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Abstract In this paper, we present a spectral graph wavelet
framework for the analysis and design of efficient shape sig-
natures for nonrigid 3D shape retrieval. Although this work
focuses primarily on shape retrieval, our approach is, how-
ever, fairly general and can be used to address other 3D
shape analysis problems. In a bid to capture the global and
local geometry of 3D shapes, we propose a multiresolution
signature via a cubic spline wavelet generating kernel. The
parameters of the proposed signature can be easily deter-
mined as a trade-off between effectiveness and compactness.
Experimental results on two standard 3D shape benchmarks
demonstrate the much better performance of the proposed
shape retrieval approach in comparison with three state-of-
the-art methods. Additionally, our approach yields a higher
retrieval accuracy when used in conjunction with the intrin-
sic spatial partition matching.

Keywords Spectral graph wavelet · Laplace–Beltrami ·
Shape retrieval · Multiresolution

1 Introduction

The content-based differentiation between 3D objects from
different classes is being pursued in a number of established
and emerging fields, including animation, molecular biology
and medicine, computer-aided design, multimedia entertain-
ment, and mobile game development. With the increasing
use of 3D scanners and as a result of emerging multimedia
computing technologies, large databases of 3D models are
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distributed freely or commercially on the World Wide Web.
The availability and widespread usage of such databases,
coupled with the need to explore 3D models in depth as well
as in breadth, has sparked the need to organize and search
these vast repositories, and efficiently retrieve the most rel-
evant selections. The shape retrieval problem has been ex-
tensively investigated in the literature, from comprehensive
surveys [1, 2] to comparable benchmarks [3–6].

Over the past few years, there has been a surge of in-
terest in the spectral analysis of the Laplace–Beltrami (LB)
operator, resulting in many applications to manifold learn-
ing [7], object recognition and deformable shape analy-
sis [8–12]. It is worth pointing out that spherical harmon-
ics [13] are nothing but the LB eigenfunctions on the sphere.
The truncated sequence of the LB eigenvalues was proposed
by Reuter et al. as an isometry-invariant global shape de-
scriptor, dubbed shape-DNA [9]. Reuter also introduced a
Morse-theoretic method for shape segmentation and regis-
tration using the topological features of the LB eigenfunc-
tions [10]. These eigenfunctions are computed via a cubic fi-
nite element method on triangular meshes, and are arranged
in increasing order of their associated eigenvalues. Rusta-
mov [11] proposed a feature descriptor referred to as the
global point signature (GPS), which is a vector whose com-
ponents are scaled eigenfunctions of the LB operator evalu-
ated at each surface point. GPS is invariant under isometric
deformations of the shape, but it suffers from the problem
of eigenfunctions’ switching whenever the associated eigen-
values are close to each other. This problem was lately well
handled by the heat kernel signature (HKS) [14], which is
a temporal descriptor defined as an exponentially-weighted
combination of the LB eigenfunctions. It is a local shape de-
scriptor that has a number of desirable properties, including
robustness to small perturbations of the shape, efficiency and
invariance to isometric transformations. The idea of HKS
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was also independently proposed by Gȩbal et al. [15] for
3D shape skeletonization and segmentation under the name
of auto diffusion function. Using the Fourier transform’s
magnitude, Kokkinos et al. introduced the scale-invariant
heat kernel signature (SIHKS) [16], which is constructed
based on a logarithmically sampled scale-space. Observed
from the graph Fourier perspective, HKS is highly dom-
inated by information from low frequencies, which corre-
spond to macroscopic properties of a shape. To give rise to
substantially more accurate matching than HKS, the wave
kernel signature (WKS) [17] was proposed as an alternative
in an effort to allow access to high-frequency information.
Despite being physically inspired, both WKS and HKS can
be regarded as filters. On the other hand, in order to con-
struct a good task-specific spectral descriptor, one has to be
in the position of defining the spectral content of the geomet-
ric “signal” and the “noise.” Bronstein [18] proposed to learn
the signal and noise from examples in a way that resembles
the construction of a Wiener filter that passes frequencies
containing more signal than noise, while attenuating those
where the noise covers the signal.

