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Abstract This paper presents a comprehensive review

and analysis of recent spectral shape descriptors for non-

rigid 3D shape retrieval. More specifically, we compare the

latest spectral descriptors based on the Laplace–Beltrami

(LB) operator, including ShapeDNA, heat kernel signature,

scale invariant heat kernel signature, heat mean signature,

wave kernel signature, and global point signature. We also

include the eigenvalue descriptor (EVD), which is a geo-

desic distance-based shape signature. The global descrip-

tors ShapeDNA and EVD are compared via the chi-squared

distance, while all local descriptors are compared using the

codebook model. Moreover, we investigate the ambiguity

modeling of codebook for the densely distributed low-level

shape descriptors. Inspired by the ability of spatial cues to

improve discrimination between shapes, we also propose to

adopt the isocontours of the second eigenfunction of the

LB operator to perform surface partition, which can sig-

nificantly ameliorate the retrieval performance of the time-

scaled local descriptors. In addition, we introduce an

intrinsic spatial pyramid matching approach in a bid to

further enhance the retrieval accuracy. Extensive experi-

ments are carried out on two 3D shape benchmarks to

assess the performance of the spectral descriptors. Our

proposed approach is shown to provide the best

performance.

Keywords Shape retrieval � Spectral geometry �
Intrinsic partition � Aggregate local descriptors

1 Introduction

Recent advances in 3D imaging and processing, graphics

hardware and networks have led to a whopping increase in

geometry models available freely or commercially on the

Web. As a result, the task of efficiently measuring the 3D

object similarity to find and retrieve relevant objects for a

given query and categorize an object into one of a set of

classes has become of paramount importance in a wide

range applications. The main challenge in 3D object

retrieval algorithms is to compute an invariant shape

descriptor that captures well the geometric and topological

properties of a shape [1–5].

Content-based shape retrieval based on the comparison

of shape properties is complicated by the fact that many 3D

objects manifest rich variability, and invariance to different

classes of transformations and shape variations is often

required. One of the most challenging settings addressed is

the case of nonrigid or deformable shapes, in which the

class of transformations may be very wide due to the

capability of such shapes to bend and assume different

forms. Recently, various methods have been proposed to

tackle nonrigid 3D shape recognition problem, particularly

with the deformation invariant representation. These

methods can be mainly categorized into two main classes:

skeleton-based [6–10] and surface-based [11–15]. The

former approaches usually capture the global topological

structure of the shape, and a dissimilarity is often deter-

mined as the cost function to match two or more shapes.

The latter methods, on the other hand, often represent a

shape as a frequency histogram of deformation invariant

local distances or vertex signatures. In this paper, we focus

mainly on the second paradigm with local vertex descrip-

tors. Research efforts on spectral shape analysis have

recently resulted in numerous spectral descriptors [11–18],
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which are predominately based on the Laplace–Beltrami

(LB) operator [19, 20]. However, to date, no comprehen-

sive comparison has been conducted in the literature, which

often results in intractable situation when choosing

appropriate descriptors for certain applications.

In the field of image processing, an analogous problem

is image retrieval which refers to finding images depicting

similar scenes or objects. Like 3D shapes, images may

manifest significant variability. The computer vision and

pattern recognition communities have recently witnessed a

wide adoption of feature-based methods in object recog-

nition and image retrieval applications. One popular family

of feature-based techniques is the scale-invariant feature

transform (SIFT) [21], which has shown a good perfor-

mance in various scenarios [22]. Feature-based methods

also allow to represent images as collections of ‘‘visual

words’’ and treat them using text search approaches, such

as the codebook model paradigm.

More recently, the authors in [23] explored analogous

codebook model approaches applied to the problem of

nonrigid 3D shape retrieval. They use the heat kernel sig-

nature (HKS) [11] and the scale-invariant heat kernel sig-

nature (SIHKS) [12] as ‘‘geometric words’’, and constructed

shape descriptors by means of soft-assignment of visual

words to the densely distributed vertex signatures. Low-

level features may have a considerable effect on the rec-

ognition performance. Following the work in [23], we

compare the recent spectral descriptors in the framework of

the codebook model, and thus comprehensively analyze and

recommend the descriptor which plays the same role as

SIFT in the image domain. One inherent component of the

codebook model is the assignment of discrete codewords to

continuous low-level features. Despite the clear mismatch

of this hard assignment with the nature of continuous fea-

tures, the approach has been applied successfully to images.

We explicitly model the codeword assignment ambiguity

for the densely described 3D shape, which also provides an

understanding of the different spectral descriptors.

For shape retrieval tasks, the codebook models, which

represent a shape as an orderless collection of local fea-

tures, have demonstrated impressive levels of performance

[23]. However, because these models disregard all infor-

mation about the spatial layout of the features, they have a

limited descriptive ability. Several spatial extensions in the

image domain have been proposed recently, the most

widely used one is spatial pyramid matching [24]. Unfor-

tunately, overcoming the spatial limitations in 3D shape

analysis to build effective structural object descriptions is

quite challenging, especially when the recognition system

must be designed to work in the presence of large defor-

mation changes. The direct approaches can use the existing

consistent shape segmentation methods and geometric

correspondence, but they achieve a good performance at a

relatively high computational cost in addition to the fact

the number of subregions cannot be fixed among different

shape classes.

Inspired by the fact that the Reeb graph extracted from

the second eigenfunction of the LB operator is pose inde-

pendent and captures the global profile of surface geometry

[25], we propose to adopt the level sets of this eigenfunc-

tion to intrinsically partition the surface. Since the con-

struction of the second eigenfunction is an inseparable step

in calculating the spectral descriptors, the proposed parti-

tion method is a natural ingredient of the current frame-

work. Extensive experimental results show that the

intrinsic partition significantly improves the retrieval

accuracy of all the time-scaled spectral descriptors with

varying codebook models. Moreover, the intrinsic spatial

pyramid matching on surfaces is shown to be robust and

yields the best results. In addition, the intrinsic spatial

partition framework offers further insight into the success

of these recently proposed spectral shape descriptors.

1.1 Contributions

The contributions of this paper may be summarized as

follows:

1. We present a comprehensive survey and analysis of

recent spectral descriptors for nonrigid 3D shape

retrieval.

2. We investigate the ambiguity modeling of codebook

for the densely distributed low-level shape descriptors.

3. We introduce the intrinsic spatial partition, which

yields a significant retrieval accuracy improvement.

The rest of this paper is organized as follows. Section 2

provides a brief overview of some previous works pertinent

to shape analysis and the codebook model. The deforma-

tion invariant shape representation is presented in Sect. 3,

which starts by defining the LB operator on Riemannian

manifolds, followed by its discretization and eigenanalysis.

Section 4 briefly reviews the graph embedding and spectral

shape descriptors. In Sect. 5, we describe the codebook

model with various ambiguity methods. In Sect. 6, we

propose the intrinsic spatial partition. Experimental results

on two standard datasets are presented in Sect. 7. Finally,

we conclude and point out future work directions in Sect. 8.

2 Previous work

Since the introduction of SIFT and the codebook model,

image classification has witnessed a rapid and fruitful

development in recent years. By contrast, the vast majority

of 3D shape recognition methods are ad hoc, and the per-

formance is usually limited due largely to two main
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reasons: (1) no excellent descriptor like SIFT is available

for 3D shapes; (2) an appropriate codebook model and its

intrinsic spatial extension are challenging to find due to

isometric shape transformation. In this section, we discuss

some previous works and current developments pertinent to

shape analysis and the codebook model.

2.1 Shape analysis

In recent years, considerable research efforts on shape

analysis has been conducted in an bid to design a better

shape descriptor aimed at finding the most relevant shapes.

In the literature, there are several survey works [1–4] that

have keen interest in systematic shape retrieval and the

taxonomy. In the sequel, we present some developments on

3D shape analysis from early general shape description to

recent spectral shape analysis.

2.1.1 Shape description

A 3D shape is usually represented as a volume or surface/

mesh. Other effective representation methods are based on

medial [8] or multiple views [26]. Over the past decade,

there has been a flurry of research activity on surface-based

shape recognition due largely to two key reasons: first,

surface-based 3D models are more popular because of their

highly effective representation ability and less memory

storage. Second, humans are taught to differentiate

between shapes mainly by surface features, and in many

shape applications only the surface is of interest. Therefore,

in this paper, we focus on surface-based shape recognition.

Early research works on 3D shape description have been

centered primarily on invariance under global Euclidean

transformations (i.e., rigid transformations). These works

include the shape context [27, 28], shape distributions [29],

and spherical harmonics [30]. Recently, significant efforts

have been invested in exploring the invariance properties of

shapes to nonrigid deformations. An intuitive approach is to

replace the Euclidean distance with the geodesic one. The

primary motivation is that unlike the Euclidean distance,

which is basically a straight line between two points in 3D

space, the geodesic distance captures the global nonlinear

structure and the intrinsic geometry of the data. For exam-

ple, Elad and Kimmel [31] computed a bending invariant

signature of a surface by applying the multidimensional

scaling procedure to the geodesic distance matrix. In [32],

an information-theoretic framework using the geodesic

shape distributions was proposed. Also, Jain et al. [33]

constructed a shape descriptor for correspondence and

retrieval [5] in the spectral domain of the geodesic distance

matrix. The main drawback of the geodesic distance is that

it suffers from strong sensitivity to topological noise, which

might heavily damage the shape invariants.

2.1.2 Spectral shape analysis

The recently emerging field of diffusion geometry provides

a generic framework for many methods in the analysis of

geometric shapes [34]. It formulates the heat diffusion

processes on manifolds. Spectral shape analysis is a meth-

odology that relies on the eigensystem (eigenvalues and/or

eigenfunctions) of the LB operator to compare and analyze

geometric shapes. Levy [35] showed that the eigenfunctions

can be well adapted to the geometry and the topology of an

object. Coifman and Lafon [34] constructed diffusion dis-

tances as the L2-norm difference of energy distribution

between two points initialized with unit impulse functions

after a given time. Through the statistic of the distribution,

the spectral distances can also be used for nonrigid shape

recognition [36]. Other similar spectral distances include

the commute time distance [37] and the biharmonic dis-

tance [38]. Since the eigensystem of the LB operator is

isometric invariant, it is well suited for the analysis and

retrieval of nonrigid shapes, and it is more robust than the

geodesic distance. By integrating the local distribution of

features, the Intrinsic Shape Context was proposed in [28]

as a natural extension of the 2D Shape Context to 3D

nonrigid surfaces, and it was shown to outperform indi-

vidual vertex descriptors in 3D shape matching.

A recent survey [39] on spectral mesh processing

comprehensively reports the spectral methods derived from

certain appropriately defined mesh operators and their

applications. In this paper, however, we theoretically and

experimentally review and compare spectral signatures

based on the LB operator, including the HKS [11], SIHKS

[12], heat mean signature (HMS) [13], wave kernel sig-

nature (WKS) [14], and global point signature (GPS) [15].

