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Transmit Antenna Selection for Decision Feedback Detection in
MIMO Fading Channels
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Abstract—In this paper, we investigate a transmit antenna se-
lection (TAS) approach for the decision-feedback detector (DFD)
over Rayleigh fading channels. In particular, for a multiple-
input multiple-output (MIMO) channel with 𝑀 transmit and
𝑁 (𝑁 ≥ 𝑀) receive antennas, we derive a lower bound on the
outage probability for the TAS approach. The selected transmit
antennas are those that maximize the post-processing signal-
to-noise ratio (SNR) at the receiver end. It is shown that the
proposed TAS approach achieves a performance close to optimal
selection based on exhaustive search, introduced in the literature,
but at a lower complexity. Simulation results are presented to
validate and demonstrate the performance gain of the proposed
TAS approach.

Index Terms—Transmit antenna selection (TAS), decision-
feedback detector (DFD), multiple-input multiple-output
(MIMO), outage probability.

I. INTRODUCTION

RECENTLY, the authors in [1] and [2] have demonstrated
that using a multiple-input multiple-output (MIMO) sys-

tem one can drastically increase the system capacity, and
improve the reliability of wireless transmission relative to
a single-input single-output (SISO) system. Motivated by
their performance gain, many schemes have been proposed
to exploit the high spectral efficiency of MIMO systems,
among which is the decision-feedback detector (DFD), which
is also known as the vertical Bell labs layered space-time
(VBLAST) [3]. The DFD is relatively simple and can reap
a large portion of the high spectral efficiency of a MIMO
system. However, a major factor limiting the use of multiple-
antenna systems arises from the deployment of 𝑀 transmit
and 𝑁 receive radio frequency (RF) chains, which normally
comprise low-noise amplifiers (LNAs), analog-to-digital con-
verters (ADCs), etc. This complexity problem can be mitigated
by antenna selection at the transmitter and/or receiver. With
antenna selection, a small number of analog RF chains are
multiplexed between a much larger number of transmit/receive
antennas. Therefore, antenna selection reduces the computa-
tional complexity as well as hardware cost. See [4] and [5]
for a general review of various transmit and receive antenna
selection schemes.
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Transmit antenna selection (TAS) for spatial multiplexing
systems was first presented in [6]. More specifically, the
authors show that feeding back an optimal subset of transmit
antennas often increases system capacity over the case of no
feedback. However, the selection criterion proposed therein
is based on Shanon capacity and is not specialized to a
specific receiver structure. With this motivation, the authors
in [7] and [8] propose several TAS approaches that aim
at minimizing the system error rate for spatial multiplexing
systems employing linear receivers. Also, various receive
antenna selection schemes for MIMO systems have been
studied in the recent literature. In [9], a detailed analysis
on suboptimal capacity-maximizing receive antenna selection
schemes is presented. Recently, the authors in [10] present a
comprehensive analysis of the outage probability for MIMO
systems with receive antenna selection. And, the authors show
that the full diversity order is maintained with receive an-
tenna selection. The influence of joint transmit/receive antenna
selection upon the fundamental diversity-multiplexing (D-M)
tradeoff gain [11] is presented in [12]. In which, the authors
show that a MIMO system with antenna selection has the same
D-M tradeoff as the full system if the multiplexing gain is
less than some threshold 𝑃𝑡ℎ. Other works related to antenna
selection for MIMO systems can be found in [13] and [14]. We
refer to [15] for results on the effect of detection ordering on
the diversity gain per layer and D-M tradeoff gain of DFD in
a MIMO Rayleigh fading channel. In this paper, we study the
performance of a TAS scheme for the DFD over flat Rayleigh
fading channels. We present a TAS criterion that maximizes
the post-processing signal-to-noise ratio (SNR) at the receiver.
A lower bound on the outage probability is also derived. It is
worth mentioning that the TAS is facilitated by a low-rate
feedback channel. The sole purpose of this feedback channel
is to indicate antenna combination that maximizes the post-
processing SNR. Finally, our work is a natural extension of
the existing literature on transmit antenna subset selection for
spatial multiplexing systems [6]–[8]. However, our work is
different in that it deals with DFD receiver. Moreover, the
authors present a detailed analysis on outage probability for
the proposed TAS scheme.

