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Abstract 

High Performance Computing (HPC) systems play an important role in today’s heavily 

digitized world, which is in a constant demand for higher speed of calculation and 

performance. HPC applications are used in multiple domains such as telecommunication, 

health, scientific research, and more.  With the emergence of multi-core and cloud 

computing platforms, the   HPC paradigm is quickly becoming the design of choice of 

many service providers.  

HPC systems are also known to be complex to debug and analyze due to the large number 

of processes they involve and the way these processes communicate with each other to 

perform specific tasks. As a result, software engineers must spend extensive amount of 

time understanding the complex interactions among a system’s processes. This is usually 

done through the analysis of execution traces generated from running the system at hand. 

Traces, however, are very difficult to work with due to the overwhelming size of typical 

traces. The objective of this research is to present a set of techniques that facilitates the 

understanding of the behaviour of HPC applications through the analysis of system traces. 

The first technique consists of building an exchange format called MTF (MPI Trace 

Format) for representing and exchanging traces generated from HPC applications based on 

the MPI (Message Passing Interface) standard, which is a de facto standard for inter-

process communication for high performance computing systems. The design of MTF is 

validated against well-known requirements for a standard exchange format.  

The second technique aims to facilitate the understanding of large traces of inter-process 

communication by automatically extracting communication patterns that characterize their 

main behaviour. Two algorithms are presented. The first one permits the recognition of 
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repeating patterns in traces of MPI (Message Passing Interaction) applications whereas the 

second algorithm searches if a given communication pattern occurs in a trace. Both 

algorithms are based on the n-gram extraction technique used in natural language 

processing.  

Finally, we developed a technique to abstract MPI traces by detecting the different 

execution phases in a program based on concepts from information theory. Using this 

approach, software engineers can examine the trace as a sequence of high-level 

computational phases instead of a mere flow of low-level events. 

The techniques presented in this thesis have been tested on traces generated from real HPC 

programs. The results from several case studies demonstrate the usefulness and 

effectiveness of our techniques. 
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Chapter 1. Introduction & Motivations 
 

This thesis targets the analysis of traces generated from inter-process communication 

applications that use the message passing paradigm. The objective is to develop techniques 

to facilitate the understanding of the content of large inter-process communication traces. 

In the following, we will motivate the idea behind this research and outline the main 

contributions of this work. 

1.1 Problem Statement 

High Performance Computing (HPC) benefits from parallel computing systems in order to 

solve computation-intensive scientific problems. As opposed to sequential computing, 

parallel computing decomposes the problem into sub-problems that run on different 

computational units in order to solve the problem in a reasonable amount of time. In most 

cases, the computational units need to collaborate in order to complete a specific task. This 

collaboration is achieved using two main programming paradigms which are the shared 

memory and distributed memory paradigms. In shared memory, processes collaborate by 

sharing the same memory space. On the other hand, a distributed memory application 

consists of many processes running on different distributed processors that interact using 

the message passing model. These parallel programs may consist of thousands of processes 

that are coordinating to solve a specific large scale problem. In this thesis, we focus on 

distributed memory applications with specific interest in programs that use the Message 

Passing Interface [MPI] (an accepted standard for writing parallel applications using 

message passing) for inter-process communication.  
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Although the benefits of HPC applications are numerous, they tend to be difficult to debug 

and analyze, causing significant delays in production and maintenance times. This is 

mainly due to the large number of inter-communicating processes they involve and the size 

of data to be processed. Therefore, it becomes necessary to develop program analysis 

techniques that can facilitate the understanding of these types of applications. 

Program analysis techniques are grouped in two categories: Static analysis and dynamic 

analysis. Static analysis techniques study the source code and the available documentation. 

They do not involve the execution of the system. Despite their popularity, static analysis 

techniques tend to be conservative to the understanding of the behavioural aspects of 

software, especially in the context of parallel systems where system attributes can only be 

detected during run-time. Dynamic analysis techniques, the focus of this thesis, revolve 

around the examination of traces generated from running an instrumented version of the 

software system. Dynamic analysis of software systems has the advantage of being precise 

since it depicts the system’s actual behaviour. Dynamic analysis, however, suffers from the 

huge volume of data that is generated, which hinders any viable analysis. There is a need 

for techniques that enable software engineers to understand and analyze large traces despite 

the trace being massive.  

The objective of this thesis is two-fold:  

• Build an exchange trace format that leverages the synergy among the various trace 

analysis tools.  

• Develop techniques to reduce the size of traces to allow their analysis. Using these 

techniques, software engineers can browse a trace at a higher level of abstraction 

than the low-level events. 



20 

 

In the next section, we discuss the motivations behind the selection of the analysis of 

message passing programs. Section 1.3 presents the main contributions of this thesis. 

Finally, the outline of the thesis is presented in Section 1.4. 

1.2 The focus on traces of inter-process communications 

In this work, we focus on inter-process communication traces generated from HPC 

applications which use the MPI standard as the inter-process communication model. HPC 

applications are used in different domains such as bioinformatics, cryptography, 

telecommunications and others. These applications tend to be complex and require 

excessive inter-process communication in order to achieve their goals. Consequently, it 

becomes more difficult to maintain and understand these types of applications when 

compared to sequential programs. One of the main factors that hinder the comprehension 

of such applications is the excessive inter-process interactions. Therefore, understanding 

the inter-process communication can provide valuable insight into the behaviour of HPC 

applications. Our motivations behind studying inter-process communication traces can be 

summarized as follows: 

1. The wide acceptance of the message passing model for inter-process communication. 

2. The complexity of parallel programs as a result of the large number of their 

communicating processes and the huge amount of data to be processed. 

3. The need for a standard exchange format for the available tools for dynamic analysis 

of parallel message-passing applications which is expected to improve the synergy 

among them. 
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4. The need for new techniques for inter-process communication trace abstraction in order 

to facilitate the understanding of the large amounts of trace data generated from 

executing these systems. 

1.3 Thesis Contributions 

The main contributions of this thesis are discussed in what follows: 

1.3.1 Exchange Format of MPI Traces 

Recently, there has been an increase in the number of tools to help software engineers 

analyze the behaviour of HPC applications. These tools provide several features that 

facilitate the understanding and analysis of the information contained in inter-process 

communication traces generated from running an HPC application.  They, however, use 

different formats to represent traces, which hinders interoperability and sharing of data. 

We address this by proposing an exchange format called MTF (MPI Trace Format) for 

representing and exchanging traces generated from HPC applications based on the MPI 

standard. The design of MTF is validated against well-known requirements for a standard 

exchange format, with an objective being to lead the work towards standardizing the way 

MPI traces are represented in order to allow better synergy among tools. We have also 

developed a set of queries to facilitate the retrieval of data from MTF traces. Additionally, 

we have applied concepts from graph theory in order to represent MTF traces in a more 

compact format. The model and its ability to scale to large traces are tested against traces 

generated from running large HPC programs. 
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1.3.2 Communication Patterns Extraction 

We propose a new approach that facilitates the understanding of large traces of inter-

process communication by extracting communication patterns that characterize the main 

behaviour embedded in a trace. Two algorithms are proposed. The first one permits the 

recognition of repeating patterns in traces of MPI applications whereas the second 

algorithm searches if a given communication pattern occurs in a trace. Both algorithms are 

based on the n-gram extraction technique used in natural language processing. In this thesis, 

we also present a pattern detection technique that overcome the main limitation of existing 

approaches and which lies in the fact that they generate many patterns among which many 

are noise. This appears to be due to the fact that they treat a trace as a mere string of events 

for which they apply various pattern matching techniques. In other words, they are blind 

to the different parts of a trace.  In this thesis, we propose an approach that uses the routine 

call tree to guide the pattern extraction process. We show the effectiveness and efficiency 

of our approach in detecting communication patterns from large traces generated from 

different HPC programs systems. 

1.3.3 Execution Phase Detection 

We present a novel approach that aims to simplify the analysis of large execution traces 

generated from HPC applications through the semi-automatic extraction of computational 

phases from large traces. These phases, which characterize the main computations of the 

traced scenario, can be used by software engineers to browse the content of a trace at 

different levels of abstraction. Our approach is based on the application of information 

theory principles to the analysis of sequences of communication patterns found in HPC 

traces. The results of the proposed approach when applied to traces of large HPC industrial 
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systems demonstrate its effectiveness in identifying the main program phases and their 

corresponding sub-phases. 

1.4 Organization of the Thesis 

The rest of this thesis is organized as follows: 

Chapter 2 – Background 

This chapter starts by presenting the main concepts in MPI. Then, we review existing trace 

abstraction techniques. The chapter details the related work that targets the development 

of trace formats for traces generated from HPC. Moreover, it details the state of the art of 

the communication patterns detection approaches followed by the latest work conducted 

on detecting phases in MPI programs. 

Chapter 3 – MPI Trace Format 

This chapter starts by describing the domain of MPI traces followed by a presentation of 

the requirements for having a standard exchange format. The MTF metamodel and its 

components are presented in the chapter. Furthermore, an approach for compacting traces 

of MPI programs is presented. The chapter is concluded by different case studies that 

demonstrate the usefulness of the model in terms of the application of different queries and 

the scalability of the model. 

Chapter 4 – Communication Patterns 

The chapter starts by illustrating the communication patterns and their importance in 

understanding the inter-process communication behaviour in the program. Then, the 

chapter details the different techniques that are used in the detection of communication 

patterns. Finally, different case studies are presented to demonstrate the effectiveness of 

the presented techniques. 
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Chapter 5 – Phase Detection 

This chapter presents a new approach for detecting execution phases in MPI programs 

based on the concepts in information theory. The chapter starts by explaining the 

importance of identifying the different execution phases in the program then it presents the 

methodology for the detection of execution phases. The chapter concludes with a case 

study that illustrates the different steps in the phase detection process and the accuracy of 

the results. 

Chapter 6 – Conclusion 

This chapter discusses the contributions of the thesis and the directions for future work. 

The chapter then concludes with some closing remarks. 
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Chapter 2. Background 
 

2.1 Introduction 

In this chapter, we start by explaining the message passing interface (MPI) along with its 

main functions. Then, we discuss the different trace abstraction techniques. Thereafter, we 

survey the state of the art of related research studies that target the dynamic analysis of 

MPI programs. First, we present the prominent execution trace formats for MPI trace 

analysis tools. Second, we discuss a list of trace analysis and visualization tools for HPC 

MPI programs. Third, the most relevant communication pattern detection studies are 

explained. Finally, we present the existing execution phase detection techniques for MPI 

programs. 

2.2 Message Passing Interface 

Message passing is an effective inter-process communication paradigm that enables the 

exchange of data and synchronization among processes in parallel programs. Existing 

software libraries that facilitate this kind of communication among processes are called 

Message Passing Environments (MPE). The most popular message passing environment is 

the Message Passing Interface (MPI) which has become a standard in the industry and 

academia. The primary goals of MPI are efficient communication and portability. Although 

several message-passing libraries exist on different systems, MPI is popular for the 

following reasons: 

• Fully Asynchronous: process communications and computations can overlap. 

• Group Membership: Processes may be grouped based on context. 
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• Synchronization Variables: these variables are used to enforce synchronization. 

They include the source and destination information, message labelling, and 

context information.  

• Portability: the MPI specification is publicly available for implementation on any 

environment. 

MPI is a framework that facilitates the inter-process communication in parallel programs 

based on message passing. Every process consists of a program counter and address space 

and may also have multiple threads (program counters and associated stacks) sharing a 

single address space. MPI targets the communication among processes which have separate 

address spaces. Figure 2.1 depicts a typical distributed parallel environment. It is composed 

of different processors that contain one or more processes and a mean for inter-process 

communication which is in this case based on MPI. Processes in MPI programs are 

arranged in a specific process topology. A process topology is the way the processes are 

virtually represented on a grid (Cartesian) or a graph structure. 

 

Figure 2.1 Message Passing Environment 
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MPI supports two types of programming paradigms [MPI]: 

1. SPMD (Single Program, Multiple Data): All the processes will run the same 

program on multiple sets of data in order to complete the task. 

2. MPMD (Parallel Programs, Multiple Data): Processes will run different programs 

on multiple sets of data in order to complete the task or set of tasks. 

The MPI library routines provide a set of functions that support the following [MPI]: 

• Point-to-point communication. 

• Collective communication. 

• Communication contexts. 

• Process topologies. 

• Data-type manipulation. 

The following sections will provide a detailed study on the point-to-point and collective 

MPI communications. 

2.2.1 Point-to-Point Communications 

Point-to-point communication involves sending and receiving messages between two 

processes [MPI]. This is the simplest form of data transfer in a message-passing model. 

One process acts as the sender and the other acts as the receiver. The message consists of 

an envelope that indicates the source, destination, tag, communicator and data. There are 

two modes in communication in point-to-point MPI operations: 

• Blocking: the program will not return from the subroutine call until the copy to/from 

the system buffer has finished. 

• Non-blocking: the program immediately returns from the subroutine call. It is not 

assured that the copy to/from the system buffer has completed so that the program 
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has to check for the completion of the copy. MPI uses different routines to check 

or to wait for the completion of the operation.  

Message exchange should occur between two processes that belong to the same group. A 

group of processes in MPI is defined as a Communicator. A communicator is an object that 

represents a group of processes and their communication medium or context. These 

processes exchange messages to transfer data. Communicators encapsulate a group of 

processes such that communication is restricted to processes within that group. A message 

is sent with a specific user-defined tag value that can be used at the receiver to identify the 

incoming message. Also, a receiving process may accept a message regardless of the tag 

by specifying MPI_ANY_TAG as the tag in the posted Receive. 

Table 2.1. Blocking and Non-blocking Send Operations 

Mode Blocking 
Non-

blocking 
Description 

Standard MPI_Send MPI_Isend MPI may buffer the message 

Buffered MPI_Bsend MPI_Ibsend 
A Send operation may start and complete 

without waiting for a posted matching Receive. 

Synchronous MPI_Ssend MPI_Issend 

A Send operation may start whether or not a 

matching Receive has been posted. However, 

the operation will not complete successfully 

unless a matching Receive is posted and started 

to receive the message 

Ready MPI_Rsend MPI_Irsend 

A Send operation that uses the Ready mode of 

communication cannot start unless the 

matching Receive is already posted. 

MPI provides four types of Send-operations, each of them available in a blocking and a 

non-blocking variant. Table 2.1 provides the names of the four operations for each mode 
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of communication. Receive operations can be blocking and non-blocking and can match 

any of the modes of the send operation. A blocking receive operation can match a non-

blocking send operation and vice-versa.  

Table 2.2 shows the two different MPI receive operations. The length of the received 

message must be less than or equal to the length of the receive buffer. A message can be 

received only if its envelope matches the Source, Tag, and Communicator in the Receive 

operation unless specified otherwise. 

Table 2.2. Blocking and Non-blocking Send Operations 

Mode Non-blocking Description 

Blocking  MPI_Recv 
The process will block until the operation 

is completed. 

Non-Blocking MPI_Irecv 
The process will resume after posting the 

receive operation. 

In non-blocking mode of communication, the process can use the MPI_Wait operation in 

order to wait for the completion of the Send/Receive operation. Moreover, the process may 

use the MPI_Test to check for the completion of the operation. The completion of a send 

indicates that the sending process is free to access the send buffer. The completion of a 

Receive indicates that the Receive buffer contains the message and it is ready to be 

accessed by the receiver. 

2.2.2 Collective Communications 

Collective communication involves exchanging information among a group 

(communicator) of processes. MPI provides a set of routines that handle this type of 

communication. Basically, these collective routines are based on the point-to-point routines. 

Thus, a combination of point-to-point MPI operations can achieve the same functionality 
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of the collective ones. However, collective communication routines do not use tags for 

message send and receive operations. Table 2.3 presents the different types of collective 

operations defined in MPI. Collective communication can be one-to-many, many-to-one, 

or many-to-many. The single originating process in the one-to-many routines or the single 

receiving process in the many-to-one routines is called the root. 

Table 2.3. MPI Collective Operations 

Operation Description 

Barrier  

Used to block the calling process until all processes have entered the 

function. Forces synchronization among the processes in the 

communicator. 

Broadcast 
MPI_Bcast operation is used to broadcast a message from a root 

process to all other processes in the communicator.  

Gather 
MPI_Gather collects the contents of each process’ data and send it to 

the root process, which stores the messages in rank order. 

Scatter 
MPI_Scatter is a one-to-all type of communication and is the opposite 

of MPI Gather. 

AllGather 

MPI Allgather gathers the data from each process in the communicator 

and sends them to all the processes in the communicator so all the 

processes will have the same copy of each process’ data. 

All-To-All 

MPI_Alltoall is an extension of MPI_ALLGATHER where each 

process sends distinct data to every other process in the communicator. 

The jth block sent from Process i is received by Process j and is placed 

in the ith block of the receiver's buffer. 

Reduce 
MPI_Reduce will store the result of a specific arithmetic operation in 

the root process. 

A basic rule for collective communication is that all processes must execute the same 

collective communication operations in the same order. This enforces synchronization 

among the group’s processes. However, MPI does not guarantee this synchronization and 
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recommends using the Barrier operation. Collective operations in MPI have the following 

rules: 

• Type matching conditions are stricter than the ones in point-to-point 

communication. 

• The amount of data sent must be exactly the same as the amount specified by the 

receiver. 

• Collective operations come in blocking versions only. 

• Collective operations do not use a tag argument which means that they are matched 

strictly according to the order of execution. 

• Collective operations come in standard mode only. 

It is recommended to use the collective operations when needed instead of using point-to-

point operations for that purpose. 

2.3 Trace Abstraction Techniques 

Execution trace size is one of the major drawbacks of the dynamic analysis of software 

systems. Therefore, in order to make dynamic analysis a favourable approach it is 

necessary to provide means for reducing the amount of trace data without losing its main 

characteristics. In this section, we present the main trace abstraction techniques found in 

the literature. 

2.3.1 Sampling 

Sampling [Chan 03] is used effectively in the dynamic analysis of software systems and is 

performed by processing a number of sampled events from the trace rather than processing 

the whole trace file. The sampling method can be performed in different ways such as 
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selecting every nth event from the trace file, randomly or using a customized method. 

Sampling helps in reducing the trace file size but with a drawback that some key events 

may have been skipped using this method. In the scope of our work, we do not intend to 

apply sampling to traces of inter-process communication applications. 

2.3.2 Filtering 

Filtering the trace data based on different factors such as the type of objects, the time 

interval, a slice from an object type and others is another way of reducing the amount of 

trace data to the software engineer [Hamou-Lhadj 05]. This is another effective abstraction 

technique that is found in many trace analysis tools (e.g. [JumpShot]). In traces for method 

calls, filtering also includes techniques such as stack depth limitation (the nesting level of 

the method in the trace) determined by a threshold. Only method calls that appear up to the 

specified threshold are taken into account during the analysis. In inter-process 

communication traces, filtering may be used by hiding some processes and their 

corresponding events, hiding specific types of events and others such as showing messages 

with size greater than a specific value. 

2.3.3 Grouping 

Grouping [Cornelissen 08] or clustering is an abstraction technique that groups events or 

processes (in case of parallel applications) according to specific criteria. This technique is 

different from sampling and filtering in that it attempts to apply some rules to group the 

objects under study to provide a higher level of abstraction. The result of this technique is 

another set of objects that simplify the understanding of the trace under study. 
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2.3.4 Utility Removal 

An execution trace contains a lot of information that in many cases may not be useful in 

understanding the program [Hamou-Lhadj 05]. Therefore, removing these elements will 

reduce the size of the trace and will make it more beneficial for program comprehension. 

These elements are called utilities. Utilities could be methods, classes, packages, processes 

and threads that do not implement important functionality of the system. They are used to 

provide support to the functions that implement the core functionality. 

2.3.5 Pattern Detection 

Software programs repeat the same or similar behaviour throughout the program run which 

can be extracted and presented to the software engineer. These repeated behaviours can be 

detected in the trace files using different techniques. This repeating behaviour is known as 

patterns. A pattern is a sequence of events that is repeating non-contiguously in the trace 

file. In traces of method calls, a repeated pattern is a sequence of method calls (at different 

nesting levels) that are repeated non-contiguously in the trace file. In inter-communication 

traces, a pattern is a set of inter-process communications that are repeating non-

contiguously throughout the trace. Detecting repeating patterns reduces the effort of 

understanding the trace file as the scattered patterns in the trace file are presented to the 

software engineer automatically. 

2.3.6 Visualization Techniques 

Trace visualization [Cornelissen 2009] plays a significant role in program comprehension 

since it abstracts the trace data into different views that provide meaningful information to 

the software engineer. Trace visualization is considered an abstraction technique since each 
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visualization view presents different information that may be very high-level or very 

detailed based on the objective of the analysis. Most visualization techniques provide some 

features that allow the user to abstract the trace data by grouping events, hiding events, 

highlighting events and others. 

2.4 Inter-process Communication Trace Formats 

In this section, we present different types of trace formats. Some of these formats are 

generic and can be applied to traces of MPI programs. Another set of trace formats is 

designed specifically to carry traces of HPC programs that use MPI for inter-process 

communication. 

2.4.1 Self-Defining Data Format (SDDF) 

The Self Defining Data Format is one of the leading trace formats that have been used for 

representing trace data generated from distributed applications [Aydt 94]. It is a general-

purpose format that is designed to be a meta-format for defining data record structures. 