The details are provided in Sect. 4.

2.2 Codebook model

The past decade has witnessed the surge in popularity of

the codebook model in the image domain. It was first

introduced in text retrieval, and then later applied to image

categorization in the seminal paper [40]. Subsequent

research has focused on overcoming its two intrinsic lim-

itations to improve discrimination, namely (1) the infor-

mation loss of the assignment of local features to visual

words, and (2) the lack of information on the spatial layout

of the local features.

2.2.1 Quantization issues

Increasing the size of the dictionary is often reported to be

able to improve the performance of the codebook model,

but leads to a higher computational complexity for dic-

tionary construction and feature assignment. On the other
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hand, when the vocabularies are more compact, the infor-

mation lost in the quantization process becomes more

important, in particular when using hard assignment [41].

By directly using the image-to-class distances without

descriptor quantization, Boiman et al. [42] showed that the

discrimination ability is considerably decreased due to the

rough quantization of the feature space. But with the soft-

assignment of descriptors to multiple visual words, the loss

can be compensated as reported in [43, 44]. Inspired by

compressive sensing methodology, other approaches for

assignment were guided by sparsity constraints [45] and

locality constraints [46].

Bag-of-features (BoF) usually encodes the 0-order sta-

tistics of the distribution of descriptors. The Fisher vector

extends the BoF by encoding high-order statistics (first and,

optionally, second order). This description vector is the

gradient of the sample’s likelihood with respect to the

parameters of this distribution, scaled by the inverse square

root of the Fisher information matrix [47]. A simplified

version of Fisher kernels, the vector of locally aggregated

descriptors (VLAD) was also proposed in [48]. These three

different ways of aggregating local image descriptors into a

vector were evaluated by Jegou et al. [49]. Also, Picard and

Gosselin [50] expanded the VLAD approach by adding an

aggregation of the tensor product of descriptors.

In this paper, the description of 3D shapes is obtained by

densely sampling salient points on the surface of the shape.

In other words, the spectral signatures on every mesh

vertex are considered to obtain the codebook representa-

tion. To shed some light on the feature space, we use the

Laplacian and Gaussian kernels. We also use different

kinds of ambiguity modeling methods to help us under-

stand the information loss in quantization.

2.2.2 Spatial information

Similar to the image domain, the codebook model repre-

sentation for 3D surfaces is a frequency histogram of

quantized local geometric appearance, where the spatial

layout of the geometric appearance is completely ignored

[23]. Clearly, the spatial information may convey useful

cues to improve the discrimination between 3D shapes.

Before modeling the spatial layout on surfaces, it is nec-

essary to review the technique for images. In the literature,

two different ways to encode spatial information have been

explored, which are based on local relative positions of

pairwise features, and on global absolute positions.

2.2.3 Relative spatial relation

Modeling pairwise spatial features into the codebook

model is an intuitive way to incorporate spatial informa-

tion. A spatially sensitive affine-invariant image descriptor

was constructed by Bronstein and Bronstein [51] using

canonical relation, in which both the features and their

relation are affine-invariant. They also generalize the

pairwise spatially sensitive descriptors called ‘‘Expression’’

for 3D surface using the heat kernel as the relation [23].

Moreover, the relationship of visual words was also con-

sidered. Saverese et al. [52] used correlograms of visual

words to model the spatial correlations between quantized

local descriptors. Ling and Soatto [53] characterized the

relative locations of visual words. Their proximity distri-

bution representation is a 3D structure which records the

number of times a visual word appears within a particular

number of nearest neighbors of another word. Finally,

besides pairwise relation, more complex relation such as

the graph manner layout of groups of quantized local

invariant descriptors was proposed by Behmo et al. [54],

which can preserve translational relations between features.

Liu et al. [55] calculated spatial histograms where the co-

occurrences of local features are computed in circular

regions of varying distances.

2.2.4 Absolute spatial relation

The spatial pyramid kernel (SPM), proposed by Lazebnik

et al. [24], was one of the first works to address the lack of

spatial information in the BoF representation. Their spatial

pyramid representation was motivated by an earlier work,

termed pyramid matching by Grauman and Darrell [56], on

finding approximate correspondences between sets of

points in high-dimensional feature spaces. The fundamen-

tal idea behind pyramid matching is to partition the feature

space into a sequence of increasingly coarser grids and then

compute a weighted sum over the number of matches that

occur at each level of resolution. However, SPM and rel-

ative spatial relation modeling are still too weak. Recently,

stronger spatially encoding methods include encoding

geometric information of objects within the images. Local

features of an image are projected onto different directions

or points to generate a series of ordered BoF, based on

which families of spatial partitions can guarantee the

invariance of object translation, rotation, and scaling [57].

Additionally, there are some methods characterizing both

the absolute and relative spatial layout of an image. Spatial

pyramid co-occurrence [58] computes local co-occurrence

with respect to spatial layout over a hierarchical spatial

partitioning of an image. In addition to co-occurrences,

geometry-preserving visual phrases [59] can encode more

spatial information through capturing the local and long-

range spatial layouts of the words. Unlike manually defined

spatial regions for pooling, Jia et al. [60] proposed to learn

more adaptive receptive fields to increase the performance

even with a significantly smaller codebook size at the

coding layer. In [61], the Gaussian mixture model was
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encoded with spatial layout to improve the performance of

Fisher kernel for image classification.

Local relative position was generalized to 3D surfaces as

spatially sensitive descriptor in [23], but modeling the

absolute spatial positions is not straightforward as in the

case of 2D images because of the intrinsic deformation of

nonrigid shapes. One contribution of this paper is to

introduce the intrinsic partition to capture the global

absolute spatial position, thus significantly improving the

performance.

3 Deformation invariant shape representation

3.1 Laplace–Beltrami operator

Let M be a smooth orientable 2-manifold (surface)

embedded in R
3: A global parametric representation

(embedding) of M is a smooth vector-valued map (also

called surface patch) x defined from a connected open set

(parametrization domain) U � R
2 to M � R

3 such that

xðuÞ ¼ x1ðuÞ; x2ðuÞ; x3ðuÞ
� �

ð1Þ

where u ¼ ðu1; u2Þ 2 U:

Given a twice-differentiable function f : M! R; the

LB operator [19] is a second-order partial differential

operator defined as

DMf ¼ � 1
ffiffiffiffiffiffi
jgj

p
X2

i;j¼1

o

ou j

ffiffiffiffiffiffi
jgj

p
gij of

oui

� �

¼ �
X2

i;j¼1

gij o

ou j

of

oui
þ ðlower order termsÞ ð2Þ

where the matrix g = (gij) is referred to as a Riemannian

metric tensor on M; gij denote the elements of the inverse

of the metric tensor g-1, and |g| is the determinant of g. The

functions gij are sometimes referred to as the metric coef-

ficients. The Riemannian metric g is an intrinsic quantity in

the sense that it relates to measurements inside the surface.

It is the analogous of the speed in the case of space curves,

and determines all the intrinsic properties of the surface M:

These properties depend on the surface and do not depend

on its embedding in space. In addition, the tensor g is

invariant to rotation of the surface in space because it is

defined in terms of inner products that are rotation

invariant.

3.2 Discretization

Assume that the surface M is approximated by a triangular

mesh. A triangle mesh M may be defined as M ¼ ðV; EÞ or

M ¼ ðV; T Þ; where V ¼ fv1; . . .; vmg is the set of vertices,

E ¼ feijg is the set of edges, and T ¼ ft1; . . .; tng is the set

of triangles. Each edge eij (denoted by ½vi; vj� or simply

[i, j]) connects a pair of vertices fvi; vjg: Two distinct

vertices vi; vj 2 V are adjacent (denoted by vi� vj or simply

i* j) if they are connected by an edge, i.e., eij 2 E: The

neighborhood (1-ring) of a vertex vi is the set

vH

i ¼ fvj 2 V : i� jg:
Several discretizations of the LB operator are available

in the literature [16, 62–65]. In this paper, we use the

approach developed in [62], which employs a mixed finite

element/finite volume method on triangle meshes. Hence,

the value of DMf at a vertex vi can be approximated using

the cotangent weight scheme as follows:

DMf ðviÞ ¼
1

ai

X

vj2vH

i

cot aij þ cot bij

2
f ðvjÞ � f ðviÞ
� �

; ð3Þ

where aij and bij are the angles \ðvivk1
vjÞ and \ðvivk2

vjÞ of

two faces ta ¼ fvi; vj; vk1
g and tb ¼ fvi; vj; vk2

g that are

adjacent to the edge [i, j], and ai is the area of the voronoi

cell (shaded polygon), as shown in Fig. 1. It is worth

pointing out that the cotangent weight scheme is numeri-

cally consistent and preserves several important properties

of the continuous LB operator, including symmetry and

positive-definiteness [63].

Define the weight function x : V � V ! R as

xij ¼
cot aij þ cot bij

2ai

if i� j

0 o.w.

8
<

:
ð4Þ

Then, for a function f : V ! R that assigns to each

vertex vi 2 V a real value f ðviÞ (we can view f as a column

vector of length m), we may write the LB operator given by

Eq. (3) as

Lf ðviÞ ¼
X

vj2vH

i

xijðf ðviÞ � f ðvjÞÞ; ð5Þ

Fig. 1 Cotangent weight scheme: illustration of the angles aij and bij
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where the matrix L is given by

L ¼
dj if i ¼ j

�xij if i� j

0 o.w.

8
<

:
ð6Þ

and dj ¼
Pm

i¼1 xij is the weighted degree of the vertex vi:

3.3 Eigenanalysis

Note that xij = xji implies L is not a symmetric matrix.

Thus, the spectrum (set of eigenvalues) of the eigenvalue

problem Lui ¼ kiui may not be real [15]. Noting that

xij = cij/ai, where

cij ¼
cot aij þ cot bij

2
if i� j

0 o.w.

(

ð7Þ

we may factorize the matrix L as L = A-1C, where

A = diag(ai) is a positive-definite diagonal matrix and C is

a sparse symmetric matrix given by

C ¼

Pm
i¼1 cij if i ¼ j

�cij if i� j

0 o.w.

8
<

:
ð8Þ

Therefore, we may write the eigenvalue problem Lui ¼
kiui as a generalized eigenvalue problem Cui ¼ kiAui;

which can be solved efficiently using the Arnoldi method

of ARPACK. Figure 2 shows a 3D hand model and the

sparsity patterns of the cotangent matrix C. Recall that the

sparsity pattern (or support) of a matrix A = (aij) is the set

of indices ij with aij = 0.

4 Graph embedding and shape descriptors

The eigenvalues ki and associated eigenfunctions ui of the

LB operator can be computed by solving the generalized

eigenvalue problem:

Cui ¼ kiAui; i ¼ 1; 2; . . .;m ð9Þ

where ui is the unknown eigenfunction evaluated at m

mesh vertices. That is, ui is an m-dimensional vector.