The remainder of the paper is outlined as follows. System
and channel model is introduced in Section II. The TAS
approach and outage probability of the DFD with TAS are
analyzed in Section III. Section IV presents simulation results
to demonstrate the gain achieved using the proposed TAS
approach and to assess the accuracy of our analytical results.
Finally, conclusions are given in Section V.
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Fig. 1. Block diagram of the system model.

II. SYSTEM AND CHANNEL MODEL

We consider a MIMO spatial multiplexing (MIMO-SM)
system that employs 𝑀 transmit and 𝑁 (𝑁 ≥ 𝑀) receive
antennas, and a 1 : 𝐾 (𝐾 < 𝑀) spatial multiplexer as shown
in Fig. 1. The system works as follows. At one symbol
time, 𝐾 input symbols are multiplexed to produce the 𝐾-
dimensional symbol vector x for transmission over 𝐾 active
transmit antennas out of 𝑀 possible ones. The optimal subset
𝑝, which constitutes of the 𝐾 transmit antennas, is determined
by a selection algorithm operating at the receiver. The latter
indicates, at each fading state, to the transmitter through a
low-bandwidth, zero-delay and error-free feedback channel,
the optimal subset 𝑝 ∈ 𝑃 of size 𝐾 . Note that 𝑃 is the set of
all possible subsets of selected transmit antennas given by

𝑃 =

{(
𝑀

𝐾

)
; for a given𝐾 (𝐾 < 𝑀)

}
. (1)

At the receiver end, we have a DFD to cancel interference and
obtain estimates of the transmitted data.

Let H denote the 𝑁×𝑀 channel matrix (without TAS), and
H𝑝 denote the 𝑁×𝐾 channel submatrix corresponding to the
selected transmit antennas in 𝑝. The corresponding sampled
received baseband signal is then given by

y = H𝑝 Π𝑝 x+ n, (2)

where y ∈ 𝒞𝑁×1 is the received signal vector, Π𝑝 ∈ ℝ
𝐾×𝐾

is a channel-dependent permutation matrix corresponding to
the detection ordering. H𝑝 ∈ 𝒞𝑁×𝐾 consists of indepen-
dent and identically distributed (i.i.d.) circularly symmetric
Gaussian random variables with zero-mean and unit-variance,
i.e., ℎ𝑖,𝑗 ∼ 𝒞𝒩 (0, 1) for 1 ≤ 𝑖 ≤ 𝑁 , 1 ≤ 𝑗 ≤ 𝐾 . We
assume that the fading coefficients are constant over the entire
frame and vary independently from one frame to another. The
receiver has a perfect knowledge of the channel matrix H,
and the information symbol vector x ∈ 𝒞𝐾×1 consists of
independent and uniform power transmitted substreams. The
receiver noise n ∼ 𝒞𝒩 (0, 𝑁0 I𝑁 ) consists of independent
circularly symmetric zero-mean complex Gaussian entries of
variance 𝑁0, where I𝑁 is an identity matrix of size 𝑁 .

III. TRANSMIT ANTENNA SELECTION AND ANALYSIS

A. Transmit Antenna Selection Approach

The DFD algorithm was shown to suppress the interference
by either zero-forcing (ZF) or minimum mean-square error
(MMSE) criterion. However, here we constrain our discussion
to the ZF case. The reason is that ZF nulling criterion has
lower implementation complexity which keeps the analysis
more tractable than the MMSE. Furthermore, the performance
of the ZF receiver approaches that of MMSE at high SNR. In
this section, we use the full system channel matrix H since no

selection is yet performed. It is well-known that the DFD can
be concisely represented by the QR decomposition [16], [17],
i.e., H = QR, where Q is an 𝑁 × 𝑀 semi-unitary matrix(
Q𝐻 Q = I𝑀 ,where I𝑀 is an identity matrix of size 𝑀

)
with its orthonormal columns being the ZF nulling vectors,
and R is an 𝑀 ×𝑀 upper triangular matrix with real-valued
positive diagonal entries. Correspondingly, the ordered DFD
can be represented by applying the QR decomposition to H
with its columns permuted, i.e., HΠ = QR, where Π is
the full channel-dependent permutation matrix (i.e., function
of H). The receiver performs a QR factorization of H, and
then it implements two operations: nulling and cancellation.

