
Mining Textual Data for Software Engineering
Tasks

Latifa Guerrouj
McGill University

3661 Peel St., Canada H3A 1X1
Mobile: (+1) 514-791-0085

Email: latifa.guerrouj@polymtl.ca
Web: http://latifaguerrouj.ca/

Benjamin C. M. Fung
McGill University

3661 Peel St., Canada H3A 1X1
Phone: (+1) 514-398-3360

Fax: (+1) 514-398-7193
Email: ben.fung@mcgill.ca

Web: http://dmas.lab.mcgill.ca/fung/index.htm

David Lo
Singapore Management University

80 Stamford Road
Singapore 178902

Email: davidlo@smu.edu.sg
Web: http://www.mysmu.edu/faculty/davidlo/

Foutse Khomh
École Polytechnique de Montréal

2500, chemin de la Polytechnique, Montral (Qubec) H3T 1J4
Phone: (+1) 514-340-4711

Fax: (+1) 514-340-5139
Email: foutse.khomh@polymtl.ca

Web: http://khomh.net/

Abdelwahab Hamou-Lhadj
Concordia University

515 St. Catherine, West
Montréal, H3G 2W1 Canada

Phone: (+1) 514-848-2424 ext 7949
Email: wahab.hamou-lhadj@concordia.ca

Web: http://users.encs.concordia.ca/ abdelw/index.html

Abstract—Software development artifacts produced during the
development process are of different types. Some are structured
such as the source code and execution traces while others
are unstructured like source code comments, identifiers, bug
reports, usage logs, etc. Such data embeds a significant knowledge
about software projects that can help software developers make
technical and business decisions.

While the focus has been extensively on source code in the past,
researchers have recently investigated the textual information
(e.g., identifiers and comments) contained in software artifacts
or informal documentation (e.g., StackOverflow, emails threads,
change logs, bug reports, etc.) about the software systems.
Automatic techniques and tools have been developed to generate
and–or mine unstructured data to gain insight about the soft-
ware development process or assist development teams in tasks
like software traceability, feature/concept location, source code
vocabulary normalization, bug localization, and summarization.

The tutorial will start with an introduction of textual in-
formation in source code and–or documentation. Next, we will
present automatic techniques and tools to generate and mine
unstructured data and discuss related challenges. We will also
present examples of major software engineering tasks making
use of unstructured data mining along with scenarios of their
application and the most recent contributions relevant to each
task. Specifically, we will focus on automatic source code vocab-
ulary normalization, summarization, crash reports analysis for
fault localisation. Finally, we will discuss with the audience the
success and failures in achieving the full potential of such tasks in
a software development context as well as possible improvements
and research directions. The tutorial will provide novice with
a common framework about major software engineering tasks
leveraging textual information while for experts, the tutorial can
be an interesting opportunity to discuss challenges, document the
state of the art and practice, encourage cross-fertilization across
various research areas ranging from mining software repositories
to natural language processing and text retrieval, and to establish
foreseeable collaborations between researchers.

I. MOTIVATION

Software development projects knowledge is grounded in
rich data. For example, source code, check-ins, bug reports,
work items and test executions are recorded in software
repositories such as version control systems (Git, Subversion,
Mercurial, CVS) and issue-tracking systems (Bugzilla, JIRA,
Trac), and the information about user experiences of interact-
ing with software is typically stored in log files or informal
documentation such as StackOverflow.

While there has been extensive research on static analysis
of source code, recent studies have exploited textual informa-
tion used in source code of software systems or trapped in
informal documentation (e.g., emails threads, StackOverflow
posts, etc.). The purpose is to develop automatic software
engineering techniques, gain insights and understand software
projects, and support the decision-making process.

Major software engineering tasks have leveraged textual in-
formation. For example in the context of software traceability,
researchers have made use of textual information to trace code
to documents (e.g., requirements) [1], [2], they also suggested
lightweight techniques of linking code to documentation such
as email threads [3] and StackOverflow [4], as well as tracing
code examples to documentation [5]. Textual information have
been also exploited in feature/concept location [6], [7], [8],
source code vocabulary normalization [9], [10] and summa-
rization of complex artifacts involving release notes [11],
StackOverflow [12], and bug reports [13]. Such approaches
have been developed with the aim of guiding developers and
practitioners towards a better understanding of their software
projects and the way they evolve.



While solutions provided for these engineering tasks
demonstrated promising results, there are many challenges left
concerned with mining textual information, using it in the
development of the above-mentioned tasks, as well as inte-
grating and adopting such solutions into software development
processes.