In this paper, we introduce a wavelet-based signature for
nonrigid 3D shape retrieval. Wavelets are a class of a func-
tions used to localize a given function in both space and scal-
ing [19]. The wavelet analysis has some major advantages
over Fourier transform, which makes it an interesting alter-
native for many applications. In particular, unlike the Fourier
transform, wavelet analysis is able to perform local analysis
and also makes it possible to perform a multiresolution anal-
ysis. Classical wavelets are constructed by translating and
scaling a mother wavelet, which is used to generate a set
of functions through the scaling and translation operations.
The wavelet transform coefficients are then obtained by tak-
ing the inner product of the input function with the trans-
lated and scaled waveforms. The application of wavelets to
graphs (or triangle meshes) is, however, problematic and not
straightforward due in part to the fact that it is unclear how to
apply the scaling operation on a signal (or function) defined
on the mesh vertices. To tackle this problem, Coifman and
Lafon [20] introduced the diffusion wavelets, which general-
ize the classical wavelets by allowing for multiscale analysis
on graphs. The construction of diffusion wavelets interacts
with the underlying graph through repeated applications of
a diffusion operator, which induces a scaling process. Re-
cently, Hammond et al. [21] showed that the wavelet trans-
form can be performed in the graph Fourier domain, and
proposed a spectral graph wavelet transform that is defined
in terms of the eigensystem of the graph Laplacian matrix.
More recently, Kim et al. [22] introduced a wavelet-based
multiscale descriptor for the analysis of cortical surface sig-
nals (such as cortical thickness) using the spectral graph
wavelet transform. While building on earlier efforts, we take
a rather different approach in this paper by proposing a novel

multiresolution shape signature that is not only isometric in-
variant, but also compact, easy to compute and combines the
advantages of both band-pass and low-pass filters.

1.1 Contributions

Our main contributions in this paper may be summarized as
follows:

(i) We present a general and flexible framework for the
analysis and design of shape signatures from the spec-
tral graph wavelet perspective.

(ii) We propose a multiresolution shape signature for de-
formable 3D shape retrieval using a cubic spline gener-
ating kernel. The main attractive properties of the pro-
posed signature may be summarized as follows: It can
capture both global and local geometry of shapes in
a multiresolution fashion; its parameters can be auto-
matically determined as a trade-off between effective-
ness and compactness; it nicely fits the intrinsic spa-
tial partition matching; and it yields the best retrieval
accuracy on two standard 3D shape benchmarks com-
pared to spectral signatures within the diffusion geomet-
ric framework.

The rest of the paper is organized as follows. In Sect. 2, we
provide some background on the LB operator, its discretiza-
tion and eigenanalysis. Then, we briefly describe the Fourier
transform in the graph-theoretic framework. In Sect. 3, we
propose a multiresolution shape signature in the spectral
graph wavelet framework. Using a cubic spline wavelet gen-
erating kernel, we introduce an efficient approach for non-
rigid 3D shape retrieval in Sect. 4. Experimental results on
two standard 3D shape data sets are provided in Sect. 5. Fi-
nally, we conclude in Sect. 6.

2 Spectral geometric signatures

Spectral geometry is concerned with the eigenvalue spec-
trum of the LB operator on a compact Riemannian mani-
fold, and aims at describing the relationships between such
a spectrum and the geometric structure of the manifold.

2.1 Laplace–Beltrami operator

Let M be a smooth orientable 2-manifold (surface) em-
bedded in R

3. A global parametric representation (embed-
ding) of M is a smooth vector-valued map x defined from
a connected open set (parameterization domain) U ⊂ R

2

to M ⊂ R
3 such that x(u) = (x1(u), x2(u), x3(u)), where

u = (u1, u2) ∈ U .
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Fig. 1 Voronoi area and cotangent weighted scheme

Given a twice-differentiable function f : M → R, the
Laplace–Beltrami (LB) operator is defined as

ΔMf = − 1√
detg

2∑

i,j=1

∂

∂uj

(√
detg gij ∂f

∂ui

)
, (1)

where the matrix g = (gij ) is the Riemannian metric tensor
on M, and gij denote the elements of the inverse of g. The
metric tensor g is an intrinsic quantity in the sense that it
relates to measurements inside the surface [23, 24].

2.2 Discrete Laplace–Beltrami operator

In computer graphics, 3D objects are commonly represented
as triangle meshes. A triangle mesh M is usually denoted by
M = (V , T ), where V = {v1, . . . ,vn} is the set of vertices
and T = {t1, . . . , tm} is the set of triangles. Two distinct ver-
tices vi ,vj ∈ V are adjacent (denoted by vi ∼ vj or simply
i ∼ j ) if they are connected by an edge.