We have
y = QRx+ n. (3)

The transmitted symbols are detected as follows. Multiplying
both sides of (3) by Q𝐻 yields

ỹ = Rx+ ñ, (4)

where ñ = Q𝐻 n and ỹ = Q𝐻 y.
The received vector ỹ, in matrix form, can be written as⎡
⎢⎢⎢⎣
𝑦1
𝑦2
...

𝑦𝑀

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
𝑟1,1 𝑟1,2 . . . 𝑟1,𝑀
0 𝑟2,2 . . . 𝑟2,𝑀
...

. . .
. . .

...
0 . . . 0 𝑟𝑀,𝑀

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
𝑥1

𝑥2

...
𝑥𝑀

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣
𝑛̃1

𝑛̃2

...
𝑛̃𝑀

⎤
⎥⎥⎥⎦ . (5)

The general sequential signal detection, which involves can-
cellation (decision feedback), is given by

𝑥̂𝑖 = 𝑄

⎡
⎣ 1

𝑟𝑖,𝑖

⎛
⎝𝑦𝑖 −

𝑀∑
𝑗=𝑖+1

𝑟𝑖,𝑗 𝑥𝑗

⎞
⎠
⎤
⎦ , (6)

with 𝑖 = 𝑀,𝑀 − 1, . . . , 1, and 𝑄 stands for the mapping to
the nearest point in the symbol constellation, (̂⋅) is the hard/or
soft estimate, 𝑟𝑖,𝑗 is the (𝑖, 𝑗)th entry of R. Inspection of (6)
reveals that, to estimate 𝑥𝑀 , the receiver needs to multiply by
the inverse of 𝑟𝑀,𝑀 . Thus 𝑦𝑀 constitutes a virtual subchannel
that has no interference from other subchannels. Hence, the
decision statistic for the 𝑀 th received symbol is

𝑥̂𝑀 = 𝑄

[(
1

𝑟𝑀,𝑀

)
𝑦𝑀

]

= 𝑄

[
𝑥𝑀 +

(
1

𝑟𝑀,𝑀

)
𝑛̃𝑀

]
. (7)

However, 𝑦𝑀−1 is subject to interference from the 𝑀 th
subchannel through the off-diagonal entry 𝑟𝑀−1,𝑀 and so
on. Assume that the previous decisions are correct (i.e., no
propagation of error), the DFD decouples the MIMO channel
into a set of 𝑀 independent, parallel SISO virtual subchannels,
and the different substreams can be expressed as

𝑦𝑖 = 𝑟𝑖,𝑖 𝑥𝑖 + 𝑛̃𝑖, for 𝑖 = 1, 2, . . . ,𝑀. (8)

Since 𝔼
[
ñ ñ𝐻

]
= 𝑁0 I𝑁 with 𝔼 [⋅] stands for expectation

and (⋅)𝐻 is the conjugate transpose, the output SNR of the 𝑖th
substream is given by

𝛾𝑖 = 𝑟2𝑖,𝑖 𝛾0, (9)

where 𝛾0 = 𝔼
[
x𝐻 x

]
/𝑀 𝑁0 is the average normalized

received SNR at each receive antenna. Thus, the output SNRs
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of the substreams are determined by the diagonal entries of
the matrix R which in turn depends on Π. Based on (9),
a pragmatic TAS criterion would be to choose the subset of
transmit antennas with the highest 𝑟𝑖,𝑖’s values. Now, it is
essential to mention that our AS criterion is also applicable to
the case where propagation of error exists. In this case, one
can show that the general sequential decision statistic can be
written as