The goals of this tutorial are to discuss the use of textual
information, its related challenges and open-question, tools
and techniques of mining such data as well as ways of
integrating and exploiting them by major software engineering
tasks to fully reap their benefits.

We invite both novice and experts to this tutorial that will be
an opportunity to share tools, techniques, and experiences in
the field. We also plan, after the presentation of the tutorial, to
have a discussion and dissemination of the presented research
by opening up a discussion and involving participants in
sharing their opinions. We invite researchers and practitioners
interested in improving, integrating, and adopting the use and
mining of textual information in their software engineering
tools and thus software development and maintenance ac-
tivities. The tutorial encourages both academic researchers
and industrial practitioners for an exchange of ideas and
collaboration.

II. TOPICS

The tutorial will focus on the presentation of recent tech-
niques and tools used to generate and mine textual information
as well as software engineering tasks making use of such rich
data.

The tutorial will explain, present, and discuss the following:
1) Textual information in source code and informal docu-

mentation;
2) Benefits of using textual information in software engi-

neering tasks;
3) Recent tools and techniques used to generate and mine

textual information;
4) Challenges related to mining textual information;
5) Major software engineering tasks using textual informa-

tion;
6) Explain source code vocabulary normalization and how

it makes use of textual information along with recent
automatic approaches;

7) Present summarization software artifacts with recent au-
tomatic approaches in this area;

8) Explore bug localization, how it makes use of textual
information, and how the instructors could improve it by
leveraging text in crash reports;

9) Identification of open research challenges and possible
solutions.

III. PRESENTERS’ EXPERIENCE IN THE AREA AND TOPICS
OF THEIR PRESENTATIONS

Latifa Guerrouj preformed her past studies on context-
aware source code vocabulary normalization. Vocabulary nor-
malization aligns the vocabulary found in the source code

with that found in other software artifacts (e.g., test cases,
requirements, specifications, design, etc). Latifa developed
automatic context-aware source code vocabulary approaches
by mining textual information in source code [14], [15], [16],
[17], [18]. She also investigated the use of normalization
in the context of feature location using textual information
and dynamic analysis [19]. Recently, she suggested a new
approach summarizing Android API classes and methods dis-
cussed in StackOverflow using n-grams language models and
applying machine learning techniques [12]. Latifa is the co-
organizer of the International Workshop on Software Analytics
(SWAN’15). In this tutorial, she will make the focus on how
text found in source code or information documentation can
be mined and exploited in the context of engineering tasks
namely source code vocabulary and summarization of software
artefacts.

David Lo research work focuses on software engineering
and data mining. He investigates how techniques from these
two research areas could benefit and complement each other.
In the software engineering area, his research includes soft-
ware specification mining/protocol inference, mining software
repositories, program analysis, software testing and automated
debugging. Technique-wise, he investigates a composition of
techniques including static analysis, dynamic analysis, data
mining, information retrieval, and natural language processing.
In the data mining area, his works on frequent pattern mining,
discriminative pattern mining, and social network mining.
David contributed to the analysis of software text with the
aim of aiding software developers in performing their various
tasks. Examples of his works relevant to this tutorial involve
enhanced techniques making use of text version for bug local-
ization [20], a large scale investigation of issue trackers from
GitHub [21], accurate information retrieval-based bug local-
ization based on bug reports [22], interactive fault localization
leveraging simple user feedback [23], automatic duplicate bug
report detection with a combination of information retrieval
and topic modeling [24]. David is the co-organizer of the first
International Workshop on Machine Learning and Information
Retrieval for Software Evolution (MALIR-SE) collocated with
ASE 2013. In this tutorial, David will make the focus on
techniques of mining text and its use for bug localization.

Foutse Khomh leads the SoftWare Analytics and Technolo-
gies (SWAT) Lab that applies analytic techniques to empower
development teams with insightful and actionable information
about their activities. SWAT team also build tools to assess
and improve the quality of software systems. Early models
and tools proposed by SWAT members are already being used
in the industry. Among Foutse’s research works related to
this workshop, we state the ones on challenges and issues of
mining crash reports [25], tracking back the history of commits
in low-tech reviewing environments [26], supplementary bug
fixes vs. re-opened bugs [27], improving bug localization
using correlations in crash reports [28], classifying field crash
reports for fixing bugs: A case study of Mozilla Firefox [29],
and a text-based approach to classify change requests [30].
Foutse co-founded the International Workshop on Release



Engineering (RELENG) in 2013 and has been co-organizing
it since then. In this tutorial, Foutse will show his recent work
on using crash reports for the improvement of bug localization
and identifying highly impactful bugs.