We may sort the eigenvalues in ascending order as

0 ¼ k1\k2� � � � � km with corresponding eigenfunctions

as u1;u2; . . .;um; where each eigenfunction ui ¼
ðuiðv1Þ; . . .;uiðvmÞÞ0 is an m-dimensional vector. Note that

the eigensystem fki;uigi is intrinsic to the manifold and

enjoys a nice property of being isometric invariant. It

should also be noted that the meshes are assumed to be

connected.

4.1 ShapeDNA and eigenvalue descriptors

The ShapeDNA [16] is one of the first spectral shape

descriptors. It is a normalized sequence of the first eigen-

values of the LB operator. Its main advantages are the

simple representation (a vector of numbers) and scale

invariance. Despite its simplicity, the ShapeDNA yields a

very good performance for the shape retrieval of nonrigid

shapes. However, the eigenvalues are a global descriptor,

therefore the ShapeDNA cannot be used for local or partial

shape analysis. The Eigenvalue descriptor (EVD) [5], on

the other hand, is a sequence of the eigenvalues of the

geodesic distance matrix. Both ShapeDNA and EVD can

be normalized by the second eigenvalue.

4.2 Global point signature

The GPS [15] at a surface point is a vector of scaled

eigenfunctions of the LB operator. The GPS is a global

feature in the sense that it cannot be used for partial shape

matching. It is defined in terms of the eigenvalues and

eigenfunctions of DM as follows:

GPSðxÞ ¼ u2ðxÞffiffiffiffiffi
k2

p ;
u3ðxÞffiffiffiffiffi

k3

p ; . . .;
uiðxÞffiffiffiffi

ki

p ; . . .

� �
ð10Þ

GPS is invariant under isometric deformations of the shape,

but it suffers for the problem of eigenfunctions switching

whenever the associated eigenvalues are close to each

other.

4.3 Heat kernel signature

The heat kernel ptðx; yÞ is a fundamental solution to the

heat equation [66] at point x at time t with initial distri-

bution u0(x) = d(x - y) at point y 2M; and it is defined in

terms of the eigenvalues and eigenfunctions of DM as

follows:

ptðx; yÞ ¼
X1

i¼1

e�ki tuiðxÞuiðyÞ ð11Þ

Intuitively, ptðx; yÞ describes the amount of heat that is

propagated or transferred from point x to point y in time

t. Therefore, ptðx; xÞ describes the amount of heat that

remains at point x after time t. For each point x 2M; the

HKS [11] is represented in the discrete temporal domain by

a n-dimensional feature vector

HKSðxÞ ¼ pt1
ðx; xÞ; pt2

ðx; xÞ; . . .; ptn
ðx; xÞ

� �
ð12Þ

where t1; t2; . . .; tn are different time-scales.
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4.4 Scale invariant heat kernel signature

Let M and M
0 be a shape and its uniformly scaled version

by a factor of a, respectively. Denote by pasðx; yÞ the heat

kernel with scale logarithmically sampled using some basis

a at each point x. Thus, the heat kernel of the scaled shape

becomes p0ðsÞ ¼ a�2pðsþ 2 loga aÞ: In order to remove

the dependence on the multiplicative constant a-2, the

logarithm of the signal is taken and then differentiated with

respect to the scale variable [12]:

d

ds
log p0ðsÞ ¼ d

ds
ð�2 log aþ log pðsþ 2 loga aÞ

¼
d
ds pðsþ 2 loga aÞ
pðsþ 2 loga aÞ ð13Þ

Let p0 ¼
d
dspðsÞ
pðsÞ ¼

�
P

i	 0
kias log ae�kia

s
u2

i ðxÞ
�
P

i	 0
e�kia

s u2
i
ðxÞ then a new function

~p which transforms ~p0ðsÞ ¼ ~pðsþ 2 loga aÞ as a result of

scaling is obtained. The Fourier transform of ~p and its

absolute value are given by

F ~p0½ �ðxÞ ¼ ~H0ðxÞ ¼ ~HðxÞe�jx2 loga a

j~H0ðxÞj ¼ j~HðxÞj:
ð14Þ

Thus, the SIHKS is defined as

SIHKSðxÞ ¼ j~Hðx1Þj; j~Hðx2Þj; . . .; j~HðxnÞj
� �

: ð15Þ

4.5 Wave kernel signature

The fundamental idea of the WKS [14] is to represent a

point x 2M by the average probabilities of quantum par-

ticles of different energy levels to be measured in x.

Assume a quantum particle with unknown position is on

the surface. Then the wave function of the particle is the

Schrödinger equation solution, which can expressed in the

spectral domain as

wEðx; tÞ ¼
X1

k¼1

eikktukðxÞfEðkkÞ ð16Þ

where E denotes the energy of the particle at time t = 0

and fE its initial distribution.

Since wEðx; tÞj j2 is the probability to measure the par-

ticle at a point x at time t, it follows that the average

probability (over time) to measure a particle in x is given

by

PEðxÞ ¼ lim
T!1

1

T

ZT

0

wEðx; tÞj j2¼
X1

k¼1

ukðxÞ2fEðkkÞ2 ð17Þ

Let E1;E2; . . .;En be n log-normal energy distributions.

Then, each point x on the surface M is associated with a

WKS, which can represented by a n-dimensional feature

vector of average probabilities as follows:

WKSðxÞ ¼ Pe1
ðxÞ; Pe2

ðxÞ; . . .; Pen
ðxÞð Þ ð18Þ

where ei = log Ei is the logarithmic energy scale. The

WKS represents the average probability of measuring a

quantum particle at a specific surface point. Unlike the

HKS, the WKS separates influences of different frequen-

cies, treating all frequencies equally. In other words, HKS

uses low-pass filters, while WKS uses band-pass filters.

4.6 Heat mean signature

The HMS [13] quantitatively evaluate the temperature

distribution resulting from the heat flow process

Fig. 2 3D hand model (left)

and sparsity pattern plot of the

cotangent matrix C (right)
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HMStðxÞ ¼
1

m

X

y 6¼x

ptðx; yÞ ð19Þ

which can be physically interpreted as the average

temperature on the surface obtained by applying a unit

amount of heat on the vertex x and after a certain amount of

time of heat dissipation. A relatively smaller parameter t is

often empirically chosen to preserve a higher resolution

version of the original surface [67]. Fang et al. [17] also

proposed the temperature distribution descriptor, which is

based on the distribution of the values of average

temperature for all of the vertices on the mesh. We

construct a multi-scale HMS to compare temperature

distribution with multiple diffusion times as follows:

HMSðxÞ ¼ HMSt1 ;HMSt2 ; . . .;HMStnð Þ: ð20Þ

For the sake of notational simplicity, we use s(x) to rep-

resent the types of the above spectral signatures evaluated

at a surface point x, i.e., GPS, HKS, SIHKS, WKS, or

HMS.

5 Aggregating local descriptors with codebook models

In this section, we focus on the methods for aggregating

dense local spectral descriptors into a compact represen-

tation of the whole shape. Bronstein et al. [23] initiated the

study of the nonrigid 3D shape retrieval via BoF with soft-

assignment. In this paper, we comprehensively investigate

some variants of the codebook model for aggregating these

local spectral descriptors in a dense signature space. In

particular, we propose an intrinsic spatial partition, which

can be seen as the counterpart of the spatial extension for

the codebook model in image recognition; thus further

enhancing the results.

Given a set of local point-wise signatures densely

computed on each vertex on the mesh surface, we quantize

the signature space to obtain a compact histogram repre-

sentation of the shape using the codebook model approach.

The visual word vocabulary in the codebook model may be

constructed in various ways. We use the k-means algorithm

to generate the visual vocabulary. This is computationally

expensive, but as this step is performed off-line, it has no

impact on the search time. Thus, the ‘‘geometric words’’ of

a vocabulary P ¼ fpk; k ¼ 1; 2; . . .;Kg are obtained as the

K centroid of k-means clustering in the signature space. We

can use various types of spectral descriptors. From any

shape, we get a specific type of local spectral descriptors

S ¼ fst; t ¼ 1; 2; . . .; Tg for comparison. By a certain vec-

tor coding technique, each shape will be described by a

histogram H. Since the number of vertices is usually dif-

ferent among different meshed shapes, an appropriate

normalization technique is also important for the code-

word-cumulative histogram representation. We normalize

P by the total number of vertices of each shape.

Modeling the codeword ambiguity plays a crucial role

on the performance of the codebook model. In the litera-

ture, visual word ambiguity modeling is used occasionally,

often ad hoc motivated, and rarely evaluated. However, a

formal summarized work was recently proposed by Gemert

et al. [44], who motivated and evaluated several types of

visual word ambiguity, and provided ample analysis. For

completeness, we introduce these types in the scenario of

3D geometric shapes:

• Lp norm codebook: Each local descriptor st is asso-

ciated with its nearest visual word NN(st) in the

codebook. For each codeword pk, the differences of

vector st assigned to pk are accumulated by Lp norm as

follows:

qi ¼
X

st :NNðstÞ¼i

st � pik kp; p ¼ 0; 1; 2 ð21Þ

Note that L0 is the traditional codebook, which is the

histogram of the number of local descriptors assigned

to each visual word.

• Kernel codebook: The histogram estimator of the code

words may be replaced by a kernel density estimator.

Moreover, a suitable kernel (such as the Gaussian)

allows kernel density estimation to become part of the

codewords, rather than the data samples. A symmet-

ric kernel allows for transferring the kernel from the

data samples to the codewords, yielding a kernel

codebook

qi ¼
XT

t¼1

Krð.ðst; piÞÞ; ð22Þ

In order to make it clear which distance is more fit for

the descriptors, we use both the L1 and L2 norms as

distance functions. The Euclidean distance (L2-norm)

is paired with a Gaussian-shaped kernel, while the L1-

norm is paired with a Laplacian-shaped kernel. The

latter assumes that the variation between a local feature

and a codeword is described by a sharper distribution.

Both distributions have a smoothing parameter r
which represents the size of the kernel. For simplicity,

we denote the kernels as Krð.ð�; �ÞÞ; where .ð�; �Þ is the

L1-norm when it is the Laplacian kernel, and L2-norm

when it is the Gaussian kernel.

• Codeword uncertainty: Codeword uncertainty indi-

cates that one image region may distribute probability

mass to more than one codeword. It is modeled to

normalize the amount of probability mass to a total

constant weight of 1 and is distributed over all relevant
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codewords. Relevancy is determined by the ratio of the

kernel values for all codewords pi in the vocabulary

qi ¼
XT

t¼1

Krð.ðst; piÞÞPK
k¼1 Krð.ðst; pkÞÞ

ð23Þ

• Codeword plausibility: Codeword plausibility means

that an image feature may not be close enough to

warrant representation by any relevant codeword in the

vocabulary. For a given descriptor st, it selects the best

fitting codeword pi and assigns its probability mass

proportional to the kernel value of that codeword.