𝑥𝑀−𝑖 =𝑄

[
𝑥𝑀−𝑖 +

1

𝑟𝑀−𝑖,𝑀−𝑖

×
⎛
⎝𝑛̃𝑀−𝑖 +

𝑀∑
𝑗=𝑀−𝑖+1

𝑟𝑀−𝑖,𝑗 Δ𝑒𝑗

⎞
⎠
⎤
⎦ , (10)

with 0 ≤ 𝑖 ≤ 𝑀−1, and Δ𝑒𝑗 denotes the error term resulting
from the hard/soft estimate made on the 𝑥𝑗 symbol. Hence to
minimize the error term, we have to select the largest 𝑟𝑖,𝑖’s val-
ues. The reason is that the error term is inversely proportional
to 𝑟𝑖,𝑖’s values. Thus, Clearly, the adopted transmit selection
criterion is optimal in the sense that it maximizes the post-
processing SNR at the receiver side.

Now, neglecting the propagation of error and using (9),
we can see that the channel capacity is now equivalent to
the capacity of a MIMO-SM system with linear receiver
employed. Thereby the channel is now decoupled into 𝑀
parallel substreams, for which the capacity with DFD is given
by [18]

𝐶 =

𝑀∑
𝑖=1

log2 (1 + 𝛾𝑖) , (11)

where 𝛾𝑖 is the post-processing SNR for the 𝑖th substream.
Thus the capacity of the transmit antenna selected system is
given by

𝐶TAS =

𝐾∑
𝑖=1

log2
(
1 + 𝑟2𝑖,𝑖 𝛾0

)
, (12)

where 𝑟𝑖,𝑖 is the (𝑖, 𝑖)th entry of R with H𝑝 Π𝑝 = QR.

B. Analysis on Outage Probability

In this section, we present a comprehensive analysis of
the outage probability for the TAS scheme over independent
Rayleigh fading channels. A lower bound on the outage
probability at high SNR regime is presented.

Recall that the instantaneous capacity expression of a
MIMO fading channel (without performing TAS) is given
by [1]

𝐶 = log2det

[
I𝑀 +

𝜁

𝑀
H𝐻 H

]
, bits/s/Hz, (13)

where 𝜁 = 𝔼
[
x𝐻 x

]
/𝑁0 is the total average energy over

a symbol period (i.e., total input power when no TAS is
performed), and det (⋅) is the determinant.

Now, an outage event occurs when the information trans-
mission rate (i.e., overall input data rate of the full system),
denoted by 𝑅, is greater than the instantaneous capacity 𝐶.
Hence, the outage probability is given by [2]

𝒫outage = Pr (𝐶 < 𝑅) . (14)

The overall system performance of the DFD is limited by
the first detected layer (i.e., equal rates are allocated across
layers). As a result, the overall outage probability of the DFD
is dominated by that of the 𝐾th substream (i.e., first detected
layer). Using the fact that equal rates are allocated across the
layers, a lower bound on the outage probability can be derived
by considering the case of single selected transmit antenna.
According to our approach, this single selected transmit an-
tenna, denoted by 𝜈, is determined by

𝜈 = argmax
1≤𝑖≤𝑀

{
𝑟2𝑖,𝑖
}
. (15)

The outage probability of the (𝐾 = 1, 𝑁) system can then be
written as

𝒫outage,K=1 = Pr
{
log2

(
1 + 𝑟2𝜈,𝜈 𝜁

)
< 𝑅/𝑀

}
= Pr

{
𝑟2𝜈,𝜈 <

(
2𝑅/𝑀 − 1

)
𝜁

}

= ℱ𝑟2𝜈,𝜈

((
2𝑅/𝑀 − 1

)
𝜁

)
, (16)

where ℱ𝑟2𝜈,𝜈
(⋅) is the cumulative distribution function (CDF)

of the random variable 𝑟2𝜈,𝜈 .
Thus the outage probability for the TAS scheme is lower

bounded by

𝒫outage,TAS ≥ ℱ𝑟2𝜈,𝜈

((
2𝑅/𝑀 − 1

)
𝜁

)
. (17)

Using the fact that 𝑟2𝜈,𝜈 is the largest order statistic [19], the
CDF of 𝑟2𝜈,𝜈 can be written as

ℱ𝑟2𝜈,𝜈

((
2𝑅/𝑀 − 1

)
𝜁

)
= ℱ𝑟21,1

((
2𝑅/𝑀 − 1

)
𝜁

)
× . . .