IV. GOALS AND EXPECTED RESULTS

This tutorial targets both novice and experts working in
the field of software maintenance and evolution, interested in
the analysis of software text, its mining, and its practical use
in the context of software engineering tasks. For experts, it
will provide an informal interactive forum to exchange ideas
and experiences, streamline research making use of textual
information, identify some common ground of their work, and
share lessons and challenges, thereby articulating a vision for
the future of software engineering.

The intended outcomes of this tutorial are:
1) Make clear (for novice) what is textual information and

techniques of its mining;

2) Explore the different contemporary software engineering
techniques making use of textual data;

3) Stimulate discussions, interest, and understanding in in-
tegrating textual info in software engineering tasks and
software development process;

4) Bridging the gap between the theory and practice by
bringing together researchers and practitioners interested
in analysing software text for software engineering tasks;

5) Discuss challenges, experiences, lessons, and explore the
different possible strategies to overcome the challenges
faced and towards promising solutions to essential prob-
lems;

6) Build a common framework of major automatic ap-
proaches making use of textual information;

7) Advance the state of the art and practice in software
engineering;

V. OUTLINE

1) Introduction about software text and tools to generate and
mine such data by David Lo.

2) Exploration of major software engineering tasks making
use of textual data by Foutse Khomh.

3) Presentation of source code vocabulary normalization
along with examples of recent published automatic source
code vocabulary normalization approaches by Latifa
Guerrouj.

4) Presentation of summarization of software artifacts along
with examples of recent published automatic summariza-
tion approach by Latifa Guerrouj.

5) Presentation of bug localization with examples of most
recent automatic approaches in this area by David Lo.

6) Exploration of recent ways to improve bug localization
using crash reports and to identify impactful bugs by
Foutse Khomh.

7) Summary and recap of the tutorial by David Lo, Latifa
Guerrouj, and Foutse Khomh.

VI. TARGET AUDIENCE

This tutorial is intended for both novice and experts, aca-
demics and industrial practitioners. It will provide participants
with an understanding of software text, techniques to mine it
from source code or documentation, and ways of adopting and
integrating it in major engineering tasks. Additionally, novice
will be able to understand engineering tasks such as vocabulary
normalization, bug localization, and summarization and how
they exploit textual data to fully reap their benefits. The tutorial
will show scenarios of the presented approaches and how they
can help to guide developers during their tasks as well as to
improve software maintenance and evolution.

We will also discuss the limitations and challenges of the
most recent related techniques and how these issues can be
addressed and mitigated.

Participants are encouraged to talk about their recent works
related to the tutorial (if any) and share their experiences and
major faced challenges. Experts will be there to guide and
provide them with feedback.

VII. FORMAT

We propose to have 2-hours tutorial consisting of a 1 hour
dedicated to an 1) introduction of textual data by the pre-
senters, 2) major software engineering tasks leveraging such
data, 3) concrete examples of recent automatic approaches on
source code vocabulary normalization and summarization, and
4) related discussions by participants. The other 1 hour will be
devoted to the 5) bug localization, 6) its enhancement using
crash reports as well as ways of identifying impactful bugs,
7) discussion by participants, and 8) summary and recap.

We encourage discussions so as to develop an in-depth
understanding of the presented topics for novice. Experts
are invited to enrich the discussions by providing opinions
and moderating a discussion on the state-of-the-art and state-
of-the-practice of software engineering tasks making use of
textual data.

VIII. ACKNOWLEDGEMENT

Special thanks to Giuliano Antoniol and Massimiliano Di
Penta for all their valuable feedback on this tutorial.



IX. CONTRIBUTORS’ BIOGRAPHY

Latifa Guerrouj is a
Postdoctoral Research Fellow
at McGill University, Canada.
She received her Ph.D. from the
Department of Computing and
Software Engineering (DGIGL)
of École Polytechnique de
Montréal, Canada. Her research
work/interests involves empirical
software engineering, software

analytics, data mining, and big data software engineering.
Latifa is serving as an organizing and program committee
member for several international conferences and workshops
including ICSME’16, ICSME’15, SANER’15, SWAN’15,
ICSM’14, SCAM’14, MSR’14/13, WCRE’13/12, ICST’12,
and MUD’12/13. She is a member of ACM and IEEE.

