were partitioned into 191 segments, of 8 possible
segment-types (the six shapes, plus the start-up and shutdown
phases).

Key Event Extract.
(Helmholtz)

Trace Segmentation Comparing
key events

Key Event Extract.
(TF-IDF )

Fig. 2. The process followed in the case study

We generated the key events for each segment using
both TF-IDF and Helmholtz algorithms. A single occurrence
of each segment-type was chosen randomly and used as a
reference to construct a library of 8 key event sets. We then
attempted to match each of the remaining 183 key event sets
with its corresponding library entry. Let Ka be the set of key
events in a segment a. We compute the similarity between
segment a and segment b from the library as follows:

similaritya−b = Ka ∩Kb/(Ka − (Ka ∩Kb)).

This formula was derived at experimentally after trying a
number of alternatives. In Section VI, we explore alternative
metrics for segment assignation. Figure 2 depicts the process
we followed in the case study.

We computed the similarity of each of the 183 segments
with each of the 8 segments present in the library. A segment
was assumed to be of the type for which the evaluation of
the similarity function was the highest. The value returned by
this function also serves as a measure of the confidence we
have in this assignation. These results are shown in Table I.
As the the table shows the key event sets generated by the
Helmholtz algorithm were correctly matched 62% of the time
(115 out of 183), while those generated using the TF-IDF
approach were correctly matched 59% of the time (108 out

3www.jhotdraw.org
4The traces used in this experiment are available at:

https://datahub.io/dataset/jhotdraw-sample-traces
5www.eclipse.org/tptp/



of 183). The success rate increases to 80% for Helmholtz and
83% for TF-IDF when we consider the top two matches of
each segment. We also observe that correct matching reaches
a high degree of confidence (on average 74% for TF-IDF and
90% for Helmholtz) whereas incorrect matchings average 60%
and 50% respectively. These results indicate that erroneous
matches could be easily identified and suppressed if a cutoff
point for the validity of results is established. Figure 3 exhibits
a Receiver operating characteristic graph that illustrates the
improvement in accuracy as the threshold for accepting valid
results increases, peaking at 87% accuracy for Helhmoltz.

Fig. 3. Receiver operating characteristic graph

TABLE I. EXPERIMENTAL RESULTS

Correct confidence Incorrect confidence
for correct for incorrect
assignation assignation

TF-IDF 108 60% 75 60%
Helmholtz 115 90% 68 50%

Results are even more encouraging when broken down by
event type, as shown in table II, which reports the number of
correct (true positives) and incorrect identifications (false neg-
atives). Note that the most distinctive segment types, namely
start-ups and shutdowns, are almost always correctly detected.
This is an interesting result since these program phases are
the most distinctive from a software engineering or program
maintenance perspective. Two other segment-types, polygon
and diamond, are also typically correctly identified. By manual
inspection of the results (using the source code comments
and JHotDraw website), we were able to detect a number of
patterns in mistaken assignations, which we seek to correct
in future work. First, the algorithm seems to have had much
difficulty in differentiating rectangles and round rectangles.
It could be that JHotDraw mainly uses the same functions
in drawing both figures. When either rectangle (resp. round
rectangle) was misidentified by the algorithm, the second
choice was often a round rectangle (resp. a rectangle), with
a confidence only slightly lower.

The algorithm seems to have particular difficulty in recog-
nizing triangle segments. This could result from the fact that
JHotDraw does not use any unique functions when drawing a
triangle, but rather uses the same functions as for polygons.

Table III and IV show the results for Precision
(TP/TP+FP), Recall (TP/TP+FN) and Accuracy (TP+TN/total)
for Helmholtz and TF-IDF approach.