A signal (function) f : V → R
n defined on the vertices

of the mesh may be represented as an n-dimensional vector
f ∈ R

n, where the kth component of the vector f represents
the signal value at the kth vertex in V . Using a mixed finite
element/finite volume method on triangle meshes [25], the
value of ΔMf at a vertex vi (or simply i) can be approxi-
mated using the cotangent weight scheme:

ΔMf (i) ≈ 1

ai

∑

j∼i

cotαij + cotβij

2

(
f (j) − f (i)

)
, (2)

where αij and βij are the angles ∠(vivk1vj ) and ∠(vivk2vj )

of two faces tα = {vi ,vj ,vk1} and tβ = {vi ,vj ,vk2} that are
adjacent to the edge [i, j ], and ai is the area of the Voronoi
cell (shaded polygon), as shown in Fig. 1. It is worth point-
ing out that the cotangent weight scheme is numerically
consistent and preserves several important properties of the
continuous LB operator, including symmetry and positive-
definiteness [26].

2.3 Eigenanalysis

The eigenvalues λ� and the associated eigenfunctions χ� of
the LB operator can be computed by solving the following

generalized eigenvalue problem:

Cχ� = λ�Rχ�, � = 1,2, . . . , n, (3)

where χ� is the unknown eigenfunction evaluated at n mesh
vertices, R = diag(ai) is a positive-definite diagonal matrix,
and C is a sparse symmetric matrix given by

C =
⎧
⎨

⎩

∑n
i=1 cij if i = j

−cij if i ∼ j

0 o.w.
(4)

with

cij =
{

cotαij +cotβij

2 if i ∼ j

0 o.w.
(5)

Assuming that we have a connected triangle mesh, we may
sort the eigenvalues in ascending order as 0 = λ1 < λ2 ≤
· · · ≤ λn = λmax with associated orthonormal eigenfunctions
as χ1,χ2, . . . ,χn. The eigensystem {λ�,χ�}�=1,...,n of the
LB operator enjoys nice properties, including isometry in-
variance.

2.4 Graph Fourier transform

The Fourier transform is a powerful mathematical tool for
the analysis of functions, and defines a relationship between
a function in the time domain and its representation in the
frequency domain. The inverse Fourier transform then re-
constructs the original function from its transformed fre-
quency components. The eigensystem {λ�,χ�} of the LB
operator can be interpreted in the same vein as the Fourier
transform basis: the eigenvalues λ� act as the frequencies,
while the eigenfunctions χ� play the role of Fourier basis
functions. For any function f ∈ R

n defined on the mesh ver-
tex set V , the forward and inverse graph Fourier transforms
are defined, respectively, by

f̂ (�) = 〈χ�, f 〉 =
n∑

i=1

χ∗
�(i)f (i), � = 1, . . . , n, (6)

and

f (j) =
n∑

�=1

f̂ (�)χ�(j), j ∈ V , (7)

where ∗ denotes operation of complex conjugate. It is worth
pointing out that since χ� is a real-valued function on the
mesh vertices, it follows that χ∗

� = χ�. However, for the
sake of generality, we use the complex conjugate notation
throughout the paper.
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3 Proposed approach

3.1 Spectral graph wavelet transform

Similarly to the Fourier transform which decomposes a sig-
nal into its constituent frequencies, the wavelet transform
is a powerful multiresolution analysis tool that enables de-
composition of a signal into a wavelet basis which allows
simultaneous localization in space and frequency [19]. The
idea of wavelets is based on the use of shifting and scaling
operations on the signal. Using these two operations, a sig-
nal f can be represented as the sum of shifted and scaled
versions of the mother wavelet function, ψ , and shifted ver-
sions of the scaling function, φ. The mother wavelet and
scaling functions act as band-pass and low-pass functions,
respectively. It is, however, not straightforward how to apply
the scaling operation on a signal (or function) defined on the
mesh vertices. In other words, for a function f (i) defined
on a mesh vertex i ∈ V , it is meaningless to interpret f (ti)

on its own domain for a scaling constant t . To tackle this
problem, Hammond et al. [21] introduced the spectral graph
wavelet transform (SGWT). The idea is to cast the problem
in the Fourier domain and then define the required scaling
in that domain. The SGWT is determined by the choice of a
spectral graph wavelet generating kernel g : R

+ → R
+. To

act as a band-pass filter, the kernel g should satisfy g(0) = 0
and limx→∞ g(x) = 0.