SDDF trace files consist of a header and packet sections. The header determines the type 

of encoding used in the trace file (binary or ASCII). The binary representation of SDDF 

can be used when compactness is sought. On the other hand, the ASCII representation is 

used when portability and readability are needed. The packets describe information about 

the trace files such as the time the trace was generated. The main packet, which defines the 

data record structures, is called the ‘Record Descriptor’. The trace data exists in the ‘Record 

Data’ packet which is represented using the Record Descriptor packet. Another advantage 

of using SDDF is its flexibility. Therefore, trace format developers can define new trace 

formats by extending the meta-format provided by SDDF. SDDF, however, is not 

specifically designed to support MPI operations, which renders its applicability to support 
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traces generated from HPC systems based on MPI a difficult task. Also, it does not suggest 

a well-known data carrier for exchanging the trace data. 

2.4.2 Pajé 

Pajé trace format is a generic trace format that provides the ability to define the structure 

of the traces based on the targeted problem [Kergomm 03]. Similar to SDDF, the trace data 

format of Pajé is self-defined. The meta-format (the trace structure) is defined in the trace 

file in a hierarchical manner that classifies all types of traceable elements. A Pajé trace file 

is composed of two definition categories that define the format of the generic instructions 

about the experiment and the format of the event traces respectively. Pajé, also, contains 

two data categories (the trace data) which represent instances of the two definition 

categories. The trace file contains the definition of the events followed by the events 

themselves. Events with different unique identifiers can have the same names. This allows 

adding different fields for the same event type based on the tracing requirement. Though 

the Pajé trace format provides flexible ways of defining different event formats, it is 

difficult to represent all the properties of MPI traces such as matching point-to-point 

operations and their corresponding wait and test statements. 

2.4.3 EPILOG 

The Event Processing, Investigating, and Logging (EPILOG) format is a binary trace 

format for representing traces of MPI and OpenMP (a paradigm for shared memory 

programming) applications [Wolf 04]. An EPILOG trace file consists of two sections. A 

header which contains information related to the EPILOG file such as the EPILOG version 

number. The second part is the records section. EPILOG uses two record types; the 

definition record and the event record. Each record consists of a header and a body. The 
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header defines the length and the type of the record body. Definition records are used to 

define the types and objects that will be used in the trace file. For example, a definition 

record can be used to define the trace for the MPI send operation. Also, EPILOG defines 

records for the communicator and the locations in the MPI application so they can be 

referenced by other record definitions. The event records are used to capture run-time 

information. EPILOG provides a trace format specifically designed for MPI traces. 

However, a main drawback of using EPILOG is the fact that it provides a binary trace 

format that hinders portability of the trace format on different platforms. 

2.4.4 Structured Trace Format 

The Structured Trace Format (STF) handles traces generated from large applications using 

several physical files [STF]. The purpose is to properly control the size problem of large 

trace files to avoid having trace files that take up more than ten gigabytes. STF defines a 

set of files mainly the index file (locates other STF files), the declaration file, the event 

data file and the statistics file. The declaration file defines the record formats of the traced 

units such as the methods Enter and Exit. The data file contains the trace data based on the 

format defined in the declaration file. Finally, the statistics file contains some profiling 

information based on the trace. The Intel Trace Collector (ITC) tool [STF] produces traces 

in the STF format. STF traces can be analyzed using the Intel Trace Analyzer (ITA) 

performance analysis tool. This trace format does not meet the simplicity requirement for 

a standard exchange format as it is complex to use since it requires managing different 

types of data files. Moreover, this trace format is proprietary which contradicts the 

openness requirement for a standard exchange format. 
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2.4.5 Open Trace Format 

The Open Trace Format (OTF) uses different streams (files) to represent trace data for HPC 

parallel applications [Knüpfer 06a]. A stream usually corresponds to one process in the 

program. However, traces of one process must exist in one stream only in order to preserve 

the execution of the process’ events. Each stream contains definitions for the trace events 

such as the routine names, the MPI operations used in the trace file as well as the 

information regarding the processes and the MPI communicators in the application. The 

definitions of the traces are followed by the events traced in the program. Some statistical 

information may also follow the trace events in the stream. OTF defines an index file that 

is used to map each process to its stream (file). This file is used by the OTF library to locate 

and map the streams for each process. OTF uses ASCII encoding in order to be presented 

as a platform independent trace file format. Finally, OTF uses compression techniques in 

order to provide reduced trace file size. Based on our experiments, we believe that OTF is 

an efficient trace file format. However, it does not use a popular data carrier which makes 

it difficult to be read by other tools. Moreover, OTF stores the events sequentially without 

taking the scalability problem into account. 

2.4.6 Scalable Log format (SLOG) 

The Scalable Log format (SLOG-2) [Margaris 09] is a hierarchical trace file format that is 

built with the intention to support the visualization of huge trace files efficiently. Its main 

purpose is to enable only loading the displayed time window in memory without the need 

to load the whole trace file which may exceed in some cases multiple gigabytes. Therefore, 

this trace format avoids removing some trace data in order to reduce the file size. Each 

hierarchy represents a level of abstraction which is composed of different time intervals. 
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The deeper we go in the hierarchy the more intervals that we discover. The SLOG file 

format has a binary tree structure that is defined recursively with the root node being the 

interval from 0 to the last event end time in the trace. 

2.4.7 Paraver Trace Format 

The Paraver Trace Format [Paraver] uses one file to store the trace data. It defines the 

following record types: Enter/Leave events for routine calls, Atomic events for capturing 

performance counters information, and communication events for point-to-point and 

collective communication events. In addition to timestamp sorting of events, Paraver 

permits the sorting of events by their event type. Paraver provides the description of events 

based on their physical and logical locations by using two fixed hierarchies. The logical 

location description contains threads, processes and applications. The physical location 

contains CPUs, Nodes of multiple CPUs and systems of multiple nodes. Moreover, Paraver 

supports additional configuration files that are used to configure the display of event types. 

2.4.8 TAU Trace Format 

TAU (Trace Analysis Utilities) trace format [Shende 04] uses a binary encoding for trace 

events. It is used by the TAU profiling tool [Shende 05]. The trace format uses a single file 

to define and store the trace data. Initially, traces are gathered from each process separately 

and then merged into the single file. All record types use the exact same number of bytes 

to represent the events, which limits the extensibility of the trace format. 

2.4.9 Research Studies that target the Scalability of MPI Traces 

In this section, we present a number of research studies that target the scalability problem 

of MPI traces.  
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2.4.9.1 ScalaTrace 

Noeth et al. [Noeth 09] presented ScalaTrace that provides a compressed trace format for 

MPI traces. The compression takes place at two stages: intra-process compression followed 

by inter-process compression. At the process level, they represent the identical sequences 

of MPI events caused from loops using one regular section descriptor (RSD) which 

specifies how many times the sequence is repeated. The intra-process compression is then 

followed by an inter-process compression using a binary tree where similar RSDs with 

matching counts are merged. The main advantage of their approach is that the compression 

preserves the temporal ordering of events. However, this approach has the following two 

main disadvantages: 

• The approach only targets Single Process Multiple Data (SPMD) applications 

where all processes behave similarly which makes their approach useful for these 

cases only. 

• Even though the approach keeps the ordering of events, it is still lossy as it provides 

approximate timestamps and not the exact values that were collected at the tracing 

time.  

Moreover, this study only provided compression of MPI events in the program and did not 

take into account other kind of information such as user routine calls. 

2.4.9.2 Construction and Compression of CCG for Post-mortem Trace Analysis 

Knüpfer et al. [Knüpfer 05] proposed the usage of compressed Complete Call Graphs 

(cCCG) in order to represent traces of single and parallel process programs. In parallel 

process programs, each process trace will have its own cCCG. The cCCG is a directed 

acyclic graph as in their approach they tend to combine regular patterns into common sub-
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trees. Representing the routine call tree as a directed acyclic graph was previously 

conducted by [Larus 99, Reiss 01] and later improved by [Hamou-Lhadj 04]. However, 

Knupfer et al. do not look for identical sub-trees. They search for compatible trees by 

comparing the sub-trees’ top nodes only and assuming that if all the references of the child 

nodes of the two compared root nodes are pointing to the same sub-tree then the two sub-

trees are considered to be compatible. This trade-off for time complexity reduces the 

accuracy of the compression algorithm. Furthermore, they represent the timing information 

as delta times (duration) instead of the timestamps that are gathered at execution time. In 

order to recover the original timestamp, the traversal of the graph from the root node to the 

designated node is required. Two sub-trees are considered similar when the delta times in 

both the sub-trees’ nodes deviate within a specified bound. Therefore, when considering a 

small deviation bound, the number of similar sub-trees will be very low which will result 

in a lower compression ratio. When constructing the CCG, they take the graph branching 

factor into consideration (number of direct children to the node). If the branching factor is 

beyond a threshold, then artificial nodes will be inserted into the graph between the parent 

and its children by splitting the children into two or more groups.  

2.4.9.3 ScalaExtrap 

Wu et al. [Wu 11] presented an approach for the extrapolation of an application's 

communication traces and their execution times from small traces in order to simulate 

traces at larger scale. The extrapolation method is based on the communication topology 

identification at smaller numbers of processes. They proposed the usage of a set of linear 

equations in order to obtain the relation between communication traces for traces with 

different number of processes that will enable the extrapolation of communication traces. 
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Regarding the extrapolation of timing information, they employed curve fitting approaches 

to represent trends in delta times over traces with varying number of processes. The authors 

only considered SPMD HPC MPI programs with stencil and mesh process arrangements 

that only exploit one communication pattern throughout their execution. However, when 

considering more complex problems such as SMG2000 which has several communication 

patterns and have varying communication behaviour when considering different problem 

sizes, the presented extrapolation technique will be limited. 

2.4.9.4 Logicalization of Communication Traces from Parallel Execution 

This work [Qu 09] presents a framework to automatically construct a single logical trace 

that is a representative of the overall parallel execution when the communication pattern is 

a regular stencil. The approach is based on identifying the communication topology of the 

application and converting all point-to-point communication calls between physical 

processes to logical calls representing the global communication pattern. The methodology 

is independent of the numbering of processes in the system. The key contribution is an 

algorithmic framework to identify the global communication topology from distributed 

message exchange data that is effective and efficient. This work provides only a logical 

representation of the complete execution trace. Therefore, the resulting trace is lossy and 

cannot recover the original trace from the logical one. 

2.5 Visualization Techniques for Inter-process Communication Traces 

Visualization techniques for traces generated from parallel applications can be divided into 

three main types; behavioural, structural and statistical. Behavioural techniques visualize 

the execution of the program over time. Structural techniques are used to describe the 

structure of communication such as the communication topology among processes. 
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Statistical techniques present summary information about the execution trace such as the 

number of events, the size of data exchanged and so on. These techniques have 

implementations in 2D and 3D space diagrams. In the following, we present the state-of-

the-art of the research studies that have been proposed in the literature for the visualization 

of inter-process communication traces. 

2.5.1 Message Passing Visualization with ATEMPT 

ATEMPT [Kranzlmüller 95] “A Tool Event ManiPuliaTion” is a tool that applies the 

concept of event graphs for visualizing communications among the processes in parallel 

applications. An event graph [Kranzlmüller 00] consists of a horizontal line for each 

process, vertices that represent the event and directed edges between the events which 

represent the process communication or the sequential program flow. In inter-process 

communication applications, the edges are used to represent messages exchanged among 

the program processes. The purpose of ATEMPT is to help software engineers detecting 

errors such as a send event with no receive event, and performance analysis of parallel 

applications. One main advantage of ATEMPT is that it applies the concept of trace 

abstraction to limit the analysis to the points of interest. However, the abstraction is 

performed in a semi-automatic way by allowing the user to specify the main areas of 

interest in the graph. 

2.5.2 ParaGraph 

Paragraph [Heath 03] is a performance and behavioural visualization tool of parallel 

programs based on MPI. It is a post-mortem tool that displays execution traces pictorially 

in an animated manner. Also, it provides some graphical statistical views that provide 

summaries about the performance of the application under test. ParaGraph was initially 
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developed based on PICL (Portable Instrumented Communication Library) in 1989 and 

was modified later to support the new message passing specification (MPI). ParaGraph 

supports views for processor utilization such as the utilization count, Gantt chart, Kiviat 

diagram and concurrency profile. Also, ParaGraph supports several displays that depict the 

communication among the processes in the program such as the space-time diagram and 

the communication matrix. Also, ParaGraph supports an animated view that has a node for 

each process’ status (busy, overhead, idle, sending, receiving, or collective 

communication) and arcs between the nodes to represent the communication activity 

between the processes. ParaGraph contains many other views that we cannot include in 

this context for space limitation. 

2.5.3 JumpShot 

JumpShot-4 [Jumpshot] is a visualization tool that supports the SLOG-2 trace format. An 

advantage of JumpShot-4 is the Level-of-detail support which means that it does not need 

to read the whole trace file into memory. It only reads the data needed at each level of 

abstraction. The main view in JumpShot is the space-time view which also provides a 

Gantt-like chart for each process in order to show the activities each process is involved in. 

Moreover, it uses arrows to depict the messages among the different processes in the 

program. Figure 2.2 shows an example of the JumpShot-4 tool. Each horizontal line 

belongs to a process in the program which contains all the actions that were performed by 

a process. Also, as can be seen, the arrows show the messages being exchanged among the 

processes. As can be seen, the program provides zooming functions, filtration, searching, 

scrolling and others. 
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Figure 2.2.  Screenshot of Jumpshot Tool 

2.5.4 Pajé Visualization Tool 

Pajé [Paje] is a versatile trace based visualization tool designed to help performance 

debugging of large-sized parallel applications. From trace files, recorded during the 

execution of parallel programs, Pajé builds a graphical representation of the behaviour of 

these programs, to help programmers identify their “performance errors”. Pajé provides 

two types of visualization techniques to represent graphically containers, state, events, 

variables and links. The first and most used is the space-time window, which actually draws 

a Gantt-chart display that uses arrows to represent interactions among processes. The 

second type of display is used to dynamically show statistical information about a selected 

slice of time in the space-time window. Pajé is designed to be interactive, scalable and 

extensible which, according to its developers, enables it to handle a very large amount of 

traces efficiently. 
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2.5.5 Vampir 

Vampir [Vampir] is a commercial performance and visualization tool that is supported by 

the Center for Information Services and High Performance Computing (ZIH) of TU 

Dresden. The main objective of Vampir is to support scalable visualization of inter-process 

communication of OTF traces generated from MPI using the VampirTrace tracing tool. 

Vampir contains several display views such as the message statistics view, matrix chart, 

summary chart, Gantt-charts, summary timeline and counter timeline. Vampir has a set of 

flexible filter operations, which are used to reduce the amount of information displayed 

and to help its users to spot more easily performance problems. Figure 2.3 shows a 

screenshot of Vampir. Furthermore, Vampir provides a hierarchical visualization, based on 

Gantt charts, which allows users to view trace data in different levels of abstraction such 

as process, thread, and the process cluster. An advantage of using the hierarchical technique 

is its scalability. This technique supports up to 50 times more processes than only using the 

Gantt chart. 
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Figure 2.3.  Screenshot of Vampir Tool 

 

2.5.6 ParaProf 

ParaProf [Paraprof] is a visualization tool for parallel applications. It is part of the Tuning 

and Analysis Utilities (TAU) [Shende 05] project, a joint project between the University 

of Oregon, Los Alamos National Laboratory, in the United States, and Julich Research 

Center, Germany. ParaProf is designed to be portable, extensible and scalable and is 

organized in four main components. The visualization component supports 3D 

visualizations, thread-based views, function-based views and phase-based views. The 3D 

views include Triangle Mesh Plot (provides metrics for program functions and threads), 

3D Bar Plot, and the 3D Scatter Plot. The thread-based view provides statistics for each 

thread and a call graph of the functions executed in the program. The function-based views 

include statistical information depicted using function bar chart and function histograms. 
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Finally, the phase-based views show statistical data related to each execution phase in the 

parallel program. 

2.5.7 Visual Analysis of Inter-Process Comm. for Large-Scale Parallel Computing 

Muelder et al. [Muelder 09] proposed a new visualization approach for understanding 

communication behaviours and identifying performance for large scale parallel programs 

that consist of thousands to millions of processes. In their approach, they focus on the 

system as a whole before digging down into individual processes or MPI calls. They 

propose three views with different levels of abstraction. The highest level of abstraction 

view presents the system as a whole and provides information on how the overall 

communication is impacting the system performance. A more detailed view considers the 

communications among groups of processes (ignores individual processes). In this view, 

the MPI calls can be viewed regardless of the number of participating processes. The third 

view shows the details for individual views and individual MPI calls. Furthermore, they 

used opacity scaling to resolve the overlapping of the plotted MPI calls. 

2.6 Communication Patterns Detection 

In this section, we present the state of the art of the research studies that targeted the 

detection of communication patterns in inter-process communication applications. 

2.6.1 Detecting Patterns in MPI Communication Traces 

The authors [Preissl 08] proposed an algorithm for the detection of repeating patterns in 

MPI traces. Their approach is based on compressed suffix trees to detect the maximal 

repeats in every process trace separately. For each process trace, they select certain 

maximal repeats and not all of them by using seed events or sub-graph properties and in 
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some cases they used static analysis to determine the most important areas in the code and 

use their events accordingly. They only consider a subset of the maximal repeats since it 

takes a prohibitive time to compute the communication patterns based on all maximal 

repeats. However, our analysis shows that the same maximal repeat may be part of different 

communication patterns. Therefore, this factor should be taken into consideration when 

filtering most of the detected maximal repeats. After selecting the start repeats, they start 

building the communication pattern starting from one maximal repeat on process i. Then, 

they compute the maximal and minimal intervals by locating the matching events on the 

other processes. This step is done iteratively until the communication pattern is complete 

and all the maximal repeats were included in the iterations.  

2.6.2 Exploitation of Dynamic Communication Patterns through Static Analysis 

In [Preissl 10], the authors applied their communication pattern detection approach 

supported by static analysis in order to detect point-to-point communication patterns that 

correspond to collective MPI operations. The objective of this work is to replace point-to-

point communication patterns by collective MPI operations that have better performance 

than using an equivalent communication based on MPI point-to-point operations. 

2.6.3 Automatic analysis of inefficiency patterns in parallel applications 

Wolf et al. [Wolf 07] utilized the knowledge from virtual topologies in order to identify 

patterns of inefficient behaviour due to long wait states caused from inefficient application 

of the parallel programming model. The communication topology (virtual topology) is used 

to identify the phases of inter-process communication in the program. This work is 

different than our communication pattern detection since it only looks for patterns of 

inefficient behaviour resulting from processes in long wait states. Also, they presume 
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knowledge of the communication topology in the program which helps them in identifying 

the different parallel communication phases in the program. Our approach looks for inter-

process communication patterns by investigating message passing events. 

2.6.4 Visualization of Repetitive Patterns in Event Traces 

The authors [Knüpfer 06b] proposed an algorithm to remove contiguous repeating patterns 

from the trace in order to reduce the size of the trace. The algorithm is based on the 

compressed complete call graph (cCCG) and the pattern graph (a derivative of the cCCG). 

An advantage of using cCCG is that it references all call sequences that are equal with 

respect to call structure and temporal behaviour, which improves trace compression. In 

their algorithm, they only detect contiguous pattern repetitions. They claim that patterns 

found at interspersed locations are identified as the same pattern which is not the case when 

studying large traces with hundreds of distinct patterns. Moreover, this approach does not 

detect communication patterns. It only detects repeating patterns on each process trace 

separately. 

2.6.5 TraceVis: An Execution Trace Visualization Tool 

TraceVis [Roberts 05] is a trace visualization tool for parallel program executions. In 

TraceVis, the pattern detection algorithm depends on the human ability to process 

enormous amounts of visual data. The trace graph view in TraceVis is used to locate 

regions of similar inter-process communications. Though this may be possible for 

reasonable trace sizes, dealing with huge traces that involve a large number of processes is 

merely impossible. 
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2.6.6 Fast Detection of Communication Patterns in Distributed Executions 

The authors [Kunz 97] presented a technique based on finite state automata to find 

communication patterns in the trace that match an input pattern. The pattern matching 

algorithm is performed by determining the longest process pattern in the input 

communication pattern which will be used as the search string in the pattern matching 

algorithm. They start building the communication pattern by locating the partner events on 

the other process traces. This approach is only concerned with detecting patterns based on 

a pre-defined input pattern. In our work, we propose two algorithms for detecting repeating 

patterns and matching a pre-defined pattern. 

2.6.7 An Approach for Matching Communication Patterns in Parallel Applications 

The authors [Ma 08] proposed an approach for comparing the communication patterns 

found in the traces generated from different systems to find the degree of similarity 

between them. The degree of similarity between two applications is measured using the 

correlation coefficient followed by an undirected communication graph that depicts the 

communication topology among the processes. Then, the similarity between the generated 

graphs is determined using graph isomorphism metrics. This work is different from our 

work as it compares traces generated from different systems.  

2.6.8 Scalable Parallel Debugging with g-Eclipse 

The authors [Köckerbauer 10] proposed the use of a pattern matching technique to simplify 

the debugging of large message passing parallel programs by identifying patterns in  the 

trace file that are similar to a predefined pattern. First, the user specifies a description of 

the communication pattern to be searched for in the trace file. This pattern description is 
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then translated to abstract syntax trees. The ASTs are then scaled up to the number of 

processes in the trace (or the number of the target processes in the trace). The pattern 

matching process is run on each process trace individually. In their work, they used a hash-

based search to detect exact and similar patterns on each process trace. Finally, the 

matching patterns are merged in order to get the communication pattern which should be 

exact or a variation of the user’s specified pattern. 

2.6.9 A Scalable Approach to MPI Application Performance Analysis 

Moore et al. [Moore 05] proposed a pattern matching method for detecting patterns of 

inefficient behaviour based on wait states in order to be used in KOJAK (a performance 

analysis tool for high performance parallel applications) [KOJAK]. These patterns of 

inefficient behaviour are identified by converting the trace into a compact call-path profile 

which classifies patterns based on the time spent. This approach only looks for events that 

cause performance degradation and does not focus on the inter-process communication 

patterns. 