Hence, codeword plausibility will give a higher weight

to more relevant data samples. However, it cannot

select multiple codeword candidates

qi ¼
X

st :NNðstÞ¼i

Krð.ðst; piÞÞ: ð24Þ

The four types of ambiguity modeling methods use

different numbers of geometric words in their construction.

In the traditional codebook and codeword plausibility, the

local descriptor only selects the best candidate geometric

word. On the other hand, the kernel codebook and

codeword uncertainty divide the descriptor over multiple

best fitting codewords. To formally compare the different

ambiguity ways, we summarize all the codebook models in

Table 1 and we categorize them in terms of the L1- and L2-

norms.

The kernel size determines the degree of coherence to

assign geometric word to a descriptor, and it is dependent

on the descriptor dimensionality and the range of the

descriptor values. Moreover, we only consider the kernel

size that is fixed for all codewords. The case of con-

structing the variable kernel density estimator for different

codewords can also be considered, but we adhere to a

homogenous feature space by keeping the kernel size fixed

for all codewords [44]. Note that we do not try to obtain the

best fit of the data. In contrast, we aim at finding the kernel

size that discriminates well between classes. In the exper-

imental results section, we estimate the optimal kernel size

in an interval inferred from the data distribution.

Besides directly modeling ambiguity on individual geo-

metric words, ambiguity might be addressed by modeling

geometric word co-occurrences. Co-occurrence modeling

may address ambiguity because it is likely that similar

geometric words with high ambiguity co-occur frequently.

When these ambiguous geometric words are grouped

together, their intra-ambiguity is resolved. For 3D shapes,

Bronstein and Bronstein [23] introduced the spatially sen-

sitive Bag-of-Words description, which accounts not only

for the frequency but also for the spatial relations between

features. In this paper, since we are interested in analyzing

different spectral descriptors and measuring ambiguity, we

concentrate on single word ambiguity modeling.

6 Intrinsic spatial partition: beyond codebook model

6.1 Isocontours

The eigenfunctions of the LB operator enjoy nice proper-

ties including isometry invariance and robustness to pose

Table 1 Codebook model
Clustering norm Vector assignment

L1 Traditional codebook qi ¼ 1
T

P
st :NNðstÞ kst � pik0

L1-norm codebook qi ¼ 1
T

P
st :NNðstÞ kst � pik1

L2-norm codebook qi ¼ 1
T

P
st :NNðstÞ kst � pik2

Laplace kernel codebook qi ¼ 1
T

PT
t¼1

1
2b

e�kt�ik1

Laplace codeword uncertainty qi ¼ 1
T

PT
t¼1

1
2b

e�kt�ik1P
k 1

1
2
e�kt�kk1

Laplace codeword plausibility qi ¼ 1
T

P
st :NNðstÞ¼i

1
2b

e�kt�ik1

L1 Traditional codebook qi ¼ 1
T

P
st :NNðstÞ kst � pik0

L1-norm codebook qi ¼ 1
T

P
st :NNðstÞ kst � pik1

L2-norm codebook qi ¼ 1
T

P
st :NNðstÞ kst � pik2

Gaussian kernel codebook
qi ¼ 1

T

PT
t¼1

1

r
ffiffi
2
p e�

1
2

kt�ik2
2

2

Gaussian codeword uncertainty
qi ¼ 1

T

PT
t¼1

1ffiffi
2
p e
�1

2
kt�ik2

2

P
k 1

1ffiffi
2
p e
�1

2

kt�kk2
2

2

Gaussian codeword plausibility
qi ¼ 1

T

P
st :NNðstÞ¼i

1

r
ffiffi
2
p e�

1
2

kt�ik2
2

2
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variations such as translation and rotation. These eigen-

functions are orthogonal hui;ujiA ¼ 0; 8i 6¼ j; where the

orthogonality is defined in terms of the A-inner product.

That is, hui;ujiA ¼ u0iAuj: Moreover, any function

f : V ! R (viewed as a column-vector of length m) on the

triangle mesh M can be written in terms of the eigen-

functions as follows:

f ¼
Xm

i¼1

aiui; where ai ¼ hf ;uii: ð25Þ

Note that since the sum of each row in the matrix C

equals zero, the first eigenvalue k1 is zero and the

corresponding eigenfunction u1 is a constant m-

dimensional vector. The top row of Fig. 3 shows a 3D

horse model colored by the second, third and fourth

eigenfunctions, while the bottom row displays the

isocontours of these eigenfunctions.

We can use the variational characterizations of the

eigenvalues in terms of the Rayleigh-Ritz quotient. That is,

the second eigenvalue is given by

k2 ¼ inf
f?u1

f 0Cf

f 0Af
¼ inf

f?u1

P
i� j cijðf ðviÞ � f ðvjÞÞ2
P

i f ðviÞ2ai

ð26Þ

and u2 ¼ ðu2ðv1Þ; . . .;u2ðvmÞÞ0 is its corresponding

eigenvector.

The eigenvalues and eigenfunctions have a nice physical

interpretation: the square roots of the eigenvalues
ffiffiffiffi
ki

p
are

the eigenfrequencies of the membrane, and uiðxÞ are the

corresponding amplitudes at x. In particular, the second

eigenvalue k2 corresponds to the sound we hear the best.

On the other hand, Uhlenbeck [68] showed that the

eigenfunctions of the LB operator are Morse functions on

the interior of the domain of the operator. Consequently,

this generic property of the eigenfunctions gives rise to

constructing the associated intrinsic isocurves.

6.2 Intrinsic spatial partition

Motivated by the isometric invariance property of the

second eigenfunction of the LB operator and also by its

generic property as a Morse function, we propose to use the

level sets (isocontours) of the second eigenfunction as cuts

to partition the surfaces. In Fig. 4a–c, we show some

examples of the level curves of u2: In Fig. 4a, we can

observe that the isocontours are consistent with global

large deformation (first column), local small bend (second

column), and among the shapes from different classes, but

share similar topological structure (third column). The

correspondence of isocontours on the shapes from the same

class are displayed in Fig. 4b, which shows models that

include various topological structures. Finally, the consis-

tency of isocontours on the shapes from the different class

are displayed in Fig. 4c. Although the shapes are explicitly

different, their isocontours can capture their intrinsic cor-

respondence well.

Fig. 3 a–c 3D horse model

colored by u2;u3;u4: d–f Level

sets of u2;u3;u4
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The level sets of the second eigenfunction have been

used to extract curve skeletons of the nonrigid shapes

[10, 25], which is a vivid clue that these isocontours

capture the global topological structure of shapes. We

visualize the procedure for extracting the curve skeleton

in Fig. 5.

Fig. 4 a Isocontours are

invariant under both global and

local deformation.

b Proportionality

correspondence of pairwise

nonrigid shapes with varied

topological structure.

c Isocontours are consistent

among different classes of

shapes
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6.3 Matching by intrinsic spatial partition

Instead of representing the whole shape by the codeword

model without considering spatial layout of local descrip-

tors, we enhance the discrimination by integrating the

distribution of local descriptors in different spatial patches

determined by the intrinsic spatial partition. For any shape

cut by isocontours at resolution R, its description H is the

concatenation of R sub-histograms:

H ¼ ½h1; h2; . . .; hi; . . .; hR� ð27Þ

where hi is the sub-histogram ordered in the ith position

according to the intrinsic spatial partition from one end to

the other. Note that the isocontour sequence might start

from either end, and the situations are different from shape

to shape. For example, in Fig. 4a, the heads of the first and

third rabbit are colored in blue, but tail of the second is

colored in red and head in blue, whose order is exactly the

opposite. To guarantee that the semantic correspondent

parts are matched in the comparison, we use an order-

insensitive strategy comparison method. First, we get a

new histogram T by making the order of the sub-histogram

inverted in H:

T ¼ ½hR; hðR�1Þ; . . .; hi; . . .; h1�: ð28Þ

Second, to compare two shapes P and Q we define their

dissimilarity under this feature as follows:

BRðP;QÞ ¼ minðARðHP;HQÞ;ARðHP; TQÞÞ ð29Þ

where HP and HQ denote the histograms of P and

Q, respectively. In other words, there are two possible

matching schemes between the isocontour sequences of

two shapes, head-to-head and head-to-end. We consider the

schemes with the minimum cost to be better matched. For

each scheme, the dissimilarity measure ARð�; �Þ is defined

as

ARðHP;HQÞ ¼
XR

i¼1

XK

k¼1

Wðhi
PðkÞ; hi

QðkÞÞ ð30Þ

Fig. 5 a 3D horse model

colored by u2; b level sets of

u2; c spectral Reeb graph

Table 2 Parameters’ setting for kernel size interval estimation on SHREC 2010 and SHREC 2011 datasets

SHREC 2010 SHREC 2011

HKS SIHKS HMS WKS GPS HKS SIHKS HMS WKS GPS

A 1 4 2 4 4 1 4 2 20 20

F A A A 1 1 A A A A/4 A/2

Table 3 Runtime (in seconds) with different descriptor dimensions and vocabulary sizes

Runtime Vocabulary size

Dimension 8 12 16 24 32 48 64 80

40 190 254 321 474 567 732 903 1,351

100 522 617 774 1,094 1,461 1,803 2,054 2,665

150 825 909 1,193 1,691 2,002 2,902 3,645 4,358

385 1,725 2,566 3,347 4,638 5,702 8,405 12,285 15,962
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where Wð�; �Þ can be any histogram comparison metric. In

this paper, we use the chi-squared kernel so that hi
PðkÞ and

hi
QðkÞ are the accumulations of the code of the local

descriptors from P and Q that fall into the kth codeword

cell/channel of the ith patch.

The degree of resolution would affect the performance

of the spatial partition-based method. To further improve

the results, we extend the spatial pyramid [24], which has

been shown to yield excellent performance in image

analysis, to nonrigid 3D shapes. The spatial pyramid

divides an image into a multi-level pyramid of increasingly

fine subregions and computes a codebook descriptor for

each subregion. We construct a sequence of histograms at

resolutions fR ¼ 2‘; ‘ ¼ 0; . . .; Lg such that the surface at

level ‘ has 2‘ patches, for a total of 2L - 1 patches. Thus,

the final dissimilarity between the histograms of P and Q is

given by

DLðP;QÞ ¼ BLðP;QÞ þ
XL�1

‘¼0

1

2L�‘ ðB
‘ðP;QÞ � B‘þ1ðP;QÞÞ

¼ 1

2L
B0ðP;QÞ þ

XL

‘¼1

1

2L�‘þ1
B‘ðP;QÞ ð31Þ

Concerning the implementation, one issue that arises is that

of normalization. To easily compare the methods of single

level partition and intrinsic spatial pyramid matching, we

normalize the histogram of each resolution using the L1-

norm.