Wavelet function Let g be a given kernel function. The
spectral graph wavelet coefficients of a given function f are
defined as:

Wf (t, j) = 〈ψt,j , f 〉 =
n∑

�=1

g(tλ�)f̂ (�)χ�(j), (8)

where ψt,j is the spectral graph wavelet localized at vertex j

and scale t , and it is given by

ψt,j (i) =
n∑

�=1

g(tλ�)χ
∗
�(j)χ�(i). (9)

It should be noted that g(tλ�) is able to modulate the spectral
wavelets ψt,j only for λ� within the domain of the spectrum
of LB operator. Thus, an upper bound on the largest eigen-
value λmax is required to provide knowledge on the spectrum
in practical applications.

Scaling function Similarly to the low-pass scaling func-
tions in the classical wavelet analysis, a second class of
waveforms h : R

+ → R are used as low-pass filters to better
encode the low-frequency content of a function f defined on
the mesh vertices. To act as a low-pass filter, the function h

should satisfy h(0) > 0 and h(x) → 0 as x → ∞. Similarly

to the wavelet kernels, the scaling function coefficients of f

are defined as:

Sf (j) = 〈φj ,f 〉 =
n∑

�=1

h(λ�)f̂ (�)χ�(j), (10)

where φj is the scaling function at vertex j :

φj (i) =
n∑

�=1

h(λ�)χ
∗
�(j)χ�(i). (11)

A major advantage of using the scaling function is to ensure
that the original signal f can be stably recovered when sam-
pling scale parameter t with a discrete number of values tk .
As demonstrated in [21], given a set of scales {tk}Kk=1, the set
F = {φj }nj=1 ∪{ψtk,j }K n

k=1 j=1 forms a spectral graph wavelet
frame with bounds

A = min
λ∈[0,λmax]

G(λ) and B = max
λ∈[0,λmax]

G(λ), (12)

where

G(λ) = h(λ)2 +
∑

k

g(tkλ)2. (13)

The stable recovery of f is ensured when A and B are away
from zero. Additionally, the crux of the scaling function is to
smoothly represent the low-frequency content of the signal
on the mesh. Thus, the design of the scaling function h is
uncoupled from the choice of wavelet generating kernel g.

3.2 Proposed multiresolution shape signature

Wavelets are useful in describing functions at different reso-
lution levels. Understanding and characterizing the differ-
ences between functions at different levels of resolution
is what wavelets are all about. To characterize the local-
ized context around a mesh vertex j ∈ V , we assume that
the signal on the mesh is a unit impulse function, that is
f (i) = δj (i) at each mesh vertex i ∈ V . Since the graph
Fourier transform of δj is given by

δ̂j (�) = 〈χ�, δj 〉 =
n∑

i=1

χ∗
�(i)δj (i) = χ∗

�(j), (14)

it follows that the spectral graph wavelet coefficients are

Wδj
(t, j) = 〈ψt,j , δj 〉 =

n∑

�=1

g(tλ�)χ
2
�(j) (15)

and that the coefficients of the scaling function are

Sδj
(j) =

n∑

�=1

h(λ�)χ
2
�(j). (16)
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Fig. 2 Pyramid representation of the proposed spectral graph wavelet
signature at various resolutions levels L = 1, . . . ,R, where R = 4

Following the multiresolution analysis, the spectral graph
wavelet and scaling function coefficients are collected to
form the following multiresolution shape signature:

SR(j) = {
sL(j) | L = 1, . . . ,R

}
, (17)

which we refer to as the spectral graph wavelet signature
(SGWS), where R is the resolution parameter, and sL(j) is
the shape signature at resolution level L:

sL(j) = {
Wδj

(tk, j) | k = 1, . . . ,L
} ∪ {

Sδj
(j)

}
. (18)

The wavelet scales tk (tk > tk+1) are selected to be logarith-
mically equispaced between maximum and minimum scales
t1 and tL, respectively. Thus, the resolution level L deter-
mines the resolution of scales to modulate the spectrum. The
proposed shape signature can be represented as a pyramid,
as depicted in Fig. 2, which shows that at resolution level
L = 1 the signature sL(j) consists of two elements: one el-
ement, Wδj