2.7 Phase Detection 

The execution of a program exhibits a similar cyclic behaviour which can be identified as 

several execution phases [Gu 06]. In the literature, several studies investigated the 

usefulness of the program execution phases in performance optimization, reducing 

profiling overhead, system reengineering, and in program comprehension. In MPI 

programs, there exist a small number of studies that target the detection of execution phases. 
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2.7.1 Automatic Phase Detection of MPI Applications 

In their study [Casas 07], Casas et al. applied the wavelet transform technique in the signal 

processing field to automatically detect the main execution phases in MPI applications. 

The algorithm identifies phases by separating execution regions based on their iterative 

frequency. A region with high frequency of iterations will be separated from a low 

frequency one. This work targets the detection of computation phases in MPI programs. 

The different MPI phases (initialization, computation, and output) are categorized based 

on their frequency of iterative behaviour where in the computation phase most of the 

parallel iterations exist. The objective of this work is to provide the analyst with an initial 

abstraction level that provides an overview about the system under study before studying 

the source code. Casas et al. indicated that the computation phase in MPI programs is 

usually large and more effort should be invested in an algorithm that identifies the sub-

computational phases. 

2.7.2 Automatic Detection of Parallel Applications Computation Phases 

Gonzalez et al. [González 09] presented an approach to facilitate the analysis of message 

passing parallel applications using the density-based clustering techniques to detect 

computation phases that occur between the parallel communications in the program. They 

apply the density-based approach on data obtained from performance counters provided by 

modern processors. The main objective of this work is to detect the most important regions 

of execution in the program. They use CPU bursts to outline the different regions in the 

program. A CPU burst is considered as a CPU computation region between two 

consecutive communications. Therefore, a burst is identified by the duration and the set of 

performance counters. 
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2.7.3 Automatic Phase Detection and Structure Extraction of MPI Applications 

Casas et al. [Casas 10] extended the previous work that uses wavelet transform from signal 

processing in order to detect the different sub-phases in the computational phase. They base 

their approach on the iterative behaviour found in MPI traces where CPU bursts are 

followed by process communication. They derive the signals from different metrics that 

are based on inter-process communication and computing bursts. They assume that the 

highest frequencies of communications (signals) appear in the computation phases. 

Therefore, their approach detects regions with highest frequencies and identifies them as 

the computational phase in the program. 

2.8 Summary 

The focus of this thesis is on developing techniques to facilitate the understanding of inter-

process communication traces. Therefore, the work in this thesis lies within the domain of 

program comprehension. We focus on two research problems which are the modeling of 

MPI execution traces and their abstraction. In abstraction, we target communication 

patterns detection and matching techniques and execution phase detection techniques.  

This chapter targeted a survey of the related studies. In the following, we comment on the 

surveyed research studies. 

• None of the surveyed trace formats targeted the development of an exchange format 

that meets the requirements for a standard one. Existing trace formats are not scalable 

to carry very large execution traces. Additionally, approaches that targeted the 

scalability proposed lossless trace formats which may cause the loss of potential trace 

information. 
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• The existing communication pattern detection techniques do not take into account the 

quality of the detected patterns. Usually, they detect a large set of false positives. Also, 

existing techniques do not scale up to large traces.  

• Only a few phase detection techniques have been proposed in the literature. These 

techniques focus mainly on performance analysis. We believe that our work on 

detecting execution phases from execution traces with a focus on program 

comprehension is considered unique and novel. 
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Chapter 3. MPI Exchange Format (MTF) 
 

 

3.1 Introduction 

Several techniques and tools have emerged to facilitate the analysis of HPC applications 

(e.g. [TAU, Vampir, and Heath 03]). These tools come with many features including trace 

analysis algorithms, visualization layouts, optimization algorithms, pattern detection 

methods, and others that can help in studying the runtime behaviour of these applications 

for performance analysis, debugging, deadlock detection, and so on. These tools, however, 

do not interoperate due to a lack of a common exchange format for representing HPC traces. 

Clearly, a common trace format that enables synergy and sharing of data among tools is 

needed, and reduces the effort and cost required to represent HPC traces. 

The objective of this chapter is to present MTF (Message Passing Interface Trace Format), 

an exchange format that we have developed to represent runtime information generated 

from HPC applications. The focus is on inter-process communication traces based on the 

message passing paradigm, with a particular interest in MPI [MPI]. MTF supports the 

modeling of MPI operations, the application’s processes and the way they interact in a 

specific usage scenario, and the routine calls that are executed by each process during a 

particular execution.  

There exist several exchange formats in the literature for HPC-generated traces (presented 

in Chapter 2), but most of them do not scale up to large traces or they support lossy versions 

of the original trace. Many of them are also proprietary and represent traces in binary 

format which hinders their portability and understandability.  
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MTF is built with several requirements in mind to facilitate its adoption and enable it to 

become a standard exchange format for traces generated from HPC applications. One of 

the key requirements that we have carefully addressed is the ability for MTF to support 

very large traces. This is particularly important in the context of traces since typical traces 

may contain millions of events, especially if generated from HPC applications that involve 

a large number of computing nodes (which is very common in practice). The specification 

of MTF is openly available. The MTF model itself is represented as an Ecore model 

developed using the Eclipse Modeling Framework (EMF) [EMF]. MTF also reuses 

existing data carriers such as XML.  We have also developed a query language and an API 

that can be readily used to extract information from MTF models.  In sum, we believe that 

MTF supports key features that can make it a common exchange format for representing 

and sharing information generated from HPC systems, and if adopted, we believe it can 

lead the work towards a standard exchange format for MPI traces.  

The rest of the chapter is organized as follows. In Section 3.2, we present the domain of 

MPI traces. In Section 3.3, we present the requirements for a standard exchange format. 

Section 3.4 presents the MTF metamodel and its main components.  Section 3.5 presents 

the MTF tool support. In Section 3.6, we present an approach for compacting MPI traces 

based on the directed acyclic graph which is supported by MTF. Section 3.7 presents the 

validation of MTF. Finally, Section 3.8 presents a case study that shows the effectiveness 

of MTF to support large traces generated from different systems and benchmarks. We 

conclude the chapter in Section 3.9.  
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3.2 The Domain of MPI Traces 

An MPI trace depicts the execution of the running processes in the program along with the 

messages exchanged among them. HPC applications often follow the Single Program 

Multiple Data (SPMD) paradigm in which the program tasks are run in parallel on multiple 

processors to maximize performance. 

As mentioned in the background chapter, communication among processes is based on 

executing MPI operations supported by the MPI environment. MPI supports two 

communication modes: point-to-point and collective communications. Point-to-point 

operations are blocking and non-blocking operations. They only involve two processes (a 

sender and a receiver). On the other hand, collective operations involve all the processes 

in a communicator that is specified in the call. Collective operations can only run in 

blocking mode in order to guarantee the synchronization among the processes. The MPI 

specifications [MPI] provide detailed description of the various MPI operations. An MPI 

trace can be considered as a set of streams of data, where each stream corresponds to one 

process in the program. Each trace contains the routines executed by the process, the MPI 

operations invoked by the process to communicate with other processes, the messages sent 

and received, and many other details such as timestamps.  

Figure 3.1 shows an example of two processes that execute in parallel four functions f1, f2, 

f3, and f4. The label on the edge is added here to show the order of execution within each 

process. The interaction between these two processes is also shown as typical Send and 

Receive MPI operations along the exchanged messages. The message object is created by 

merging the atomic sent-message and received-message events on the sender and receiver 

respectively. 
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Figure 3.1. MPI Trace Representation 

 

3.3 Requirements for the Design of MTF 

A trace format should meet certain requirements in order to qualify as a common exchange 

format. These requirements are summarized in [St-Denis 00] and include expressiveness, 

scalability, openness, simplicity, and transparency. Although our proposed metamodel is 

developed to meet most of these requirements, in this thesis, we focus on expressiveness, 

scalability, extensibility, and openness. We used these key requirements as guiding 

principles in the design of MTF. 

3.3.1 Expressiveness 

An exchange format should be expressive enough to capture the needed information to 

enable various types of analyses. After studying the MPI specifications and the related 

research studies, it has become clear that all the information needed for MPI operations 

must be captured in order to be used during the analysis phase. For example, when tracing 

an MPI_Send operation, we need to store information about the sender, receiver, data type, 
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tag value, communicator, size of sent data, and the address of send buffer. We also need to 

record the routines executed by each process and the order of execution to be able to 

identify where in the program a specific communication of multiple processes occur. MTF 

was carefully designed to provide support for all these concepts.  

3.3.2 Scalability  

An exchange format should be scalable to support a large amount of information efficiently 

and in a way that does not degrade access to the instance data. This is particularly important 

in the area of trace analysis since the size of typical trace files can easily reach tens to 

hundreds of gigabytes. To achieve this, we employed a compaction scheme presented by 

Hamou-Lhadj et al. [Hamou-Lhadj 04] and in which the authors used graph-theory 

concepts to compact large traces of routine calls in the design of their exchange format 

CTF (Compact Trace Format) [Hamou-Lhadj 04].  

3.3.3 Extensibility 

Exchange formats should be easily extended in order to support new or different data types. 

Also, they should be extended without affecting previous versions of the trace data. This 

is important especially when the analysis tools evolve and may acquire new types of data 

to cope with the emerging analysis techniques. We believe that the design of the MTF 

model follows sound object-oriented concepts that make it readily extensible to support 

additional trace elements. 

3.3.4 Openness 

In order to qualify for a standard exchange format, we believe that a trace format should 

be freely available to its users along with the metamodel, the semantics of its components, 
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and the syntactic form. This also opens the door for further improvements to the model or 

possibilities to customize it to specific needs. MTF specifications are open and we are 

working on the finalization of the implementation of the model along with the interfaces 

that will allow querying the trace data. 

3.4 MTF Components 

In this section, we present the MTF exchange format. The definition of an exchange format 

involves two main components [Bowman 00]: A metamodel (also called a schema) that 

describe the abstract syntax or the structure of the entities to exchange and the way they 

are connected, and the syntactic form, which describes how the instance data of the 

metamodel is represented in a trace file. 

3.4.1 MTF Metamodel 

Figure 3.2 shows a UML class diagram that describes the MTF metamodel. The entities of 

this metamodel are discussed in the following subsections. The exact definition of the 

classes of the metamodel including their attributes, associations, constraints, and semantics 

are presented in Appendix A using as similar template as the OMG1 template for defining 

the UML metamodel. 

3.4.1.1 Usage Scenario 

The Scenario class is used to describe a certain usage scenario which is used in generating 

one or more execution traces. MTF permits that a usage scenario can be represented by 

different traces showing both normal and exceptional executions. 

                                                 
1 http://www.omg.org/uml 
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Figure 3.2. The MTF Metamodel 
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3.4.1.2 Trace Types 

The class Trace is used to describe information about the collected trace such as the name, 

the time the trace was collected, etc. To create specialized types of traces, one can simply 

extend this class. In our metamodel, we define the MsgTrace class to represent traces of 

point-to-point messages exchanged in the application. On the other hand, the class 

ProcessTrace is used to represent all the traces generated from a particular process in the 

program. The class Trace is a concrete class and it is meant to represent the whole execution 

trace of the program. 

3.4.1.3 Processor and Process 

The Processor class is used to capture the machine and the node on which a process is 

running. A process in the MPI program is represented using the Process class. 

3.4.1.4 Traceable Unit 

An execution trace generated from running HPC applications contains different kinds of 

information such as routine calls, MPI operation calls, messages, I/O operations and others. 

In MTF, the abstract class TraceableUnit is used for extending the metamodel with any 

kind of events that may be generated during the program execution. Therefore, the 

extensibility requirement is captured by our metamodel using the TraceableUnit abstract 

class. 

3.4.1.5 Edge 

The Edge class is used to represent the traces in a graph structure. The type attribute 

specifies the type of edges to be used. The model supports three types which are the 



63 

 

sequence, fork-sequence and recursive edges. We will show an example of each edge in 

Figure 3.6. 

3.4.1.6 Message 

The Message class represents the messages exchanged using point-to-point operations only. 

It captures information regarding the sender, receive, data size, data type and tag value. An 

Instance of the MessageLink class is used as a link between a message and its 

corresponding MPI operation. Each message is linked to two MPI operations. 

3.4.1.7 MPI Operations 

The MPOperation is the base class for all types of operations defined in the MPI 

specifications. This class is further specialized to represent specific MPI operations such 

as Initialize, Finalize, point-to-point operations (represented by the class PointToPointOp) 

and the Collective operations (represented by the class CollectiveOperation). The 

PointToPointOp class is extended into specific operations modeling blocking send and 

receive MPI operations (represented using the classes Send and Receive), non-blocking 

send and receive operations (classes NonBlockingSend and NonBlockingReceive). 

The metamodel also depicts the relationship between the non-blocking operations and the 

wait and test operations represented by the WaitOp and TestOp respectively.  

Collective operations (run in blocking mode only) such as a barrier and broadcast are 

represented using classes that inherit directly from the CollectiveOperation class. It should 

be noted that the presented metamodel in Figure 6 does not include all of the implemented 

classes that represent the MPI operations to avoid cluttering the model. 
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3.4.1.8 Collective Data 

The data exchanged during the execution of collective operations is modeled using the 

CollectiveData class. It represents the information about the data being exchanged by each 

process when executing a collective MPI operation. MPI requires that all the processes in 

a communicator be involved in the collective communication.  

3.4.1.9 Trace Patterns 

Traces may contain several patterns that are defined as sequences of events that are 

repeated non-contiguously in a trace. MPI applications may contain two types of patterns 

which depict specific behaviours in the program. The communication patterns may be 

detected in the point-to-point and collective messages and the routine call patterns may be 

detected in the routine call events in the trace. According to Hamou-Lhadj et al. [Hamou-

Lhadj 04], who presented an exchange format for representing traces of routine calls, the 

analysis of patterns found in a trace might reveal important information about the behaviour 

of the system. In MTF, the class TracePattern is the base class for the CommPattern 

(represents communication patterns) and the RoutinePattern (represents routine call 

patterns). Moreover, the class PatternOccurrence represents a single occurrence of a give 

pattern in the trace. 

3.4.1.10 Well-formedness of MTF 

The well-formedness of MTF is supported by adding the necessary constraints that must 

be met in order to provide a correct representation of the MPI traces. Table 3.1 outlines the 

main constraints that are supported in the metamodel. The complete list of constraints can 

be found in the description of MTF in Appendix A. 
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Table 3.1. Main Constraints in MTF Metamodel 

1 Instances of MPOperation class are always leaves (they do not have an outgoing 

edge). 

2 Data type between matching point-to-point operations must match unless 

MPI_BYTE data type is specified. 

3 A call to MPI_Init must precede any other MPI call in the program, except for 

MPI_Initialized routine that can be used to check if MPI_Init has been called or not. 

4 Every process in the MPI environment must call MPI_Finalize before exiting unless 

a call to MPI_Abort has been made. 

5 The StartTime of an MPI_Wait statement cannot occur before the StartTime of the 

corresponding Send or Receive operations. 

6 A collective operation should match the same type of collective operation in all other 

processes. Therefore, the maximum number of matched operations may not exceed 

the number of processes in a communicator. 

7 The end-time for a Barrier object of one process cannot be before the start-time for 

any of the matched Barrier objects of the other processes. 

8 An object of type Barrier cannot reference an object of type CollectiveData. 

9 The type signature (SendSize, SendDataType) for MPI_Bcast at the root process 

must be equal to the type signature of the matching MPI_Bcast on all processes 

(receiving processes) in the communicator. 

10 In a Gather operation, The receiving buffer for non-root process should be equal to 

null. 

11 Instances of AllGather do not reference a root process. 

12 Instances of AllToAll do not reference a root process. 

13 Only an edge with a fork-sequence type can have more than one child node. 
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3.4.2 Syntactic Form 

The syntactic form of an exchange format describes the way the data (instances of the 

abstract syntax metamodel) is carried. There exist several data carriers including XMI 

(XML Metadata Interchange) [XMI-OMG], GXL (Graph Exchange Language) [Holt 00], 

TA (Tuple Attributes language) [Holt 98], etc. These syntactic forms vary depending on 

whether they are based on XML or not, their ability to carry the metamodel as well as the 

instance data, their compactness, etc. 

We suggest that an adequate syntactic form that can be used with MTF should have the 

following characteristics: 

1. It should be compact in order to be able to handle very large traces and enable the 

scalability of the trace analysis tools. 

2. It needs to be able to carry the metamodel as well as the data (instance of the 

metamodel). This will allow tools to check the consistency of the data against the 

metamodel. 

3. It should be open and portable. This excludes proprietary and binary syntactic 

forms that are dependent on a particular technology.  

4. It should have tool support available such as parsers and viewers. 

5. It should be adopted by tool vendors. This requirement favors well accepted data 

carriers such as the ones that have been standardized (e.g. XMI). 

Except for Requirement 1, all other requirements can be met by a known XML-based 

language such as GXL, which is widely accepted in academia and industry [Holt 00]. 

However, when the GXL file is loaded into memory, the XML tags, which are considered 

verbose, will not be part of the loaded trace. 
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GXL is built on a number of pre-existing syntactic forms for exchanging software artefacts 

such as GraX [Ebert 99], TA [Holt 98], and RSF [Müller 88]. Figure 3.3 shows an example 

using GXL to represent an MPI trace which is used in the case study of this chapter to show 

the effectiveness of MTF to capture large MPI traces. 

<gxl> 
<graph> 
<node id = “scen001”> 
<attr name = “description”> 
<string> Weather Research and Forecasting Model  
Test</string> 
</attr> 
</node> 
<node id = “trace001”> 
<attr name = “startTime”> 
<double> 12:00:00 </double> </attr> 
<attr name = “endTime”> 
<double> 12:00:40 </double> </attr> 
<attr name = “comments”> <string> Sample MPI 
trace of Weather Research and Forecasting Model 
code </string></attr> 
</node> 
<node id = “PRCR00001”>  
<attr name = “ProcessorName”> 
<string> Processor 1</string> </attr></node> 
<node id = “PRC00001”>  
<attr name ="rank"> 
<int> 0 </int></attr> 
<attr name ="ProcessName"> 
<string> Process 1 </int></attr></node> 
<node id = “PRC00002”>  
<attr name ="rank"> 
<int> 1 </int></attr> 
<attr name ="ProcessName"> 
<string> Process 2 </int></attr></node> 
--- REMAINING PROCESS NODES {2 - 15} 
<node id = “COMM 1000000000”>  
<attr name ="COMMName"> 
<string> MPI Communicator 0 
</string></attr></node> 
<node id = “trc000001”>  
<attr name ="MPOperationName"> 
<string> MPI_Init </string></attr> 
<attr name ="startTime"> 
<double> 0.00070105 </double></attr> 
<attr name ="endTime"> 
<double> 0.0008256 </double></attr></node> 
 

<node id = “trc000002”>  
<attr name ="MPOperationName"> 
<string> MPI_Init </string></attr> 
<attr name ="startTime"> 
<double> 0.00070185 </double></attr> 
<attr name ="endTime"> 
<double> 0.0008311 </double></attr> 
</node> 
--- REMAINING MPI_Init NODES 
<node id = “trc000017”>  
<attr name ="MPOperationName"> 
<string> MPI_Bcast </string></attr> 
<attr name ="startTime"> 
<double> 0.001653567 </double></attr> 
<attr name ="endTime"> 
<double> 0.0233165 </double></attr> 
</node> 
<node id = “trc000018”>  
<attr name ="MPOperationName"> 
<string> MPI_Bcast </string></attr> 
<attr name ="startTime"> 
<double> 0.00172138 </double></attr> 
<attr name ="endTime"> 
<double> 0.0297359 </double></attr> 
</node> 
 
--- REMAINING TRACE NODES 
trace001 
<edge from = “scen001” to = 
“trace001”></edge> 
<edge from = “trace001”to = 
“trc000001”></edge> 
<edge from = “trc000001” to = 
“PRC00002”></edge> 
<edge from = “trace001”to = 
“trc000002”></edge> 
<edge from = “trace001”to = 
“trc000003”></edge> 
 
--- REMAINING EDGES 
</graph> 
</gxl> 

Figure 3.3. An example of an MPI trace captured with MTF and carried by GXL 
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3.5 MTF Tool Support 

In this section, we present a prototype tool that we have developed to support the analysis 

of MTF traces. Our tool is written in Java as an Eclipse plug-in. Figure 3.4 shows the 

architecture of the tool. 

MTF 

Trace 

Importer

MPI Application

MTF Query 

Engine

MTF Trace Generation 

Engine
MPI Trace Visualizer

MTF Trace Repository
MTF 

Trace 

Exporter

 

Figure 3.4 The MTF Tool Architecture 

The tool consists of four main components presented here and discussed in more detail in 

the subsequent sections:  

• The MPI trace repository: We used EMF (Eclipse Modeling Framework) [EMF] to 

create an Ecore model from which we generated the implementation of the MPI 

metamodel classes. The MPI trace query engine: We have developed a powerful 

query language that can retrieve all sort of information from an MPI trace modeled 

in MTF. 

• The MPI Trace Generation Engine: We have developed an engine that permits 

generating traces in the form of MTF (carried in GXL).  
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• The MPI Visualizer: The visualizer aims to visualize MPI traces in a usable manner. 

The implementation of this component is not completed, and therefore, it is not 

included in this chapter. 

• MTF Trace Importer and the MTF Trace Exporter are two modules used to convert 

the MTF traces from and to other trace formats respectively. We developed 

importers for OTF [OTF] and SLOG [SLOG] trace format, two commonly traces 

format used for MPI traces. 