7 Experiments

We experimentally compare different spectral descriptors

and the codeword ambiguity modeling approaches on two

standard datasets: SHREC 2010 [70] and SHREC 2011

[71]. We also show that the proposed intrinsic partition

approach can significantly improve the performance of the

spectral shape retrieval methods. We start our experiments

with an in-depth analysis of the methods on a set of ten 3D

nonrigid shape categories, after which we translate these

findings into the experiments on a large dataset. In our

experimental setup, we closely follow the original works

theoretically, and we select the optimal parameters that

yield the best performance on these datasets. Thus, we do

not bias any method in order to provide a fair comparison.

7.1 Settings

7.1.1 Evaluation measure

We evaluate the retrieval performance using the dis-

counted cumulative gain (DCG) [69]. DCG is a statistic

that weights correct results near the front of the list more

Fig. 6 Sample shapes in

SHREC 2010 dataset
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than correct results later in the ranked list, under the

assumption that a user is less likely to consider elements

near the end of the list. For a given query shape, DCG is

defined as

DCG ¼ DCGN

1þ
Ps

k¼2
1

log2ðkÞ
ð32Þ

where N is the total number of shapes in the database, s is

the number of shapes in the query’s class (i.e., size of the

class), and DCGi is computed recursively as follows:

DCGi ¼
Gi if i ¼ 1

DCGi�1 þ
Gi

log2ðiÞ
Otherwise

8
<

:
ð33Þ

Table 4 DCG values for different spectral signatures and classes on SHREC 2010

Signature Ant Crab Hand Human Octopus Plier Snake Spectacle Spider Teddy

SIHKS 0.951 0.901 0.897 0.884 0.783 0.935 0.714 0.773 0.899 0.990

HKS 0.925 0.877 0.804 0.805 0.726 0.979 0.707 0.732 0.886 0.990

WKS 0.793 0.813 0.652 0.704 0.731 0.784 0.713 0.744 0.723 0.913

HMS 0.668 0.785 0.709 0.687 0.646 0.880 0.696 0.633 0.731 0.998

GPS 0.846 0.675 0.713 0.744 0.576 0.881 0.622 0.675 0.727 0.821

Table 5 Performance (DCG) using different codebook models of varying size based on SIHKS local descriptor

Codebook model Vocabulary size

Clustering Coding 8 12 16 24 32 48 64 80 200

L1 Traditional codebook 0.801 0.789 0.777 0.779 0.798 0.795 0.802 0.795 0.793

L1-norm codebook 0.801 0.796 0.784 0.789 0.806 0.801 0.813 0.806 0.803

L2-norm Codebook 0.776 0.768 0.761 0.770 0.791 0.785 0.804 0.792 0.792

Laplace kernel codebook 0.797 0.795 0.796 0.796 0.798 0.801 0.803 0.810 0.812

Laplace codeword uncertainty 0.809 0.803 0.805 0.802 0.808 0.810 0.811 0.812 0.806

Laplace codeword plausibility 0.798 0.782 0.774 0.774 0.792 0.792 0.798 0.793 0.783

L2 Traditional codebook 0.856 0.863 0.861 0.862 0.872 0.865 0.865 0.866 0.849

L1-norm codebook 0.839 0.852 0.853 0.855 0.865 0.865 0.863 0.865 0.854

L2-norm codebook 0.841 0.846 0.852 0.849 0.854 0.861 0.858 0.861 0.846

Gaussian kernel codebook 0.847 0.839 0.840 0.842 0.850 0.846 0.845 0.847 0.831

Gaussian codeword uncertainty 0.857 0.863 0.864 0.867 0.874 0.867 0.869 0.867 0.827

Gaussian codeword plausibility 0.856 0.863 0.861 0.863 0.872 0.865 0.866 0.866 0.841

Bold value indicates the best result

Table 6 Performance (DCG) using different codebook models of varying size based on HMS local descriptor

Codebook model Vocabulary size

Clustering Coding 8 12 16 24 32 48 64 80 200

L1 Traditional codebook 0.683 0.717 0.729 0.749 0.747 0.733 0.745 0.746 0.725

L1-norm codebook 0.693 0.721 0.752 0.760 0.759 0.711 0.766 0.751 0.723

L2-norm codebook 0.680 0.695 0.695 0.698 0.702 0.675 0.726 0.728 0.673

Laplace kernel codebook 0.689 0.705 0.711 0.720 0.718 0.726 0.719 0.724 0.740

Laplace codeword uncertainty 0.691 0.722 0.736 0.751 0.754 0.735 0.755 0.745 0.741

Laplace codeword plausibility 0.680 0.709 0.719 0.738 0.740 0.733 0.734 0.740 0.724

L2 Traditional codebook 0.696 0.726 0.737 0.746 0.743 0.743 0.749 0.753 0.748

L1-norm codebook 0.713 0.743 0.763 0.766 0.771 0.740 0.773 0.780 0.740

L2-norm codebook 0.712 0.730 0.752 0.763 0.761 0.718 0.765 0.759 0.727

Gaussian kernel codebook 0.699 0.721 0.731 0.732 0.732 0.733 0.732 0.724 0.722

Gaussian codeword uncertainty 0.707 0.740 0.759 0.768 0.771 0.753 0.767 0.771 0.733

Gaussian codeword plausibility 0.696 0.726 0.737 0.746 0.743 0.744 0.749 0.753 0.748
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where Gi is a gain value that depends on the relevance of the

ith retrieved shape (1 if the shape that is the ith closest match

to the query shape in the query shape’s class, and 0 other-

wise). Basically, DCGi represents the relevance of the top-i

results. Thus, the DCG score reflects the performance of the

algorithm when correct results that are retrieved earlier are

weighted higher than those retrieved later. All normalized

DCG calculations are relative values in the interval

[0, 1], and higher values imply better retrieval performance.

7.1.2 Descriptors

To compare the aforementioned spectral descriptors, we

design a reasonable strategy to choose the best parameters

for each descriptor in our experiments. As pointed out in

[23], the overall performance of the dense descriptor

computed for each point of the shape is superior than a

sparse descriptor computed for a set of points produced by

a feature detection algorithm. So, we compute all spectral

descriptors on every vertex of the shape. In addition, due to

the different ways of discretizing the LB operator, our

implementation might generate slightly different results

from the ones reported in [23]. However, for fair com-

parison, we use the same implementation for all the spec-

tral methods in order to not favor any method.

7.1.3 Kernel size

We choose the best kernel size according to the predefined

range underlying the data, from Local Kernel Size (rLocal)

Table 7 Performance (DCG) using different codebook models of varying size based on WKS local descriptor

Codebook model Vocabulary size

Clustering Coding 8 12 16 24 32 48 64 80 200

L1 Traditional codebook 0.691 0.711 0.720 0.727 0.726 0.741 0.737 0.737 0.748

L1-norm codebook 0.697 0.718 0.726 0.733 0.730 0.742 0.737 0.737 0.751

L2-norm codebook 0.694 0.711 0.712 0.721 0.719 0.731 0.725 0.725 0.733

Laplace kernel codebook 0.694 0.701 0.707 0.713 0.714 0.725 0.724 0.726 0.738

Laplace codeword uncertainty 0.697 0.716 0.721 0.725 0.727 0.740 0.736 0.737 0.741

Laplace codeword plausibility 0.695 0.706 0.718 0.724 0.723 0.740 0.736 0.737 0.739

L2 Traditional codebook 0.659 0.689 0.703 0.718 0.728 0.722 0.716 0.718 0.743

L1-norm codebook 0.666 0.704 0.710 0.724 0.730 0.728 0.721 0.722 0.738

L2-norm codebook 0.672 0.701 0.704 0.716 0.727 0.727 0.720 0.719 0.731

Gaussian kernel codebook 0.666 0.667 0.667 0.666 0.666 0.666 0.667 0.667 0.651

Gaussian codeword uncertainty 0.667 0.666 0.665 0.666 0.665 0.666 0.667 0.667 0.651

Gaussian codeword plausibility 0.662 0.689 0.703 0.718 0.728 0.722 0.716 0.718 0.736

Table 8 Performance (DCG) using different codebook models of varying size based on GPS local descriptor

Codebook model Vocabulary size

Clustering Coding 8 12 16 24 32 48 64 80 200

L1 Traditional codebook 0.719 0.757 0.733 0.723 0.720 0.737 0.714 0.726 0.739

L1-norm codebook 0.716 0.752 0.729 0.720 0.717 0.732 0.708 0.723 0.738

L2-norm codebook 0.689 0.734 0.705 0.699 0.692 0.717 0.691 0.704 0.711

Laplace kernel codebook 0.764 0.789 0.785 0.796 0.799 0.811 0.817 0.822 0.738

Laplace codeword uncertainty 0.773 0.794 0.790 0.801 0.801 0.812 0.818 0.824 0.776

Laplace codeword plausibility 0.724 0.759 0.740 0.726 0.725 0.737 0.718 0.731 0.696

L2 Traditional codebook 0.704 0.785 0.748 0.768 0.757 0.734 0.724 0.727 0.743

L1-norm codebook 0.698 0.780 0.744 0.763 0.753 0.729 0.721 0.726 0.741

L2-norm codebook 0.687 0.733 0.717 0.739 0.744 0.729 0.722 0.724 0.729

Gaussian kernel codebook 0.793 0.808 0.775 0.804 0.785 0.790 0.791 0.783 0.759

Gaussian codeword uncertainty 0.755 0.799 0.762 0.773 0.767 0.772 0.764 0.765 0.792