(t1, j), of spectral graph wavelet function coeffi-
cients and another element, Sδj

(j), of scaling function coef-
ficients. And at level L = 4, the signature sL(j) consists of
five elements (four elements of spectral graph wavelet func-
tion coefficients and one element of scaling function coef-
ficients). Hence, if the resolution is set to R = 4, then the
multiresolution signature SR(j) is composed of a total of
14 elements, as illustrated in Fig. 2. It should be noted that
these elements change from one resolution level L to an-
other, albeit with a slight abuse of notation we used the same
symbols to denote the spectral graph wavelet function coef-
ficients as well as the scaling function coefficients at each
level.

The spectral graph wavelet coefficients, given by Eq. (15),
yield a general form for spectral signatures, which includes
both HKS and WKS as particular cases, indicating a close
relationship between these two signatures and our proposed

Fig. 3 Normalized χ2-distance between a reference point (yellow col-
ored point on the horse’s back left leg) and other surface points using
SGWS at different resolution levels. From top to bottom and left to
right, the resolution levels are L = 1, 2, 3, 4, 5 and 6

SGWS. Moreover, our approach provides a general and flex-
ible framework for the analysis and design of shape signa-
tures from the wavelet viewpoint. Unlike HKS and WKS,
our proposed signature allows a multiresolution representa-
tion of shapes. The multiresolution analysis using spectral
graph wavelets model the shape content in different levels.
These levels are used to capture different details inherently
found in different structures, as shown in Fig. 3. Given a
mesh vertex j , we calculate the dissimilarity between j and
a reference vertex jref (the yellow point on the horse’s back
left leg in Fig. 3) at resolution level L, using the χ2-distance
given by

d(j, jref) =
L+1∑

k=1

(sk(j) − sk(jref))
2

sk(j) + sk(jref)
, (19)

where sk denotes the elements of the signature vector sL

of length L + 1. For visualization purposes, we normalize
all the χ2-distances to [0,1] via division by maxd(j, jref).
As can be seen in Fig. 3, the discriminative power from the
reference point to other points on the horse surface is dom-
inated by the resolution level L = 2. From L = 3 to L = 6,
more detailed geometry starts to dominate the representa-
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tion and it always maintains a large dissimilarity between
the reference and feet, resulting in relatively small dissimi-
larities for other points.

4 Cubic spline wavelet for deformable shape retrieval

In this section, we discuss what a reasonably good descriptor
is for shape retrieval [18], and how to design a signature that
satisfies the following three properties:

• Invariance. The descriptor should be invariant or at least
insensitive to a certain class of transformations that the
shape may undergo. In this paper, we consider shapes
with only isometric or near-isometric transformations.
Since the eigensystem of LB operator is intrinsic, the
spectral signature is naturally isometry invariant.

• Efficiency. The descriptor should capture as much infor-
mation as possible within as little number of dimensions
as possible. Additionally, a wavelet provides very com-
pact support because of its band-pass nature, and thus less
redundant information is contained among different sup-
ports. To guarantee the localization ability of the spectral
graph wavelet in the limit of fine scale, the kernel function
g should behave as a monic power of a mesh vertex near
the origin [21].

• Discriminative power. The descriptor should be able to
distinguish between shapes belonging to different classes.
First, shapes from different classes usually have different
micro structures. We use the multiresolution strategy to
capture the micro structures at different resolution levels
in a principled fashion. Second, low-frequency informa-
tion represents the macro structures which are critical to
shape comparison. Consequently, the scaling function h

is an integral part of our proposed shape signature. The
guidance to design a proper h is not only to make up for
the information loss by the wavelet kernel g in low fre-
quency, but also not to overlap with g.

As suggested in [21], we choose the cubic spline wavelet
and scaling function kernels given by

g(x) =
⎧
⎨

⎩

x2 if x < 1
−5 + 11x − 6x2 + x3 if 1 ≤ x ≤ 2
4x−2 if x > 2,

(20)

and

h(x) = γ exp

(
−

(
x

0.6λmin

)4)
, (21)

respectively, where λmin = λmax/20, γ is set such that h(0)

has the same value as the maximum value of g. The maxi-
mum and minimum scales are set to t1 = 2/λmin and tL =
2/λmax.