3.5.1 The MTF Trace Repository 

The MTF trace repository is based on the Eclipse Modeling Framework (EMF), which is a 

modeling framework and code generation facility for building applications based on a 

structured data model [EMF]. The advantages of using EMF are as follows: 

1. It explicitly represents the data model which gives a clear understanding of the data 

structure. 

2. It generates an implementation from the model automatically. 

3. If there is an update to the model, the corresponding implementation is also updated 

automatically.  

4. It provides the flexibility to import a UML model (such as the MTF class diagram) 

created using any supported UML CASE tool such as Rational Rose [Rose]. 

In our work, we created an Ecore model by importing the MTF class diagram into EMF. 

We were then able to generate a Java implementation of the class diagram that is used by 

the other components of the tools such as the query engine.  
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3.5.2  MTF Query Language 

In order to facilitate the use of MTF, we have implemented a set of queries in our EMF-

based tool for accessing and retrieving of specific information about MPI traces. Every 

query has an implementation that can retrieve information about traces related to a single, 

group, or all the processes in a specific communicator.  

Table 3.2 shows the part of the query that determines which processes the query should run 

on. For example, when specifying a query with (3-6) as the process parameter, it means 

that the query will only return a slice of a trace that involves processes 3 to 6 inclusive. In 

the following, we explain the different types of queries implemented in our toolset for MPI 

traces. 

Table 3.2. Processes Specified in a Query 

Process (pn) Traces related to one process only. 

Processes (pm - pn) Traces related to a sequence of processes. 

Processes (pa, pc, pm,…, pn) Traces related to a selected number of processes. 

Processes in Communicator c1 All processes in an MPI communicator. 

 

3.5.2.1 Point-to-Point-Related Queries 

Point-to-point related queries retrieve information that pertains to MPI point-to-point 

operations. Table 3.3 shows the information that the queries supported by our tool are 

capable of retrieving for point-to-point processes. 

Table 3.3 Point-to-Point Queries 

1 All point-to-point operations for a specific set of processes. 

2 All Send operations for a specific set of processes. 

3 All Receive operations for a specific set of processes. 

4 
All point-to-point operations sent and/or received between time t1 and time t2 for a 

set of processes where size of data is less than, equal to, or greater than sizen. 
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3.5.2.2 Collective-Related Queries 

Collective related queries retrieve information that pertains to collective operations. Since 

collective operations involve all the processes in a communicator, we have only 

implemented the queries that are related to traces of one process or all the processes in a 

communicator. Table 3.4 shows the collective queries supported by our tool. 

Table 3.4. Collective Queries 

1 All Collective operations related to one process or all the processes in a 

communicator. 

2 All traces related to a specific collective operation for all processes in the group. 

3 All Collective operations executed between time t1 and time t2 related to one 

process in a communicator. 

4 All Collective operations executed between time t1 and time t2 related to one 

process in a communicator where size of data sent/received is less than, equal 

to, or greater than sizen. 

3.5.2.3 Message-Related Queries 

Message-related queries target traces of messages exchanged in point-to-point operations. 

Table 3.5 shows the main queries used to retrieve information related to messages 

transferred using point-to-point operations.  

Table 3.5. Message-Related Queries 

1 All messages in the MPI trace. 

2 All messages exchanged among a group of processes. 

3 All messages exchanged among a group of processes between time t1 and time t2 

related to where size of data sent/received is less than, equal to, or greater than 

sizen. 
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Figure 3.5 shows a few simple query examples that can be used in our tool to retrieve 

information from the trace under study.  

Example 1: retrieve all messages in Communicator C1 

SELECT ALL MESSAGES IN COMM(C1) 

Example 2: retrieve all messages between process 1 and process 2 

SELECT ALL MESSAGES BETWEEN PROCESS(1,2) IN COMM(C1) 

Example 3: retrieve all point-to-point operations between process 1 and process 2 

SELECT POINT_TO_POINT_OPERATIONS BETWEEN PROCESS(1,2) IN COMM(C1) 

Example 4: retrieve all collective messages among all processes in communicator C1 

SELECT COLLECTIVE_OPERATIONS AMONG ALL PROCESSES IN COMM(C1) 

Example 5: retrieve all Broadcast messages that Process 1 performed 

SELECT BROADCAST FOR PROCESS(1) IN COMM(C1) 

Figure 3.5. Simple Query Examples 

This query language can also be used to compute statistical information such as the time 

duration of a particular process in a MPI communication, the number of bytes a process 

sent to other processes and the number of bytes a process received from other processes 

during MPI communications. Also, we provide some queries for retrieving profiling 

information from the MPI execution trace. For this purpose, we define the following 

functions: 

Process-fan-in: A process fan-in represents the number of bytes received by a process. This 

includes messages received by point-to-point as well as collective operations. A process 

fan-in includes data received using the following operations. 

Bytes Received(p) = ∑ p = receiver Message.DataSize + ∑ p  CollectiveData.RcvSize 

 

Process-fan-out: A process fan-out consists of the number of bytes sent by a process. This 

includes messages sent by point-to-point as well as collective operations. A process fan-

out includes data sent using the following operations. 

Bytes Sent(p) = ∑ p = sender Messages.DataSize + ∑ p  CollectiveData.SendSize 
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3.5.3  MTF Trace Generation Engine 

Trace generation is another important feature in a trace analysis tool. We built our own 

tracing API which generates MPI traces based on our proposed trace format, MTF. We 

used the MPI standard Profiling Interface (PMPI) [MPI], for the instrumentation of the 

various MPI operations in a given program. 

3.6 Scalability of MPI Traces 

In this section, we present a set of techniques for compacting MPI execution traces that are 

based on graph theory. First we present some rules that can be used to normalize the 

original call tree and then we present a technique to convert the normalized graph into a 

directed acyclic graph. 

3.6.1 Call Graph Normalization 

The trace of each process in an MPI program can be represented as a routine call tree where 

MPI routines are at the leaf level. Usually, these programs generate many contiguously 

repeating events in the execution trace.  These contiguous occurrences can be collapsed 

resulting in a normalized version of the original graph. This increases the possibility of 

finding similar sub-trees in the call graph as will be illustrated in the directed acyclic graph 

example.  

Contiguous repetitions are often caused by the presence of loops and recursive calls in the 

code or the way the scenario is executed. Removing these repetitions from a trace can 

considerably reduce its size as shown by Hamou-Lhadj et al. in [Hamou-Lhadj 09]. 

Contiguous repetitions can be removed by collapsing the repetitions into one node in the 

graph. However, a trace file needs also to provide all of its original data including the 
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timestamps. We therefore propose to keep an array of timestamps associated with the 

remaining node. For example, if we have the following repetitive events (A, t1), (A, t2), and 

(A, t3), where A is the event and ti represents the timestamp, then we can collapse them into 

one node (A,{t1, t2, t3}) that keeps track of the timestamps in an array. Note that we only 

consider the routine name. If the value of the parameters for each call needs to be preserved 

then this compaction will fail. However, it is usually sufficient to understand that a 

particular routine is executed to build a mental model of the program without having to 

worry about the details of the call.  
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C B
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B B B B
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Figure 3.6. Collapse Contiguous Calls 

Figure 3.6 shows four examples of how we collapse repetitive nodes in the trace. As 

mentioned earlier, the numbers on the edges represent the order of calls and are added here 

for clarification. Collapsed nodes should be at the same nesting level of calls. Example 3a 

shows that only the first two occurrences of ‘B’ can be collapsed. Example 3b shows that 

since the third occurrence of ‘B’ is calling ‘D’, then only the first two occurrences of ‘B’ 

can be collapsed. Example 3c shows that all four occurrences of ‘B’ can be collapsed since 

they all occur at the same nesting level and none of them is calling another node. The edge 
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from ‘A’ to ‘B’ includes the order of its occurrence along with the number of repetitions. 

Moreover, in Figure 3d another type of edge is used. We call this as a fork-sequence which 

indicates that the ‘B, C’ sequence is repeated twice in the graph and is being called by ‘A’. 

The fork-sequence edge is the only edge type that allows more than one child node. This 

is a constraint that is added to our metamodel. 

Also, nodes that occur from recursive calls can be collapsed into one node. For example, 

Figure 3.7 shows that ‘A’ is repeated 5 times in the tree resulting from recursive calls in 

the program. We collapse recursive calls by keeping the first call to ‘A’ and then by using 

a recursive edge with the number of repetitions to another node called ‘A’ which represents 

the recursive calls.  

A
1

rec = 5
A

A A A1 A3 4A 2 A5

 

Figure 3.7. Collapse Recursive Calls 

Messages exchanged between two processes can also be collapsed into one message node 

if they are identical while keeping track of the message timestamps in an array. Figure 3.8 

shows an example depicting how the same message can be collapsed into one message 

node while keeping the associated timestamps. The metamodel in the next section shows 

that a Message class is associated with the Send and Receive classes using the 

MessageLink class. A message instance may have many MessageLink instances to a Send 

and Receive operations.  The MessageLink class will simplify the retrieval of the 

timestamps from the timestamp array in the Message node.  
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As can be seen from the previous example, there are three types of edges; the sequence 

edge ‘seq’, the recursive edge ‘rec’, and the fork-sequence edge ‘fseq’. These edge types 

are represented by an attribute in the MTF metamodel. 
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Figure 3.8. Message Compaction Example 

 

3.6.2 Converting Call Graph to an Ordered Directed Acyclic Graph 

Our second compaction mechanism consists of representing repetitions that appear non-

contiguously in the trace (also known as trace patterns) only once in a trace. For this 

purpose, we adapted the compactness scheme presented by Hamou-Lhadj and Lethbridge 

[Hamou-Lhadj 04] and in which the authors proposed to transform a call tree into an 

ordered Directed Acyclic Graphs (DAG) where similar sub-trees are represented only once 

[Downey 80]. The authors showed that this transformation provided maximum 

compactness of the trace data while it preserved the order of calls and other attributes of 

the original trace. 

In order to convert the call tree into an ordered directed acyclic graph, we used a variant of 

Valiente’s algorithm [Valiente 00] which was modified by Hamou-Lhadj et al. [Hamou-
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Lhadj 04] and applied it to traces of routine calls. Valiente’s approach is a bottom-up 

approach for finding isomorphic trees where it traverses a tree from the leaves to the root 

node. The algorithm assigns each node a certificate number. Two nodes n1 and n2 will have 

the same certificate number if they belong to two sub-trees rooted at n1 and n2 that are 

isomorphic. Each node will have a signature value which is a concatenation of the node 

label and the certificate values of its child nodes. The signature value will be used in the 

calculation of the certificates. A leaf node will have its label as its signature. Therefore, in 

a bottom-up fashion, nodes with the same signature will be assigned the same certificate 

value. 

Figure 3.9 shows an example of converting a tree into an ordered DAG after removing 

contiguous repetitions (Figure 3.9b). It should be noted that the presented graph have 

ordered edges from left to right.  As shown in Figure 3.9b, two edges are of type seq 

(represents a sequence of the same event) and another two are of type rec (represents a set 

of recursive calls). The edge contains the number of repetitions which indicates how many 

times the node is originally represented. Figure 5c shows the final DAG which contains 9 

nodes and 11 edges compared to 23 nodes and 22 edges in the original tree. 

This simple example shows that the DAG provides a good compaction ratio compared to 

the original tree. It should be noted that without the graph normalization step, the three sub-

trees in Figure 3.9a (with bolded nodes) will not be considered equivalent and the 

conversion to DAG will not be efficient. Similarly, the two sub-trees that represent the 

recursive calls for F will not be considered equivalent. We believe that this is the first time 

this technique is used for MPI traces.  
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Figure 3.9. Tree to DAG Conversion Example 

3.7 Validation of MTF  

In this section, we discuss how MTF meets the requirements for a standard exchange 

format that we presented in Section 3.  Table 3.6 summarizes the evaluation of MTF with 
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respect of each requirement. As shown in Table 3.6, the design of MTF meets many of 

these requirements. It is expressive, fully supporting MPI functions. It is built with 

simplicity in mind using proper and well recognized modeling practices. It is also designed 

with transparency in mind by suggesting a data carrier that can not only carry MTF instance 

data but MTF metamodel (i.e., the abstract syntax) as well. This will allow tools that do 

not support MTF to check the well-formedness of an MTF trace with respect to the 

metamodel by reconstructing, on the fly, the metamodel from the MTF file. The design of 

MTF also favours reuse of an existing solution. First, many object-oriented design 

techniques have been used to build the MTF metamodel, which should readily enable tool 

builders to support MTF. Also, we recommend reusing an existing data carrier (e.g., GXL) 

rather than creating a new one so as to avoid reinventing the wheel. We also believe that 

MTF is easily extendible. 

Table 3.6. Validating MTF against requirement for a standard exchange format 

Requirement Justification 

Expressiveness 

MTF supports all the necessary information for MPI point-to-point 

and collective operations that enable the analysis of MPI traces using 

MPI trace analysis tools. 

Scalability 

We showed how MTF is capable or representing MPI traces as a 

directed acyclic graph. Also, we showed how contiguous events can 

be supported using the list of timestamps. 

Extensibility 
MTF can be extended in many ways to support new types of traces 

by extending the Trace and the TraceableUnit classes. 

Openness 

MTF is provided as a metamodel and has been published in two 

different please. Also, a website will be shortly made available from 

which MTF specifications and accompanying tools can be 

downloaded. 
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3.8 Case Study 

This section includes two parts for validating the scalability and the querying of MTF. 

3.8.1 Scalability of MTF 

In this section, we provide some results that show the usefulness of the compaction 

approach. Furthermore, we provide some results gathered from running some of the queries 

implemented in MTF. We used a 1.83 GHz Intel Core 2 Duo CPU with 3.0 GB of RAM 

for our experiments. In order to show the ability for MTF to represent MPI traces generated 

from large systems in a compact form, we tested it on several trace files generated by the 

VampirTrace tracing tool [VampirTrace].  

VampirTrace generates traces in the OTF format presented in Chapter 2. The OTF format 

does not apply any compaction on the trace events themselves. It uses zlib [Gailly 02] to 

compress the trace file into several streams. However, the number of events in the 

uncompressed OTF file maps exactly to the number of events generated from the target 

system. In our study, we take OTF traces and apply our compaction techniques on them. 

More precisely, we load OTF traces as a call tree. Each call tree represents the calls 

executed by one process. The point-to-point messages are linked to their corresponding 

MPI calls as was shown previously in Figure 3.1. Then, we perform our collapsing rules 

on the nodes in the tree as well as on the point-to-point messages. Finally, we convert each 

call tree into a DAG which will result in an MTF representation of the original OTF trace. 

We targeted four programs provided by the NAS Parallel Benchmark [NAS]. We used the 

VampirTrace tracing tool to generate traces in OTF format. Also, we tested it on an OTF 

trace file that is generated from the Weather Research and Forecasting (WRF) model 

[WRF]. The scalability study is also applied to large traces generated from SMG2000 
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[SMG2000] and Sweep3D [Sweep3D] programs. In the following, we show the 

compaction gain obtained by turning OTF traces into MTF. 

• The NAS Parallel Benchmarks (NPB 3.3) 

The NAS parallel benchmarks [NAS] are a suite of benchmarks for performance evaluation 

of parallel supercomputers. They are developed and maintained by the NASA Advanced 

Supercomputing (NAS) Division (formerly the NASA Numerical Aerodynamic 

Simulation Program) based at the NASA Ames Research Center. In this case study, we 

target four programs that are part of the NPB suite (CG, MG, LU, and SP). We briefly 

describe each target program along with the results of the compaction rate on two traces 

from each program generated by the VampirTrace tool.  

CG: This program represents a Conjugate Gradient method to compute an approximation 

to the smallest Eigen value of a large and sparse symmetric positive definite matrix. This 

kernel is useful for unstructured grid computations in order to test irregular long distance 

communication that employs unstructured matrix vector multiplication. We tested our 

compaction algorithm on two traces generated from running CG on 16 and 32 processes 

respectively. Table 3.7 shows the test results along with the compaction rate obtained after 

applying our compaction method. The results show that the compaction rate obtained using 

MTF is almost 78% in both cases, which is considerably high. We can also notice that the 

number of nodes that represent routines in all MTF traces is considerably low compared to 

the original traces (561 instead of 3509121 in the case of 16 processes). This is normal 

since the traced program is relatively small; it does not contain a lot of routines. In OTF, 

each call is represented as a separate object, which significantly increases the number of 

times the same routine appears in the trace. This number becomes higher as the number of 
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processes increases. This demonstrates the need to represent routine calls of HPC 

applications as ordered DAGs.  

MG: This program represents a simplified MultiGrid kernel which requires highly 

structured long distance communication and is used to test short and long distance data 

communication. We tested our compaction algorithm on two traces generated from running 

MG on 16 and 32 processes respectively. The results in Table 3.7 show that the compaction 

in both cases is almost 50%, which is satisfactory but also shows that further improvements 

to our approach are needed to obtain better results. For example, we can improve the way 

we measure the way two sequences of calls are deemed similar. In this thesis, we are only 

considering identical matching. Perhaps, we need to consider other matching criteria such 

as ignoring the number of contiguous repetitions when comparing two sequences of calls. 

However, the resulting MTF model will lose some information about the original traces. 

Further studies should be conducted to investigate ways to balance compaction and the 

quality of the information that we want to capture.   

LU: This problem performs a synthetic computational fluid dynamics (CFD) calculation 

by solving regular-sparse, block (5 X 5) lower and upper triangular systems. We tested 

MTF on two traces with 32 and 64 processes. Table 3.7 shows the compaction rate for the 

trace of 32 processes and 64 processes respectively. The trace of 64 processes contains 

more than 18 million events (nodes). It has a slightly smaller compaction rate (65%) 

compared to the 32 processes’ trace (69%). 

SP: This problem offers a solution of multiple, independent systems of non- diagonally 

dominant, scalar, and pentadiagonal equations.  SP solves three sets of uncoupled systems 

of equations in the x, y, and in the z dimensions starting with the x-dimension. This problem 
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only accepts a square number of processes. In the case of 64 processes the compaction rate 

was 73.1%. However, when considering 100 processes, the compaction rate was reduced 

to 66%. Table 3.7 shows the details for the MTF compaction of the SP traces. 

• Weather Forecasting & Research (WRF) Model:  

WRF [39] is a next-generation mesoscale numerical weather prediction system developed 

to help in both operational forecasting and atmospheric research studies. We ran the 

compaction technique on a trace that is generated from the WRF model on 16 processes. 

The results in Table 3.7 show that the compaction rate is 51%. 

• SWEEP3D 

Sweep3D [Sweep3D] models a 3D discrete ordinates neutron transport and represents the 

heart of a real ASCI application. This code was developed at LLNL and is included in the 

ASCI Blue Benchmark Suite. We generated two traces from running the program using 16 

and 32 processes. The compaction rate for the trace generated from running 16 processes 

is 44% as shown in Table 3.7. However, the compaction gain increased when for traces 

generated from running the program on 32 processes. This shows that for larger traces 

(with more processes) the gain achieved may be higher. 

• SMG2000 

SMG2000 [SMG2000] is a parallel semicoarsening multigrid solver applied for linear 

systems based on finite difference, finite volume or finite element discretization of the 

diffusion equation on logical rectangular grids. In the case of SMG2000, we tested the 

compaction algorithm on three traces generated from running the program on 16, 32, and 

64 processes respectively. As can be seen in Table 3.7, the compaction rate in the three 
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cases is around 50%. SMG2000 is a very complex system in terms of inter-process 

communication and shows to have many different patterns.  

As shown in Table 3.7, we have clearly demonstrated that using MTF results in a 

significant reduction in the number of model elements, which in our point of view, can 

improve the scalability of analysis tools. It is worth mentioning that the compaction 

algorithm took in some cases several hours to complete which necessitates the search for 

faster algorithms such as the VF2 [Cordella 01] and nauty [McKay 81] algorithms that 

have linear time and space complexities. 

Table 3.7. Empirical Results (#P: number of Processes, N: number of Nodes, E: number 

of Edges, A =∑(N0, E0, M0) , B = ∑(Nc, Ec, Mc), CR: the Compaction Rate = (1 – B / 

A) * 100%, M :number of Messages, 0: before compaction, c: after compaction) 

 #P N0 E0 M0 A Nc Ec Mc B 
CR 

(%) 

CG 16 3509121 3509105 47104 7065330 561 1479281 42716 1522558 78 

CG 32 7139585 7139553 134656 14413794 1121 3039969 119252 3160342 78 

MG 16 609874 609858 11024 1230756 648 608280 7588 616516 49 

MG 32 692690 692658 21728 1407076 561 689428 15001 704990 50 

LU 32 10473947 10473915 1644936 22592798 1518 6009007 986054 6996579 69 

LU 64 18310623 18310559 3542924 40164106 2990 12088359 2046493 14137842 68 

SP 64 9525649 9525585 1232256 20283490 2881 4340289 1112352 5455522 73 

SP 100 14359525 14359425 2406600 31125550 4501 8465901 2188443 10658845 66 

WRF 16 272373 272357 25680 570410 8779 245752 21881 276412 51 

Sweep 16 962244 962228 239616 2164088 546 960772 239472 1200790 44 

Sweep 32 4867550 4867518 1181578 10916646 672 4867518 380198 5248388 52 

SMG 16 2095262 2095246 489148 4679656 336 2095246 179543 2275125 51 

SMG 32 2084228 2084196 519168 4687592 1090 2081284 518902 2601276 44 

SMG 64 10593512 10593448 2662152 23849112 1344 10593448 778816 11373608 52 
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3.8.2 Querying MTF 

In Table 3.8, we present part of the results obtained by querying the MTF trace data using 

our proposed query language. Since collective operations are executed on all processes 

simultaneously, we can see that all the processes execute the same number of collective 

operations as expected. Also, since the program uses non-blocking point-to-point 

operations, we noticed that the MPI_wait operation was used by all processes to represent 

non-blocking calls. For example, Process 5 has 3210 MPI_wait operations that were used 

to detect the completion of the 1605 MPI_Isend and 1605 MPI_Irecv operations.  Finally, 

the size of data helps in identifying which process or processes have the highest load in the 

program. 

