*Manuscript

Click here to view linked References

An Anomaly Detection System based on Variable
N-gram Features and One-Class SVM

Wael Khreich®*, Babak Khosravifar®, Abdelwahab Hamou-Lhadj?,
Chamseddine Talhi®

%Software Behaviour Analysis (SBA) Research Lab, Department of Electrical and Computer
Engineering, Concordia University, Montreal, Canada
b Department of Software Engineering and Information Technology, Ecole de technologie
supérieure, Montreal, Canada

Abstract

Context: Run-time detection of system anomalies at the host level remains
a challenging task. Existing techniques suffer from high rates of false alarms,
hindering large-scale deployment of anomaly detection techniques in commercial
settings.

Objective: To reduce the false alarm rate, we present a new anomaly detection
system based on a novel feature extraction technique, which combines the fre-
quency with the temporal information from system call traces, and on one-class
support vector machine (OC-SVM) detector.

Method: The proposed feature extraction approach starts by segmenting the
system call traces into multiple n-grams of variable length and mapping them
to fixed-size sparse feature vectors, which are then used to train OC-SVM de-
tectors.

Results: The results achieved on a real-world system call dataset show that our
feature vectors with up to 6-grams outperform the term vector models (using the
most common weighting schemes) proposed in related work. More importantly,
our anomaly detection system using OC-SVM with a Gaussian kernel, trained
on our feature vectors, achieves a higher-level of detection accuracy (with a lower
false alarm rate) than that achieved by Markovian and n-gram based models as
well as by the state-of-the-art anomaly detection techniques.

Conclusion: The proposed feature extraction approach from traces of events
provides new and general data representations that are suitable for training
standard one-class machine learning algorithms, while preserving the temporal
dependencies among these events.

Keywords: Software Security, Anomaly Detection Systems, Intrusion
Detection and Prevention, Feature Extraction, Tracing, System calls

*Corresponding author
Email addresses: wkhreichQece.concordia.ca (Wael Khreich),
b_khosrQece.concordia.ca (Babak Khosravifar), wahab.hamou-lhadj@concordia.ca
(Abdelwahab Hamou-Lhadj), chamseddine.talhi@etsmtl.ca (Chamseddine Talhi)

Preprint submitted to Information and Software Technology June 8, 2017

http://ees.elsevier.com/infsof/viewRCResults.aspx?pdf=1&docID=12319&rev=2&fileID=122338&msid={D34DD386-7006-4FD0-BA09-6767C0D508EC}

1. Introduction

Intrusion Detection Systems (IDSs) are used to identify and report unautho-
rized or suspicious computer or network activities [1, 2]. Host-based IDSs, the
focus of this paper, are designed to monitor the host system activities, while
network-based IDSs monitor network traffic for multiple hosts. According to
their detection techniques, IDSs can also be classified into misuse detection or
anomaly detection depending on whether the intrusion patterns are known or
not during the design phase [3, 4]. Misuse detection techniques look for prede-
fined patterns or signatures corresponding to known attacks, and hence they are
able to achieve a high level of detection accuracy. However, misuse detection
techniques cannot detect unknown attacks for which signatures have not been
extracted yet (zero-day attacks) or known attacks, which are able to change
their signatures with every execution (polymorphic attacks).

Typically, anomaly detection techniques construct profiles of expected nor-
mal behavior using training datasets that are collected over a period of normal
system activity. These datasets are collected in a secured environment, analyzed
and sanitized to ensure that the anomaly detector is trained on attack-free data
[5]. During operation, the anomaly detection system attempts to detect events
that deviate significantly from the expected normal profile. These deviations are
considered and reported as anomalous events; however, they are not necessarily
malicious activities as they may be caused by software defects (e.g., coding or
configuration errors) [6, 7]. Anomaly detection techniques are capable of detect-
ing novel attacks, however they are prone to generate a large number of false
alarms due mainly to the difficulty in obtaining a representative description of
normal behavior of the system [1, 8, 9, 10]. The anomaly detectors will there-
fore generate an excessive number of false alarms (by misclassifying rare normal
events as anomalous), which could undermine the credibility of the anomaly
detection system, especially that the base-rate of normal events dominate the
anomalous ones [11].

Host-based anomaly detection systems typically monitor for significant de-
viations in operating system calls, as they provide a gateway between user and
kernel modes. Studies (e.g., [8, 9]) showed that the temporal order of system
calls issued by a process to request kernel services is effective in describing nor-
mal process behavior. This has led to a considerable amount of research that
investigated various techniques for detecting anomalies at the system call level
(see survey in [10]). Among these, sequence time-delay embedding (STIDE)
and Hidden Markov Models (HMMs) are the most commonly used [9]. How-
ever, these approaches suffer from limitations including the lack of generalization
and the need for large storage capacity in the case of STIDE. Training and tun-
ing HMM-based techniques, on the other hand, is a time and resource intensive
task. The time and memory complexity of standard techniques for training
HMMs grows linearly with the length and number of training sequences, and
quadratically with the number of hidden states [12]. In addition, the training

process must be repeated several times for each number of hidden states, to
avoid convergence to a local minimum [12].

Standard one-class machine learning techniques such as K-Nearest Neighbor
(KNN), Principal Component Analysis (PCA), and One-Class Support Vector
Machines (OC-SVM) have also been proposed for detecting system call anoma-
lies. These techniques (also called semi-supervised anomaly detection since they
do not require labeled data from the anomalous class) are widely available, rel-
atively easy to apply, and provide high generalization level [13]. However, they
require fixed-size feature vectors as inputs for training. The term vector or bag
of system calls is the most commonly used mapping (adopted from the field of
text mining and information retrieval) to transform a trace of system calls into a
feature vector of binary flags [14, 15, 16, 17, 18]. Each term in this vector is typ-
ically weighted by its frequency of occurrence (called term frequency weighting)
or by the term frequency—inverse document frequency [19]. As further discussed
in Section 2, the term vector adopted as feature mapping in closely related works
[14, 15, 16, 17, 18] ignores the temporal order of system calls within a trace,
which has a negative impact on the detection accuracy.

In this paper, we propose a new anomaly detection system (ADS) that is
based on one-class support vector machine (OC-SVM) trained on novel fixed-
size feature vectors extracted from system call traces (and hence suitable for
standard one-class machine learning algorithms), while preserving the sequen-
tial nature of system calls. The key idea is to slide a window of N system calls
over the trace, associate each window with a feature vector, and compute the
frequency of occurrence of each n-gram for different n values (n = 1,2,..., N).
An n-gram is a contiguous sequence of n items from a given sequence of ob-
servation symbols. The items can, for instance, be phonemes in a sequence of
speech or words in a sequence of text. In our case, an n-gram is a contiguous
sequence of n system calls extracted from a system call trace. These variable
length n-grams are then organized into fixed-size vectors and assigned weights
corresponding to their cumulative frequency of occurrence.

These feature vectors are then used to train OC-SVM with various kernels.
The resulting features provide a general mapping from traces to fixed-size fea-
ture vectors, and thus could be used to train any one-class machine learning
algorithm.

We evaluate our feature extraction approach and our anomaly detection sys-
tem using a modern system call dataset, called ADFA-LD! (Australian Defence
Force Academy Linux Dataset), which has been recently made publicly available
on the website of the University of New South Wales [20]. The results show that
the proposed feature vectors with 6-grams provide a higher level of detection
accuracy than that obtained by the term vector using both weighting schemes,
the term frequency and the term frequency—inverse document frequency. More
importantly, our anomaly detection using OC-SVM trained on our 6-grams fea-
ture vector achieves higher detection accuracy and lower rate of false alarms

Lhttp://www.cybersecurity.unsw.adfa.edu.au/ADFA IDS Datasets/

than that of STIDE, HMM and the traditional n-grams models, and the ADS
proposed by the creators of the ADFA-LD dataset [20].

The next section reviews anomaly detection systems using system call traces
with a focus on the application of machine learning techniques. In Section 3,
our feature design approach for mapping system call traces into feature vectors
based on variable length n-grams is presented. Section 4 describes the dataset,
the experimental protocol, and the evaluation metrics used in our experiments.
The results are provided and discussed in Section 5. In Section 6, we discuss
adversarial attacks against system call anomaly detection techniques, followed
by the conclusion and future work in Section 7.

2. Sequential vs. Traditional Machine Learning Techniques for ADSs

Forrest et al. were the first to suggest that the temporal order of system
calls could be used to represent the normal behavior of a privileged process
[9, 10]. Normal system call traces are collected from various privileged (UNIX)
processes in a secured environment using strace? package. Other tools for col-
lecting system calls traces have been also used including auditd® and LTTng®.
Testing system call traces are typically collected from the same processes, how-
ever when they are under attack.

The work of Forrest et al. confirmed that short sequences of system calls can
describe the normal process operation, while unusual burst will occur during
an attack [9]. Their anomaly detection system STIDE works by segmenting
and enumerating normal (or anomaly-free) system call traces generated by a
privileged process of interest into fixed-length continuous sequences, using a
fixed-size sliding window, shifted by one symbol [9]. These correlations were
stored in a database of normal patterns. During operations, the same sliding
window scheme is used to scan the system calls generated by the monitored
process for anomalies, i.e., those sequences that are not found in the normal data.
These anomalies were accumulated over the entire trace (or over a temporally
local region), and an alarm was raised if the anomaly count exceeded a user-
defined threshold.

In a recent review, Forrest et al. [10] present and discuss various statis-
tical and sequential machine learning and data mining techniques that have
been proposed for detecting system call anomalies over the last two decades.
These include rule-based techniques such as the repeated incremental pruning
to produce error reduction (RIPPER) [21], which has been used for analyz-
ing sequences of system calls and extracting rules [22, 23]. Other applications
of sequential machine learning techniques include finite state automata (FSA)
proposed to model the system calls language, using deterministic or nondeter-
ministic automata [24, 25] or a call graph representation [26]. A large number of

2http://linux.die.net/man/1/strace
3http://manpages.ubuntu.com/manpages/precise/man8/auditd.8.html
Ahttps://lttng.org

anomaly detection approaches is based on sequential learning algorithms includ-
ing Bayesian models [27] and variations of Markovian models, such as Markov
models [28, 29], variable length n-grams [30, 31], and HMMs [9, 32, 33].