Gaussian codeword plausibility 0.705 0.805 0.764 0.776 0.771 0.735 0.722 0.727 0.746
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to Global Kernel Size (rGlobal). For each cluster, the dis-

tances from its centroid to other points of this cluster are

computed. Then, the median absolute deviation is adopted

to obtain the kernel size for each cluster. We use the

median value as the local kernel size rLocal. Since there is

no explicit centroid for all the data points, we compute

Table 9 Performance (DCG) of different spectral descriptors on SHREC 2010 dataset using intrinsic spatial pyramid matching with various

codebook models

Spectral descriptor Clustering norm Level L (Partitions) Codebook models

Traditional Kernel Uncertainty Plausibility

Single Pyramid Single Pyramid Single Pyramid Single Pyramid

HKS L1 1 (2) 0.851 0.855 0.829 0.835 0.848 0.853 0.847 0.852

2 (4) 0.856 0.863 0.843 0.849 0.858 0.862 0.855 0.860

3 (8) 0.863 0.867 0.8554 0.858 0.865 0.867 0.861 0.865

4 (16) 0.856 0.862 0.849 0.856 0.861 0.867 0.855 0.860

L2 1 (2) 0.837 0.842 0.845 0.849 0.845 0.849 0.847 0.842

2 (4) 0.848 0.851 0.8616 0.866 0.859 0.860 0.850 0.853

3 (8) 0.850 0.853 0.862 0.866 0.860 0.863 0.851 0.855

4 (16) 0.847 0.852 0.854 0.862 0.859 0.864 0.847 0.852

SIHKS L1 1 (2) 0.799 0.798 0.7989 0.7992 0.8113 0.8107 0.7952 0.7951

2 (4) 0.813 0.800 0.817 0.814 0.829 0.821 0.810 0.807

3 (8) 0.818 0.810 0.823 0.821 0.829 0.828 0.815 0.812

4 (16) 0.831 0.8262 0.827 0.825 0.832 0.8313 0.830 0.824

L2 1 (2) 0.872 0.873 0.853 0.854 0.874 0.876 0.873 0.874

2 (4) 0.877 0.879 0.871 0.869 0.878 0.882 0.877 0.880

3 (8) 0.879 0.881 0.872 0.874 0.878 0.8830 0.879 0.882

4 (16) 0.883 0.884 0.876 0.877 0.884 0.885 0.883 0.884

HMS L1 1 (2) 0.748 0.747 0.722 0.725 0.756 0.759 0.739 0.743

2 (4) 0.783 0.750 0.757 0.751 0.795 0.792 0.774 0.773

3 (8) 0.787 0.781 0.778 0.778 0.802 0.804 0.780 0.783

4 (16) 0.774 0.790 0.783 0.786 0.792 0.800 0.771 0.780

L2 1 (2) 0.749 0.752 0.737 0.740 0.776 0.780 0.749 0.752

2 (4) 0.787 0.786 0.777 0.775 0.813 0.812 0.787 0.786

3 (8) 0.793 0.7971 0.797 0.798 0.821 0.824 0.793 0.797

4 (16) 0.783 0.792 0.795 0.799 0.811 0.820 0.783 0.792

WKS L1 1 (2) 0.725 0.726 0.711 0.711 0.725 0.727 0.724 0.725

2 (4) 0.750 0.747 0.739 0.734 0.751 0.745 0.749 0.746

3 (8) 0.759 0.757 0.748 0.745 0.759 0.756 0.758 0.757

4 (16) 0.759 0.760 0.754 0.751 0.760 0.761 0.758 0.760

L2 1 (2) 0.728 0.729 0.671 0.670 0.672 0.670 0.728 0.729

2 (4) 0.754 0.751 0.713 0.703 0.715 0.706 0.754 0.751

3 (8) 0.762 0.761 0.713 0.721 0.731 0.725 0.762 0.761

4 (16) 0.762 0.763 0.732 0.727 0.735 0.732 0.762 0.763

GPS L1 1 (2) 0.722 0.722 0.778 0.789 0.780 0.790 0.726 0.726

2 (4) 0.717 0.720 0.735 0.747 0.735 0.745 0.717 0.721

3 (8) 0.732 0.729 0.734 0.739 0.733 0.739 0.733 0.730

4 (16) 0.736 0.734 0.726 0.731 0.726 0.731 0.737 0.736

L2 1 (2) 0.759 0.760 0.767 0.778 0.734 0.745 0.761 0.772

2 (4) 0.759 0.762 0.723 0.744 0.722 0.729 0.728 0.753

3 (8) 0.765 0.769 0.716 0.729 0.704 0.712 0.748 0.759

4 (16) 0.768 0.770 0.720 0.725 0.691 0.697 0.751 0.758

Bold values indicate the best results
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global ‘‘ghost centroid’’ in the same way that the centroid

of each cluster is obtained during clustering. Then, the

global kernel size rGlobal is estimated by treating the data

space as a single cluster. rLocal and rGlobal can help us to

roughly estimate the distribution of the data. Recall that our

goal is to find the best smoothing parameters in order to

maximize the discrimination, not to fit the data best, we use

them as the size markers of the data space, and get the scale

S = rGlobal/rLocal. Multiplying by an augmenting coeffi-

cient A, we set an interval rLocal=ðASÞ; rLocalAS½ � as the

candidate space. With a sampling step FA / A to discretize

the space, we select the best r̂ as the final kernel size. Note

that in order to be consistent with the clustering stage,

when estimating the kernel size, we use the L1-norm for the

dictionary learned by the cityblock distance, and each

centroid is the component-wise median of the points in that

cluster. We use the L2-norm for the one learned by the

Euclidean distance, and each centroid is computed as the

mean of the points in that cluster. In Table 2, the param-

eters of different spectral descriptors are set for each

dataset to get the interval of the kernel size.

7.1.4 Complexity

The codes were implemented in MATLAB 7.14 (R2012a).

The experiments were performed on a desktop computer

with an Intel Core i3-2100 running at 3.1 GHz and 4 GB

RAM. The computation of the vocabulary is performed

offline in advance. It depends on the number of the

descriptors (number of vertices), the dimension of the

descriptor, and the vocabulary size (the number of clus-

ters). Since we simplify our mesh to 2000 faces for each

shape, we have a set of approximately 2 9 105 descriptors.

Since the 3D models used in our experiments are water-

tight, simplifying a surface mesh by reducing its number of

faces to 2000 would essentially preserve the shape

semantically. Consequently, the discriminative power of

the descriptors would not change drastically after mesh

simplification.

To confirm getting optimal results, the clustering is

repeated 3 times, and each by a new set of initial cluster

centroid positions. The solution with the lowest value for

the sum of distances is returned. In Table 3, we list the

runtime in seconds for various descriptor dimensions and

vocabulary sizes.

7.2 Results on SHREC 2010 dataset

7.2.1 In-depth analysis of descriptors and ambiguity

The first dataset we consider is SHREC 2010 [70], which is

a standard dataset of nonrigid 3D models used in the Shape

Retrieval Contest, organized by National Institute of the

Standards and Technology (NIST). The dataset consists of

200 shapes spread over 10 categories with 20 shapes each,

and range from human body to man-made tools like glas-

ses. Some of the deformations performed on the shapes are

artificially generated, which would result in misleading

recognition. In Fig. 6, we show 4 models of each class in

this dataset.

For the SHREC 2010 dataset, we analyze the types of

spectral descriptors, vocabulary size, and codeword ambi-

guity. The vocabulary sizes we consider are 8, 12, 16, 24,

32, 48, 64, and 80. To gain further insight into the per-

formance variation between the various types of spectral

descriptors, we show the retrieval results for different

parameters in Tables 13, 14, 15, 16 (see ‘‘Appendix’’). The

L2-norm traditional codebook is used in all the descriptors.

The main goal of our parameter determination is to select

the appropriate heat diffusion time for each descriptor in

order to maximally discriminate between the shapes. For

HKS, we formulate the diffusion time as t ¼ t0as; where s
is sampled from 0 to a given scale with a resolution 1/4 in

our case. We highlight the best result for each factor t0, and

notice that the largest diffusion times are tmax ¼ t0amax s ¼
f343:44; 131:84; 74:08; 238:15; 139:57g: These times are

obviously different from the best parameters

t = {1,024, 1,351, 1,783, 2,353, 3,104, 4,096} used in

[23]. Since we use a different dataset, the difference of best

parameters is reasonable. If the confusion time is larger

than tmax, i.e., the heat diffuses for enough long time, then

the heat distribution of the whole shape will be very

Table 10 Performance comparison of descriptors and their optimal parameters on SHREC 2011 dataset

Spectral descriptors

HKS SIHKS HMS WKS GPS ShapeDNA EVD

Parameters s = 1/4 s = 1/16 s = 2 M = 100

T = 5 T = 25 T = 40 r = 0.05

t0 = 0.01 F = 193 t0 = 4

a = 4 a = 2 a = 0.8

DCG 0.811 0.826 0.773 0.680 0.709 0.782 0.560
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similar, which tends to degrade the discrimination. On the

contrary, if the confusion time is smaller than tmax, then

only local patches of the shape are considered in the

description, thus the global description of the whole shape

is deficient. In order to construct the SIHKS, we use

t = as, where s ranges from 1 to a given scale with finer

Table 11 Performance (DCG) of different spectral descriptors on SHREC 2011 dataset using intrinsic spatial pyramid matching with varying

codebook models

Spectral descriptor Clustering norm Level L (Partitions) Codebook models

Traditional Kernel Uncertainty Plausibility

Single Pyramid Single Pyramid Single Pyramid Single Pyramid

HKS L1 1 (2) 0.829 0.822 0.811 0.806 0.831 0.824 0.808 0.802

4 (16) 0.878 0.872 0.871 0.866 0.883 0.878 0.874 0.867

7 (128) 0.890 0.888 0.880 0.879 0.892 0.891 0.887 0.885

9 (512) 0.893 0.892 0.879 0.880 0.894 0.893 0.890 0.889

L2 1 (2) 0.834 0.827 0.812 0.807 0.849 0.843 0.834 0.827

4 (16) 0.876 0.872 0.879 0.875 0.889 0.887 0.876 0.872

7 (128) 0.889 0.888 0.878 0.880 0.889 0.890 0.889 0.887

9 (512) 0.891 0.890 0.868 0.873 0.888 0.889 0.891 0.890

SIHKS L1 1 (2) 0.853 0.849 0.873 0.870 0.861 0.857 0.852 0.850

4 (16) 0.878 0.876 0.888 0.888 0.887 0.884 0.878 0.876

7 (128) 0.889 0.888 0.895 0.894 0.890 0.895 0.889 0.887

9 (512) 0.891 0.890 0.896 0.896 0.898 0.897 0.891 0.890

L2 1 (2) 0.845 0.843 0.868 0.864 0.871 0.866 0.845 0.843

4 (16) 0.869 0.867 0.885 0.885 0.886 0.885 0.869 0.867

7 (128) 0.878 0.877 0.889 0.888 0.888 0.889 0.878 0.877

9 (512) 0.880 0.879 0.888 0.888 0.889 0.889 0.880 0.879

HMS L1 1 (2) 0.780 0.784 0.759 0.764 0.801 0.804 0.777 0.781

4 (16) 0.823 0.828 0.833 0.837 0.845 0.850 0.821 0.826

7 (128) 0.815 0.819 0.819 0.814 0.831 0.835 0.814 0.818

9 (512) 0.825 0.823 0.804 0.803 0.836 0.836 0.825 0.822

L2 1 (2) 0.782 0.786 0.777 0.779 0.794 0.798 0.782 0.786

4 (16) 0.827 0.837 0.831 0.838 0.835 0.842 0.827 0.832

7 (128) 0.821 0.824 0.806 0.814 0.823 0.828 0.821 0.825

9 (512) 0.830 0.828 0.796 0.803 0.828 0.828 0.830 0.828

WKS L1 1 (2) 0.757 0.746 0.777 0.738 0.765 0.755 0.751 0.741

4 (16) 0.829 0.824 0.834 0.828 0.841 0.838 0.828 0.723

7 (128) 0.839 0.8382 0.824 0.828 0.826 0.829 0.838 0.837

9 (512) 0.839 0.839 0.813 0.818 0.819 0.822 0.839 0.839

L2 1 (2) 0.718 0.709 0.761 0.754 0.781 0.776 0.678 0.707

4 (16) 0.797 0.793 0.813 0.823 0.822 0.830 0.797 0.792

7 (128) 0.804 0.804 0.779 0.789 0.787 0.796 0.803 0.804

9 (512) 0.800 0.803 0.756 0.764 0.776 0.782 0.800 0.802

GPS L1 1 (2) 0.691 0.693 0.763 0.777 0.764 0.776 0.691 0.693

4 (16) 0.712 0.711 0.692 0.700 0.691 0.670 0.712 0.712

7 (128) 0.718 0.718 0.684 0.686 0.683 0.686 0.719 0.718

9 (512) 0.719 0.719 0.681 0.683 0.680 0.682 0.720 0.719

L2 1 (2) 0.705 0.708 0.752 0.759 0.751 0.757 0.705 0.708

4 (16) 0.726 0.725 0.705 0.716 0.705 0.715 0.726 0.725

7 (128) 0.728 0.729 0.678 0.683 0.678 0.683 0.729 0.729

9 (512) 0.729 0.729 0.671 0.675 0.670 0.674 0.729 0.729

Bold values indicate the best results
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increments of 1/16. After applying the logarithm, deriva-