Table 3.8. MPI Trace Statistics 

P Init Fin Wait Bcast Gather Scatterv Isend Irecv Sent (bytes) 
Received 

(bytes) 

P1 1 1 2140 640 120 60 1070 1070 159205808 565756448 

P2 1 1 3210 640 120 60 1605 1605 213522608 186419232 

P3 1 1 3210 640 120 60 1605 1605 213522608 186419232 

P4 1 1 2140 640 120 60 1070 1070 158508560 131405184 

P5 1 1 3210 640 120 60 1605 1605 236278352 209174976 

P6 1 1 4280 640 120 60 2140 2140 289913264 262809888 

P7 1 1 4280 640 120 60 2140 2140 289913264 262809888 

P8 1 1 3210 640 120 60 1605 1605 234899216 207795840 

P9 1 1 3210 640 120 60 1605 1605 236278352 209174976 

P10 1 1 4280 640 120 60 2140 2140 289913264 262809888 

P11 1 1 4280 640 120 60 2140 2140 289913264 262809888 

P12 1 1 3210 640 120 60 1605 1605 234899216 207795840 

P13 1 1 2140 640 120 60 1070 1070 159198128 132094752 

P14 1 1 3210 640 120 60 1605 1605 213522608 186419232 

P15 1 1 3210 640 120 60 1605 1605 213522608 186419232 

P16 1 1 2140 640 120 60 1070 1070 158508560 131405184 

Total 16 16 51360 10240 1920 60 25680 25680 3591519680 3591519680 
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We also provide an example of using two of the implemented queries in the MTF 

metamodel to query information about the trace generated from running SWEEP3D on 16 

processes.  

• We queried the number of point-to-point messages exchanged between each pair of 

processes in the program. The results show that based on a rectangular grid, each 

process is communicating with its direct neighboring processes only. All 

neighboring processes sent 4992 messages to each other.  

• In running the query for calculating the size of data sent from on process to another, 

the results showed that all the pair processes exchanged the same amount of data 

(38338560 bytes). 

This shows that MTF queries are able to collect detailed information from the target traces 

that can be used for statistical analysis of the execution trace. 

3.9 Summary 

We presented a new exchange format for MPI traces generated from HPC applications, 

called MTF. MTF is built with the requirements for a standard trace exchange format. We 

provided a detailed specification of the abstract syntax (metamodel) of MTF in the form of 

a UML class diagram and an associated documentation. We also discussed the syntactic 

form that should be used with MTF. We also presented the main components in MTF that 

will be part of a toolkit for generating and querying MTF traces. MTF is lossless but traces 

can be represented using a compact format as a directed acyclic graph constructed from the 

original routine call tree. MTF supports different levels of abstractions such as inter-

process communication traces and routine call traces. Finally, we showed how MTF can 

represent large MPI traces generated from different MPI HPC programs and benchmarks. 
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Additionally, we tested MTF using different queries supported using the proposed query 

language. 
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Chapter 4. Communication Pattern Detection 
 

 

4.1 Introduction 

High Performance Computing (HPC) systems that use the message passing paradigm for 

inter-process communication tend to follow specific communication patterns throughout 

their execution. These communication patterns play an important role in the analysis of 

HPC by providing detailed views of the inter-process communication behaviour in the 

program. These views can in turn help in the understanding of the overall program 

behaviour. Moreover, they provide useful information about the parallel programs such as 

their parallel structures and communication topologies. This information can be further 

exploited for debugging and the validation of the actual behaviour with respect to the 

intended inter-process communication.  

However, as the system undergoes several ad-hoc maintenance tasks, it becomes difficult 

to know which patterns are being supported. This is further complicated by the fact that 

documentation is rarely updated when changes to the system are made, making it almost 

impossible to know which parts of the system follow specific communication patterns. 

Several approaches for detecting repeating communication patterns in parallel programs 

[Preissl 08, Kunz 97, Ma 09] have been proposed. However, these approaches are purely 

syntactic. In other words, they treat a message passing trace as a mere string for which they 

apply the pattern matching methods. This often results, as we will show in this chapter, in 

a large number of patterns among which many of them are noise. These approaches do not 

guarantee the detection of all valid patterns either. To further complicate matters, using 

these techniques, software engineers need to identify the valid patterns among all the ones 
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that are detected. This task is usually done manually, which hinders the practical value of 

these approaches. There is therefore a need for techniques that can automatically identify 

valid patterns.  

In this thesis, we present a pattern detection approach that uses additional information 

about a trace to guide the detection process. More precisely, we use the routine calls 

invoked in an MPI process trace to act as delimiters that can indicate the beginning and 

end of valid patterns. The objective is to improve the quality of the detected communication 

patterns as well as reducing the number of false positives. 

In addition to this, we propose another algorithm that detects patterns in a trace that are 

similar to a pre-defined pattern (i.e., a known communication pattern provided as input). 

The objective is to allow software engineers to verify whether the traced scenario 

implements a specific communication pattern or not. This is particularly important in the 

context of distributed systems since some applications are implemented according to 

known (and documented) process communication topologies [Palma 09]. 

The rest of the chapter is organized as follows. Section 4.2 gives an overview of the 

communication patterns. Section 4.3 presents the main approach for communication 

pattern detection and matching. The repeating communication patterns detection approach 

and the algorithms for detecting repeating patterns on each process trace separately are 

presented in Section 4.4. Section 4.5 presents the communication pattern matching 

algorithm. Section 4.6 presents the algorithm for removing contiguous repeats in message 

passing traces. The communication patterns construction algorithm is presented in Section 

4.7 followed by a case study in Section 4.8. Finally, the chapter is summarized in Section 

4.9. 
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4.2 Communication Patterns 

An inter-process communication pattern describes the way several program processes 

interact to accomplish a specific task. HPC applications may have one or more 

communication patterns throughout their execution. Generally, a pattern can be viewed as 

a sequence of events that are repeated non-contiguously in a trace. In parallel programs, a 

communication pattern is more complex than that since it involves multiple processes - 

each represented in a trace file that we call a process trace. We refer to patterns that are 

repeated in one process trace as process patterns. A communication pattern is usually a 

collection of process patterns.  

MPI communication patterns may involve point-to-point operations (operations that 

involve only two processes) and/or collective operations (operations that involve all the 

processes). For example, a communication pattern may only involve MPI collective 

operations such as MPI_Bcast (an MPI operation that can be used by a process to broadcast 

a message to all other processes), and MPI_Gather (this is used by a process to collect 

information from other processes). 

An example of a communication pattern is shown in Figure 4.1. The figure depicts a sample 

trace generated from running four processes in parallel. Each horizontal line represents the 

events from each process. When matching the MPI events on the partner processes, a 

communication pattern will be generated. The figure represents a 2D-nearest-neighbor 

communication pattern (with a 4 x 1 process topology) that is repeated three times at 

different locations in the graph. Non-MPI events are represented using dark bars. The graph 

that we used to depict the communication events is the event graph [Kranzlmüller 00] 

where time is on the x-axis and the events flow from left to right. 
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Figure 4.1. Repeating Communication Pattern (top) and Process Topology (bottom) 

A process topology is the way the processes are arranged in a certain structure. MPI has 

two types of process topologies which are the Cartesian (this example) and the graph 

topologies [MPI].  

When detecting communication patterns, we look for the way the program processes are 

communicating and not what data they are exchanging. For example, each pattern instance 

in Figure 4.1 may have different data but the processes are still communicating based on 

the same pattern. 

 

Figure 4.2. The wavefront pattern and topology 

In addition, some known communication patterns are well documented in the literature 

[Palma 09]. They are often used as guidelines for the proper way to implement an inter-

process communication mechanism (for more details about the list of documented 

communication patterns, please refer to [Palma 09]). For example, Figure 4.2a presents the 

wavefront communication pattern that is used to sweep data from the first node to the last 
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node diagonally as depicted in the 2D process topology in Figure 4.2b. A wavefront pattern 

represents a sweep where processes should first receive the messages from other processes 

before sending to the next ones. For example, P5 should first wait for messages from P2 

and P4 before sending to P6 and P8. 

Figure 4.3 shows another example of a documented communication pattern, and which 

presents two patterns that are used in implementing collective communications. The Binary 

Tree pattern (Figure 4.3a) is used to implement All-to-One MPI collective operations. For 

example, the MPI_Reduce operation is implemented using this pattern. The Butterfly 

Pattern shown in Figure 4.3b is a communication pattern that is used to implement All-to-

All MPI collective operations. 

 

Figure 4.3. Examples of known communication patterns 

Detecting communication patterns from message passing programs helps software 

engineers in understanding the inter-process communication behaviour in these programs 

by providing abstract views from the whole execution trace. Also, it has been shown that 

these patterns can help software engineers in debugging MPI applications and in 

performance optimization [Preissl 08]. For example, a software engineer may decide to 

replace a point-to-point communication pattern by collective operations [Preissl 10]. Also, 
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communication patterns can play an important role in revealing the process communication 

topology which usually helps in understanding the structure of the MPI program as a whole 

and determining the different computational phases in the program. 

4.3 Overall Approach 

The objective of this chapter is two-fold: (a) detecting patterns in MPI traces no matter if 

they are among the documented ones or not, and (b) searching if a given pattern exists in a 

trace to help software engineers verify if the processes in the traced scenario communicate 

according to a known communication pattern. We anticipate that software engineers would 

most likely use this capability to detect the existence of documented communication 

patterns (such as the wavefront pattern, the butterfly pattern, etc.) in a trace.  

 

 
 

Figure 4.4. Pattern detection and pattern matching approach 

 

The approach for achieving both objectives is presented in Figure 4.4. In both cases, we 

first start by decomposing the input MPI trace into n trace files (T1… Tn), each 

corresponding to a process in the trace. During this step, we also preprocess the information 

contained in a trace by ignoring the message envelope (message size, tag and data type) 
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since we are only interested in the way the processes communicate independently from the 

data they exchange. The pattern detection algorithm is used to detect repeated sequences 

in each process. The pattern matching algorithm is used to find the patterns in a trace that 

match a given pattern. In this case, the input pattern is also decomposed into n process 

patterns (L1… Ln). Each process pattern Li is compared to its process trace file Ti in order 

to extract its similar patterns. Note that the patterns do not have to be identical. A measure 

of similarity is discussed later in the Chapter. An additional step that may be required 

before the detection and matching processes start is the removal of contiguous (or tandem) 

repeats from each process trace separately. Removing contiguously repeating events may 

reduce the trace size and improve the quality of detected patterns. The algorithm for 

removing contiguously repeating MPI events is discussed in the chapter. 

After extracting the patterns from each process trace (for both algorithms), they are used 

as input for the communication patterns construction algorithm to generate the inter-

process communication patterns. In the following, we present each algorithm in the 

presented approach in a separate section. 

4.4 Repeating Communication Patterns Detection 

In this section, we present the communication patterns detection approach in MPI traces. 

The main idea is to initially detect the repeating patterns on each process trace and then 

construct the communication patterns by matching the partner repeats (patterns) found on 

different processes in the program. 

Each process trace can be viewed as a stream of events which contains repeating sequences 

of events. There are several types of repeats that may exist in a stream of data. We consider 

the following types of repeats that will be used later in the pattern detection algorithm. Let 
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consider p1 as the start position of Substring S1, p2 the start position of substring S2, and l 

is their length): 

1. Tandem (contiguous) Repeats: repeats that are directly adjacent to each other.  Given 

a string S of length n, a Tandem repeat in S is a tuple (p1, p2, l) such that 

∃S[p1 .. p1 + l – 1] = S[p2 .. p2 + l – 1] and p2 > p1 and S[p2 - 1] = S[p1 + l – 1].  

2. Maximal (interspersed) Repeat: a repeat that cannot be extended to the left and to the 

right. Given a string S of length n, a maximal repeat in S is a tuple (p1, p2, l) such that 

∃S[p1 .. p1 + l – 1] = S[p2 .. p2 + l – 1] and p2 > p1 and S[p1 + l] ≠ S[p1 + l]  and S[p1 - 

1] ≠  S[p2 - 1] 

 

3. Super Maximal Repeat: a maximal repeat that does not occur in any other maximal 

repeat. 

When considering each process trace as a string that contains message passing events, we 

can utilize existing data mining techniques to detect the repeating patterns in each process 

trace. The main advantage of this approach is that it only deals with the message passing 

events which makes the trace size smaller than when considering other kinds of events such 

as routine calls. However, this approach has numerous disadvantages.  

• It may result in a large number of patterns with many patterns as false positives due to 

three main reasons. First, a pure syntactic approach allows the detection of overlapping 

patterns; this case can be easily seen in Figure 4.5. Second, many detected patterns might 

end up as a combination of other patterns (a combination of valid and invalid patterns). 

Finally, in many cases it is difficult to determine the beginning of the pattern. For 

example, when considering this process trace of message passing events 

'R3S2S3R2R3S2S3R2R3S2S3R2R3S2S3R2R3' (where S2 means ‘Send to process 2’ 

and R2 means ‘Receive from process 2’), the sequence 'R3S2S3R2' will be detected as 
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the pattern. This is due to the existence of the R3 event at the beginning of the trace. 

However, the real pattern in this case is 'S2S3R2R3'. This case can be easily found when 

testing the pattern detection algorithm on different trace files. 

• Some valid patterns may not be discovered at all since they exist within a larger invalid 

pattern. This usually occurs when the trace has a large number of events and there are a 

lot of repetitions in the trace. 

Considering only message passing events results in the detection of very long patterns that 

are a composition of different adjacent patterns that are repeated in the same sequence in 

the trace. Therefore, processing all of these patterns is time consuming and requires in many 

cases the user’s intervention in order to determine the valid patterns. 

Sequence: (mirrors a process trace generated from Sweep3D) 

abababacacacbdbdbdadadadabababacacacbdbdbdadadadabababacacacbdbdbdadadad 

Detected Patterns: Number in brackets shows how many times the maximal repeat 

occurs in the sequence above 

a (27), aba (9), ababa (6), abababacacacbdbdbdadadad (3), ac (9), acac  (6), b (18), bd 

(9), bdbd (6), da (11), dad (9), dada (8), dadad (6), dadada (5), d (18), 

abababacacacbdbdbdadadadabababacacacbdbdbdadadad (2) 

Valid Patterns: 

ab (9),ac (9),bd (9),ad (9),abababacacacbdbdbdadadad (3) 

Figure 4.5. Pattern Detection Based on Syntactic Methods 

Some of these limitations can be illustrated in the example of Figure 4.5, which is taken 

from a real system execution. The presented sequence simulates a large trace that is 

generated from running the Sweep3D [Sweep3D] program. We denote the MPI events as 

symbols for simplicity. The valid communication patterns for this application are known 

and documented in [Sweep3D]. Sweep3D implements a wavefront pattern with a sweep 

from each corner in the process topology to its opposite corner. The example shows that 16 
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patterns were detected despite the fact that only five patterns are valid patterns. In addition, 

the approach missed two valid patterns ‘ab’ and ‘ad’. This shows that when applying a 

pattern detection approach directly to a trace of message passing events alone the quality of 

the detected patterns is low. The longest valid pattern ‘abababacacacbdbdbdadadad’ is a 

supermaximal repeat that can be composed from the smaller valid patterns. 

4.4.1 Detailed Repeating Patterns Detection Approach 

Figure 4.6 presents our detailed approach for detecting communication patterns in MPI 

traces. First, the traces of MPI operations and routine calls are collected. Then, we build the 

routine call tree for each MPI process. This can be done by simply computing the nesting 

level (using the event entry and exit events) for each routine call (including the MPI events 

which occur at the leaf level in the tree). Therefore, the whole routine call tree does not need 

to be present in memory at the same time. We extract the MPI events from the trace along 

with the routine calls that occur directly at the higher level in the call tree.  

The routine calls with their timestamps will generate unique constructs in the trace and will 

not appear in any detected pattern since they exist only once in the trace (the timestamp is 

unique for each routine call). This will guarantee the detection of accurate patterns since the 

routine event can identify the start and end positions of the repeats. In some cases, when the 

direct callers of the MPI routines are wrapper functions, the routine call events at the direct 

higher nesting level will be selected instead. 

The size of the trace can be reduced by removing the contiguous repeats before the detected 

process at Step 3. Also, another advantage of removing the contiguous repeats is that it 

enables the detection of patterns in their general form. For example, ‘ababcdcdefef’ can be 

represented as ‘abcdef’ when removing the contiguous repeats in the trace. After detecting 
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all the process patterns in Step 4, the construction of the communication patterns will be 

handled using the communication pattern construction algorithm in Step 5. All the detected 

patterns will be then stored in the pattern database, which is the result of the approach. 

 

Figure 4.6. Detailed Repeating Pattern Detection Approach 

In the following, we detail on the two different versions that are used in the process 

repeating patterns detection. The tandem repeats detection algorithm and the 

communication patterns construction algorithm are presented in Section 4.6 and Section 

4.7 respectively. 

4.4.2 Process Repeating Patterns Detection 

The pattern detection algorithm uses the concept of n-grams found in statistical natural 

language processing. In the classical n-gram pattern detection approach [Karp 72], the 

algorithm looks for all n-size patterns in a string. However, this approach is too costly 

especially when used for long strings with unknown patterns sizes. Therefore, we 
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developed a new algorithm that detects patterns as it goes through the trace. We used bi-

grams (length = 2) as the minimum length of a pattern. The pattern length increases 

whenever a new occurrence is detected. This is borrowed from the LZW data compression 

algorithm [Welch 84], where whenever a sequence already exists in the pattern database, 

the algorithm appends the next character in the text to the end of the sequence. However, 

our algorithm differs from the LZW algorithm in that it tries to detect a pattern at the other 

positions of its prefix pattern (‘ab’ is the prefix of ‘abc’). This algorithm runs on each 

process trace separately and detects all process patterns which will then be input to the 

communication pattern construction algorithm. We developed two versions of the n-gram 

based pattern detection algorithm. In the following section, we present the Reverse Pattern 

Lookup Algorithm followed by the Reverse-Forward Pattern Lookup algorithm in Section 

4.4.2.2. 

4.4.2.1 Reverse Pattern Lookup Algorithm 

In this section, we present our initial version of the pattern detection algorithm. Algorithm 

4.1 uses three main objects in the algorithm. The n-gram object keeps track of the current 

n-gram and its position. A pattern object contains the pattern sequence, its positions in the 

trace and its frequency (number of occurrences). The Pattern List is the dictionary that 

holds the detected pattern objects. Moreover, we use two pointers that slide over the trace 

in order to return the next n-gram that will be used in detecting the patterns. Since the 

minimum length of a repeat is two, we should be able to read a bi-gram from the trace. 

Therefore, the two pointers are always adjacent so a bi-gram could be returned when 

needed. In the algorithm, we also show how the n-gram grows in size whenever a pattern 

is detected. 
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The first five lines are declarations that will be used by the algorithm. The aNewPattern 

indicates whether the current pattern is new or existing. The aMatch variable indicates 

whether the current pattern can be constructed from its prefix pattern at its previous 

positions (returned by the check pattern occurrences algorithm). The tandemRepeats is an 

integer value indicating how many times the current pattern is repeated contiguously right 

after its current position.  

The algorithm starts by reading the first bi-gram (LZW starts by reading a character from 

the string), at line 6, which will be considered as the first pattern added to the detected 

patterns list. At line 10, the algorithm will check if the detected pattern is repeated 

contiguously in the following events in the trace. If the pattern is repeated contiguously 

more than once, then the two pointers will advance ((repeats - 1) * pattern size) steps 

forward in the trace.  

The pointers will start at the beginning of the last detected tandem repeat since it may be 

part of a bigger pattern. The algorithm will repeatedly read the next bi-grams from the trace 

file and add them to the pattern list until a bi-gram match is detected. In this case, the 

algorithm will enter the do-while loop at line 15 and will add the next event from the trace 

to the right of the matching bi-gram which will result in a tri-gram (this is similar to the 

LZW approach). This occurs by the call to the ConstructNGram function at line 18, which 

is a utility function that adds the next event in the trace to the current n-gram. 
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Algorithm 4.1. Reverse Pattern Lookup Algorithm 

Then, the algorithm will check whether the tri-gram can be constructed from the previous 

occurrence of its bi-gram by calling the checkPatternOccurence function at line 21 (this is 

Pattern Detection: this algorithm runs for each  

process separately to find repeating patterns 

Г: checkPatternOccurence 

advanceSteps = (tandemRepeats - 1) * patternSize 

1. PatternList: List of extracted patterns 

2. aNewPattern: Boolean 

3. aMatch: Boolean 

4. tandemRepeats: Integer 

5. currentPattern: Pattern 

6. while(next n-gram is not null){ 

7.     p = position of nextNGram 

8.     aNewPattern = UpdatePatternList(nextNGram, p) 

9.     currentPattern = getPattern(nextNGram) 

10.     tandemRepeats = checkTandem(currentPattern) 

11.     if (tandemRepeats > 1) then 

12.       advancePointers(advanceSteps) 

13.    end if               

14.     if aNewPattern is false then 

15.       do{ 

16.            aMatch = false   

17.            currentPattern = getPattern(nextNGram) 

18.            nextNGram  = constructNGram(nextNGram) 

19.            UpdatePatternList(nextNGram , p) 

20.            nextPattern = getPattern(nextNGram) 

21.            aMatch = checkPatternOccurence(nextPattern,p, currentPattern)     

22.            tandemRepeats = checkTandem(currentPattern) 

23.            if (tandemRepeats > 1) then       

24.               aMatch = true 

25.               advancePointers(advanceSteps) 

26.            end if     

27.            if aMatch is false then 

28.                remove nextPattern from PatternList 

29.            end if 

30.           } while(aMatch)  

31.      end if 

32. end while 
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not part of the LZW algorithm and this is the main difference that enables our algorithm to 

detect complete maximal repeats). 