Among these, HMMs have shown to provide a high level of anomaly detec-
tion accuracy, but require a large amount of training time. In fact, an HMM is
a stochastic process for sequential data, determined by two interrelated mecha-
nisms — a latent Markov chain having a finite number of states), and a set of
observation probability distributions, each one associated with a state. Train-
ing an HMM consists of maximizing the likelihood of the training data over
HMM parameters space [34]. During operation, a new (test)trace is input to
the trained HMM to compute its likelihood value, which provides a degree of
normality. The time and memory complexity for training an HMM with @) states
(according to Baum-Welch algorithm) is O(Q*L) and O(QL) respectively, for
a trace Tipqin Of length L system calls. Further details on HMMs can be found
[12].

Unlike algorithms for sequential data, which can directly learn from data
streams, standard one-class machine learning algorithms (e.g., KNN, PCA and
OC-SVM) require fixed-size numeric feature vectors as inputs. Therefore, a
mapping from the system call traces into such feature vectors is required to
allow the application of various machine learning algorithms.

Traditional data representation for text categorization or document classifi-
cation (in fields such as text data mining and information retrieval) involves the
term vectors or (bag of words), where each document is represented by a vector
of terms or words. The term vector is a mapping from the document space
to a fixed-size vector whose entries are nonzero if the corresponding term ap-
pears in the document and zero otherwise. Each term in the vector is typically
weighted using the term frequency (if) or the term frequency—inverse document
frequency (#f.idf). The tf.idf is a more powerful alternative weighting schema
to the tf that provides higher weights to less frequent terms in the collection of
documents than to frequent ones [19, 35]. A more formal description of ¢f and
tf.idf is given in Section 3.

In host-based anomaly detection systems, the term vector or the bag of sys-
tem calls (since each system call represents a term or a word and the trace
represents the documents) has been proposed for detecting system call anoma-
lies based on both, #f and tf.idf, weighting approaches [14, 15, 16, 17, 18, 36].
For instance, Liao et al. proposed an anomaly detector based on K-Nearest
Neighbor (KNN) classifier using the term vector as a feature representation
weighted by the tf and tf.idf, and the cosine distance as a similarity measure to
discriminate normal from anomalous events [14, 37]. Rawat et al. focused on the
similarity measures and proposed an alternative to the cosine measure, called
binary weighted cosine (bwc), which in addition to the frequency of the system
calls used by the cosine measure, considers the number of shared system calls
between two feature vectors [17]. Using KNN classifiers, the authors showed
that bwc can reduce the false alarms compared to cosine similarity measure.
Further reduction in the false alarm rate has been shown by using extended
versions of cosine and bwc measures based of radial basis kernel [18]. Kang et

al. used the term vector weighted only by the term frequency to train one-class
Naive Bayes algorithm and K-Means clustering for anomaly detection as well
as two-class classifiers, such as decision tree, Naive Bayes, SVM and Logistic
Regression for misuse detection [38]. Chen et al. compared the performance
of the support vector machine (SVM) classifier to that of an artificial neural
network (ANN) classifiers, both trained using the term vector representation of
system call traces [16]. They showed that the detection accuracy of SVM was
superior to that of ANN and that the results are improved when the term vector
is weighted by the tf.idf instead of just by tf [16].

As shown above, the term vector data representation applied to host-based
anomaly detection system traditionally relies on system call frequency or their
tf.idf, and hence discards the temporal order among the system calls in a trace.
In addition, most previous work focussed on improving the distance measures
between the term vectors or on experimenting with different machine learning
algorithms. We believe that the sequential nature of system calls is an important
characteristic that must be considered to further improve the detection accuracy
and reduce the false alarm rates of ADSs based on standard one-class machine
learning approaches. Therefore, we focus on designing efficient and powerful
feature vectors that combine the frequency based information with the temporal
information extracted from system call traces, as detailed in the next section.

Recently, Creech and Hu [39] proposed a “semantic” feature extraction tech-
nique for system call traces. The basic idea is to create feature vectors by
combining all sequences of different sizes (found in the training set), up to a
user defined size, such that they can account for sequences that did not appear
in the training traces. As an anomaly detector, the authors proposed to use the
Extreme Language Machine (ELM), which is a generalized single-hidden-layer
feed-forward networks [40]. In fact, ELM randomly chooses the input weights
and analytically determines the output weights of the feed-forward network, and
hence requires less human interventions and runs faster than conventional neural
networks. However, it is not clear how the authors have trained the ELM tech-
nique using the normal traces only. They showed that their proposed approach
yielded the best anomaly detection accuracy on the ADFA-LD dataset. We
have compared the results of our proposed system with their results as shown
in Section 5.

3. Feature Vectors based on Variable Length N-grams

This section starts by providing a formal description of both term vector
weighting strategies (considered in previous work [14, 15, 16, 17, 18]). The
proposed approach for efficient extraction of feature vectors based on variable
length n-grams is described next.

Let T = 01,09,...,01 be a trace of system call observations (0;) of length
L, generated by a process with an alphabet ¥ of size m = || (unique) system
calls. The collection of K traces that are generated by the process (or system)
of interest and then provided for designing the anomaly detection system is
denoted by T = {T1,...,Tk}.

The binary term vector, ¢(T), maps each trace T' € T into a vector of size
m system calls, T — ¢(T),exn, where each term or system call o; € ¥ in the
vector is assigned a binary flag depending on its appearance (one) or not (zero)
in the trace T. The term vector can be weighted by the term frequency (tf):

(btf(o’T) = fre(J(Oi); 1= 1," -, m (1)

where freq is the number of times system call o; appears in T, normalized by
L (the total number of system calls in T').

The term frequency considers all terms as equally important across all doc-
uments or collection of traces (7). However, rare terms that appear frequently
in a small number of documents convey more information than those that are
frequent in most documents. The inverse document frequency (idf) is proposed
to increase (or decrease) the weights of terms that are rare (or common) across
all documents. The term vector weighted by the tf.idf is therefore given by:

(0. TT) = g frea(0; i = 1o)
where the document frequency df (0;) is the number of traces T} in the collection
T of size K that contains system call o;. A high weight in tf.idf is thereby given
to system calls that are frequent in a particular trace T' € T, but appear in few
or no other traces of the collection 7. There are several variants to Equation 2,
which, for instance, take the logarithm of inverse document frequency or apply
other normalization factors [35]. However, as shown in Equation 1 and 2, both
weighting strategies discard the temporal order of system calls.

The proposed approach however accounts for the temporal order of system
calls by extracting and mapping variable length n-grams and their frequencies
from each trace T' € T to fixed-size feature vectors. Each n-gram is a sequence
of contiguous system calls of length n extracted from trace 7.

As illustrated in Figure 1, the feature extraction starts by sliding a window
of N system calls over the trace T' € T, shifted by one system call. For each
sequence, the individual (or 1-gram) system calls are first extracted, followed
by all n-grams for n = 1,..., N that are rooted at the first system call inside
the sliding window, which are then organized in vectors V; (see Figure 1). The
size of each vector V; is at maximum N + N — 1 = 2N — 1 n-grams, when no
duplicate system calls or n-grams appear inside the window. Otherwise, if the
same system call is repeated within the sliding window, the size of V; will have
smaller size. For a trace of length L and a sliding window of length N, the total
number of vectors is L — N + 1, however the number of unique vectors could
be lower in practise depending on the regularity of the process generating the
data.

The unique n-grams (for n = 1,..., N) from all unique vectors V; obtained
by sliding the window over the available traces T" € T are used as dictionary
keys, while their accumulated frequencies are used as values. This dictionary of
size, say D, is therefore the reference database representing the normal process
behavior by the frequencies of the 1-grams, 2-grams, ..., N-grams that occurred

T: 01, 02, 03,...,0n,0n41,0n42,0n43, or,
sliding window of size N
shifted by one|symbol
Vi v, Vi Ny
01 02
09 03
wn
03 04 =
Z [}
g
=
[}
On—1 On
Onp, On+1
01,02 02,03
01a02703 02703704 L] jé]
. | @
=
Z g
01,02,03,...,0p [02,03,04...,0p41 ©

Figure 1: An illustration of n-grams vector extraction from a trace T" of L system calls, using
a sliding window of size N.

in the collection of traces 7. Finally, each vector V; (shown in Figure 1) is
mapped to the space D of the reference dictionary and becomes a feature vector.
The only non-null elements of the feature vector are those that correspond to
the n-grams of the original vector (V;) before the mapping. Those elements
are weighted by their frequencies that have been accumulated as values in the
reference dictionary.

For a specific process, the size of the dictionary (D), which is the size of the
feature vectors, depends on the alphabet size m, the sliding window size NV and
the regularity of the process. In practise, the dictionary size of even complex
processes is manageable as further discussed in Section 4. For instance, the
ADFA-LD dataset has an alphabet of size m = 175 system calls. Therefore,
the obtained dictionary sizes are D = 12,830 for N = 3 and D = 142,190
for N = 6. However, the obtained feature vectors are very sparse, at most
2 x 6 —1 =11 elements are non-null, and hence they can be efficiently encoded
in practise using specialized machine learning libraries for sparse vectors and
matrices computation [41].

As described above, the feature vectors comprise the n-grams extracted from
the sliding window of size IV, weighted by their frequencies of occurrences in the
trace. The value of IV is a user-defined parameter that influences the detection
power and the size of the feature vectors. A small N value is always desirable
since it results in smaller feature vectors, and hence allows faster detection
and response during operation. Moreover, it can effectively distinguish the
anomalies from the normal sequences of the attack trace. In contrast, very

small N could result in misclassification of anomalies because the system cannot
extract information about temporal order of system calls in the trace. Note
that taking N = 1 reduces the feature vector to the term frequency, which
only considers the frequency of individual system calls without any temporal
information. On the other hand, larger N values incorporate more temporal
information into the feature vectors and hence expected to improve the detection
accuracy, but increase the time and space required for extracting the feature
vectors (during the training phase).