tive, and Fourier transform, the first several discrete lowest

frequencies are used as the local descriptor. In [23], the first

6 lowest frequencies are adopted, which yield a satisfactory

result on SHREC 2010 dataset as shown in Table 14. To

guarantee not to favor any method in our experiments, we

test with various frequencies and find that the best result
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Fig. 7 Illustration of relative kernel size of different ambiguity modeling methods. Top kernel codebook. Middle codeword uncertainty. Bottom

codeword plausibility

Table 12 Summary comparison of spectral signatures

Property SIHKS HKS WKS HMS GPS

Discriminative power 1 2 5 3 4

Compactness 5 1 2 3 4

Localization 4 3 1 2 5

Ambiguity 3 5 2 4 1
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can always be obtained when all the frequencies are used.

One-dimensional HMS is used to construct the temperature

distribution descriptor [17]. For mesh segmentation, HMS

prefers small time because high-resolution details are pre-

served at a small scale. Our goal is to discriminate between

shapes, so we construct a multi-scale HMS to compare the

temperature distribution with multiple diffusion times. By

defining a universal time unit d as in the computation of the

TD descriptor, we use t = sd with s ranging from 1 to a

given scale to compute the descriptor. In Table 15, d = 1

and t ¼ ½d; 2d; . . .; 100d� give the best result for the multi-

scale HMS. The WKS is associated with each vertex on the

surface, and it describes the energy distributions over a

family of fixed energy scales. There are two parameters in

this descriptor, namely the increment d and the variance r.

Since the energy range [kmin, kmax] is determined by the

eigenvalues and it is fixed, we seek the best increment by

dividing the interval by a scalar M. The variance r is also

inferred as certain percentage of the interval. As shown in

Table 16, the best parameters are M = 50 and percentage

equal to 0.2. Finally, the best parameters for each spectral

descriptor are summarized in Table 17 in the Appendix.

SIHKS performs the best, and is slightly better than HKS

since the variance of the scale transformation is small in

SHREC 2010. As expected, the worst performance is

obtained by WKS, which characterizes only local
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Fig. 8 Performance

improvement by increasing the

number of intrinsic partitions on

SHREC 2010 dataset. Top

L1-norm. Bottom L2-norm
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Fig. 9 Retrieval results using

different spectral descriptors

and its spatial enhanced version.

Error result is marked in the red

dashed box. a In the left is the

query-shaped spectacle, and the

ten rows in the right its top 9

retrieval results; b In the left is

the query-shaped octopus, and

the ten rows in the right its top 9

retrieval results
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information of the small patch. We also considered a 200

vocabulary size for each signature, and the results remain

virtually unchanged or go down slightly compared to a

smaller vocabulary size.

In Table 4, 5, 6, 7 we list the DCG values for different

spectral signatures and classes on SHREC 2010. It should

be noted that all of the signatures are good at retrieving the

Teddy model. SIHKS yields the highest accuracy on most

of the classes, such as ant, crab, hand, human, octopus,

plier, spectacle, and spider. HKS is slightly lower than

SIHKS. Surprisingly, HMS is the best one in retrieving the

Teddy shape. Also, the comparison between WKS, HMS,

and GPS is inspiring. WKS performs well on octopus,

snake, and spectacle. These classes have a high percentage

of thin-branch-like components. GPS gets a relatively high

accuracy on ant, hand, and human.

To study the influence of the vocabulary size, we use

various local descriptors and change the vocabulary size

from 8 to 80 geometric words. Tables 8, 9, 10, 11, 12, 13,

14, 15, 16, 17, 18 show the resulting performance. As can

be observed, the overall performance improves with the

increase of the vocabulary size, but at the expense of the

representation size (length of the BoF vector). However,

for HKS and GPS, the best performance is obtained when

the vocabulary size is 32 and 12, respectively.

Tables 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 also show

the retrieval results with the various types of codeword

ambiguity. The results show that codeword uncertainty

consistently outperforms other types of ambiguity for all

kinds of descriptors and all vocabulary sizes. Besides the 4

types of ambiguity modeling methods in [44], we also

include the accumulation of L1 and L2 norms from

descriptor to codeword. The reason is twofold: (1) to keep

coherent with the clustering stage, and (2) VLAD, which is

the accumulation of vector from descriptor to codeword,

achieves better results as reported in the literature. Indeed,

in our experiment, SIHKS, HMS, and WKS with distance

accumulation outperform the traditional codebook, and

even are superior than the codebook uncertainty in certain

cases. In addition, the L1- and L2-norms in the clustering

stage have a considerable effect on the performance. For

GPS, the L1-norm based methods are much worse than L2-

norm based ones. But for WKS, the L1-norm based method

is better than L2-norm based one. As a result, we may

conclude that the WKS descriptor is more discriminative

than the L1-norm.

Fig. 10 Sample shapes in SHREC 2011 dataset
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To examine the influence of the kernel size, we show the

kernel size found as the statistic among the five spectral

descriptors. Following the technique of optimal kernel size

estimation described in the experimental setting (Subsect.

7.1), rLocal is calculated first. Then, the optimal kernel size

r̂ is determined experimentally inside the interval for each

vocabulary size. To better visualize the results, we obtain

the relative r̂ as the relative position in the interval. Thus,

the relative rLocal is 0.5. Our goal is to compare r̂ for

different ambiguity types in both Laplacian and Gaussian

kernels. So, the five number summary is computed on the

set composed of the relative r̂ of five descriptors in the

same vocabulary setting, and the results are shown in

Fig. 7. For both Laplacian and Gaussian kernels, the

codeword plausibility has the largest kernel size, followed

by the kernel codebook; the smallest kernel size is held by

the codeword uncertainty. The Laplacian kernel has a lar-

ger kernel size than the Gaussian kernel for each type of

ambiguity methods. In our experiment, we also found that

increasing the kernel size of the codeword plausibility

beyond a sufficiently large value does not significantly

change the accuracy. The kernel size of the Laplacian

codeword plausibility remains the largest in the interval,

but the kernel size of the Gaussian codeword plausibility

among different descriptors oscillates the most. Note that

since we plot the relative position of r̂ compared to
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Fig. 11 Performance

improvement by increasing the

number of intrinsic partitions on

SHREC 2011 dataset. Top

L1-norm. Bottom L2-norm
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rLocal, the value of rLocal becomes smaller over the number

of vocabulary elements. In fact, it shows that a larger

vocabulary leads to slightly smaller kernels. This phe-

nomenon is consistent with the image domain [44]. This

may be expected since a larger vocabulary is formed by a

smaller radius between codewords.

7.2.2 Improvement with intrinsic partition

First, we examine the effect of integrating spatial cues on

surfaces via the intrinsic partition. Figure 8 shows the

performance improvement of the retrieval experiments by

matching shapes directly using intrinsic partitions on

SHREC 2010 dataset. With the increase of the number of

intrinsic partitions, all the spectral descriptors, except GPS,

are improved substantially in a global fashion, even though

the performance drops down in certain numbers. For

ShapeGoogle [23], its performance is plotted as points

whose partition number is one. Obviously, intrinsic spatial

cues on shape surface proposed in our framework signifi-

cantly outperform ShapeGoogle. We conjecture that GPS is

degraded because of its global nature. A crucial parameter

is the number of partitions. Experimentally, we find that the

accuracy remains stable after 16 partitions for all the

spectral descriptors.

Next, let us examine the behavior of intrinsic spatial

pyramid matching. For completeness, Table 9 lists the

performance achieved using just the highest level of the

pyramid (the ‘‘single’’ columns) as well as the performance

of the complete matching scheme using multiple levels (the

‘‘pyramid’’ columns). For all kinds of features, except GPS,

the results improve considerably as we go from L = 1 to a

multi-level setup. We do not display the results for L = 0

because its highest single level is the same as with its

pyramid. Although matching at the highest pyramid level

seems to account for most of the improvement, using all

the levels together yields a statistically significant benefit.

For strong features, single-level performance actually

drops as we go from L = 3 to L = 4. This means that the

highest level of the L = 3 pyramid is too finely subdivided,

with individual bins yielding few matches. Despite the

diminished discriminative power of the highest level, the

performance of the entire L = 4 pyramid remains essen-

tially identical to that of the L = 3 pyramid. Thus, the main

advantage of the intrinsic spatial pyramid representation

stems from combining multiple resolutions in a principled

fashion, and it is robust to failures at individual levels

Tables 6, 7.

It is also important to compare the performance of dif-

ferent spectral descriptor sets. As expected, weak descrip-

tors do not perform as well as strong descriptors, though in

combination with the spatial pyramid, they can also

achieve acceptable levels of accuracy. Note that only

descriptors with a much higher density and much smaller

spatial extent will continue to improve their performance as

we increase L from 3 to 4. Such kinds of descriptors in

Table 9 include SIHKS and WKS. In this respect, intrinsic

spatial pyramid matching (ISPM) provides us with a way to

analyze the spectral descriptors. On the other hand, the

performances of HKS and HMS drop when the pyramid

level increases from 3 to 4. Moreover, the performance of

GPS decreases immediately when the descriptors are

aggregated in terms of local patches instead of the whole

shape. Increasing the visual vocabulary size from 8 to 80

might result in a small performance increase at L = 0, but

this difference is eliminated at higher pyramid levels. Thus,

we may conclude that the coarse-grained geometric cues

provided by the pyramid have more discriminative power

than an enlarged geometric vocabulary. Another explana-

tion for the improvement is that the geometric cues elim-

inate the word ambiguity in a spatial context, and its

ambiguity modeling ability is also more discriminative

than the ambiguity codebook models. For example, HMS

with L2-norm, the traditional codeword, achieves 0.743 on

SHREC 2010 dataset, and the improvement brought by the

codeword uncertainty is 0.771 - 0.743 = 0.028. How-

ever, the improvement brought by ISPM is 0.792 -

0.743 = 0.049.