TABLE II. EXPERIMENTAL RESULTS BY EVENT-TYPE

Event type Correct Incorrect Correct Incorrect
TF-IDF TF-IDF Helmholtz Helmholtz

Start-up 37 2 38 1
Shutdown 23 16 38 1
rectangle 11 16 11 6

round rectangle 6 11 4 13
polygon 20 0 15 5
triangle 3 15 2 16
ellipse 6 11 5 12

diamond 2 14 2 14

TABLE III. PRECISION, RECALL AND ACCURACY (HELMHOTLZ)

Event type Precision Recall Accuracy
Start-up 100% 97.4% 99.5%

Shutdown 88.4% 97.4% 96.7%
rectangle 47.8% 64.7% 90.2%

round rectangle 20.0% 23.5% 84.2
polygon 60.0% 75.0% 91.8%
triangle 50.0% 11.1% 90.2%
ellipse 27.8% 29.4% 86.3%

diamond 28.6% 12.5% 89.6%
Average 52% 51% 90%

TABLE IV. PRECISION, RECALL AND ACCURACY(TF-IDF)

Event type Precision Recall Accuracy
Start-up 100% 94.9% 98.9%

Shutdown 92.0% 59.0% 90.2%
rectangle 52.4% 64.7% 91.3%

round rectangle 42.9% 35.3% 89.6
polygon 41.7% 100.0% 84.7%
triangle 27.3% 16.7% 87.4%
ellipse 37.5% 35.3% 88.5%

diamond 19.2% 12.5% 87.4%
Average 51% 51% 89%

A. Causes of misidentification

As discussed above, some segments, namely triangle, rect-
angle and round rectangle, were identified at lower than the
average rate. A possible method to improve the detection in
this case is to increase the value of ε, thus producing a larger
set of key-events.

By manual inspection of the data, we have found that a
major source of miss-assignation was a flaw in the program
segmentation phase of the algorithm. We had assumed that
the segmentation phase would divide the trace in a manner
that roughly matches the beginning and ending of each of the
program actions we had performed. While this was largely the
case, the segmentation algorithm sometimes suggested very
short sequences of a few function calls as distinct segments.
In fact, some of these segments were so short that their key-
element summaries were empty. Naturally, very short segments
cannot be matched. When such aberrant segments are taken out
of the analysis, the rate of correct attribution increases to 77%
for Helmholtz and 80% for TF-IDF.

V. RELATED STUDIES

Several studies have sought to identify the most important
elements of a trace, in an attempt to solve the feature location
problem. A survey of these is presented in Dit et al. [14]. Most
of these techniques, however, are not designed to recover the



key elements of each execution phase of the traced scenario.
They look at the trace as a whole and not as a sequence of
different phases.

Poshyvanyk et al. [15] introduced an information-retrieval-
based technique for feature location, which was later followed
by many other studies such as the work of Asadi et al. [16].
Their approach combines source code information and trace
content to identify parts of the trace that are most relevant to
the implementation of the traced scenario. Our approach uses
Gestalt theory to identify the significance of the trace elements
in each phase. We also do not rely upon source code to keep
our approach lightweight.

Greevy et al. [17] introduced a compact feature-driven
approach to investigate the relationship between features and
classes. Medini et al. proposed a concept location technique
that relies on trace segments [18]. In [7], Medini et al.,
proposed SCAN (Segment Concept AssigNer) an approach to
assign labels to sequences of methods in execution traces and
to identify relations among execution traces segments. (FCA).
Pirzadeh et al. [19] presented a phase detection approach in
which a trace is divided into phases by measuring the distance
between calls to the same methods.

Other trace segmentation approaches include that of Watan-
abe et al. [20] which use a LRU cache for phase detection.
In [21], the authors proposed an analogy between signal
processing and dynamic analysis to identify similar phases.
Neither of these approaches extract key information about
phases. Visualization techniques [22], [1], [23] have also been
adapted by some researchers to reduce the vast amounts of
trace information.

VI. CONCLUSION
In this study we present an approach to identify key

elements of a trace using Gestalt laws and the Helmholtz
Principle. We show that this method is effective for identifying
the main elements of behaviour imbedded in large execution
traces, a development that has multiple applications in software
maintenance and reverse engineering.

There are many ways to improve this method. As previ-
ously mentioned, the similarity between segments is computed
in this study by a simple function involving the intersection
of the sets of key elements in both segments. More elaborate
methods (i.e., involving patterns learned from data mining)
could improve the efficiency of the approach. Furthermore,
data about the possible ordering of program phases relative
to one another discovered through this algorithms could be
used to refine the segment assignation process. For instance,
in our example, it would quickly become obvious that every
segment always begins with a start-up segment, and ends with
a shutdown segment.
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