In practise, choosing the smallest N values that provide good detection ac-
curacy depends on the size of the smallest anomalous sequence in the testing set.
Some evasion attacks (see Section 6 for a detailed discussion) rely on crafting
attacks sequences that exploit specific weaknesses in the detection coverage of
the sequence matching anomaly detectors that are based on a sliding-window,
such as STIDE [42]. An example of such blind regions is provided by Tan et. al
showing that the detector window size (W) of STIDE must be at least equal to
the smallest anomalous sequence of the attack to be visible for the detector [42].
Otherwise, the window of STIDE detector will slide on the subsequences of the
anomalous sequence (which are all normal), without being able to discover that
the whole sequence is anomalous. In our experiments, we provide and compare
the results for N = 3 and 6 system calls as detailed in the following section.

4. Experiments

The objectives of the experiments are to compare the performance of our
variable length n-gram feature vectors (for different N values) to that of the
term vector, weighted by t#f and tf.idf, as commonly proposed in related work.
More importantly, we evaluate and compare the performance of our anomaly
detector to those based on the most commonly used sequential modeling tech-
niques, such as STIDE, HMMs and traditional n-grams detectors, as well as
to the ADS proposed by Creech and Hu [39]. The performance evaluation is
conducted on ADFA-LD dataset (described next) according to the experimen-
tal protocol described in Section 4.2, and assessed using the Receiver Operating
Characteristics (ROC) curves and Under the Curves (AUC) as further described
in Section 4.2.4.

4.1. ADFA-LD Dataset

The generation of system call datasets for designing and evaluating host-
based ADSs is typically performed in two phases. Normal system call traces
are first collected during normal operation of the process or system in a secured
environment. These traces are assumed attack-free and used for training the
anomaly detectors. The testing traces are generated by collecting the system
calls from the same host while being under attacks. These attack traces comprise
both normal and anomalous sequences for testing, however it is difficult to isolate
the manifestation of an attack within the trace. Therefore, during testing, the
whole attack trace or the collection of attack traces is considered as one anomaly.

Table 1: Summary of ADFA-LD system call dataset

Number of traces Number of system calls

Training data (normal) 833 308,077
Testing data (normal) 4,373 2,122,085
Attack data (anomalous) 746 317,388
Total 5,952 2,747,550

The ADFA-LD has been recently created and made publicly available on
the website of the University of New South Wales (UNSW) [20]. It is currently
the most recent and representative dataset available for benchmarking of the
anomaly detection techniques based on system call sequences. The UNM dataset
has been the most commonly used system call dataset [8]; however, it is now
over 20 years old, and hence both the normal and the attack traces are no longer
representative to the complexity of the current systems and to sophistication of
the modern attacks.

The ADFA-LD dataset is generated using a modern operating system and
servers attacked by exploiting various (publicly known) security vulnerabilities.
As described by the authors, the ADFA-LD is generated using a fully patched
Ubuntu Linux 11.04 operating system with an Apache 2.2.17 web server, PHP
5.3.5 server side scripting engine, TikiWiki 8.1 content management system,
FTP server, MySQL 14.14 database management system and an SSH server
[20]. Normal system call traces were generated from the host system during
normal user activities, such as web browsing and Latex document preparation.
These traces were collected using Linux audit daemon (auditd®), an auditing
framework for collecting and tracking security audit trails. As described in
Table 1, the ADFA-LD dataset comprises 833 normal traces for training and
4373 normal traces for testing.

The dataset comprises 746 traces generated from 60 different attacks, be-
longing to six types of attack vectors [20]. These attacks were launched by a
certified penetration tester against the system, using modern penetration test-
ing tools like Metasploit® framework. The attack framework includes client and
server side attacks as well as social engineering techniques. The client side at-
tacks focused on initiating connections from the target machine, for example
by a exploiting poisoned executable or Trojaned programs. The server side
attacks relied on classical hacking methods, where open services on the target
are used to gain a privileged command shell. The attack vectors include re-
mote password brute force attacks using the parallelized login cracker Hydra”
over FTP and SSH. Client side poisoned executables (e.g., malicious executa-
bles with backdoors, or Trojan horses) have been used to add new superuser

Shttp://manpages.ubuntu.com/manpages,/precise/man8/auditd.8.html
Shttp://www.metasploit.com
"http://www.thc.org/thc-hydra/

10

Table 2: Summary of ADFA-LD attack structure and distribution.

Attack Payload /Efect Vector #Attacks #Traces
Hydra-FTP Password bruteforce FTP by Hydra 10 162
Hydra-SSH Password bruteforce SSH by Hydra 10 176

Adduser Add new superuser Client side poisoned executable 10 91
Java-Meterpreter Java-based Meterpreter TikiWiki vulnerability exploit 10 124
Meterpreter Linux Meterpreter payload Client side poisoned executable 10 75
Webshell C100 Webshell PHP remote file inclusion vulnerability 10 118

accounts to hijack the system, using the Linux Meterpreter payload. The Me-
terpreter is an enhanced command shell provided by the Metasploit framework,
which simplifies the compromise phase, and is available in several formats, in-
cluding Java and standalone executables. The TikiWiki vulnerability is another
vector of attack used to upload a copy of connection to the attacking system by
using the Meterpreter, an enhanced functionality command shell provided by
the Metasploit framework.

Simulated social engineering methods are also used to directly manipulate
the user of the target machine to access malicious payloads and hence open
an access point for an attacker. A PHP remote file inclusion vulnerability is
achieved using a C100 web shell (a PHP code which provides a graphical in-
terface to the attacker) as the last payload, leveraging the remote file inclusion
vulnerability of the TikiWiki installation®. The TikiWiki vulnerability is also
used to upload a copy of the Java Meterpreter payload, which initiated a reverse
TCP connection to the attacking computer when executed. Once the shell was
established, several attempts were conducted to privilege escalation, access the
shadow password file, and install backdoor tools. Table 2 describes the details
and presents the distribution of each attack. For further details regarding the
dataset, normal and attack data generation, the reader is referred to the original
paper by Creech and Hu [20].

4.2. Experimental Protocol

This section provides details about feature extraction, model training and
evaluation metrics employed in our experiments. It starts by describing the
detection approaches, which are based on computing the Euclidean distances
between the feature vectors or on training support vector machines using those
vectors. Training of STIDE, HMMs and the traditional n-grams models as a
reference sequential techngiques for comparison is described next, followed by a
description of the performance evaluation metrics used in the results section.

We followed the experimental setup provided in [39]; therefore, the 833 nor-
mal traces are used for training STIDE, HMM, and OCSVM detectors. However,
we held out 1000 traces randomly selected from the 4373 normal traces and 20
attacks randomly selected from the 60 attacks for validation. This validation
set is used to tune models parameters, such as the number of nearest neighbors

8http://www.exploit-db.com/exploits/ 18265/

11

(K), the Window Size (W) for STIDE detector, the number of states for HMMs
and the kernel parameters for OCSVM. The remaining (3373) normal traces
and (40) attack traces, in Table 1, are only used for testing and benchmarking
the detection performance of detectors. Since each attack consists of multiple
traces (see Table 2), if an anomaly is detected in any of the traces belonging to
the same attack, then the attack is considered successfully detected [39].

First, we applied the term vector weighted by the ¢f and tf.idf as well as
our variable length n-gram feature vectors (using N = 3 and N = 6) to both
normal and test traces from the ADFA-LD dataset (Table 1). The frequency
of each term in the trace is used as a weight for the ¢f vector (see Equation 1).
For the tf.idf, the term vectors are weighted according to Equation 2, where a
document is the trace (or traces) belonging to one process, which is defined by
its PID. The term vector (using #f or tf.idf weighting schemes) provides one
feature vector for each trace.

We then extracted two sets of variable length n-gram feature vectors, using a
sliding window of size N = 3 and N = 6. We denote by VN3 the sets of feature
vectors for variable n-grams up to size 3 and by VN6 the sets for variable
n-grams up to size 6. In contrast to the term vector, our approach extracts
L — N + 1 vectors are provided with our variable length n-gram features (for a
trace of size L), as described in Section 3.

To evaluate the detection accuracy of each feature extraction technique, we
used two anomaly detection approaches: a distance-based approach and a more
complex detector based on one-class support vector machine, as described next.

4.2.1. Distance-based Detection Approach

The first detection approach is based on Euclidean distance between the
normal training traces and the testing traces, which may involve one or a num-
ber of feature vectors. We have chosen the Euclidean distance measure because
of its simplicity and well understood meaning, such that we can investigate
the discriminative power of the feature vectors more clearly. Each feature ex-
traction technique, (i-e., #f, tf-idf, VN3, and VN6) is applied to extract the
corresponding feature vectors from the normal traces belonging to the train-
ing dataset (described in Section 4.1). Hereafter, we will refer to the reference
feature vectors extracted from the training set by “normal vectors”. Similarly,
these feature extraction techniques are also applied to extract the correspond-
ing feature vectors from the test traces (which include both normal and attack
traces). Depending on the feature mapping techniques, each testing trace can
result in one vector (such as the case of ¢f and #f.idf) or several vectors (as for
VN3 and VNG).

We then compute the Euclidean distance from each vector resulting from

the test set, vﬁe“”t, to each normal vector v;°"" in the training set, according to
Equation 3:
D
dr(§) = | S (wmerm i) — vtest(i))? (3)
i=1

12

where D is the size of the feature vector (as described in Section 3), r =1,..., R,
and j =1,...,J. R represents the number of feature vectors computed during
training (for the normal vectors) while J is the number of feature vectors ex-
tracted from the test set. Once the Euclidean distances from each test vector
vﬁ-e“ to each normal vector v]'°"™ are computed, they are sorted in increasing

order. The average of the closest K distances to normal vectors (v}°™™) is then
considered as the score, which is similar to K-Nearest Neighbors (K-NN):

davg(§) = avg(min(dg(j))), k=1,..., K <R (4)

When K = 1, that means only the minimum distance to the normal vectors is
considered as a score, which is similar to the Nearest Neighbor (1-NN):

dmin(j) = min(dp(5)), k=1,..., K <R (5)

For the term vector models (¢f and tf.idf), which generate one feature vector
for each trace. However, as described in Section 3, the proposed feature extrac-
tion approach produces L — N + 1 feature vectors for each trace of length T,
using n-grams up to length N. Therefore, the average distances of these vectors
is considered when computing the distances from each test trace to the normal
vectors in Equations 4 and 5. Finally, the resulting distance measures are used
as scores to generate the ROC curves and compute the AUC values as described
in Section 4.2.4.