×ℱ𝑟2𝑀,𝑀

((
2𝑅/𝑀 − 1

)
𝜁

)
.

(18)

Now substituting (18) in (17), we get

𝒫outage,TAS ≥ ℱ𝑟21,1

((
2𝑅/𝑀 − 1

)
𝜁

)
× . . .

×ℱ𝑟2𝑀,𝑀

((
2𝑅/𝑀 − 1

)
𝜁

)
. (19)

It is important to keep in mind the fact that the entries
of R are independent of each other. Moreover, with fixed
Π, the square of the 𝑖th diagonal element of R, 𝑟2𝑖,𝑖, is
of central chi-square distribution with 2 (𝑁 − 𝑖+ 1) degrees
of freedom [20], [21], i.e., 𝑟2𝑖,𝑖 ∼ 𝜒2

2(𝑁−𝑖+1). Consequently,

ℱ𝑟2𝑖,𝑖

(
(2𝑅/𝑀−1)

𝜁

)
with 1 ≤ 𝑖 ≤ 𝑀 , is the CDF of a central

chi-square distribution ∼ 𝜒2
2(𝑁−𝑖+1). Using this fact, the CDF

can be expressed as [22]

ℱ (𝑥, 𝑘) = 𝑃

(
𝑘

2
,
𝑥

2

)
, (20)
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Fig. 2. Comparison of different AS schemes over independent Rayleigh
flat-fading channels, and QPSK transmission.

where 𝑃 (𝑘, 𝑥) denotes a normalized incomplete Gamma
function (regularized Gamma function) defined as [22]

𝑃 (𝑘, 𝑥) =
1

Γ (𝑘)

∫ 𝑥

0

𝑒−𝑡𝑡𝑘−1 𝑑𝑡,

where 𝑘 (𝑘 ≥ 0) denotes the degrees of freedom.
Now substituting (20) in (19), we get

𝒫outage,TAS ≥
[
𝑃

(
𝑁,

(
2𝑅/𝑀 − 1

)
2 𝜁

)]
× . . .

×
[
𝑃

(
𝑁 −𝑀 + 1,

(
2𝑅/𝑀 − 1

)
2 𝜁

)]
.

(21)

The power series expansion of 𝑃 (𝑘, 𝑥) is given by [22]

𝑃 (𝑘, 𝑥) = 𝑥𝑘 𝛾∗ (𝑘, 𝑥)

= 𝑥𝑘 𝑒−𝑥
∞∑
𝑛=0

𝑥𝑛

Γ (𝑘 + 𝑛+ 1)
, (22)

where 𝛾∗ (𝑘, 𝑥) is the incomplete Gamma function. In order to
get 𝒫outage,TAS at high SNR, we substitute (22) in (21). Now,
using the fact that Γ (𝑧) = (𝑧 − 1)!, where 𝑧 is a positive
integer, 𝒫outage,TAS at high SNR can be written as

𝒫outage,TAS ≥
((

2𝑅/𝑀 − 1
)

2 𝜁

) 𝑀∑

𝑖=1

(𝑁−𝑖+1)

×
(

1∏𝑀
𝑖=1 (𝑁 − 𝑖+ 1)!

)

≥
((

2𝑅/𝑀 − 1
)

2

)(𝑀 𝑁− 1
2 (𝑀

2−𝑀))

×
(

1∏𝑀
𝑖=1 (𝑁 − 𝑖+ 1)!

)

× 𝜁−(𝑀 𝑁− 1
2 (𝑀

2−𝑀)). (23)

The expressions in (16) and (23) suggest that the diversity

order of the outage probability when the best transmit antenna
is selected, according to (15), is 𝑀 𝑁 − 1

2

(
𝑀2 −𝑀

)
. It

is worth pointing out that the diversity order of the outage
probability for the TAS scheme is upper bounded by that
when the best transmit antenna is selected according to (15),
and lower bounded by the performance of the full complexity
system. Thus, it can be readily seen from (23) that the diversity
order of the outage probability for the TAS scheme is upper
bounded by

𝐷TAS ≤ 𝑀 𝑁 − 1

2

(
𝑀2 −𝑀

)
, (24)

where equality (i.e., 𝐷TAS = 𝑀 𝑁 − 1
2

(
𝑀2 −𝑀

)
) holds

only for the (𝐾 = 1, 𝑁) system employing DFD and per-
forming the proposed TAS. Whereas the diversity gain of the
(𝑀 = 1, 𝑁) system employing DFD and without performing
TAS is only 𝑁 .