Benjamin C. M. Fung is an
Associate Professor of Informa-
tion Studies (SIS) at McGill Uni-
versity and a Research Scientist
in the National Cyber-Forensics
and Training Alliance Canada
(NCFTA Canada). He received a
Ph.D. degree in computing sci-
ence from Simon Fraser Univer-
sity in 2007. Dr. Fung has over

80 refereed publications that span the prestigious research
forums of data mining, privacy protection, cyber forensics,
services computing, and building engineering. His data mining
works in crime investigation and authorship analysis have
been reported by media worldwide. His research has been
supported in part by the Discovery Grants and Strategic Project
Grants from the Natural Sciences and Engineering Research
Council of Canada (NSERC), Insight Development Grants
from the Social Sciences and Humanities Research Coun-
cil (SSHRC), Defence Research and Development Canada
(DRDC), and Fonds de recherche du Qubec - Nature et
technologies (FRQNT), and NCFTA Canada. Dr. Fung is a
licensed professional engineer in software engineering, and is
currently affiliated with the Data Mining and Security Lab at
SIS.

David Lo is an Assistant Profes-
sor in the School of Information
Systems at Singapore Manage-
ment University. He received his
PhD from School of Computing,
National University of Singapore
in 2008. Before that, he was
studying at School of Computer
Engineering, Nanyang Techno-
logical University and graduated
with a B.Eng (Hons I) in 2004.

David works in the intersection of software engineering and
data mining. His research interests include dynamic program
analysis, specification mining, and pattern mining. Lo received
a PhD in computer science from the National University of
Singapore. He is a member of the IEEE and the ACM.

Foutse khomh is an Assistant
Professor at the École
Polytechnique de Montréal,
where he heads the SWAT
Lab on software analytics and
cloud engineering research
(http://swat.polymtl.ca/). Prior
to this position he was a
Research Fellow at Queen’s
University (Canada), working
with the Software Reengineering

Research Group and the NSERC/RIM Industrial Research
Chair in Software Engineering of Ultra Large Scale Systems.
He received his Ph.D in Software Engineering from the
University of Montreal in 2010, under the supervision of
Yann-Gaël Guéhéneuc. His main research interest is in the
field of empirical software engineering, with an emphasis
on developing techniques and tools to improve software
quality. Over the years, he has applied many text mining
techniques to solve multiple software engineering problems.
He co-founded the International Workshop on Release
Engineering (http://releng.polymtl.ca) and was one of the
editors of the first special issue on Release Engineering in
the IEEE Software magazine.

Abdelwahab Hamou-Lhadj is
a tenured Associate Professor in
ECE, Concordia University. His
research interests include soft-
ware modeling, software behav-
ior analysis, software mainte-
nance and evolution, anomaly
detection systems. He holds a

Ph.D. degree in Computer Science from the University of
Ottawa (2005). He is a Licensed Professional Engineer in
Quebec, and a long- lasting member of IEEE and ACM.



REFERENCES

[1] N. Ali, Y.-G. Guéhéneuc, and G. Antoniol, “Trustrace: Mining software
repositories to improve the accuracy of requirement traceability links,”
IEEE Transactions on Software Engineering, vol. 39, no. 5, pp. 725–741,
2013.

[2] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,” IEEE
Transactions on Software Engineering, vol. 28, no. 10, pp. 970–983,
2002.

[3] A. Bacchelli, M. Lanza, and R. Robbes, “Linking e-mails and source
code artifacts,” in Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering, 2010, pp. 375–384.

[4] P. C. Rigby and M. P. Robillard, “Discovering essential code elements
in informal documentation,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE ’13, 2013, pp. 832–841.

[5] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live api documenta-
tion,” in Proceedings of the 36th International Conference on Software
Engineering, ser. ICSE 2014, 2014, pp. 643–652.

[6] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich, “Feature location
via information retrieval based filtering of a single scenario execution
trace.” in ASE’07, 2007, pp. 234–243.

[7] D. Poshyvanyk, Y.-G. Guéhéneuc, A. Marcus, G. Antoniol, and V. Ra-
jlich, “Feature location using probabilistic ranking of methods based on
execution scenarios and information retrieval,” IEEE Transactions on
Software Engineering, vol. 33, no. 6, pp. 420–432, 2007.

[8] T. Eisenbarth, R. Koschke, and D. Simon, “Locating features in source
code,” IEEE Transactions on Software Engieering, pp. 210–224, March
2003.

[9] L. Guerrouj, D. P. Massimiliano, G. Yann-Gaël, and G. Antoniol,
“Tidier: an identifier splitting approach using speech recognition tech-
niques,” Journal of Software: Evolution and Process, pp. 575–599, 2013.

[10] E. Enslen, E. Hill, L. L. Pollock, and K. Vijay-Shanker, “Mining
source code to automatically split identifiers for software analysis,” in
Proceedings of of the 6th International Working Conference on Mining
Software Repositories, 2009, pp. 71–80.

[11] L. Moreno, G. Bavota, M. D. Penta, R. Oliveto, and A. Marcus,
“How can i use this method,” in Proceedings of the 37th International
Conference on Software Engineering, ser. ICSE 2015, 2015.