4.2.2. OC-SVM based Detection Approach

One-Class Support Vector Machine (OC-SVM) is a powerful and commonly
used machine learning method in various domains [43, 44]. Essentially, the OC-
SVM algorithm maps the input data into a high dimensional feature space using
kernel functions and then attempts to find the maximal margin hyperplane that
separates the training data points from the origin [43]. This formulation is
similar to that of the two-class SVM, however the OC-SVM considers that the
normal training data are far from the origin, while the anomalous data lie in
the neighborhood of the origin. There is an equivalent formulation that uses
a hypersphere to describe the data in the feature space, and tries to find the
smallest hypersphere that contains most of the data [44].

The hyperplane that separates normal from anomalous data corresponds to
the classification rule [43]:

fw)=w? - v40b (6)

which represents the dot product of the normal vector (w) and a bias term
(b). The optimization problem consists therefore of finding the rule f with a
maximal geometric margin. This classification rule can be used to classify a
test input v*¢* as anomalous if f(v***!) < 0; or normal otherwise. In practice,
there is always a trade-off between maximizing the distances of the hyperplane
from the origin and the number of normal data points contained in the other
region separated by the hyperplane. The distance from the hyperplane to a test
example v'5? could also be used as score or degree of membership to the normal
or anomalous class; these scores are then used to generate the ROC curves.

13

Our proposed anomaly detection system is based on OC-SVMs detectors
trained using our sets of feature vectors (V' N3, and VN6) extracted from the
(normal) training traces. Training OC-SVMs is done using LIBSVM?| a library
for support vector machines. In our experiments, we have trained and compared
the performance of OC-SVMs using two commonly used kernels: linear kernel
and Gaussian kernel.

The linear kernel K (v;, v;) is simply the dot product of the two given vectors,
and can be computed according to Equation 7.

K(vi,v;) = v;.0; (7)
The Gaussian (or RBF) kernel can be computed according to Equation 8:

2
—lvi—vjll

K(vi,vj) =e 27 (8)

where o2 denotes the variance.
For comparison, we also trained the OC-SVMs using the term vectors (with
tf and tf.idf weights). The results are presented and discussed in Section 5.

4.2.3. Sequential Models

As described previously, the sequential models considered in this work are
STIDE [9, 10], HMMs [32, 33|, and the traditional n-gram models [28, 29], since
they have been shown to provide a high level of detection accuracy. Building the
normal database for STIDE only requires the selection of the sliding window size
(W). In our experiments, we trained several window sizes W = {6, 10,20}, and
reported the results for W = 6, since it provided the best false and true positive
performance on the held out validation dataset. Training, the traditional n-
grams model consists of computing the probability of each system call in the
subsequence of n system calls conditioned on the n—1 previous system calls. The
time and resource requirements for training n-gram grow exponentially with n
and could be prohibitive for large alphabet set. In our experiments, we selected
n = 6 for a fair comparison of performance with STIDE and our VN6 feature
vectors, which contains up to 6-grams.

As described in Section 2, estimating the parameters of an HMM requires
the specification of the number of output symbols (M) and, more importantly,
the number of hidden states (). The number of output observation symbols
is taken equal to the host system alphabet size, i.e, M = 175 unique system
calls for the ADFA-LD dataset, as shown in Table 1. Since using a single
HMM with a pre-specified number of states may have limited capabilities to
capture the underlying structure of the data [32, 12], therefore, different discrete-
time ergodic HMMs are trained with various N = 10,20, ...,200 values. The
iterative Baum-Welch algorithm is used to estimate HMM parameters [34]. To
reduce overfitting effects, the evaluation of the log-likelihood on the independent

Mmttp://www.csie.ntu.edu.tw/ cjlin/libsvm

14

http://www.csie.ntu.edu.tw/~cjlin/libsvm

validation set (that contains a 1000 of the normal traces, which are not used
during training nor testing) is used as a stopping criterion. For each state value,
the training process is repeated ten times using a different random initialization
to avoid local minima, and the HMM that gives the highest log-likelihood value
on the validation data is selected. In Section 5, we report the results of HMM
with @ = 200 states since it provided the best log-likelihood value on average.

The Forward-Backward algorithm is then used to evaluate the performance
of the trained HMM on the test set, which should assign significantly lower
log-likelihood values to anomalous sequences than to the normal ones [12]. The
log-likelihood values provided by HMM to each test traces are used to generate
the ROC curves and compute the AUC values, as described next.

4.2.4. Evaluation Measures

In general, the anomaly detector provides scores or probabilities of member-
ship to the normal class for each subsequence of the testing set (extracted from
the trace using the sliding window technique). The lower the score the higher
the likelihood of that subsequence being anomalous. In our work, the impact on
performance of using the different features, models, and detection approaches
is assessed using the ROC analysis [45].

A ROC curve is a plot of true positive rate (tpr) against the false positive
rate (fpr) for all decision thresholds as shown in Figure 2. The tpr is the
proportion of attack traces correctly detected over the total number of attacks
in the test set. The fpr is the proportion of normal traces incorrectly classified
as anomalous over the total number of normal traces in the test set. A crisp
detector (i.e., STIDE) produces a single data point in the ROC plane since it
directly produces a class label (i.e., normal or anomaly). In contrast, a soft
detector (e.g., HMM and OCSVM) assigns scores or probabilities to the input
samples, which can be converted to a crisp detector by setting a threshold on the
scores. A soft detector produces a ROC curve by varying the decision thresholds
over the complete range of scores. ROC curves can be efficiently generated by
sorting the output scores provided by the detection models from the most likely
to the least likely value, and considering unique values as decision thresholds
[45].

As illustrated in Figure 2, the ROC curves allows to visualize the perfor-
mance of detectors and select optimal operational points, without committing
to a single decision threshold. It presents detectors’ performance across the
entire range of class distribution and error costs, but it is more important to
analyse the shape of the curves at the regions of interest (i.e., at low fpr val-
ues in anomaly detection). For equal prior probability and cost of errors, the
optimal decision threshold (minimizing overall errors and costs) corresponds to
the vertex that is closest to the upper-left corner of the ROC plane. In many
practical cases, where prior knowledge of skewed class distributions or mis-
classification costs are available from the application domain, they should be
considered while analyzing the ROC curve and selecting operational thresholds,
using iso-performance lines [45].

15

Perfect detector Always predicts
(ROC heaven) positive

T T T
7
_— More/ 4

e 4
aggressive
7

Crisp
Detector

I
%)

rossive |
7

&

w4

$

4 i
&
7

=]
=3
T

IS

<%

e
Area Under the Curve
(AUC)

Soft
Detector

<
=
T

s
A

v

ore con-

Always predicts §ervative
negative

True positive rate (tpr)

o
o

Il Il
0 02 04 06 08 1
False positive rate (fpr)

Figure 2: Illustration of the performance of a crisp detector (single point) and a soft detector
(ROC curve generated for all decision thresholds). Important regions in the ROC space are
annotated.

The area under the ROC curve (AUC), has been proposed as more robust
scalar summary of detectors’ performance than accuracy (acc) [46]. The AUC
provides a global measure for comparing detectors’ performance independently
of the decision thresholds; it could be interpreted as the average of the tpr over
all values of the fpr. An AUC = 1 indicates a perfect detector, which detects all
anomalies without any false alarms (tpr = 1, fpr = 0), while a random detector
will have an AUC = 0.5. For a crisp classifier, the AUC is simply the area
under the trapezoid and is calculated as the average of the tpr and fpr values.
For a soft classifier, the AUC may be estimated directly from the data either by
summing up the areas of the underlying trapezoids [45] or by computing of the
Wilcoxon-Mann-Whitney (WMW) statistic [47].

However, when the ROC curves cross, detectors providing higher overall
AUC values may perform worse than those providing lower AUC values in a
specific region of ROC space, which could be the region of interest for the
application. In such case, the partial area under the ROC curve (pAUC) could
be more useful for comparing performances in the specific regions of interest
[48]. Therefore, in our experiments we provide the results in terms of ROC
curves, which allows to visualize the performance of each detector across the
entire region. Furthermore, we provide the partial area under the ROC curve,
pAUC, for the range of fpr = [0,0.1]. In addition, we present the tpr and the
accuracy values at two fixed operating points: fpr = 10% and fpr = 5%.

5. Results and Discussions

We first present the results of the distance-based detection approach applied
to each feature extraction technique (tf, tf.idf, VN3, and V. NG). The objective
is to investigate the discrimination power of each feature independently from the
model, since the distance based approach is parameter free. We then provide

16

the results of our ADS based on the OC-SVM and trained using our feature
vectors, compared to those of the sequential models.

5.1. Comparison of Feature Vectors using the Distance-based Approach

Figure 3 illustrates the ROC curves and pAUC values of the distance-based
detection approach applied to the features vectors, tf, tf.idf, VN3, and VN6
extracted from ADFA-LD dataset. Figure 3a presents the ROC curves of the
minimum distance (1-NN), computed according to Equation 5, while those in
Figure 3b are computed for K = 10 according to Equation 5according to Equa-
tion 4.

As described in Section 4.2.4 the closest ROC curve to the upper-left corner
of the ROC plane, the better the performance, since such curve provides lower
false positive rate and higher true positive rate. The partial AUC values, shown
in the legend, are computed for the range of fpr = [0,0.1], as described in
Section 4.2.4. Other metrics, such as the true positive rate and the accuracy
values at a false positive rate of 10% and 5% are also presented in Table 3. The
higher the value of pAUC the better, in the ideal case when the ROC curve
reaches the point (0, 1) in the ROC space, the pAUC value will be one.