IV. SIMULATION RESULTS

In this section, we present both analytical and simulation
results for the proposed TAS scheme in independent Rayleigh
flat fading channels. In the following, a system with 𝑀
transmit and 𝑁 receive antennas out of which 𝐾 transmit
antennas are chosen, is referred to as an (𝑀,𝑁 ; 𝐾) system.

In Fig. 2, we evaluate the performance of the proposed
TAS approach. The performance is measured in terms of
the bit-error rate (BER) for a frame of 100 symbols from
quaternary phase-shift keying (QPSK) complex constellations
averaged over 10, 000 frames. As shown, Fig. 2 depicts the
BER performance of the (𝑀 = 4, 𝑁 = 4; 𝐾 = 2) system
employing DFD and performing the proposed TAS scheme.
As a benchmark, the performance of the same system per-
forming optimal capacity-based TAS approach [6] is shown.
Also, for reference, we plot along the performance of the
(𝑀 = 2, 𝑁 = 2; 𝐾 = 0) system employing ML detector
without performing TAS. It is clear from the figure that the
proposed TAS with (𝑀 = 2, 𝑁 = 4; 𝐾 = 2) achieves a
performance very close to optimal capacity-based TAS. Note
that optimal capacity-based TAS involves an exhaustive search
over all possible

(
𝑀
𝐾

)
subsets of transmit antennas, requir-

ing around
(
𝑀
𝐾

)
𝐾3 complex additions/multiplications, which

grows exponentially with 𝑀 for 𝐾 ≈ 𝑀/2 [23]. However,
it can be easily shown that our proposed TAS has a 𝑂

(
𝑀3
)

complexity. It can be noticed that both approaches outperform
the (𝑀 = 2, 𝑁 = 2; 𝐾 = 0) system employing ML detector.
Note that here all systems have the same bandwidth efficiency.

In Fig. 3, we evaluate the performance of the proposed
TAS scheme from the capacity point of view in a full
(𝑀 = 3, 𝑁 = 3) MIMO system. We observe from the figure
that the capacity of the proposed (𝑀 = 3, 𝑁 = 3; 𝐾 = 2)
system is close to optimal capacity-based TAS introduced
in [6] but with much lower complexity.

Fig. 4 displays the outage probability for a (𝑀 = 2, 𝑁 =
2; 𝐾 = 1) system performing the proposed TAS. For
the same system, we plot along the closed-form expression
given in (23). As a benchmark, we plot along the outage
probability curves for the (𝑀 = 2, 𝑁 = 2; 𝐾 = 0)
and (𝑀 = 1, 𝑁 = 2; 𝐾 = 0) systems, respectively. The
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Fig. 3. Capacity v/s SNR for different antenna-selection schemes, 𝑀 = 3,
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Fig. 4. Outage probability comparison over independent Rayleigh fading
channels. ℛ = 2 bits/s/Hz, 𝑀 = 2, 𝑁 = 2, and QPSK transmission.

figure clearly shows accuracy of the closed-form analytical
expression in (23) when compared to simulated results at
high SNR, indicating the achieved diversity order. As can be
observed, in this case, both curves achieve diversity order of
three (𝐷 = 3), confirming our analytical results.

V. CONCLUSION

A transmit antenna selection (TAS) criterion that maximizes
the post-processing SNR, at the receiver end, has been in-
troduced for the DFD/VBLAST receiver over flat Rayleigh
fading channels. We have derived a lower bound expression
on the outage probability for the TAS scheme at high SNR
regimes. We have also shown that the performance of the
proposed scheme is comparable to the optimal selection based
on exhaustive search, but with much lower complexity.
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