[12] L. Guerrouj, D. Bourque, and P. Rigby, “Leveraging informal documen-
tation to summarize classes and methods in context,” in Proceedings of
the 37th International Conference on Software Engineering, ser. ICSE
2015, 2015.

[13] S. Rastkar, G. C. Murphy, and G. Murray, “Summarizing software
artifacts: a case study of bug reports.” ACM, 2010, pp. 505–514.

[14] L. Guerrouj, M. D. Penta, Y. Guéhéneuc, and G. Antoniol, “An experi-
mental investigation on the effects of context on source code identifiers
splitting and expansion,” Empirical Software Engineering, vol. 19, no. 6,
pp. 1706–1753, 2014.

[15] L. Guerrouj, M. D. Penta, G. Antoniol, and Y. G. Guéhéneuc, “Tidier:
An identifier splitting approach using speech recognition techniques,”
Journal of Software Maintenance - Research and Practice, p. 31, 2011.

[16] L. Guerrouj, “Normalizing source code vocabulary to support program
comprehension and software quality,” in Proceedings of the 2013 Inter-
national Conference on Software Engineering, 2013, pp. 1385–1388.

[17] L. Guerrouj, P. Galinier, Y.-G. Guéhéneuc, G. Antoniol, and M. D.
Penta, “Tris: a fast and accurate identifiers splitting and expansion
algorithm,” in Proc. of the International Working Conference on Reverse
Engineering (WCRE’12), 2012, pp. 103–112.

[18] N. Madani, L. Guerrouj, M. Di Penta, Y.-G. Guéhéneuc, and G. An-
toniol, “Recognizing words from source code identifiers using speech
recognition techniques,” in Proceedings of the 14th European Confer-
ence on Software Maintenance and Reengineering (CSMR 2010), March
15-18 2010, Madrid, Spain. IEEE CS Press, 2010.

[19] B. Dit, L. Guerrouj, D. Poshyvanyk, and G. Antoniol, “Can better
identifier splitting techniques help feature location?” in Proc. of the
International Conference on Program Comprehension (ICPC), Kingston,
2011, pp. 11–20.

[20] S. Wang and D. Lo, “Version history, similar report, and structure:
Putting them together for improved bug localization,” in Proceedings of
the 22Nd International Conference on Program Comprehension. ACM,
2014, pp. 53–63.

[21] T. F. Bissyand, D. Lo, L. Jiang, L. Rveillre, J. Klein, and Y. L. Traon,
“Got issues? who cares about it? a large scale investigation of issue
trackers from github.” IEEE, 2013, pp. 188–197.

[22] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed?
- more accurate information retrieval-based bug localization based on
bug reports,” in Proceedings of the 34th International Conference on
Software Engineering, 2012, pp. 14–24.

[23] L. Gong, D. Lo, L. Jiang, and H. Zhang, “Interactive fault localization
leveraging simple user feedback.” IEEE Computer Society, 2012, pp.
67–76.

[24] A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and C. Sun,
“Duplicate bug report detection with a combination of information
retrieval and topic modeling,” in Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, 2012, pp.
70–79.

[25] L. An and F. Khomh, “Challenges and issues of mining crash reports,”
in 1st IEEE International Workshop on Software Analytics, SWAN 2015,
Montreal, QC, Canada, March 2, 2015, 2015, pp. 5–8.

[26] Y. Jiang, B. Adams, F. Khomh, and D. M. German, “Tracing back the
history of commits in low-tech reviewing environments,” in Proceedings
of the 8th International Symposium on Empirical Software Engineering
and Measurement (ESEM), Torino, Italy, September 2014.

[27] L. An, F. Khomh, and B. Adams, “Supplementary Bug Fixes vs. Re-
opened Bugs.” IEEE Computer Society, 2014, pp. 205–214.

[28] S. Wang, F. Khomh, and Y. Zou, in MSR, pp. 247–256.
[29] T. Dhaliwal, F. Khomh, and Y. Zou, “Classifying field crash reports for

fixing bugs: A case study of mozilla firefox.” in ICSM. IEEE, 2011,
pp. 333–342.

[30] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Guéhéneuc,
“Is it a bug or an enhancement?: A text-based approach to classify
change requests,” in Proceedings of the 2008 Conference of the Center
for Advanced Studies on Collaborative Research: Meeting of Minds,
2008, pp. 23:304–23:318.


	Motivation
	Topics
	Presenters' Experience in the Area and Topics of Their Presentations
	Goals and Expected Results
	Outline
	Target audience 
	Format
	Acknowledgement
	Contributors' biography
	References