As shown in Figure 3, the ROC curves of our proposed feature vectors,
containing sequential information up to 3-grams, VN3, outperform the ROC
curves of tf, tf.idf feature vectors in large areas of the ROC space. In the low
false positive region (where fpr < 10%) all feature extraction techniques provide
comparable performance as shown by the shape of the ROC curves and by the
partial AUC values (pAUC in the legend). This can be also seen in accuracy
values presented in Table 3.

We have experimented with other K values, using the validation set, and
noticed a slight decrease in the performance of the ROC curves for all feature
extraction techniques with the increase of K. Overall, considering the minimum
distance (K=1) provided the best results. Unexpectedly, both VN3 and VN6
features provide almost similar ROC curves in both Figures 3a and 3a, which
could be attributed, to the simplicity of the distance based approach. These
results show that our feature vectors VN3 and V N6, in general, outperform the
traditional term vectors with both weighting schemes ¢f and #f.idf. For further
insight into the performance of the proposed features, however, we included the
term vectors techniques (¢f and ¢f.idf) in the next set of experiments.

5.2. Results of the proposed ADS: OC-SVMs trained on our Feature Vectors

This section presents the results obtained by the proposed ADS using OC-
SVMs with linear and Gaussian kernels (as presented in Section 4.2.2), trained
on our feature vectors (V' N3, and VN6) for detecting system call anomalies in
the ADFA-LD datasets (presented in Section 4.1). As stated previously, the
results of OC-SVMs trained using the term vector (with ¢f and tf.idf weights)
are also presented for comparison. We compare our results to those achieved by
STIDE, HMMs and n-grams models as well as by the ADS proposed by Creech
and Hu [39], which we refer to by CH2013 hereafter.

17

=
T

o
©
T

o
o
T

°©
3
T

o
o
T

True positive rate
o
(4]
:

0.4

03[

02k - {f, pAUC=0.081

ol = tf.idf, pAUC=0.234
A i D VN3, pAUC=0.164
ol ====\N6, pAUC=0.159

02 03 04 05 06 07 08 09 1
False alarm rate

(a) ROC curves using the minimum distance to the closest neighbor (1-NN).

1+

© o o o
o N ™ ©
T T T T

True positive rate
o o
N a1
: :

o
w
T

1
02r i - = tf, pAUC=0.050
01k A ——tf.idf, pAUC=0.151
L T PO VN3, pAUC=0.133
ok I —-===VN6, PAUC=0.126
1

0 01 02 03 04 05 06 07 08 09 1
False alarm rate

(b) ROC curves using the average distances to the 10 closest neighbors (10-NN).

Figure 3: ROC curves and pAUC values produced by the distance-based detection approach
using the four sets of feature vectors extracted from ADFA-LD dataset.

18

o
(2]
T

True positive rate
o
o
:

04l —— ff, pAUC=0.076
—C- tfidf, pAUC=0.072
03F O VN3, pAUC=0.749
—%--VN6, pAUC=0.685
0.2F —A—HMM, pAUC=0.244
—\/— STIDE, pAUC=0.060
0.1 —=— 6-grams,pAUC=0.006
==== CH2013, pAUC=0.620
ol
0 01 02 03 04 05 06 07 08 09 1
False alarm rate
(a) The entire ROC space.
1k
09 r
0.8 r
0.7

o
(<2}
T

True positive rate
o
(62}
T

g
[u}
04 a
o
0.3 g
[n]
0.2 W]
aly
0.1 5
]
ok : 1

0 0.1 0.2
False alarm rate

(b) ROC curves of Figure 4a with a focus on the region of interest, low fpr.
Figure 4: ROC curves and pAUC values of the OC-SVM detector using a linear kernel and

trained on our feature vectors (VN3 and VN6), compared to those of STIDE and HMM and
to results presented in [39] (CH2013).

19

09r

0.8

0.6 [

True positive rate
o
o
:

04k % ff, pAUC=0.207
—O- tfidf, pAUC=0.069
03F -3 VN3, pAUC=0.574
—%--VN6, pAUC=0.843
0.2F —A—HMM, pAUC=0.244
—\/— STIDE, pAUC=0.060
0.1 —=— 6-grams,pAUC=0.006
==== CH2013, pAUC=0.620
ol
I 1 | | | | | | | | |
0 01 02 03 04 05 06 07 08 09 1
False alarm rate
1F
09 F
0.8
0.7 F
o]
© 06
[
=
205F
o
o
q) 04 I
2
Fost
0.2+
0.1f
ol

False alarm rate

(b) ROC curves of Figure 5a with a focus on the region of interest, low fpr.
Figure 5: ROC curves and pAUC values of the OC-SVM detector using a Gaussian kernel

and trained on our feature vectors (VN3 and VN6), compared to those of STIDE and HMM
and to results presented in [39] (CH2013).

20

The ROC curves and pAUC values are illustrated in Figure 4 and 5. As
shown in the curves presented in Figure 4a and more clearly in the zoomed region
of Figure 4a, the ROC curves of the proposed ADS using OC-SVM trained on
our VN3 and VN6 feature vectors dominate all other curves. The OC-SVM
using a linear kernel achieves the overall best pAUC results for both feature
vectors VN3 and VNG, as illustrated in the legend of Figure 4. The ROC curves
and pAUC values of OC-SVMs trained on VN3 and VN6 outperform that of
HMM and CH2013. This shows that even a linear kernel was able to better
separate the normal and attack traces in the high-dimensional space provided
by the proposed feature vectors, led to improved generalization capabilities, and
hence an increase in the detection rates while reducing the false alarm rates.

In contrast, the OC-SVMs using the same kernel but with the term vector
features (tf and tf.idf) perform poorly (almost close to random detectors), as
shown in Figure 4. This is an unsurprising result, since both term vectors
with tf and tf.idf weights ignore the temporal order of system call. However,
Figure 4 shows some signs of overfitting, since the linear kernel OCSVM trained
on VN3 performs slightly better than that trained on V IN6. Therefore, it may
be better to consider the length of sliding window (N) as a parameter to optimize
during training and validation to avoid overfitting the training data. Finally, as
expected STIDE is shown to performed poorly, due to its lack of generalization
and because the space of normal behavior is large and complex for a dataset
with an alphabet size of 175 system calls.

The results achieved with OC-SVMs using Gaussian kernels on ADFA-LD
dataset are presented in Figure 5. The ROC curves of the OC-SVM trained
on our VNG feature vectors dominates all other curves and achieves the overall
highest pAUC value among all competing techniques. In particular, the ROC
curve of OC-SVM trained on VN6 shows that it is able to detect 86% of the
attacks at a false alarm rate of 5%, which is significantly better than all other
techniques, including the sequential models. On the other hand, and similarly to
the OC-SVMs trained with a linear kernel, OC-SVMs trained with a Gaussian
kernel using the term vector features (¢f and ¢f.idf) perform poorly, as shown
in Figure 5.

Table 3 summaries the pAUC values, the true positive rate and the accu-
racy values at a false positive rate of 10% and 5% for all anomaly detection
techniques. These results show that the generalization capabilities of OC-SVM
combined with the temporal information included in V N6 feature vectors pro-
vide an anomaly detector that can outperform state-of-the-art detectors. In
addition, they illustrate a large improvement in detection accuracy of both fea-
ture vectors VN3 and VN6 over that of ¢f and tf.idf. Finally, the results of
the experiments confirm the importance of using the temporal information for
detecting system call anomalies, and demonstrate a significant reduction in false
alarm rate and improvement of true positive rate when our variable n-gram fea-
ture vectors, VN6, is used to train powerful detector with high generalization
capabilities such as the OC-SVM.

21

Table 3: Summary of the partial area under the ROC curve (pAUC), as well as true positive
rate (tpr) and accuracy (acc) values computed at two false positive rate (fpr) values for all
techniques.

fpr =10% fpr =5%
Feature AUC pAUC tpr acc tpr acc

tf 0.648 0.081 0.223 0.801 0.052 0.819

LLNN tf.idf 0.717 0.234 0.403 0.828 0.223 0.846
VN3 0.778 0.164 0.359 0.821 0.168 0.836

VN6 0.778 0.159 0.361 0.821 0.155 0.834

tf 0.604 0.050 0.135 0.789 0.039 0.817

10-NN tf.idf 0.710 0.151 0.287 0.811 0.139 0.832
VN3 0.746 0.133 0.300 0.813 0.137 0.831

VN6 0.741 0.126 0.284 0.810 0.129 0.830

tf 0.660 0.076 0.158 0.890 0.072 0.938

OC-SVM Linear tf.idf 0.555 0.072 0.156 0.890 0.050 0.938
Kernel VN3 0.955 0.749 0917 0.900 0.800 0.948
VN6 0.955 0.685 0.929 0.900 0.803 0.948

tf 0.767 0.207 0.483 0.894 0.200 0.940

OC-SVM Gaussian tf.idf 0.799 0.069 0.207 0.891 0.033 0.938
Kernel VN3 0.917 0.574 0.774 0.898 0.633 0.946
VNG 0.953 0.843 0.892 0.900 0.867 0.949

HMM traces 0.919 0.244 0.867 0.900 0.099 0.938
STIDE sequences 0.582 0.060 0.120 0.889 0.060 0.938
6-grams sequences 0.884 0.006 0.083 0.889 0.000 0.937
CH2013 semantic 0.954 0.620 0.845 0.899 0.729 0.947

5.8. Threat to Validity

We have conducted experiments using only one system call dataset derived
from the Linux operating system, which consists a threat to external validity of
this study. More experiments are therefore required to generalize the presented
results to other operating systems and other programs.

A threat to internal validity exists in the implementation of anomaly de-
tection techniques, STIDE, HMMs, OC-SVMs and the feature extraction tech-
niques, tf, tf.idf, VN3, and VNG, as well as in conducting the experiments,
preprocessing, and splitting the datasets.