The geometry captured at each resolution level L of
the SGWS can be viewed as the area under the curve G

(see Fig. 4). For a given resolution level L, we can under-
stand the information from a specific range of the spectrum
as its associated area under the curve G. As the resolu-
tion level L increases, the partition of spectrum becomes
tighter, and thus a larger portion of the spectrum is highly
weighted.

Relation to HKS The kernel function gHKS = exp(−tλ)

yields HKS. Since gHKS �= 0, it follows that gHKS does
not satisfy the admissibility condition. As can be seen in
Fig. 4(a), there is a rich redundance along the spectrum be-
tween different scales. However, multiresolution analysis is
not possible for HKS. Since gHKS acts as a low-pass fil-
ter, HKS will fail to capture micro structures. Consequently,
HKS is not able to conduct high-precision feature local-
ization. As can be observed in the top row of Fig. 5, the
χ2-distance changes slowly along the surface. The same
distance value remains with the isometric transformation.
When a human body (shape from a different class) com-
pares with the reference, large distances occupy most of the
area.

Relation to WKS The WKS is obtained using the ker-

nel function gWKS = Ct exp(
−(log t−logλ)2

σ 2 ), which is a log-
normal distribution function that forms a wavelet generating
kernel, where Ctk is a normalization constant and σ 2 is the
variance of the distribution [17]. Unlike our proposed shape
signature, there is, however, no scaling function for WKS.
Therefore, less low-frequency information is used in WKS,
as illustrated in Fig. 4(b), resulting in a substantial loss of
global geometry of shapes. In the middle row of Fig. 5,
small χ2-distances appear on a large percentage of the sur-
face even when comparing the reference to a body shape.
The advantage of WKS is also vividly depicted in the sense
that micro structures that are different with the local geom-
etry of the reference are detected.

Proposed signature revisited Observed from the recon-
struction perspective, the cubic spline kernel is devised
obeying the rules of the wavelet generating kernel function.
Therefore, the signal defined on the surface can be stably
recovered, whereas neither HKS nor WKS allow stable re-
covery in the sense that the signal is only recovered ap-
proximately. In Figs. 4(c) to (h) display the cubic wavelet
spline kernels and their squared sum function G for dif-
ferent values of the resolution parameter R, ranging from
1 to 6. Each value of the function G indicates the energy
contribution from each frequency, and it also acts as a good
tool to visualize the resolution oscillation for each resolu-
tion R. The last row of Fig. 5 shows our proposed signature
with R = 2. In the next section, our experiments show that
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Fig. 4 Spectrum modulation using different kernel functions at various resolutions. The dark line is the squared sum function G, while the
dash-dotted and the dotted lines are upper and lower bounds (B and A) of G, respectively

R = 2 gives the best results. As can be seen, the SGWS in-
tegrates the advantages of both HKS (global geometry for
discriminative power) and WKS (local geometry for local-
ization). The former is demonstrated by the body surface
colored in red. The χ2-distances are larger than the horse

model. The latter is evidenced by sharply detected features
close to the end of the four legs of the horse. As a whole,
that is why we observe that the SGWS brings steeper color
change within a neighborhood and deeper red on a different
shape.
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Fig. 5 Normalized χ2-distance between a reference point (yellow col-
ored on the horse’s back left leg) and other surface points using differ-
ent signatures. Top row: heat kernel. Middle row: wave kernel. Bottom
row: cubic spline wavelet kernel with R = 2

5 Experimental results

To assess the performance of our proposed approach on 3D
shape retrieval, we conducted experiments on two standard
benchmarks: SHREC 2010 [27] and SHREC 2011 [4]. In-
stead of adopting the Gaussian kernel for the codeword am-
biguity modeling [12], we use the traditional L0-norm code-
book because it can evaluate signatures without the effect of
the kernel size. Shape comparison is then performed via in-
trinsic spatial pyramid matching (ISPM). The key idea of
ISPM is to adopt the level sets of the second eigenfunc-
tion of LB operator as cuts to perform surface partition.
ISPM is largely motivated by spatial pyramid matching [28],
which partitions an image into increasingly fine subregions
and then computes histograms of local features found inside
each subregion.