In Fig. 9, we show two examples of top 9 retrieval

results for different methods. There are plenty of examples

to demonstrate that our proposed ISPM method improves

the performance of the original codebook models with

varied spectral descriptors. However, in order to illustrate

the merits of different descriptors, we choose the two

exemplar queries that bring consistent results with the

conclusion we get for the spectral descriptors. For both

queries, the ISPM method enhances the results by helping

rank more relevant shapes higher as expected, and SIHKS

combined with ISPM achieves a more satisfactory result.

For the first query spectacle, the primitive descriptors

always confuse it with lines, pliers, human body, and

octopus. This is because these objects also have several

long, thin pipe-like parts and flat globular parts, and the

proportions are similar. The spatial partition integrates the

intrinsic symmetry cue, and separates pipe-like parts and

globular parts into different sub-histograms, thus resulting

in a more descriptive representation. The pipe-like parts

attached to fringe of shapes are almost similar among these

classes, but the globular parts in the middle have different

degree and amount of flat, which is the key to distinguish

the spectacles. For the second query octopus, multiple legs

objects like spiders and ants are usually retrieved mistak-

enly by the descriptors SIHKS, HKS, and GPS. This is in

fact understandable since even humans would consider
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these shapes as similar from their appearance. HMS ranks

some hands higher, and WKS ranks some pliers higher.

This phenomenon shows that the different spectral

descriptors characterize different aspects of shape features.

It is worth pointing out that the intrinsic spatial partition

helps measure the localization ability of the signatures,

meaning the ability of a signature to capture the local

geometry around the mesh vertex. The DCG improvement

after applying spatial partition reflects localization due

largely to the fact that the partition separates the signature

into different patches. The finer is the partition, the more

details can be captured if the DCG improves.

7.3 Results on SHREC 2011

Our second set of experiments is performed on a larger

dataset, SHREC 2011 [71], which contains 600 watertight

triangle meshes that are equally classified into 30 catego-

ries. SHREC 2011 is the most diverse nonrigid 3D shape

database available today in terms of object classes and

deformations. In Fig. 10, we show 2 models of each class

in the dataset.

We follow the same experimental procedure on SHREC

2010 dataset. First, we find the best performance of each

spectral descriptor with its best parameters under the tra-

ditional codebook model, as shown in Table 10. Then,

using these parameters we conduct further experiments on

various ambiguity modeling models. In this way, we get

the baseline result, which is actually the algorithm of

ShapeGoogle [23]. Finally, our spatially aggregating

approach is tested against each type of descriptors. In

Fig. 11, we display the performance improvement with the

increasing number of partitions. For both L1- and L2-norms,

all types of descriptors, except GPS, show improved

accuracy when spatially aggregated. HKS and SIHKS are

improved throughout all the number of partitions till 512 in

our experiment. But we only show the results from 1 to 20

for the sake of visualization. HMS and WKS remain

unchanged or become worse when 10 or more partitions

are adopted. Note that an interesting phenomenon is that

GPS with traditional and plausibility ambiguity has a lower

accuracy than kernel and uncertainty ambiguity when no

global spatial is integrated. However, the results are com-

pletely the opposite after a certain degree of partition is

included. The traditional and plausibility ambiguity mod-

eling methods go up, but kernel and uncertainty ambiguity

modeling methods go down, even lower than the former

approaches.

Table 11 gives a breakdown of retrieval accuracies for

different pyramid levels and different spectral descriptors

with vocabulary size 32. On this large dataset, a major

advantage of ISPM is shown to provide a robust and stable

performance by weightily combining multiple spatial lev-

els, especially, for HMS and WKS, and it consistently

outperforms the single level approach. Although ISPM is

not superior in all cases, it is, however, practical since

determining the level of partition is much easier than

determining the number of partitions to obtain satisfactory

results.

In summary, our proposed shape retrieval approach is

shown to outperform state-of-the-art orderless descriptor

aggregating methods. Because of the geometric stability

and lack of damage of shapes in SHREC 2011, dense

descriptors combined with global spatial relations seem to

capture more discriminative information about the objects

by providing an approximate correspondence.

To gain further insight into the strengths and weaknesses

of each descriptor, we compared the shape signatures in

terms of four different properties: discriminative power,

compactness, localization, and ambiguity. Discriminative

power describes the signature’s ability to distinguish

between shapes belonging to different classes. Since we

used watertight meshes from different classes in our

experiments, the DCG value reflects the discriminative

power of the descriptors. Compactness refers to the

dimension that a signature has to achieve for its maximum

discriminative power. A lower dimension indicates higher

compactness, and leads to simpler computation. We

introduce localization as the ability of a signature to cap-

ture the local geometry around the mesh vertex. The DCG

improvement after spatial partition reflects localization,

since the partition separates the signatures into different

patches. The finer is the partition, the more details can be

captured if the DCG value further improves. To describe

the distribution of the signature in the feature space, we

observe the clustering centroid of the signature. The higher

is the ambiguity between geometric words, the more kernel

uncertainty is beyond the L0-norm codebook. In Table 12,

we rank the shape signatures in terms of different proper-

ties on a scale from 1 to 5. A value of 1 means the stron-

gest, while a value of 5 means the weakest.

8 Conclusion and future work

This paper reviewed and compared five recent spectral

descriptors and varied codebook ambiguity models for

nonrigid 3D shape retrieval. It turns out that SIHKS is the

most discriminative spectral descriptor, and that codeword

uncertainty yields the best ambiguity modeling ability

between codewords, without taking codeword plausibility

into account. By integrating the spatial cues with the pro-

posed intrinsic partition, the retrieval performance was

significantly improved. The intrinsic spatial pyramid
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matching, which works by repeatedly partitioning the

surface and computing histograms of spectral descriptors

over the resulting subpatches, showed promising results on

two standard datasets of 3D models.

We believe that the optimal way for exploiting ambi-

guity modeling both in the shape and in the feature space in

a unified framework would result in higher performance;

this is a subject that we intend to explore as future work.

Appendix

See Tables 13, 14, 15, 16, 17 and 18.

Table 13 The DCG measure of HKS based on different pairs of

parameters

HKS a

Factor t0 Scale 1.24 1.64 2 2.5 3

4.24 2 0.701 0.741 0.765 0.791 0.803

4 0.723 0.778 0.802 0.830 0.831

6 0.746 0.801 0.817 0.827 0.822

8 0.756 0.805 0.823 0.822 0.817

10 0.765 0.811 0.820 0.811 0.820

12 0.775 0.805 0.811 0.812 0.815

8.24 2 0.752 0.781 0.812 0.835 0.827

4 0.781 0.821 0.840 0.839 0.829

6 0.780 0.831 0.837 0.827 0.823

8 0.810 0.833 0.828 0.825 0.814

10 0.814 0.832 0.831 0.819 0.817

12 0.824 0.829 0.817 0.817 0.811

10.24 2 0.763 0.799 0.817 0.835 0.843

4 0.793 0.844 0.833 0.838 0.829

6 0.806 0.843 0.836 0.834 0.824

8 0.823 0.840 0.837 0.825 0.815

10 0.826 0.828 0.826 0.813 0.814

12 0.836 0.835 0.816 0.816 0.810

12.24 2 0.772 0.807 0.821 0.830 0.829

4 0.791 0.840 0.831 0.829 0.823

6 0.817 0.846 0.832 0.822 0.815

8 0.833 0.834 0.827 0.820 0.815

10 0.842 0.835 0.830 0.814 0.819

12 0.839 0.828 0.820 0.811 0.808

16.24 2 0.787 0.810 0.809 0.822 0.832

4 0.805 0.828 0.835 0.819 0.821

6 0.827 0.836 0.819 0.813 0.814

8 0.844 0.825 0.819 0.810 0.803

10 0.848 0.824 0.822 0.810 0.813

12 0.835 0.820 0.813 0.811 0.799

Bold values indicate the best results

Table 14 The DCG measure of SIHKS based on different pairs of

parameters

SIHKS a

Timescale Frequency 1.24 1.64 2 2.5 3

20 6 0.795 0.842 0.867 0.853 0.846

50 0.792 0.851 0.861 0.847 0.847

100 0.794 0.847 0.869 0.852 0.845

150 0.793 0.852 0.864 0.853 0.854

193 0.795 0.852 0.866 0.848 0.855

25 6 0.774 0.867 0.872 0.854 0.849

50 0.770 0.859 0.869 0.864 0.852

100 0.769 0.861 0.871 0.862 0.851

150 0.764 0.861 0.862 0.864 0.848

193 0.757 0.861 0.877 0.862 0.845

30 6 0.811 0.860 0.859 0.857 0.850

50 0.808 0.869 0.868 0.857 0.853

100 0.819 0.872 0.865 0.863 0.856

150 0.809 0.866 0.861 0.859 0.854

193 0.809 0.868 0.870 0.853 0.854

Bold value indicates the best result

Table 15 The DCG measure of HMS based on different pairs of

parameters

HMS s

s 40s 60s 80s 100s 120s 140s 160s 180s

0.005 0.676 0.692 0.697 0.690 0.734 0.712 0.729 0.740

0.01 0.702 0.722 0.744 0.714 0.708 0.734 0.712 0.714

0.02 0.713 0.726 0.712 0.742 0.719 0.720 0.722 0.723

0.05 0.724 0.734 0.729 0.744 0.736 0.733 0.727 0.737

0.1 0.744 0.739 0.742 0.717 0.712 0.729 0.713 0.705

0.2 0.723 0.716 0.712 0.718 0.749 0.753 0.751 0.753

0.4 0.739 0.744 0.744 0.753 0.749 0.753 0.745 0.752

0.6 0.735 0.747 0.752 0.750 0.747 0.754 0.747 0.742

1 0.751 0.751 0.753 0.754 0.744 0.744 0.739 0.738

2 0.739 0.744 0.729 0.733 0.723 0.736 0.731 0.725

Bold value indicates the best result

Table 16 The DCG measure of WKS based on different pairs of

parameters

WKS r

M 0.12 0.16 0.20 0.24 0.28

20 0.708 0.720 0.718 0.724 0.697

50 0.722 0.724 0.727 0.725 0.703

80 0.713 0.720 0.725 0.724 0.706

100 0.717 0.712 0.726 0.720 0.708

120 0.720 0.720 0.718 0.715 0.713

150 0.716 0.724 0.723 0.713 0.714

Bold value indicates the best result
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