The selection of attacks is one of the common threats to validity for ap-
proaches aiming to detect anomalies. It is possible that the attacks in terms of
execution paths do not exhibit large variation among the possible attack space.
This may impact our results. However, to our knowledge, the ADFA-LD dataset
is the only publicly available modern dataset for system calls.

6. Discussion of Evasion Techniques and Challenges

In the section we limit our discussions to the related works that have not
been discussed in Section 2, in particular we focus on evasion and adversarial
attacks against system call ADSs. In general, all intrusion detection systems
are susceptible to evasion or adversarial attacks. As soon as IDSs are deployed,

22

they may become target of adversarial attacks that try to evade, undermine or
mislead their detection capabilities [49].

Mimicry attacks were among the earliest attempts toward defeating host-
based ADSs that only monitor the temporal order of system calls. Wagner
et al. proposed that it is possible to craft sequences of system calls which
appear normal to the ADS (hence they will not be detected) while exploiting
some vulnerabilities in the monitored process [26, 50]. The authors proposed
replacing the foreign system calls, which do not belong to the normal process
behavior (and can be easily detected), with one or multiple nullified system calls
that belong to the normal system behavior. Nullified system calls are legitimate
calls but have no effect (similar to no operation “no-op” system call) since their
return values and the parameters are ignored. This form of mimicry attacks
allow an attacker to embed the malicious sequence of system calls (necessary
to run the exploit) within the sequences that belong to the normal process
behavior, by careful substitution and padding of nullified calls. The authors
formulate the generation of mimicry attack sequence as a finite-state automata
intersection and showed that an initial detectable exploit of eight system calls
can be transformed into a mimicry attack of length 100 system calls.

In our opinion, the presence of mimicry attacks does not diminish the need
for anomaly detection systems based on system call sequences. In fact, it is
quite the opposite. It encourages researchers to combine models of system
call sequences with other models built from additional system artifacts such
as system call arguments [51, 52, 53, 54], memory and call stack information
[55, 56, 25], and function calls and other user-space information [57, 58]. The
long-term goal is to work towards an anomaly detection infrastructure with
multiple layers of security, as further detailed below. With this in mind, system
call based techniques that can reduce false alarms while keeping a decent level
of accuracy such as the one we have introduced in this paper, should contribute
to building such a holistic solution.

An attacker could also attempt to predict the threshold that raises the alarm
in order to make his attack go undetected (under the radar) [59]. As described
in Section 4.2.4, any ADS provides a trade-off between true and false positives.
In order to reduce the number false positives (i.e., smoothen the false alarms),
several researchers used another temporal threshold on a recent history of events.
Instead of raising an alarm when one subsequence is detected as anomalous,
the test sequence is only signaled as an attack if the number of anomalous
subsequences within a recent time window exceeded a given threshold. This
has been called a locality frame in the original work of Warrender et al., since
the anomaly signal is computed from the number of mismatches occurring in
a temporally local region [9]. However, this second threshold is typically set
to arbitrary values and opens the possibility of crafting attacks that remain
under the threshold value, by producing the spreading the anomalous sequences
over a period of time longer than the locality frame. In our experiments, we
did not use such a smoothing threshold to the reduce false alarms; any normal
sequence given a score (by our detector) below the original decision threshold
is considered as a false alarm, and hence this kind of attack is not applicable.

23

An alternative type of evasion attacks against the control-flow relies on ex-
ploiting the system call arguments to evade the detection of ADSs monitoring
system call sequences. If an attacker is able to launch the attack by exploiting
the arguments of system calls without tempering the normal order of system
calls, then it may go undetected by the ADS since the arguments are not moni-
tored [50]. Recent works included additional information about the system call
arguments to defend against such attacks [51, 52, 53, 54]. However, these ap-
proaches have difficulties in deciding which legitimate argument value is really
benign, when multiple legitimate values appear in the training phase [60].

The anomaly detection techniques, described above, which try to defend
against control-flow attacks using both the system call sequences (temporal
order) or the system call arguments, have been called black-box detectors [56].
In contrast, the white-box detectors examine the program being monitored by
statically analyzing the source code or binary [61, 62, 63, 26]. Gao et al. coined
the term gray-box for the anomaly detector that does not utilize static analysis of
the program source code, but does extract additional runtime information from
the monitored process when a system call is invoked, by looking for instance into
the memory allocated for that process [56]. Sekar et al. proposed the first gray-
box anomaly detector, by including the program counter of the process with
the system call number [25], while Feng et al. further incorporated the return
addresses on the call stack of the process when each system call is invoked [55].
Tandon and Chan coupled the system call arguments with their return values
[54]. Gao et al. proposed an execution graph model that accepts sequences of
system calls as well as the active function calls when each system call is invoked
[57]. Mutz et al. further extended the previous approach by using the call stack
information to provide more context for system call arguments, and introduced
a metric that quantifies the degree to which system call arguments are unique
to particular execution contexts [58].

These gray-box approaches made evasion and mimicry attacks harder, be-
cause the attack code will not be able to resume control after the execution of
a system call. In fact if the attacker attempts to regain the execution control
by providing a return address on the stack, the ADS monitoring the return
values would detect the presence of the attack. However, Kruegel et al. de-
vised an approach that relies on corrupting the data in register contents or local
variables to regain control of the program execution flow after a system call
is completed [64]. The authors focused on demonstrating the ability of their
symbolic execution technique to generate configurations that can return control
back to the attack code. However, several issues that need to be addressed
before constructing such attacks against real-world applications were left open.

The main focus of the above approaches was mainly against code-injection
attacks to compromised the host system. Chen et al. demonstrated other kind
of attacks that do not modify the control flow of a program; instead, they exploit
the (non-control) data-flow to take full control of the system [65]. The authors
demonstrated exploits against data-flow vulnerabilities by, for instance, using
normal system calls to overwrite the password file and then elevate privileges
[65]. Bhatkar et al. applied similar kind of attacks to common web servers by

24

targeting security-critical data, such as variables that store the user identifica-
tion numbers corresponding to an FTP client and the directory that contains
all allowable CGI scripts for a web server [66]. Some non-control data-flow at-
tacks require no invocation of system calls, therefore the attacks will most likely
evade detection by system-call based monitoring mechanisms. For instance, the
persistent interposition attacks proposed by Parampalli et al. are based on in-
jecting code that interposes on input/output operations, by modifying the data
read or written by the victim, but leaving the control-flow and other system-
call arguments unmodified. Although these persistent interposition attacks do
not aim at compromising the system (e.g., by obtaining a root shell), they are
powerful enough to steal credit card numbers and passwords or server’s private
key, or alter emails [67]. These attacks do not manifest at the system call level,
and hence are outside the scope of system call based ADS.

In practice, however, it may be difficult to launch an evasion or a mimicry
attack in practice without disrupting the order of the system calls. As shown
in [68], the actions taken by the attacker, before and while launching his attack
(within the preamble phase), may produce deviations from the normal behavior
of the monitored system that could be detected at the system call level, before
the attacker proceeds to take full control of the system or perform other stealthy
actions.

Our ADS based on the proposed feature vectors applied to train OC-SVM
using Gaussian kernel have shown a significant reduction in the false alarm rate
and increase in true positive rate compared to state-of-the-art anomaly detectors
based on the system all sequences. We think that the key problem of anomaly
detection system, in practise, is the high rate of false alarms. An anomaly de-
tector that generate an excessive number of false alarms is not useful, especially
that an expensive and time consuming investigation is required to confirm or
refute each alarm. Therefore, an ADS monitoring the temporal order of sys-
tem calls that generates a small number of false alarms provides an important
first line of defense. Attacks that have no manifestations at the system call
sequence level could be detected with ADS that rely on additional information
about the system call arguments, return values, call stack, function calls, etc.
as described above. We strongly believe in a layered defense architecture that
employs several independent defense strategies to create a more robust overall
protection. An adversary is then forced to craft attacks that must conform to
normal behavior of the system from various point of views, depending on several
detection techniques and features.

However, several research issues remain open. In particular, the evaluation
of the performance and interaction among several ADSs based on different fea-
tures and the possibility of crafting attacks that evade detection. Adapting the
anomaly detector to changes in the normal behavior over time in order to re-
duce the false alarm and maintain or improve the detection accuracy is another
important challenge.

25

7. Conclusion

In this paper, we present an ADS based on OC-SVM and a new approach
for designing feature vectors that combines the frequency with the temporal
information extracted from system call traces. The proposed approach accounts
for the temporal order of system call within a trace by extracting and mapping
variable length n-grams and their frequencies to fixed-size feature vectors. Our
feature vectors provide therefore new representations of the system call traces
that are suitable for training standard one-class machine learning algorithms,
while preserving the sequential nature of system calls. The proposed feature
vectors with sequential information up to 3-grams (V. N3) and 6-grams (VNG)
coupled with the generalization capabilities of OC-SVM are able to increase the
detection accuracy while reducing the number of false alarms.

The proof-of-concept experiments are conducted on a benchmark system call
dataset obtained from the University of South Wales. The results show that the
proposed OC-SVM detector with a Gaussian kernel trained on our feature vec-
tors is able to provide higher level of detection accuracy than that achieved by
previous techniques, using the term vector features with both weighting schemes
(term frequency and term frequency-inverse document frequency). More im-
portantly, the OC-SVM using the sequential information up to 6-grams (VNG)
provided with our feature vector achieves the overall highest detection rate with
the lowest false positives compared to STIDE, HMM and the results obtained
by the creators of the ADFA-LD dataset.

As future work, we plan to conduct more experiments on other datasets
collected from other operating systems to confirm the validity of our results.
We are currently with the Defence Research and Development Canada (DRDC)
Valcartier (QC) to apply these techniques to real-world settings. Moreover, we
intend to investigate the combination of multiple machine learning techniques
trained on the proposed feature vectors with sequential learning detectors.

Acknowledgment

This research is partly supported by a grant from Natural Sciences and
Engineering Research Council of Canada (NSERC), Defence Research and De-
velopment Canada (DRDC) Valcartier (QC), and Ericsson Canada.

References

[1] D. E. Denning, An Intrusion Detection Model, in: Proceedings of the Sev-
enth IEEE Symposium on Security and Privacy, 1986, pp. 119-131.