In the checkPatternOccurence function, if the previous occurrence of the bi-gram can be 

constructed to match the detected tri-gram, the frequency of the tri-gram pattern will be 

incremented and the frequency of the bi-gram will be decremented. Since we have a 

repeating tri-gram, the algorithm will read the next event and add it to the tri-gram (line 

18) and again check if the previous occurrence (line 21) of the tri-gram can be extended to 

match the new quad-gram. Again, at line 22, the algorithm will check whether the new 

constructed pattern has a tandem repeat or not, if yes, the two pointers will be advanced as 

described previously. As can be seen from the algorithm, the n-gram will grow in size 

whenever it has a match in the pattern list. If the constructed n-gram cannot be detected at 

any previous position of its prefix n-gram, then it will be removed from the list at line 28. 

We also present the Check Pattern Occurrence in Algorithm 4.2. This algorithm is being 

called by the code presented in Algorithm 1 as ‘checkPatternOccurence’ or ‘Г function. It 

is used to detect if the new pattern can also be detected at the previous positions of its prefix 

patterns (e.g., for a pattern ‘abcd’ its prefix pattern is ‘abc’). The algorithm will iterate on 

the positions of the prefix pattern in order to find whether the next pattern can be detected 

at these positions (line 3).  

Line 4 makes sure not to continue the iteration when the prefix pattern position is the same 

as the next pattern position. Also, lines 6 through 10 make sure not to continue in the 

current iteration if next pattern already has the current position curPosition. If none of the 

conditions at line 4 and 6 is true, then the next unigram in the trace that follows the prefix 

pattern at curPosition will be appended to prefix pattern. Whenever the prefix pattern can 
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be extended to match the new pattern, the frequency of the prefix pattern is decremented 

and its position is removed (lines 17 to 20 in Algorithm 2). In the following, we 

demonstrate using a short example how the n-gram based algorithm is able to detect the 

different types of repeats in the trace. 

 

Algorithm 4.2. Check pattern occurrences 

Figure 4.7 presents an example of a trace of 17 point-to-point communication events (S2 

means Send to 2 and R2 means Receive from 2). The algorithm starts by reading the first 

bi-gram ‘S2, S3’ at position 1 and add it as a new pattern to the pattern list. Since there is 

CheckPatternOccurrence: checks if nextPattern can be  

constructed from the previous positions of current Pattern.  

Returns true if nextPattern can be found at its prefixPattern’s  
previous positions 

Signature: nextPattern, nextPatternPosition, prefixPattern 

1. curPosition: position of the prefixPattern 

2. aMatch = false 

3.  for each curPosition of prefixPattern positions{ 

4.    if curPosition EQUALS nextPatternPosition then    

5.       continue // get next position 

6.    if nextPattern has curPosition then 

7.       aMatch = true 

8.       prefixPattern.decrementFrequency 

9.       prefixPattern.removePosition(curPosition) 

10.       continue //get next position 

11.    end if 

12.    currentNGram = prefixPattern.getNGram 

13.    currentNGram.position = curPosition 

14.    add next unigram to currentNGram at curPosition  

15.    if nextPattern.NGram EQ currentNGram then 

16.       aMatch = true 

17.       prefixPattern.decrementFrequency 

18.       prefixPattern.removePosition(curPosition) 

19.       nextPattern.incrementFrequency 

20.       nextPattern.addPosition(curPosition) 

21.    end if 

22. end for each 

23. return aMatch 
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no contiguous repeat for the pattern, the next bi-gram ‘S3, R2’ will be read and added as a 

new pattern. 

Trace: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

S2 S3 R2 S5 S2 S3 R2 S2 S3 R2 S2 S3 R2 S4 S2 S3 R2 

Execution: 

# Pattern New? Tand? Freq. Pos. Next Action 

1 S2 S3   Yes No 1 1 Get next bi-gram 

2 S3 R2   Yes No 1 2 Get next bi-gram 

3 R2 S5   Yes No 1 3 Get next bi-gram 

4 S5 S2   Yes No 1 4 Get next bi-gram 

5 S2 S3   No No 2 1, 5 Const. from cur. n-gram 

6 S2 S3 R2  Yes Yes 4 1, 5, 8, 11 Append event at position 14 

7 S2 S3 R2 R4 Yes No 1 11 Get next bi-gram 

8 S4 S2   Yes No 1 14 Get next bi-gram 

9 S2 S3   No No 2 8, 12 Construct from current n-gram 

10 S2 S3 R2  No No 5 1, 5, 8, 11, 15 End of Trace 

 

Detected Pattern Frequency Positions 

S2 S3 R2 5 1, 5, 8, 11, 15 
 

Figure 4.7. Reverse Pattern Lookup Example 

Similarly, there is no contiguous repeat for this new pattern, therefore the algorithm will 

continue reading until it reads ‘S2, S3’ at position 5. Since this is an existing pattern, its 

frequency will be incremented and its position will be added to the pattern positions list. 

Again the algorithm will check for contiguous repeats which also do not exist in this case. 

However, since this is an existing pattern, the next unigram in the trace will be added to 

the pattern resulting in ‘S2, S3, R2’ as a new pattern. The algorithm will detect that there 

are two contiguous repeats (tandem) of this pattern. Also, the check pattern occurrence 

function will be called and detect that at position 1 (position of prefix pattern ‘S2, S3’ this 

new pattern can be detected). Then, the algorithm will append the next event following the 
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last tandem repeat which will result in the pattern found at row 7 in the Execution table in 

Figure 5. When the algorithm reaches the end of the trace, it will find that ‘S2, S3, R2’ is 

the only maximal repeat with frequency more than 1 in the trace. This example shows how 

the n-gram-based algorithm is able to detect patterns (maximal repeats) in trace files of 

MPI applications. 

4.4.2.2 Reverse-Forward Pattern Lookup Algorithm 

In this section, we present a modified version of the algorithm presented in the previous 

section. The first difference in this algorithm is that we first detect all the bi-grams in the 

trace along with their starting positions. Another difference is that in the previous versions, 

the algorithm checks for contiguous repeats (tandem repeats) as it reads the events from 

the trace. In this version, we do not check for tandem repeats as this step is currently 

handled before the detection process. The first line in Algorithm 4.3 calls the 

ExtractBiGrams (presented in the code snippet below) routine at line 1 which is responsible 

for the extraction of all the bi-grams and their start positions in the trace. After detecting 

all the bi-grams, it removes the bi-grams that only exist once in the trace since they are not 

part of any repeating pattern. The advantage of having the bi-grams information available 

prior to the detection process is that the algorithm will be able to construct a pattern at all 

its positions that start with its prefix bi-gram directly after encountering its first occurrence 

in the trace. In the previous algorithm, it is only possible to detect a pattern after 

encountering its starting bi-gram at least twice in the trace. This is one of the main 

differences between the current version and the previous one.  

In ExtractBiGrams, whenever a bi-gram at position i is read it will be added to the pattern-

positions-list of that bi-gram. The algorithm will continue reading the remaining bi-grams 
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until it reaches the end of the trace. At this stage, all detected bigrams will have a frequency 

of zero to indicate that they are still not part of the final detected patterns-list. The 

frequency attribute will be updated during the pattern detection process.  

 

Algorithm 4.3 continues at line 2 by reading the first bi-gram from the trace. This while-

loop will stop when it reaches the end of the trace. At line 3, the if-statement will check 

whether the new pattern (bi-gram) exists in the patterns-list (all bi-grams were detected and 

added to the patterns-list along with their starting positions in the trace prior to the detection 

process, only those bi-grams that exist only once were removed from the patterns-list). At 

line 4, the algorithm enters the do-while loop where the actual detection logic exists. Line 

5 defines the overlap variable that holds the number of overlaps the pattern has. Two 

occurrences of a pattern overlap when the last event’s position in the first occurrence is 

greater than the start position of the second occurrence of the pattern. For example, the two 

occurrences of pattern aba in ababa overlap and overlap will be equal 1. Line 6 defines 

the distance variable which holds the distance between the start positions of the first two 

overlapping occurrences of a pattern.  

Routine: ExtractBiGrams 

1. for i = 0 to trace.size - 2 

2.      bigram = trace[i] + trace[i+1] 

3.      if bigram ∉  PatternsList then 

4.           addToPatternList(bigram) 

5.           bigram.frequency = 0 

6.      end for 

7.      addToPositionsList(bigram, i) 

8.      remove bigrams with one position only 

9. end for 
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Algorithm 4.3. Reverse-Forward Pattern Lookup Algorithm 

Algorithm: Pattern Detection – Maximal Repeats Detection 

This algorithm runs for each process separately to find repeating patterns 

1. ExtractBiGrams 

2. while [(pattern = nextBiGram) is not null] 

3.   if pattern ∈  PatternsList then     

4.    do 
5.       overlap                     = 0   // number of overlapping patterns 

6.       distance                    = -1 // distance between two overlapping patterns 

7.       matches                     = 0   // number of matches for new pattern 

8.       prevPattern       = pattern //points to the previous pattern    

9.       latestEvent       = pattern.addNextEvent() //add next event to pattern  

10.       if latestEvent is null OR not MPI_EVENT then break 

11.       if pattern IS NOT NEW then continue //get next bi-gram            

12.       else UpdatePatternList(pattern , pattern.position)          

13.       prevPosition = prevPattern.firstPosition 

14.       prevMatch = false 

15.       for i = 0  to  prevPattern.positions.size   
16.          currentPosition = prevPattern.positions.get(i) 

17.          nextEventIndex = currentPosition + pattern.length - 1 

18.          if nextEventIndex GT trace.size - 1 then break 

19.          if trace.get(nextEventIndex) EQ latestEvent then 

20.                 if currentPosition NE pattern.position then 

21.                     nextPattern.add(currentPosition) 

22.                     matches++      

23.                 end-if 

24.                 if currentPosition GT  prevPosition AND prevMatch AND  

                                          currentPosition – pattern.length LT prevPosition then 

25.                       overlap++ 

26.                       if distance EQ -1 THEN distance = currentPosition – prevPosition 

27.                 end-if 
28.                 prevMatch = true 

29.           else prevMatch = false                    

30.           end-if 

31.               prevPosition = currentPosition 

32.       end-for 
33.       if overlap GT 0 then     

34.            if overlap GT matches – distance then  matches = 0 

35.            if overlap EQ matches then       

36.               pattern.lineIndex = pattern.lastPosition + distance                  

37.            else   nextNGram.lineIndex = pattern.position + pLength - 1 

38.       end-if  

39.       if matches EQ  0 then       

40.           remove pattern from PatternsList 

41.       else 

42.             pattern.incrementFrequency(matches - overlap)    

43.             prevPattern.decrementFrequency(matches - overlap)             

44.        end-if 

45.      while matches GT  0 //do-while loop 

46.   end-if 

47. end-while 
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The matches variable is used to calculate the number of matches a pattern has at the other 

occurrences (except the current position) of its prefix pattern (previous pattern). Therefore, 

when all occurrences of a pattern are overlapping, the number of matches will be equal to 

the number of overlaps. For example, the first aba in the previous example has one overlap 

and one match in the trace which means that it is not a true pattern. 

The prevPattern holds the value of the previous pattern. The latestEvent variable gets the 

value of the next event in the trace (the event to the right of the current pattern) at Line 9. 

At this point, the pattern variable has one extra event and the prevPattern holds the value 

of pattern prior to appending the new event. Line 10 will check whether the latestEvent is 

null (end of the trace) or if the event is not an inter-process communication event. If the 

event is null then it means that the detection process is complete. If the event is not a 

message passing event then the algorithm will read a new bi-gram from the trace. At line 

11, if pattern already exists in the patterns-list, then it means that this pattern was already 

detected and the algorithm will continue to read the next bi-gram in the trace. The next bi-

gram starts at the position of the latestEvent in the trace unless it is a non-message passing 

event. If pattern is not in the patterns-list, then it will be added along with its current 

position at line 12. At line 13, the prevPosition variable will be set to hold the value of the 

first position of prevPattern. The variable prevMatch (set to false at line 14) will be used 

later and it indicates whether there was a match or not at the other pattern position. The 

for-loop at line 15 will iterate over all the positions of the prevPattern. This loop contains 

the logic that is used to verify whether pattern exists at the other positions of its prefix 

pattern (prevPattern). At line 16, the currentPosition will get the value of the i-th position 

of prevPattern positions. Line 17 will calculate the position of the next event 
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(nextEventIndex) in the trace that will be appended to prevPattern. Line 18 will check if 

the value of the nextEventIndex is still less than the size of the trace. If it is larger than the 

trace size, then the loop will break and the algorithm will read the next bi-gram if it did not 

yet reach the end of the trace. Line 19 will check if the event at nextEventIndex is equal to 

the latestEvent read at line 8. If the two events are equal then it implicitly means that pattern 

exists at the i-th position of prevPattern. In the previous version, we were comparing the 

pattern as a whole which is not necessary. The if-statement at line 20 will check if 

currentPosition does not exist in the positions-list of pattern. If the condition is true, 

currentPosition will be added to the positions-list of pattern at line 21. At line 22, the 

matches variable will be incremented since there is a match. The condition at line 24 will 

check if the two occurrences of the pattern are overlapping. First the condition will check 

if currentPosition is greater than prevPosition and then it will check if there was a previous 

match using the prevMatch variable. 

Finally, the condition will check if the expression ‘currentPosition – pLength (pattern 

length)’ is less than the value of previous position. If this condition is met, then it means 

that there is an overlap and the value of overlap will be incremented at line 25. At line 26, 

the algorithm calculates the distance between the two overlapping occurrences of the 

pattern. This value is only calculated for the first overlapping pair of a pattern. That is why 

we initialize distance value to -1. At line 28, the prevMatch is set to true when there is a 

match, otherwise it will be set to false at line 29. Line 31 assigns the value of 

currentPosition to prevPosition to use it in the next iteration of the for-loop. When the for-

loop iterates on all the positions of prevPattern, the condition of the if-statement at line 33 

is evaluated. The expression after the if-statement at line 34 resets the value of matches to 
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zero if the condition (overlap > matches – distance) is met. In the following example, we 

show why this expression is being used. Consider the following trace which has a long 

repeating pattern: 

abababacacacbdbdbdadadad abababacacacbdbdbdadadad abababacacacbdbdbdadadad 

For the first pattern ‘ab’, when we add the next event it will be ‘aba’ that will have matches 

= 8, overlap = 6 and distance = 2 which means that the condition will return false and the 

matches will not be reset to zero. If this condition was true then the long pattern 

‘abababacacacbdbdbdadadad’ will not be detected. Therefore, using this expression, longer 

true patterns that are composed of overlapping shorter patterns can be detected. In the 

previous version of the algorithm we did not have this validation. Therefore, a case like 

this example which is a snapshot of a Sweep3D trace will not have the long pattern detected 

which represents the global communication behaviour.  

If the number of overlaps is equal to the number of matches, then it means that all the 

occurrences of the pattern are overlapping. Therefore, at line 36, the pointer that reads from 

the trace is advanced distance steps to the right of the last position of previous pattern 

otherwise the pointer will be moved to the last event of the current pattern at line 38. For 

example, when the long pattern ‘abababacacacbdbdbdadadad’ is extended to the right, it 

will be ‘abababacacacbdbdbdadadada’ which is not a true pattern. However, overlap will 

be equal to matches which is equal to 2 in this case and the pattern will be removed from 

the patterns-list. In the case of suffix tree, this longer pattern will be returned as a repeat at 

the end of the detection process. The statement at line 40 will be executed if there were no 

matches to pattern in the trace which will remove pattern from the patterns-list. If there 

were matches to pattern then the frequency of pattern will be incremented by ‘matches - 
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overlap’ and the frequency of prevPattern will be decremented by ‘matches - overlap’ 

(lines 42 and 43 respectively). If there were matches to pattern then the do-while loop will 

continue and it will append another event to pattern which will continue until there are no 

more matches. 

Finally, if the algorithm did not reach the end of the trace, it will read a new bi-gram at line 

2 and the algorithm will execute until the end of the trace. At the end of the algorithm, all 

the patterns will be detected but only the ones with frequency more than 1 will be 

considered as true patterns. 

In Figure 4.8, we present the same example presented in the previous section in order to 

outline the main differences in the two versions of the algorithm. The first step (1) is to 

extract the bi-grams (bi-grams table) and then remove the patterns that exist only once in 

the trace. Then, the pattern detection will start at step (2). The first bigram in the trace is 

S2S3 which already exists in the patterns-list (extracted using the ExtractBiGrams routine). 

The frequency of S2S3 will be set to 5 at this stage. The advantage here is that we already 

know all the positions that this bi-gram exists at. Therefore, we can check if we can extend 

it to a larger pattern at all its positions early in the detection process. In the first version, at 

this point we only know that this bi-gram exists at position 0 only. By appending the event 

at line 2 in the trace, the pattern S2S3R2 will be our next candidate. The algorithm will 

check if it exists at the other positions of its prefix pattern S2S3. Step 2 in the detection 

process shows that S2S3R2 exists at all other positions of S2S3.  

Therefore, the pattern is detected at an earlier stage in the detection process. The frequency 

of S2S3 will be decremented to 0 and the frequency of S2S3R2 will be 5. Then, the event 

at line 4 will be appended to S2S3R2 resulting in the longer pattern S2S3R2R5.  
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(1) Trace 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

S2 S3 R2 S5 S2 S3 R2 S2 S3 R2 S2 S3 R2 S4 S2 S3 R2 

(1) Extracting BiGrams Table 

 BiGram Positions  

 

 

 
→ 

 BiGram Positions 

1 S2S3 1, 5, 8, 11, 15 1 S2S3 1, 5, 8, 11, 15 

2 S3R2 2, 6, 9, 12, 16 2 S3R2 2, 6, 9, 12, 16 

3 R2S5 3 3 R2S2 7, 10 

4 S5S2 4    

5 R2S2 7, 10    

6 R2S4 13    

7 S4S2 14    

(2) Pattern Detection Execution 

# Pattern i New? Positions Next Action 

1 S2 S3   1 No 1, 5, 8, 11, 15 Add next event to S2S3 → S2S3R2 

2 S2 S3 R2  1 Yes 1, 5, 8, 11, 15 

Does S2S3R2 exist at positions 5 → add 5 

Does S2S3R2 exist at positions 8 → add 8 

Does S2S3R2 exist at positions 11 → add 11 

Does S2S3R2 exist at positions 15 → add 15 

3 S2 S3 R2 S5 1 No 1 
Check if it exists at all positions of S2S3R2 → It only 

exists once → remove it from the db 

4 S5 S2   4 Yes 3 Not in BiGrams table → get next bi-gram at 5 

5 S2 S3   5 No 1, 5, 8, 11, 15 Add next event to S2S3 → S2S3R2 

6 S2 S3 R2  5 No 1, 5, 8, 11, 15 Already exists → Append event at position 8 

7 S2 S3 R2 S2 5 Yes 5, 8 

Does S2S3R2S2 exist at positions 1 → No 

Does S2S3R2S2 exist at positions 8 → add 8 

Does S2S3R2S2 exist at positions 11 → No 

Does S2S3R2S2 exist at positions 15 → No 

→ matches = 1 and overlap = 1 → remove pattern and 

advance pointer to 11 

8 S2 S3   11 No 1, 5, 8, 11, 15 Not in BiGrams table → get next bi-gram 

9 S2 S3 R2  11 No 1, 5, 8, 11, 15 Add next event to S2S3 → S2S3R2 

10 S2 S3 R2 S4  11 No 1, 5, 8, 11, 15 Does not exist at any other positions → remove 

11 S4 S2   14 Yes 14 Not in BiGrams table → get next bi-gram at 15 

12 S2 S3   15 No 1, 5, 8, 11, 15 Add next event to S2S3 → S2S3R2 

13 S2 S3 R2  15 No 1, 5, 8, 11, 15 End of Trace 
 

Detected Pattern Frequency Positions 

S2 S3 R2 5 1, 5, 8, 11, 15 
 

Figure 4.8. Reverse-Forward Pattern Lookup Example 
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However, this pattern does not exist at any other positions of S2S3R2 and will be removed 

from the patterns-list. The algorithm will then read the bi-gram at line 4 which does not 

exist in the bi-grams list. Therefore, it will not be added to the patterns-list and the next bi-

gram will be read from the trace. S2S3 at line 5 already exists in the trace therefore the 

algorithm will add the event at line 7 resulting in S2S3R2 which already exists in the 

patterns-list. 

The event next to S2S3R2 at position 8 will be appended resulting with the pattern 

S2S3R2S2. This pattern exists at two overlapping locations. According to the algorithm, 

since matches = 1 and overlap = 1 then the pattern will be removed from the patterns-list 

and the index i will be advanced to position 11. At position 11, the bi-gram S2S3 exists as 

well as S2S3R2. 

Then, S4 at position 14 will be appended resulting in S2S3R2S4 which does not exist at 

any other position and will be removed as well. Bi-gram S4S2 does not exist in the patterns-

list therefore the next bi-gram S2S3 will be read which already exists. Finally, the 

constructed pattern S2S3R2 already exists in the patterns-list. At this point, the algorithm 

reached the end of the trace and based on the frequencies of the patterns only S2S3R2 will 

be detected as a true pattern in the trace. 