5.1 Settings

Evaluation measure We evaluated the shape retrieval per-
formance using the Discounted Cumulative Gain (DCG) [29].
The DCG score reflects the performance of the algorithm

when correct results that are retrieved earlier are weighted
higher than those retrieved later. All normalized DCG cal-
culations are relative values in the interval [0,1], and higher
values imply better retrieval performance.

Comparing signatures We compared the proposed method
with classical spectral signatures, including SIHKS, HKS
and WKS. The SIHKS is chosen because of its excellent
performance in the Shape Google algorithm [12]. The first
150 eigenvalues and eigenvectors of the LB operator on each
shape are used. We experimentally select the best parameters
for each signature as well as on each SHREC data set as fol-
lows. For HKS, we formulate the diffusion time as t = t0α

τ ,
where τ is sampled from 0 to a given scale T with a resolu-
tion 1/4. In our case, we set T = 5, t0 = 0.01 and α = 4. In
order to construct the SIHKS, we use t = ατ , where τ ranges
from 1 to a given scale with finer increments of 1/16, and
we set the values T = 25 and α = 2. After applying the log-
arithm, derivative and Fourier transform, all the frequencies
are used to obtain the best result. For WKS, we seek the best
increment by dividing the spectrum interval by a scalar M .
The variance σ is also inferred as a certain percentage of the
interval. The best parameters are M = 50 and percentage
equal to 0.2.

Complexity We implemented our algorithms in MATLAB
7.14 (R2012a), and we performed the experiments on a
desktop computer with an Intel Core i3-2100 running at
3.1 GHz and 4 GB RAM. We computed offline in advance
the vocabulary, which depends on the number of the de-
scriptors (number of mesh vertices), the dimension of the
descriptor, and the vocabulary size (number of clusters). To
confirm getting optimal results, the clustering is repeated
3 times, and each time by a new set of initial cluster cen-
troid positions. The solution with the lowest value for the
sum of distances is returned. We also simplify our mesh to
2000 faces for each shape. For a set of approximately 2×105

descriptors, the runtime (in seconds) for a vocabulary with
size 32 ranges from 77 s for R = 1 to 501 s for R = 6. On
the other hand, the runtimes for SIHKS, HKS and WKS with
their best parameters are 5702, 340 and 725 s, respectively.

5.2 SHREC 2010

The first data set we consider is SHREC 2010 [27], which
is a standard data set of nonrigid 3D models used in the
Shape Retrieval Contest, organized by National Institute of
the Standards and Technology (NIST). The data set con-
sists of 200 shapes spread over 10 categories with 20 shapes
each, and ranges from human bodies to man-made tools like
glasses. In Fig. 6, we display four models of each class in
this data set.
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Fig. 6 Sample shapes from
SHREC 2010

Table 1 Performance (DCG) of
different spectral descriptors on
SHREC 2010 with intrinsic
spatial pyramid matching

Level l
(Partitions)

SIHKS HKS WKS Spectral graph wavelet signature (R)

1 2 3 4 5 6

0 (1) 0.8719 0.8448 0.7280 0.8124 0.8635 0.8541 0.8454 0.8547 0.8497

1 (2) 0.8734 0.8420 0.7290 0.8172 0.8593 0.8603 0.8498 0.8554 0.8527

2 (4) 0.8793 0.8509 0.7509 0.8789 0.8792 0.8732 0.8681 0.8665 0.8634

3 (8) 0.8817 0.8531 0.7612 0.8781 0.8737 0.8682 0.8651 0.8604 0.8615

4 (16) 0.8841 0.8520 0.7634 0.8687 0.8721 0.8636 0.8640 0.8563 0.8590

Improvement 0.0122 0.0083 0.0354 0.0665 0.0157 0.0191 0.0227 0.0118 0.0137

First, we examine the performance of the SGWS with
varying resolutions. In Table 1, the best DCG value of the
SGWS matched by bag-of-feature (BoF) is displayed in the
row named “Level 0,” and it was obtained using a resolution
R = 2. Interestingly, for R = 2 the proposed shape signa-
ture has only 5 elements, but it achieves a comparably good
result. The element represented by the scaling function cap-
tures the global features, whereas the element represented
by the spectral graph wavelet function captures more de-
tailed local features and gives evidence that macro struc-
tures dominate the deformable shape retrieval. This argu-
ment is demonstrated again using R = 2, where the best re-
sult 0.8635 improves when only the sub-low-frequency band
is added. In addition, it can be seen in Table 1 that the accu-
racy is consistently better than HKS and WKS from R = 2
all the way up to R = 6. We stop at R = 6 for two main
reasons: (i) The higher is the resolution, the more expen-

sive is the computational cost. However, the performance
remains relatively stable; (ii) In Fig. 4, each value of G indi-
cates the energy contribution of each frequency. The first
local minimum close to 0 becomes the global minimum
since R = 6, indicating the end of low-frequency domina-
tion.