[2] J. McHugh, A. Christie, J. Allen, Defending yourself: the role of intrusion
detection systems, Software, IEEE 17 (5) (2000) 42-51. doi:10.1109/52.
877859.

[3] S. Axelsson, Intrusion detection systems: A survey and taxonomy, Tech.
Rep. 99-15, Chalmers University (Mar. 2000).

26

http://dx.doi.org/10.1109/52.877859
http://dx.doi.org/10.1109/52.877859

4]

[5]

[6]

7]

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, K.-Y. Tung, Intrusion detection system:
A comprehensive review, Journal of Network and Computer Applications
36 (1) (2013) 16 — 24. doi:http://dx.doi.org/10.1016/j.jnca.2012.
09.004.

G. F. Cretu, A. Stavrou, M. E. Locasto, S. J. Stolfo, A. D. Keromytis,
Casting out demons: Sanitizing training data for anomaly sensors, in: IEEE
Symposium on Security and Privacy, 2008. SP 2008., IEEE, 2008, pp. 81—
95.

C. Gates, C. Taylor, Challenging the anomaly detection paradigm: a
provocative discussion, in: Proceedings of the 2006 workshop on New secu-
rity paradigms, NSPW 06, ACM, New York, NY, USA, 2006, pp. 21-29.

R. Sommer, V. Paxson, Outside the closed world: On using machine learn-
ing for network intrusion detection 0 (2010) 305-316.

S. Forrest, S. A. Hofmeyr, A. Somayaji, T. A. Longstaff, A sense of self for
Unix processes, in: Proceedings of the 1996 IEEE Symposium on Research
in Security and Privacy, 1996, pp. 120-128.

C. Warrender, S. Forrest, B. Pearlmutter, Detecting intrusions using system
calls: alternative data models, in: Proceedings of the IEEE Computer
Society Symposium on Research in Security and Privacy, Oakland, CA,
USA, 1999, pp. 133-45. doi:10.1109/SECPRI.1999.766910.

S. Forrest, S. Hofmeyr, A. Somayaji, The evolution of system-call monitor-
ing, in: Computer Security Applications Conference, 2008. ACSAC 2008.
Annual, 2008, pp. 418-430.

S. Axelsson, The base-rate fallacy and the difficulty of intrusion detection,
ACM Trans. Inf. Syst. Secur. 3 (3) (2000) 186-205. doi:10.1145/357830.
357849.

W. Khreich, E. Granger, A. Miri, R. Sabourin, A survey of techniques
for incremental learning of HMM parameters, Information Sciences 197
(2012) 105-130.

V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: A survey, ACM
computing surveys (CSUR) 41 (3) (2009) 15.

Y. Liao, V. R. Vemuri, Use of k-nearest neighbor classifier for intrusion
detection, Computers & Security 21 (5) (2002) 439-448.

D.-K. Kang, D. Fuller, V. Honavar, Learning classifiers for misuse detection
using a bag of system calls representation, Lecture Notes in Computer
Science 3495 (2005) 511-516. doi:10.1007/11427995_51.

W.-H. Chen, S.-H. Hsu, H.-P. Shen, Application of SVM and ANN for in-
trusion detection, Computers & Operations Research 32 (10) (2005) 2617—
2634.

27

http://dx.doi.org/10.1145/357830.357849
http://dx.doi.org/http://dx.doi.org/10.1016/j.jnca.2012.09.004
http://dx.doi.org/http://dx.doi.org/10.1016/j.jnca.2012.09.004
http://dx.doi.org/10.1145/357830.357849
http://dx.doi.org/10.1109/SECPRI.1999.766910
http://dx.doi.org/10.1007/11427995_51

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

S. Rawat, V. Gulati, A. K. Pujari, V. R. Vemuri, Intrusion detection using
text processing techniques with a binary-weighted cosine metric, Journal
of Information Assurance and Security 1 (1) (2006) 43-50.

A. Sharma, A. K. Pujari, K. K. Paliwal, Intrusion detection using text
processing techniques with a kernel based similarity measure, computers &
security 26 (7) (2007) 488-495.

G. Salton, Automatic Text Processing: The Transformation, Analysis, and
Retrieval of Information by Computer, Addison-Wesley, 1989.

G. Creech, J. Hu, Generation of a new ids test dataset: Time to retire the
kdd collection, in: Wireless Communications and Networking Conference
(WCNC), 2013 IEEE, Shanghai, China, 2013, pp. 4487-4492. doi:10.
1109/WCNC.2013.6555301.

W. W. Cohen, Fast effective rule induction, in: A. Prieditis, S. Russell
(Eds.), Proc. of the 12" International Conference on Machine Learning,
Morgan Kaufmann, Tahoe City, CA, 1995, pp. 115-123.

W. Lee, D. Xiang, Information-theoretic measures for anomaly detection,
in: Proc. of the 2001 IEEE Symposium on Security and Privacy, 2001, pp.
130-143.

W. Fan, M. Miller, S. Stolfo, W. Lee, P. Chan, Using artificial anomalies to
detect unknown and known network intrusions, Knowledge and Information
Systems 6 (2004) 507-527.

C. C. Michael, A. Ghosh, Simple, state-based approaches to program-based
anomaly detection, ACM Trans. Information System Security 5 (2002) 203—
237.

R. Sekar, M. Bendre, D. Dhurjati, P. Bollineni, A fast automaton-based
method for detecting anomalous program behaviors, in: Security and Pri-
vacy, 2001. S&P 2001. Proceedings. 2001 IEEE Symposium on, 2001, pp.
144-155.

D. Wagner, D. Dean, Intrusion detection via static analysis, in: Proceedings
of the 2001 IEEE Symposium on Security and Privacy, IEEE Computer
Society, Washington, DC, USA, 2001.

C. Kruegel, D. Mutz, W. Robertson, F. Valeur, Bayesian event classifica-
tion for intrusion detection, in: Proceedings of the 19*® Annual Computer
Security Applications Conference, ACSAC ’03, IEEE Computer Society,
Washington, DC, USA, 2003.

S. Jha, K. Tan, R. Maxion, Markov chains, classifiers, and intrusion de-
tection, in: Proceedings of the Computer Security Foundations Workshop,
2001, pp. 206-219.

28

http://dx.doi.org/10.1109/WCNC.2013.6555301
http://dx.doi.org/10.1109/WCNC.2013.6555301

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

C. Wressnegger, G. Schwenk, D. Arp, K. Rieck, A close look on n-grams in
intrusion detection: anomaly detection vs. classification, in: Proceedings
of the 2013 ACM workshop on Artificial intelligence and security, ACM,
2013, pp. 67-76.

C. Marceau, Characterizing the behavior of a program using multiple-
length n-grams, in: NSPW ’00: Proceedings of the 2000 workshop on New
security paradigms, ACM Press, New York, NY, USA, 2000, pp. 101-110.
doi:10.1145/366173.366197.

A. Wespi, M. Dacier, H. Debar, Intrusion detection using variable-length
audit trail patterns, in: RAID ’00: Proceedings of the Third International
Workshop on Recent Advances in Intrusion Detection, Springer-Verlag,
London, UK, 2000, pp. 110-129.

W. Khreich, E. Granger, R. Sabourin, A. Miri, Combining Hidden Markov
Models for anomaly detection, in: International Conference on Communi-
cations (ICC), Dresden, Germany, 2009, pp. 1-6.

J. Hu, Host-based anomaly intrusion detection, in: P. Stavroulakis,
M. Stamp (Eds.), Handbook of Information and Communication Se-
curity, Springer Berlin Heidelberg, 2010, pp. 235-255. doi:10.1007/
978-3-642-04117-4_13.

L. E. Baum, G. S. Petrie, N. Weiss, A maximization technique occuring
in the statistical analysis of probabilistic functions of Markov chains, The
Aunnals of Mathematical Statistics 41 (1) (1970) 164-171.

C. D. Manning, P. Raghavan, H. Schiitze, Introduction to information re-
trieval, Vol. 1, Cambridge university press Cambridge, 2008.

K. Rieck, T. Holz, C. Willems, P. Diissel, P. Laskov, Learning and classifi-
cation of malware behavior, in: Detection of Intrusions and Malware, and
Vulnerability Assessment, Springer, 2008, pp. 108-125.

Y. Liao, V. R. Vemuri, Using text categorization techniques for intrusion
detection., in: USENIX Security Symposium, Vol. 12, 2002.

D.-K. Kang, D. Fuller, V. Honavar, Learning classifiers for misuse and
anomaly detection using a bag of system calls representation, in: Sys-
tems, Man and Cybernetics (SMC) Information Assurance Workshop,
2005. Proceedings from the Sixth Annual IEEE, 2005, pp. 118-125. doi:
10.1109/IAW.2005.1495942.

G. Creech, J. Hu, A semantic approach to host-based intrusion detection
systems using contiguous and discontiguous system call patterns, IEEE
Transactions on Computers 99 (2013) —. doi:10.1109/TC.2013.13.

G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: Theory
and applications, Neurocomputing 70 (1-3) (2006) 489-501.

29

http://dx.doi.org/10.1109/IAW.2005.1495942
http://dx.doi.org/10.1109/IAW.2005.1495942
http://dx.doi.org/10.1007/978-3-642-04117-4_13
http://dx.doi.org/10.1109/TC.2013.13
http://dx.doi.org/10.1007/978-3-642-04117-4_13
http://dx.doi.org/10.1145/366173.366197

|41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, J. Demmel, Op-
timization of sparse matrix—vector multiplication on emerging multicore
platforms, Parallel Computing 35 (3) (2009) 178-194.

K. M. C. Tan, K. S. Killourhy, R. A. Maxion, Undermining an anomaly-
based intrusion detection system using common exploits, In Fifth Inter-
national Symposium on Recent Advances in Intrusion Detection (RAID-
2002). Lecture Notes in Computer Science, Springer-Verlag, Berlin 2516
(2002) 54-73.

B. Scholkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, J. C. Platt,
Support vector method for novelty detection., in: NIPS, Vol. 12, 1999, pp.
582-588.