Algorithm’s Complexity: 

 

The presented algorithm runs in linear time with respect to the trace size (n). The 

ExtractBiGrams routine only requires n steps to execute. The complexity of the pattern 

detection algorithm can be measured as follows: 

- Steps required to Execute ExtractBiGrams: n 
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- Steps required to read the trace events (lines 2 & 9; together, these two lines will read 

the trace events from left to right): n 

- Steps required to Execute Pattern Detection: ∑P Ri where P is the total number of 

repeats (not only the ones with frequency more than 1) and Ri is the number of 

occurrences for each repeat. The detection of every occurrence of the pattern adds 

one step to the total execution time. Therefore, for each pattern, the total number of 

steps that will be added to the total execution time of the algorithm will be the number 

of its occurrences in the trace (R). 


=

+=
p

1 i

iR  2n omplexity C       (4.1) 

Since the number of repeats in a string is always less than n [Grissa 07] and the number of 

occurrences for each pattern is linear with n it is easy to deduce that the algorithm’s 

complexity will run in O(n).  

With respect to the space complexity of the algorithm, it was implemented by representing 

every detected pattern by a unique hash code. Therefore, since the maximum number of 

patterns is always less than n, the algorithm’s memory usage will depend on the number of 

patterns and the size of the hash code for each pattern. This also guaranties that the 

algorithm’s space usage will grow linear with the size of the input trace. 

4.5 Communication Pattern Matching 

In this section, we present our algorithm for extracting similar communication patterns in 

an MPI trace to a predefined input pattern. The pattern under study can be provided by the 

user or it can be provided from the list of patterns detected using the algorithm presented 

in the previous section. The input communication pattern is stored as a list where each 
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entry corresponds to the sequence of events of one process only. These events are inter-

process communication events such as this send event ‘MPI_Send (target = P5, Size = 

256)’. 

Similar to the pattern detection algorithm, this algorithm finds similar patterns on each 

process trace separately. The output of this algorithm is input to the communication pattern 

construction algorithm presented later. The degree of similarity between the patterns is 

determined by the number of shared events between them.  

We use the Edit-Distance [Levenshtein 66] (also known as Levenshtein Distance) function 

to calculate the degree of similarity between the two patterns. In order to determine the 

areas in the trace that could potentially match the input pattern, we use the Lemma proposed 

by Jokinen and Ukkonen [Jokinen 91] for our filtration process. This Lemma is based on 

calculating the shared n-grams between the pattern and the target string. Several research 

studies for approximate string matching exist that are based on this Lemma [Cao 05, 

Rasmussen 06]. The Lemma is presented in the following: 

Lemma: N-gram based Filter (Jokinen and Ukkonen [Jokinen 91]) 

 

Let a string S1 of length m with at most k edit distance from another string S2 of 

length m, then at least m+1– kn+n of the n-grams in S1 occur in S2. 

The process of determining similar patterns consists of two steps. The first step is the 

filtration process which uses the above lemma, and the second step is the edit-distance 

function. We slide a window of length m, which is the length of the input pattern on a 

process trace until there is a potential match (window shares at least m + 1 – kn + n with 

the pattern). A window that is identified as a potential match is verified using the edit-

distance function. 
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In order to reduce the number of verified windows, and to reduce the total execution time 

consequently, we use positioned n-grams to preprocess the pattern. We build a table for all 

the n-grams in the pattern with their positions in the pattern. We use the positioned n-grams 

table in the filtration process to shift the window to the right (in the trace) based on the 

position of the first n-gram found in the window under test. For example, if the position of 

the n-gram in the n-gram table is 3 and the same n-gram was found at position 5 in the 

window, then we slide the window to the right by two steps to avoid verifying two non-

matching windows using the edit-distance function. 

 

Algorithm 4.4. Pattern matching 

Algorithm 4.4 describes our procedure for detecting communication patterns that are 

similar to a pattern P. As mentioned previously, this algorithm runs for every process 

separately. In line 5, it will iterate on each window in the trace. The window (w) may shift 

 

Pattern Matching: runs for each process separately 

p: pattern under study of size m 

threshold = pattern size – n + 1 – k.n 

k:maximum allowed edit distance 

firstSharedNGramDisplacement: displacement between position of first shared 

n-gram in w and its position in the n-gram position table 

1. w: window of size m 

2. MatchingPatternList: List of matched windows 

3. // MatchingPatternList also holds the position of w 

4. sharedNGrams: Integer 

5. while(next w is not null){ 

6.     if (firstSharedNGramDisplacement > 0) then 

7.       shiftWindow(firstSharedNGramDisplacement) 

8.    end if 

9.    sharedNGrams =  countSharedNGrams(p, w)        

10.     if sharedNGrams > threshold then 

11.           if editDistance(p, w) <= k then  

12.              add w to MatchingPatternList 

13.               jump to next adjacent window 

14.           end if 

15.     end if 

16. end while 
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to the right based on its position in the n-gram positioned table (lines 6-8). Based on the 

number of shared n-grams between the pattern and the window determined in line 9, the 

edit distance will be computed in line 11. If edit distance is less than or equal to k, then the 

window w will be added to the MatchingPatternList at line 12 and the window will be 

shifted to start at the next adjacent window at line 13. Every process in the MPI trace should 

have its own MatchingPatternList which will be used in the algorithm described in the next 

section for the construction of the communication patterns. The MatchingPatternList 

contains the patterns and their start positions in the trace. 

We demonstrate our pattern matching algorithm using the example shown in Figure 4.9. 

We used alphabets instead of MPI events for simplicity. The figure shows the input pattern 

and to its right its n-grams along with their positions (n-gram position table). The window 

size is the same as of the size of the pattern. We slide the window on the string and find 

the number of shared n-grams. For window #12 and window #22, the window is shifted to 

the right based on the position of the ‘ab’ n-gram (line 7 in the algorithm). Also, since a 

match was detected at window # 16 with k = 1, the window was shifted to point at window 

# 22. 

This example shows the usefulness of using the concept of n-grams in the filtration step. 

The filtration step reduces the execution time since it reduces the number of windows to 

be checked using the edit distance (ED) function. The filtration step could be improved in 

order to avoid checking non-matching windows using the edit distance function. One more 

issue that needs to be tuned is the window size. In some cases, the window size should be 

decreased to minimum of (m – k). For example, window # 9 ‘b c d e f y’ has an edit distance 
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of 2 while if we consider the window as ‘b c d e f’ (size is m – k + 1) then the edit distance 

will be 1 which increases the degree of similarity to the input pattern. 

Input Pattern: a b c d e f → 0: a b, 1: b c, 2: c d, 3: d e, 4: e f 

Trace: a b c d m h k o b c d e f y e a b h d e f r s a b c d e f 

m = 6, n = 2, k = 1, t >= m – n + 1 – kn → t >= 3 shared n-grams 

W# Window Shared n-grams ED Action 

1 a b c d m h ab, bc, cd 2  

2 b c d m h k bc, cd  Skip window 

3 c d m h k o cd  Skip window 

4 d m h k o b   Skip window 

5 m h k o b c bc  Skip window 

6 h k o b c d bc, cd  Skip window 

7 k o b c d e bc, cd, de  3  

8 o b c d e f bc, cd, de, ef 1  

9 b c d e f  y bc, cd, de, ef 2  

10 c d e f y  e cd, de, ef 5  

11 d e f y e  a de, ef  Skip window 

12 e f y e a  b ab at position 4 4 Jump to w#16 

13 f y e a b  h    

14 y e a b h d    

15 e a b h d e    

16 a b h d e f ab, de, ef 1 Jump to w#22 

17 b h d e f  r    

18 h d e f r  s    

19 d e f r s  a    

20 e f r s a  b    

21 f r s a b  c    

22 r s a b c d ab at position 2  Jumpt to w#24 

23 s a b c d e    

24 a b c d e f ab,bc,cd,de,ef 0 Done 
 

Figure 4.9. Example of the pattern matching algorithm 

The same can be done for window # 10 since ‘c d e f’ has an edit distance of 2 while ‘c d e 

f y e’ has an edit distance of 5.  Currently, we are handling these cases in another step (after 

the execution of the algorithm) by checking windows with at most 2k edit distance and 

reducing their window size to verify if a shorter window may have a similar match to the 

input pattern. However, we have to keep in mind that a matching window may be contained 
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in a larger pattern which is not the same as the input pattern. Therefore, the software 

engineer should be informed that a group of windows are similar to or match the input 

pattern but they exist in a larger pattern in the trace which means that the input pattern may 

be a subset of some patterns in the trace. 

Once all the similar patterns were detected for each process. We start building the 

communication patterns using the Communications Patterns Construction algorithm 

presented in the next section. In order to consider the communication pattern as a similar 

match, we need to check whether the total edit distance (sum of all edit distances from each 

process similar match) is still within the specified threshold. This is computed by relating 

the total number of errors (differences) to the total number of events in the constructed 

communication pattern. Therefore, some similar patterns per process may be within the 

specified threshold but their communication pattern may have an error that is larger than 

the threshold. 

The size of the input communication pattern is based on the number of processes involved 

in the communication. Therefore, in order to detect a wavefront pattern (for example) on a 

grid topology of 5x5, the input pattern will be different than when detecting it on a grid of 

2x2. Therefore, the knowledge about the communication pattern should be applied in order 

to extrapolate the pattern from a small process topology to a larger one. For example, the 

events for Process 1 for a sweep from P1 to P4 in the 2x2 topology will be ‘Send to 2, Send 

to 3’. However, in case of 5x5 the events for P1 will be ‘Send to 2, Send to 6’. 

4.6 Tandem Repeats Removal Algorithm 

MPI traces may contain two or more communication patterns that are not identical but 

correspond to the same communication behaviour. This can be due to: 
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• The varying number of iterations (loops) at different stages in the program.  

• The ordering of events at different stages in the program.  

• Different number of events. 

In the case of differences caused by loops, in order to detect these similar repeating 

behaviours in the trace, we need to abstract the trace by removing events caused by these 

extra iterations. These events appear contiguously in each process trace and can be detected 

and removed prior to the communication pattern detection process. Patterns detected after 

removing the contiguously repeating patterns will be in their general form.  

 

Figure 4.10. Butterfly Pattern with Contiguous Repeats 
 

For example, Figure 4.10 shows two examples of a butterfly communication pattern. This 

pattern is used in implementing MPI collective operations. Figure 4.10a depicts a butterfly 

pattern that is not appearing in its general form. By removing the contiguous repeats (grey) 

from the trace we can represent the pattern in its general form as shown in Figure 4.10b. 

More complex cases may exist resulting from an excessive number of contiguously 

repeating patterns.  

For the purpose of studying the communication behaviour in MPI programs, these 

contiguous repeats will only increase the effort of mining the important communication 

(a) An Instance of Butterfly Pattern 

P1

P2

P3

P4

P5

P6

P7

P8 
(b) General Butterfly Pattern 
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patterns in the trace file. Moreover, in some cases, the excess of these contiguous repeats 

in the trace will prevent the discovery of the communication pattern. Therefore, there 

should be a technique to remove these contiguously repeating patterns. Another advantage 

of removing the contiguously repeating patterns is the reduction of the trace size which 

will make the process of mining the communication patterns faster.  

The removal of contiguous repeats is performed on each process trace separately. We 

developed this algorithm based on the concept of n-grams. However, in this algorithm we 

used only bi-grams to help in detecting the tandem repeats on each process trace. This 

algorithm is iterative; therefore it will be repeated until all the tandem repeats are removed 

from the trace.  

Algorithm 4.5 represents the main loop for detecting the tandem repeats. The algorithm 

will repeat until the input size is fixed (all tandem repeats are removed). First, the algorithm 

will extract all adjacent bi-grams from the input trace. Extracted bi-grams and their 

positions will be stored in a hash table where the key is the bi-gram and the value is the 

array of starting positions in the trace for each bi-gram. Then, the algorithm will start by 

reading a bi-gram from the input trace, if the bi-gram exists in the bi-gram hash table then 

the detectPossibleTandem function will be called to detect if there is a tandem repeat. If 

the value of index returned by the detectPossibleTandem function is greater than the value 

of i, then it means that one or more tandem repeat was detected and then the bi-gram at 

index position will be read from the input trace. The algorithm will repeat iteratively until 

all tandem repeats are detected and removed from the trace. The reason why we iterate 

until the size of the trace is fixed is that when removing some tandem repeats, new tandem 

repeats may appear in the trace. 
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Algorithm 4.5. Tandem Repeats Detection 

The detectPossibleTandem algorithm is presented in Algorithm 4.6. It will verify if there 

is a contiguous repeat at two consecutive positions of a specific bi-gram (referred to as key 

in the algorithm). If a contiguous repeat is detected, it will check if there is another tandem 

repeat right to the already detected one. If the algorithm does not detect any tandem repeat 

it will return the same initial value of index (index has position as initial value). If one or 

more repeats were detected, the algorithm will return the value of index which is the 

position of the next bi-gram after the tandem repeat. 

Detect Tandem Repeats 

1. traceSize = 0 

2. ht // holds the repeats and their positions  

3. tr // the list of tandem repeats and their positions 

4. while (traceSize != trace.size) 

5.    Extract All Bi-Grams from trace 

6.    Keep Bi-Grams that are repeated in trace 

7.    index = 0 

8.    for (i = 0; i < trace.size; i++) 

9.       current.addTwoGrams(trace) 

10.       if current is-not-in-Bi-Grams list then continue             

11.            index = detectPossibleTandem(current, i, trace, tr) 

12.             if ( index > i ) then 

13.                   i = index 

14.                   index = 0 

15.                   current = “”                  

16.             end if 

17.       end-i-for-loop 

18.       traceSize = trace.size 

19.       removeTandemRepeats(trace, tr) 

20.       clear tr 

21.       clear ht 

22.  end-while 
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Algorithm 4.6. Possible Tandem Repeats Detection 

Algorithm 4.6 starts by assigning the value of position to the index variable at line 1. At 

line 2, the algorithm will get the list of positions (sequence) of the key (bi-gram) passed in 

the parameters list and will get the index i of position in the positions list. The possible 

pattern length pLength is calculated at line 5. At line 6 the possible pattern s1 is extracted 

from the input. It should be noted that we calculate pLength and s1 before entering the while 

loop. When the algorithm enters the loop at line 7 it will get the positions values at i and i 

+1 using the statements at lines 8 and 9 respectively. At line 10, the algorithm will return 

Detect Possible Tandem 

Parameter List: key, position, trace, tr 

1. index = position 

2. positions = get-all-positions-of( key ) 

3. i = get index of position in positions 

4. if i is last index in positions then return index 

5. pLength = positions[i+1] – position 

6. s1 = trace.sublist(position, position + pLength) 

7. while (i < positions.size - 2) 

8.       position1 = positions[i] 

9.       position2 = positions[i + 1] 

10.       if (position2 + pLength – 1 ≥ trace.size) return index 

11.       if (position2 – position1 > pLength) return index 

12.            gram1 = trace[position2 – 1] 

13.            gram2 = trace[position2 + pLength – 1] 

14.            if (gram1 == gram2) then 

15.                s2 = trace.sublist(position2, position2 + pLength) 

16.                if (s1.equals(s2)) then 

17.                    tr.add(position2, s1) 

18.                    index = position2 + pLength 

19.                else 

20.                    return index 

21.                end if 

22.       else 

23.           return index 

24.       end if 

25.     i++ 

26. end-while 

27. return index 
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if the string starting at position2 to the end of the trace is less than the pLength value. The 

gram1 and gram2 variables at lines 12 and 13 hold the events from the trace found at 

positions (position2 -1) and (position2 + pLength – 1) respectively. If these two values are 

different, the algorithm does not need to check the whole events to confirm equality. If they 

are equal, the string of events from position2 to position2 + pLength will be extracted and 

then will be checked for equality. If the two strings are equal, then a tandem repeat is 

detected and the value of position2 and s1 will be added to the tandem repeats hash table. 

The algorithm will loop until there are no additional tandem repeats detected. The 

algorithm will return the value of the index just right after the last detected tandem repeat. 

Figure 4.11 presents an example to illustrate the tandem repeats detection using our 

algorithm. The figure depicts a trace of 17 events (we use alphabets to represent events for 

simplicity). We only present the iterations for key = ‘ab’ since it is the only one that will 

result in the detection of tandem repeats which is shown in the Execution part of the figure. 

The Bi-grams and Positions columns are retrieved in Algorithm 4.5. The two bi-grams ‘dm’ 

and ‘ma’ will be removed from the list since they occurred only once in the trace and 

certainly will not help in detecting a tandem repeat. The example shows that there are two 

tandem repeats ‘abcd’ at positions 4 and 8 respectively. The figure clearly explains the 3 

steps that were executed to detect the tandem repeats at the two different locations.  

There exist several approaches for detecting tandem repeats using suffix trees [Stoye 02, 

Adjeroh 03]. These approaches have the limitations of using the suffix trees in terms of 

space complexity. Our approach depends on the concept of n-grams and does not have the 

space limitation caused by the large suffix trees. 
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   Trace: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

a b c d a b c d a b c d m a b c d 

   Execution: 

 Bi-grams Positions # Execution (iterations from the Detect Possible Tandem) 

ab 0, 4, 8, 13  key = ab, position = 0 , i = 0, pLength = 4, s 1= abcd 

bc 1, 5, 9, 14 1 Position1 = 0, position2 = 4, gram1 = d, gram2 = d 

cd 2, 6, 10, 15  s2 = abcd → s2 == s1 → add s1 and position 4  to TR 

da 3, 7 2 Position1 = 4, position2 = 8, gram1 = d, gram2 = d 

dm* 11  s2 = abcd → s2 == s1 → add s1 and position 8  to TR 

ma* 12 3 Position1 = 8, position2 = 13 

* will be removed  13 – 8 > 4 → return  index = 12 
 

Tandem Repeats (TR) Table Trace after removing tandem repeats 

Pattern Positions 
 

0 1 2 3 4 5 6 7 8 

a b c d m a b c d 
 

Abcd 4, 8 
 

Figure 4.11. Tandem Repeats Removal Example 

4.7 Communication Patterns Construction Algorithm 

In this section, we present the algorithm for assembling the process patterns detected either 

through the pattern detection algorithm or the pattern matching algorithm into 

communication patterns that encompass all the communicating processes. We input the 

process detected patterns (detected in the previous steps) into this algorithm and start 

iterating on all corresponding patterns (for pattern p1, its corresponding patterns are those 

patterns that have partner events with p1) until a communication pattern is constructed. 

When using this algorithm to construct each process patterns (maximal repeats) detected 

using the pattern detection algorithm presented in Section 4.4, the output will be the set of 

all communication patterns that are repeating in the trace. On the other hand, when using 

this algorithm to construct the similar matching patterns on each process detected using the 
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pattern matching algorithm presented in Section 4.5, the output will be the set of all 

communication patterns that are similar to the given input communication pattern. 

The communication pattern construction algorithm is presented in Algorithm 4.7. We 

introduce the following definitions to help in understanding the algorithm: 

1. CP (ptj , pok ): returns the communication pattern cpm that the process pattern ptj found 

at position pok belongs to. If ptj does not already belong to a communication pattern, 

CP will create a new one and return it as cpm. 

2. PEL( ptj , pok ): returns the list of partner events pel found in other process traces 

(events that do not belong to any detected pattern but will be part of a communication 

pattern).  

3. PPL( ptj , pok ): returns the process patterns with which pattern ptj has partner events. 

The algorithm starts iterating on each process at line 1. At line 2, the algorithm iterates on 

each detected pattern. For each pattern position (line 3), the corresponding patterns on the 

other processes will be detected by locating their partner events. We iterate on the positions 

of each detected pattern since at different positions the same pattern may have different 

partner patterns which will result in the construction of different communication patterns. 

At line 4, we retrieve the communication pattern for pattern ptj at position pok. If ptj at 

position pok is already part of a communication pattern, then it will be returned using CP. 

Otherwise, a new communication pattern will be created and returned by CP. We retrieve 

the partner single events list (pel) for pattern ptj at position pok at line 5 using PEL. We use 

the partner events list, since an event that is included in a pattern may have a partner event 

that is not included in any pattern at a partner process. The single partner events will not 
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be detected using the process pattern detection algorithm since we consider the minimum 

pattern size as two events (bi-gram).  

Communication-Patterns-Construction 

1. for-each  process  pri 

2.     for-each  pattern  ptj   pri-patterns-list 

3.        for-each  position  pok  ptj-positions-list 

4.            cpm  = CP ( ptj , pok ) 

5.            pel  = PEL( ptj , pok ) 

6.            for-each  e  pel 

7.               if e at pos(e) ∉ cpm then 

8.                      add e to cpm 

9.                                  add pos(e) to cpm 

10.               end-if 

11.            end-for-each 

12.            cpl  = PPL( ptj , pok ) 

13.            for-each  p  cpl 

14.               if p at pos(p) ∉ cpm then 

15.                      add p to cpm 

16.                                  add pos(p) to cpm 

17.               end-if 

18.            end-foreach 

19.         end-foreach 

20.     end-foreach 

21. end-foreach 

Algorithm 4.7. Communication Patterns Construction 

We iterate on the pel (lines 6-11) where every single event (along with its position in the 

trace) will be added to the resulting communication pattern with the condition that its 

process does not have any other partner events that belong to a detected process pattern. At 

line 12, all the partner process patterns will be retrieved and then added (if they do not 

already exist) to the communication pattern inside (lines 13-18). After the algorithm 

finishes iterating on all the process patterns, it will output the distinct communication 

patterns. The resulting communication patterns may involve all or a subset of the processes 

in the trace. 
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We present an example that illustrates the communication pattern detection approach. We 

first present traces generated from running four processes represented as routine call trees 

in Figure 4.12. Routines that appear at the leaf level are removed since they do not hold 

any MPI events. In Figure 4.13, we present the different stages of the communication 

pattern detection approach. Figure 4.13(b) shows the extracted events that will be entered 

into the repeating process pattern detection algorithm. We extracted the MPI events (e.g. 