Next, we examine the behavior of the SGWS with in-
trinsic spatial pyramid matching using different pyramid
levels l and different surface partitions. The rows named
“Level 1” to “Level 4,” in Table 1, list the DCG perfor-
mance achieved at different pyramid levels. The improve-
ment of ISPM over BoF is displayed in the last row of the
table, where it can be seen that WKS has improved most
significantly by gaining 0.0354, while SIHKS and HKS are
improved slightly by 0.0122 and 0.0083, respectively. This
can be understood as the potential of signatures, indepen-
dently occupying the frequency band, is well improved by
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Fig. 7 Sample shapes from
SHREC 2011

Table 2 Performance (DCG) of
different spectral descriptors on
SHREC 2011 with intrinsic
spatial pyramid matching

Level l
(Partitions)

SIHKS HKS WKS Spectral graph wavelet signature (R)

1 2 3 4 5 6

0 (1) 0.8262 0.8114 0.6801 0.8043 0.8948 0.8536 0.8731 0.8613 0.8633

1 (2) 0.8436 0.8277 0.7097 0.8419 0.9208 0.8858 0.9002 0.8873 0.8911

4 (16) 0.8671 0.8721 0.7933 0.9203 0.9508 0.9443 0.9526 0.9471 0.9517

7 (128) 0.8771 0.8878 0.8042 0.9132 0.9427 0.9366 0.9383 0.9344 0.9359

9 (512) 0.8793 0.8902 0.8029 0.8982 0.9344 0.9241 0.9319 0.9277 0.9272

Improvement 0.0531 0.0788 0.1241 0.1160 0.0560 0.0907 0.0795 0.0858 0.0884

ISPM. However, WKS still gives the worst result because
of its low baseline. The problem is well-balanced by the
SGWS since the critical low-frequency is also incorporated
independently. As expected, the improvement as well as the
accuracy of the SGSW are always higher than of the HKS.
On the other hand, all the signatures are improved consid-
erably as we go from a pyramid level l = 1 to a multi-level
setup. The proposed SGWS achieves the best result at l = 2,
while the other signatures at l = 3 or higher.

5.3 SHREC 2011

Our second set of experiments is performed on a larger
data set, SHREC 2011 [4], which contains 600 watertight
triangle meshes that are equally classified into 30 cate-
gories. SHREC 2011 is the most diverse nonrigid 3D shape
database available today in terms of object classes and de-

formations. In Fig. 7 we show two models of each class in
the data set.

Table 2 gives a breakdown of shape retrieval accuracy
for different resolutions R and at different pyramid levels l.
For l = 0, the best DCG result of our approach is 0.8948,
which is achieved with resolution R = 2. This significantly
exceeds 0.8262 obtained by SIHKS. The proposed method
with other resolutions is very convincing as well, as shown
in Table 2. The behavior with ISPM on this database is kind
of surprising. The best accuracy of the SGWS is obtained
at l = 4, and the DCG performance increases to 0.9526,
which is much higher than all the signatures in the liter-
ature within the framework of diffusion geometry. It can
also be observed that the improvement gains of proposed
shape signature via ISPM are also higher than SIHKS and
HKS. This is in fact consistent with the results on SHREC
2010.
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6 Conclusions

In this paper, we introduced a graph wavelet framework
for generalized spectral shape signatures. Our proposed ap-
proach provides a general and flexible framework to de-
sign shape descriptors for specific applications. By concen-
trating on finding informative spectrum for shape retrieval,
we devised a representation that is multiresolution, com-
pact, highly discriminative and parameter-insensitive. We
also demonstrated through extensive experiments the effec-
tiveness of our shape signature by achieving state-of-the-art
results on two standard benchmarks of 3D shapes.
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