D. M. Tax, R. P. Duin, Support vector data description, Machine learning
54 (1) (2004) 45-66.

T. Fawcett, An introduction to ROC analysis, Pattern Recogn. Lett. 27 (8)
(2006) 861-874. doi:10.1016/j.patrec.2005.10.010.

J. Huang, C. Ling, Using auc and accuracy in evaluating learning algo-
rithms, IEEE Transactions on Knowledge and Data Engineering 17 (3)
(2005) 299-310. doi:10.1109/TKDE.2005.50.

J. Hanley, B. McNeil, The meaning and use of the area under a receiver
operating characteristic (roc) curve, Radiology 143 (1) (1982) 29-36.

S. D. Walter, The partial area under the summary roc curve, Statistics in
Medicine 24 (13) (2005) 2025-2040. doi:10.1002/sim.2103.

I. Corona, G. Giacinto, F. Roli, Adversarial attacks against intrusion de-
tection systems: Taxonomy, solutions and open issues, Inf. Sci. 239 (2013)
201-225. doi:10.1016/j.ins.2013.03.022.

D. Wagner, P. Soto, Mimicry attacks on host-based intrusion detection
systems, in: CCS ’02: Proceedings of the 9®" ACM conference on Computer
and communications security, Washington, DC, United States, 2002, pp.
255-264. doi:10.1145/586110.586145.

C. Kruegel, D. Mutz, F. Valeur, G. Vigna, On the detection of anoma-
lous system call arguments, in: E. Snekkenes, D. Gollmann (Eds.), Com-
puter Security — ESORICS 2003, Vol. 2808 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, 2003, pp. 326-343. doi:10.1007/
978-3-540-39650-5_19.

F. Maggi, M. Matteucci, S. Zanero, Detecting intrusions through system
call sequence and argument analysis, IEEE Transactions on Dependable
and Secure Computing, 7 (4) (2010) 381-395. doi:10.1109/TDSC.2008.69.

30

http://dx.doi.org/10.1007/978-3-540-39650-5_19
http://dx.doi.org/10.1002/sim.2103
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1007/978-3-540-39650-5_19
http://dx.doi.org/10.1109/TKDE.2005.50
http://dx.doi.org/10.1016/j.ins.2013.03.022
http://dx.doi.org/10.1145/586110.586145
http://dx.doi.org/10.1109/TDSC.2008.69

53]

[54]

[55]

[56]

[57]

58]

[59]

[60]

[61]

[62]

[63]

N. Provos, Improving host security with system call policies., in: USENIX
Security, Vol. 3, 2003.

G. Tandon, P. K. Chan, Learning rules from system call arguments and
sequences for anomaly detection, in: Proceedings of the 3'4 IEEE Interna-
tional Conference on Data Mining (ICDM) Workshop on Data Mining for
Computer Security (DMSEC), Melbourne, Florida, USA, 2003.

H. Feng, O. Kolesnikov, P. Fogla, W. Lee, W. Gong, Anomaly detection
using call stack information, in: Security and Privacy, 2003. Proceedings.
2003 Symposium on, 2003, pp. 62-75.

D. Gao, M. K. Reiter, D. Song, On gray-box program tracking for anomaly
detection, in: Proceedings of the 13" conference on USENIX Security Sym-
posium - Volume 13, SSYM’04, USENIX Association, Berkeley, CA, USA,
2004, pp. 1-8.

D. Gao, M. K. Reiter, D. Song, Gray-box extraction of execution graphs
for anomaly detection, in: Proceedings of the 11" ACM conference on
Computer and communications security, ACM, 2004, pp. 318-329.

D. Mutz, W. Robertson, G. Vigna, R. Kemmerer, Exploiting execution
context for the detection of anomalous system calls, in: Recent Advances
in Intrusion Detection, Springer, 2007, pp. 1-20.

K. Tan, R. Maxion, "Why 67" Defining the operational limits of stide, an
anomaly-based intrusion detector, in: IEEE Symposium on Security and
Privacy, 2002, pp. 188-201. doi:10.1109/SECPRI.2002.1004371.

J. Han, Q. Yan, R. Deng, D. Gao, On detection of erratic arguments,
in: M. Rajarajan, F. Piper, H. Wang, G. Kesidis (Eds.), Security and
Privacy in Communication Networks, Vol. 96 of Lecture Notes of the
Institute for Computer Sciences, Social Informatics and Telecommunica-
tions Engineering, Springer Berlin Heidelberg, 2012, pp. 172-189. doi:
10.1007/978-3-642-31909-9_10.

H. H. Feng, J. T. Giffin, Y. Huang, S. Jha, W. Lee, B. P. Miller, Formal-
izing sensitivity in static analysis for intrusion detection, in: Security and
Privacy, 2004. Proceedings. 2004 IEEE Symposium on, IEEE, 2004, pp.
194-208.

J. T. Giffin, S. Jha, B. P. Miller, Detecting manipulated remote call
streams., in: USENIX Security Symposium, 2002, pp. 61-79.

J. T. Giffin, S. Jha, B. P. Miller, Efficient context-sensitive intrusion de-
tection, in: Proceedings of the Network and Distributed System Security
Symposium, 2004.

31

http://dx.doi.org/10.1007/978-3-642-31909-9_10
http://dx.doi.org/10.1109/SECPRI.2002.1004371
http://dx.doi.org/10.1007/978-3-642-31909-9_10

|64]

[65]

|66]

[67]

[68]

C. Kruegel, E. Kirda, D. Mutz, W. Robertson, G. Vigna, Automating
mimicry attacks using static binary analysis, in: Proceedings of Secu-
rity 05, the 14" USENIX Security Symposium, Baltimore, MD, USA,
2005, pp. 161-176.

S. Chen, J. Xu, E. C. Sezer, P. Gauriar, R. K. Iyer, Non-control-data
attacks are realistic threats, in: Proceedings of the 14th conference on
USENIX Security Symposium, Vol. 14, 2005, pp. 12-12.

S. Bhatkar, A. Chaturvedi, R. Sekar, Dataflow anomaly detection, in: IEEE
Symposium on Security and Privacy, 2006. doi:10.1109/SP.2006.12.

C. Parampalli, R. Sekar, R. Johnson, A practical mimicry attack against
powerful system-call monitors, in: Proceedings of the 2008 ACM sympo-
sium on Information, computer and communications security, ASTACCS
08, ACM, New York, NY, USA, 2008, pp. 156-167.

H. Kayacik, A. Zincir-Heywood, Mimicry attacks demystified: What can
attackers do to evade detection?, in: Privacy, Security and Trust, 2008.
PST ’08. Sixth Annual Conference on, 2008, pp. 213—223. doi:10.1109/
PST.2008.25.

32

http://dx.doi.org/10.1109/SP.2006.12
http://dx.doi.org/10.1109/PST.2008.25
http://dx.doi.org/10.1109/PST.2008.25

Figare),

02,

«+30n,0n4+1,0n42,0n43,

sliding window of size N

shifted by one|symbol

oL

Vi Vs Vions1y
01 02
09 03
wn
03 04 =]
Z [}
g
=
[}
Onp—1 On,
On On+41
01,02 02,03
01)02703 02703704 i é
| @
S
Z 2
01,02,03,...,0p| [02,03,04...,0n41 i

Figure Perfect detector Always predicts

(ROC heaven) positive

~~ 1 ‘ ‘ ‘ ‘ 7/

Crisp Ei ° _— More ~]
Detector = / aggressive
e

o 0.8+ / K .

e &

£ s 1

)

> 0.6 69/ -1
Soft s Qg@/

Detector 1 P8 1
0.4 Area Under the Curve i}
= (AUC)

0.2 i .
More con-
Always predicts §ervative 1
negative P [S I S I >
0 0.2 0.4 0.6 0.8 1

False positive rate (fpr)

Figu&e_

09 r

0.8

0.7

0.6

05

04r

True positive rate

03[

0.2 - = ff, pAUC=0.081
| —— tf.idf, pAUC=0.234
s VN3, pAUC=0.164

====VN6, pAUC=0.159

0.1f

04 05 06 07 08 09 1
False alarm rate

Figu&ek
0.9 I
0.8 *
07t
0.6 *
05}

04r

True positive rate

03[

02k £, - = {f, pAUC=0.050

I " = tf.idf, pAUC=0.151
/| reenn VN3, pAUC=0.133
====\/N6, pAUC=0.126

0 0.1 0.2 03 04 05 06 07 08 0.9 1
False alarm rate

Figu&ek
09 r

0.8

©
~
T

o
»
T

True positive rate
o
(6}
T

04 F —X— f, pAUC=0.076
I —C- tfidf, pAUC=0.072
0.3 3 VN3, pAUC=0.749
—%--VN6, pAUC=0.685

0.2 —A—HMM, pAUC=0.244
—\/— STIDE, pAUC=0.060

0.1 —— 6-grams,pAUC=0.006
0 ==== CH2013, pAUC=0.620

1 L I L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1

0 0.1 0.2 03 04 05 06 07 08 0.9 1
False alarm rate

Figuref .
1 -

09
0.8 I
07}
0.6 I
05|

04

True positive rate

03[

0.2

0 0.1 0.2
False alarm rate

Figurlek

o o
(o] (o]

True positive rate
o o
(&) ~

©o o o
kN W

o

o
o))

o
N

- ff, PAUC=0.207
—O- tfidf, pAUC=0.069
O VN3, pAUC=0.574
—3%--VN6, pAUC=0.843
—A—HMM, PpAUC=0.244
—X\/— STIDE, pAUC=0.060
—— 6-grams,pAUC=0.006
==== CH2013, pAUC=0.620

1 L I L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1

0 01 02 03 04 05 06 07 08 09 1

False alarm rate

Figure

09

o ©o o o

ajel annisod aniy

False alarm rate

LaTeX Source Files
Click here to download LaTeX Source Files: istl17.tex

http://ees.elsevier.com/infsof/download.aspx?id=122339&guid=6704a78a-6799-4a8d-a079-02b8d6501a5b&scheme=1