S2 and R3) and their direct calling methods along with their timestamps. Any routine call 

events that appear at the same nesting level with the message passing events will be 

removed from the trace. 

 

Figure 4.12. Step1: Sample Traces from four Parallel Processes 
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(a) Process Traces Extracted from Routine Call Trees 

P1: (F2t1) S2S3S2S3 (F3t2) R2R3R2R3 (F2t3) S2S3S2S3 (F3t4) R2R3R2R3 

P2: (F2t1) R1S4R1S4 (F3t2) R4S1R4S1 (F2t3) R1S4R1S4 (F3t4) R4S1R4S1 

P3: (F2t1) R1S4R1S4 (F3t2) R4S1R4S1 (F2t3) R1S4R1S4 (F3t4) R4S1R4S1 

P4: (F2t1) R2R3R2R3 (F3t2) S2S3S2S3 (F2t3) R2R3R2R3 (F3t4) S2S3S2S3 

(b) Traces after removing contiguous repeats 

 1 2 3 4 5 6 7 8 9 10 11 12 

P1 (F2t1)  S2  S3  (F3t2)  R2  R3  (F2t3)  S2 S3 (F3t4)  R2  R3  

P2 (F2t1)  R1  S4  (F3t2)  R4  S1  (F2t3)  R1  S4  (F3t4)  R4  S1  

P3 (F2t1)  R1  S4  (F3t2)  R4  S1  (F2t3)  R1  S4  (F3t4)  R4  S1  

P4 (F2t1)  R2  R3  (F3t2)  S2  S3  (F2t3)  R2  R3  (F3t4)  S2  S3  

(c) Detected Process Patterns 

P1:PT1 = [S2,S3], PT2 = [R2,R3]   P2: PT3 = [R1,S1], PT4 =  [R4,S1] 

P3:PT5 = [R1,S1], PT6 = [R4,S1]   P4: PT7 = [R2,R3], PT8 =  [S2,S3] 

(d) Execution 

P Pattern CP?* Corresponding Patterns Communication Pattern (CP) 

P1 PT1 at 2 No PT3 at 2, PT5 at 2 CP1{PT1,PT3,PT5} 

P1 PT1 at 8 No PT3 at 8, PT5 at 8 CP2{PT1,PT3,PT5} 

P1 PT2 at 5 No PT4 at 5, PT6 at 5 CP3{PT2,PT4,PT6} 

P1 PT2 at 11 No PT4 at 11, PT6 at 11 CP4{PT2,PT4,PT6} 

P2 PT3 at 2 CP1 PT1 at 2, PT7 at 2 CP1{PT1,PT3,PT5,PT7} 

P2 PT3 at 8 CP2 PT1 at 8, PT7 at 8 CP2{PT1,PT3,PT5,PT7} 

P2 PT4 at 5 CP3 PT2 at 5, PT8 at 5 CP3{PT2,PT4,PT6, PT8} 

P2 PT4 at 11 CP4 PT2 at 11, PT8 at 11 CP4{PT2,PT4,PT6, PT8} 

P3 PT5 at 2 CP1 PT1 at 2, PT7 at 2 CP1{PT1,PT3,PT5,PT7} 

P3 PT5 at 8 CP2 PT1 at 8, PT7 at 8 CP2{PT1,PT3,PT5,PT7} 

P3 PT6 at 5 CP3 PT2 at 5, PT8 at 5 CP3{PT2,PT4,PT6, PT8} 

P3 PT6 at 11 CP4 PT2 at 11, PT8 at 11 CP4{PT2,PT4,PT6, PT8} 

P4 PT7 at 2 CP1 PT3 at 2, PT5 at 2 CP1{PT1,PT3,PT5,PT7} 

P4 PT7 at 8 CP3 PT3 at 8, PT5 at 8 CP2{PT1,PT3,PT5,PT7} 

P4 PT8 at 5 CP2 PT4 at 5, PT6 at 5 CP3{PT2,PT4,PT6, PT8} 

P4 PT8 at 11 CP4 PT4 at 11, PT6 at 11 CP4{PT2,PT4,PT6, PT8} 

* CP?: Does this process pattern already belong to a communication pattern? 

(e) Detected Distinct Communication Patterns 

 

Figure 4.13. Communication Construction Example 

P1 
P2 
P3 
P4 

  Pattern 1 (CP1+CP3)   Pattern 2(CP1+CP3) 
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In this example, we removed contiguous repeats prior to the detection process as shown in 

Figure 4.13(b). We consider the first event to be at position 1. We apply the pattern 

detection algorithm on each process trace and detected the patterns PT1 to PT8. 

The detected process patterns are shown in Figure 4.13(c). In Figure 4.13(d), we show 

execution steps that lead to the construction of the communication patterns. 

We start by selecting pattern PT1 from process P1. The algorithm iterates on all the 

positions where PT1 appears (positions 2 and 8) and locates all the corresponding patterns 

at the other processes. Four communication patterns are created CP1 to CP4. At the end of 

the algorithm, only two distinct communication patterns are extracted. The detected 

patterns correspond to a wavefront pattern. Pattern 1 is a sweep from P1 to P4 and pattern 

2 is a sweep from P4 to P1 as shown in Figure 4.13(e). 

4.8 Case Studies 

In this section, we test our pattern detection and pattern matching approaches on several 

traces generated from well-known benchmarks and real HPC applications. In Section 4.8.1, 

we provide two case studies with a comparison with other pattern detection techniques. We 

will provide the results from applying both the syntactic-directed and the knowledge-

directed approaches. In Section 4.8.2, we provide several communication patterns that were 

detected from traces of different programs. 

4.8.1 Repeating Pattern Detection Comparison 

In this section, we test our repeating pattern detection approach on two traces generated 

from Sweep3D and SMG2000. The analysis includes comparison with the syntactic-

directed approach. 
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4.8.1.1 Sweep3D 

Sweep3D [Sweep3D] includes the streaming and the scattering operators. The streaming 

operator is solved by sweeps (wavefront) from each angle to the opposite angle in the grid. 

The scattering operator is solved iteratively. Sweep3D parallelism is based on the 

wavefront communication patterns. In case of a 2-dimensional grid, the sweep3D will have 

four sweeps (wavefront) from each corner to the opposite corner.  

 

Figure 4.14. Wavefront Pattern (2x3 Process Topology) 

Figure 4.14 shows the four sweeps in a 2x3 process topology. Each sweep sends data from 

a corner to its opposite corner in the grid. In case of a 3-dimensional grid, Sweep3D will 

consist of eight sweeps (originating from each corner) per iteration. 

We tested our approach on six traces generated from running the program using different 

process topologies and variable number of iterations. In all cases, Sweep3D had the same 

communication behaviour, i.e., wavefront pattern.  The global communication pattern 

(composition of all wavefront patterns) was repeated the same number of times as the 

number of iterations (specified as input to the program). Figure 4.15 presents the detected 

communication wavefront patterns and the global communication pattern composed from 

the four separate wavefront patterns.  
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As we can see, the first wavefront is from P6 to P1 followed by the wavefront from P2 to 

P5. The next wavefront is from P5 to P2 followed by the last wavefront from P1 to P6. The 

four wavefront patterns compose together a global communication pattern that is repeated 

12 times in the trace for a 2x3 process topology and 12 iterations. In each global 

communication pattern, each single wavefront pattern is repeated 30 times. Without 

detecting the occurrences of the contiguous repeats it would not be possible to represent 

the pattern in the compact form shown in Figure 4.15. Hence, it would be large and 

cluttered and it would require more effort to understand the communication behaviour 

otherwise. The pattern in Figure 4.15(a) corresponds to the sweep shown in Figure 4.14(a). 

The pattern in Figure 4.15(b) corresponds to the sweep shown in Figure 4.14(b) and so on 

for cases Figure 4.15(c) and Figure 4.15(d). This shows that our approach is capable of 

detecting the valid patterns in a system that uses the wavefront pattern as its communication 

pattern. 

 

Figure 4.15. Detected Communication Patterns 

As indicated in [Preissl 08], the detected communication pattern is large and was not 

presented in their work. In this work, we present the detected pattern in its compact form 

which provides the software engineer with a clear understanding of the communication 

behaviour in the program. 
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Table 4.1 shows the number of detected patterns when using the syntactic approaches (i.e., 

the ones that only process messages passed between processes) based on the suffix tree 

algorithm [Sadakane 07] and our n–gram algorithm. We also show the detected patterns 

based on routine call tree approach presented in this chapter using the n-gram algorithm.  

Table 4.1. Number of Detected Repeats for P1 for Sweep3D (2x3 process topology and 

12 iterations) System (Relevant Patterns = 5) 

Pattern Detection 

Technique 
P FP TN Precision Recall 

Syntactic Matching based on 

Suffix Tree Method 
133 129 1 3% 80% 

Syntactic Matching based N-

Gram Method  
20 15 0 40% 100% 

Routine call-directed 

Approach Based on the N-

Gram Method 

5 0 0 100% 100% 

The number of repeats detected using the suffix tree approach for process P1 is 133 which 

is very large for such a small trace of P1 (2880 messages). Moreover, 129 of the detected 

patterns are not valid patterns. Furthermore, the approach missed one valid pattern. In the 

n-gram approach without the routine call tree, the number of detected repeats is 20 with no 

false positives and no true negatives. The other processes have the same number of repeats 

for both methods and the same number of false positives and false negatives. This is due 

to the nature of the Sweep3D which is repetitive and only follows several wavefront 

communication behaviours. When applying the detection with the support of the routine 

call trees for each process, we detected five patterns, which reflect the valid patterns of the 

Sweep3D application. The table also shows that our algorithm for this trace has precision 

and recall values that are 100%. We were able to calculate the precision and recall for this 
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system as we already know the communication behaviour in Sweep3D. Therefore, this can 

be used as a validation for our communication pattern detection approach. 

We also compared the results in terms of performance (see Table 4.2). We used different 

process topologies to vary the number of processes. CST stands for stands for Compressed 

Suffix Tree [Sadakane 07] which is an algorithm used to detect communication patterns by 

processing message passing events. As we can see, the routine call trees based technique 

performs better than CST, thanks to our previous n-gram algorithm. In other words, a call 

tree based approaches not only improves effectiveness (i.e. quality of the patterns) but it is 

also efficient if combined with an efficient extraction algorithm. 

Table 4.2. Performance Analysis for Sweep3D Traces 

Process 

Topology 
It. Messages 

Routine call 

with n-gram 

n-gram 

(s) 

CST 

(s) 

2 x 3 12 20160 0.78 0.72 5.23 

6 x 3 12 51840 2.45 1.674 5.700 

5 x 5 40 256000 5.83 4.20 43.00 

7 x 4 74 532800 9.156 7.20 40.40 

8 x 8 120 2150400 28.74 22.27 285.64 

8 x 16 120 4454400 56.45 52.23 480.83 

 

4.8.1.2 SMG2000 

SMG2000 [SMG2000] uses a complex communication pattern [Geimer 06]. The 

parallelism is achieved by data decomposition. SMG2000 performs a large number of non-

nearest-neighbor point-to-point communication operations and can be considered a stress 

test for the network subsystems of a machine [Wolf 08]. We tested our pattern detection 

approach on several traces generated from different scenarios by varying the number of 

processes and the problem size. 
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Figure 4.16. SMG2000 Communication Patterns (Topology: 8x1x1 Problem Size: 2x2x2) 

Figure 4.16 shows the seven detected repeating patterns for the 8x1x1 process topology 

and a 2x2x2 problem size. Figure 4.16(a) (61 occurrences) and Figure 4.16(b) (17 

occurrences) correspond to the nearest-neighbor communication pattern where every 

process is only communicating with its direct neighbors. It can be noticed that Figure 

4.16(a) and Figure 4.16(b) correspond to the same pattern with a difference in the events 

ordering. Figure 4.16(c) (18 occurrences) is a more complex case where the processes 

communicate with non-direct neighbor processes, which corresponds to the specifications 

of SMG2000.  For Figure 4.16(d) (137 occurrences) and Figure 4.16(e) (76 occurrences), 

it can be noticed that for P1 and P8 there is only one event in each case which we do not 

detect using our n-gram approach as we consider a bi-gram as the smallest pattern. 

However, the communication pattern construction algorithm adds these single partner 

events to the communication pattern as previously described in the algorithm. The pattern 

in Figure 4.16(d) moves the data from P1 to P8 while the pattern in Figure 4.16(e) moves 

the data in the opposite direction. The pattern in Figure 4.16(f) (36 occurrences) shows that 

there is a repeating communication pattern between processes P1 and P5 only. The pattern 

in Figure 4.16(g) (18 occurrences) shows that the communication pattern involves only 

processes P1, P3, P5 and P7. In [Preissl 08], only the pattern in Figure 4.16(a) was 
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presented as the main communication pattern. In our work, we present all the detected 

patterns that correspond to the same scenario. 

Table 4.3 shows the resulting patterns when applying the various techniques to the trace of 

process P2 for SMG2000 with 8x1x1 process topology and 2x2x2 problem size. When 

applying the n-gram approach directly on the trace generated from P2 (1028 message 

passing events) without considering the routine call tree, the number of detected process 

patterns was 25. The suffix tree approach resulted in 52 patterns. However, the number of 

detected patterns when applying the algorithm using the routine call tree was reduced to 

10. When removing contiguous repeats from the trace, the number of patterns with the 

routine-call directed approach was reduced to 5 which is the exact number of patterns).  

Table 4.3. Detected Repeats for P2 for SMG2000 (8x1x1 Process Topology and 2x2x2 

Problem Size, Relevant Patterns = 5, P: Patterns) 

Pattern Detection 

Technique 
P FP TN Precision Recall 

Syntactic Matching 

based on Suffix Tree 

Method 

52 48 0 10% 100% 

Syntactic Matching 

based N-Gram Method  
25 20 0 20% 100% 

Routine call-directed 

Approach Based on the 

N-Gram Method 

10 5 0 50% 100% 

 

In another scenario where we used a 2x2x2 process topology (3D mesh) and 2x2x2 

problem size another set of patterns was detected. However, without the knowledge of the 

routine calls, some patterns were not detected using any of the pure string matching 

techniques. Moreover, the number of detected patterns for P1 when using the suffix tree on 
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the trace of message passing events was 208 which is considerably high compared to the 

true number of patterns which is 25. 

 

Figure 4.17. SMG2000 Detected Patterns using Routine-Call Directed Approach 

 

Figure 4.17 shows an example of two communication patterns that were not detected when 

applying the pattern detection approach directly to the message passing events. The Pattern 

in Figure 4.17(a) involves all the processes in the trace and depicts a nearest neighbour 

communication pattern. For example, P1 communicates with P2, P3 and P5 which are its 

neighbours. However, the pattern in Figure 4.17(b) involves only four processes from the 

trace and shows that all processes communicate with each other.  

Table 4.4. Performance Analysis for SMG2000 Traces 

Topology 
Problem 

Size 
MPI Events 

Routine call 

tree n-gram 

(s) 

n-gram 

(s) 

CST 

(s) 

8x1x1 2x2x2 9312 1.25 0.98 3.33 

2x2x2 2x2x2 25416 1.33 1.40 17.13 

4x4x2 2x2x2 248768 12.56 10.82 70.96 

16x1x1 10x10x10 978296 73.98 68.71 387.07 

32x1x1 10x10x10 2363156 162.14 147.65 804.12 

64x1x1 10x10x10 5324304 359.54 354.32 1204.90 

This example shows that using the routine call tree in the detection process helps in 

improving the quality of the detection process by uncovering patterns that cannot be 
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detected directly from a trace of message passing events. Similar to the Sweep3D example, 

our approach performs also better in terms of execution time than a pure suffix tree based 

approach as can be seen in Table 4.4. 

It is clear that the two patterns in Figure 4.17 when represented by the event graph are not 

very easy to follow due to the irregular order of events as opposed to the patterns in Figure 

4.16. This opens another research question on how to find a better visualization technique 

than event graphs to represent communication patterns. 

4.8.2 Sample of Detected Patterns on Target Systems 

In this section, we present sample detected patterns applied to different systems using our 

n-gram based techniques. 

4.8.2.1 NAS Parallel Benchmark 

In this section, we target three programs (LU, CG, and MG) that are part of the NAS 

Parallel Benchmark suite (described in Section 3.8.1). We briefly describe each target 

program along with the detected communication patterns. 

4.8.2.1.1 NAS-LU 

LU is similar to Sweep3D in that it uses diagonal pipelining method (wavefront) method, 

to perform communication of partition boundaries. An iteration in LU consists of two 

sweeps [Mudalige 08], one sweep starting from the top-left corner to the bottom-right 

corner in the process topology followed by a sweep in the opposite direction. In the 

following, we test our approach on a trace generated from LU in order to verify if the 

communication pattern used in LU corresponds to a wavefront pattern. The tested trace is 

generated from running 8 processes with a 2x4 process topology, a problem size of 64 x 
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64 x 64, and 250 iterations. When applying the pattern detection algorithm on the trace 

(without considering the routine call graph) we were able to detect the global 

communication behaviour in the trace. It should be noted that according to the NPB 

documentation found at [NAS-Changes] a dummy iteration was added before the time step 

loop in LU for consistency with the other benchmarks in NPB. This justifies the number 

of occurrences of the global communication pattern to be 251 rather than 250. The global 

communication pattern is depicted in Figure 4.18. When applying the suffix tree approach 

on the LU trace, we were not able to detect the global communication behaviour. In Figure 

4.18, it is noticed that the two sweeps are preceded by a 2D-nearest neighbor pattern in all 

the occurrences. This pattern is used to perform some computations prior to the sweeps. 

The suffix tree approach was only able to detect each repeating pattern separately. However, 

our approach is able to detect each repeating pattern separately as well as the global 

communication pattern shown in Figure 4.18. Moreover, the number of detected repeats 

using the suffix tree approach for P1 (for example) is 383 repeats where in our approach it 

was only 6 repeats. The problem with suffix tree is that it detects a large number of repeats 

which most of them are considered as false positives. Also, using our algorithm, there are 

two cases of the communication pattern that are preceded with two occurrences of the 2D-

nearest neighbour pattern and there is one case that the two sweeps were followed by one 

occurrence of the 2D nearest neighbour pattern. 
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Figure 4.18.  LU Global Communication Pattern 

When using the information from the routine call graph, we were able to detect the patterns 

shown in Table 4.5. The numbers of occurrences for each pattern are consistent with the 

number presented in Figure 4.18. 

Table 4.5. Patterns Detected with Routine Call Graph 

Wavefront Pattern Occurrences 

Sweep from P1 to P8 15562 = 251 x 62 

Sweep from P8 to P1 15562 = 251 x 62 

2D-nearest neighbor 254 = 251 + 3 

 

We apply the pattern matching technique to the LU program since we already know that 

the communication pattern used in the program is a wavefront pattern. The pattern 

matching algorithm differs than the pattern detection one since we need to provide an input 

pattern and then look for it in the trace. Therefore, the pattern needs to be entered properly 

and should match the number of processes and their topology. We used the same example 

(2x4 process topology). The first step is to generate the pattern events for each process 
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separately. Then, we can match each process patterns separately and construct the 

communication pattern. The process topology is the most important factor when building 

the input pattern since it determines the partner processes that each process will 

communicate with. Moreover, it will determine the originating process in the wavefront. 

When considering P1 as the originating process the input pattern for each process should 

look like the events shown in Table 4.6. The pattern matching algorithm will use the events 

for each process to look for the matching process patterns in the trace. After detecting all 

the occurrences of each pattern in the trace, the communication construction algorithm will 

start by matching the partner events based on their positions in the trace. 

Table 4.6  Input Pattern for Wavefront originating from P1 

Process Input Pattern 

P1 Send to P2, Send to P5 

P2 Receive from P1, Send to P3, Send to P6 

P3 Receive from P2, Send to P4, Send to P7 

P4 Receive from P3, Send to P8 

P5 Receive from P1, Send to P6 

P6 Receive from P5, Receive from P2, Sent to P7 

P7 Receive from P6, Receive from P3, Send to P8 

P8 Receive from P7, Receive from P4 

 

In this example, we set the error value to be 0 which means that we are looking for exact 

matches to the input pattern. However, the error value can be set to another value when we 

are looking for similar patterns to the input one. It should be noted that the ordering of 

events may be different, for example P1 may send to P5 before sending to P2. These 

different combinations can be handled since our algorithm uses the edit distance function. 

After running the pattern matching algorithm the number of detected wavefront patterns 

that originate from P1 and end at P8 was 15562. This validates the pattern matching 
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algorithm since we already know the number of wavefronts originating from P1. Moreover, 

it validates that the repeating pattern detection algorithm is correct since also the number 

of detected patterns was verified using the pattern matching algorithm. 

4.8.2.1.2 NAS-CG 

 

This kernel is useful for unstructured grid computations in order to test irregular long 

distance communication that employs unstructured matrix vector multiplication. We tested 

our algorithm on the NAS CG (class W) benchmark.  

 

Figure 4.19. NAS CG Pattern and Topology 

Figure 4.19 shows the communication pattern (left) and its corresponding MPI virtual 

topology. The main communication behaviour in CG follows a 2D-stencil which was 

detected by our algorithm as shown in Figure 4.19. 

As can be seen from the pattern, processes (P1 to P4) form a sub-group and processes (P5 

to P8) form another sub-group of communication. Data is being exchanged between the 

two sub-groups through processes (P3 to P6) at the center of the communication pattern. 

Moreover, to validate the detection algorithm we compared the communication topology 

to the one presented in [Cappello 00] and found that they are identical. In [Lee 09], the 
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authors presented some analysis regarding the two-subgroups and how they communicate. 

In our work, we were able to provide the full communication pattern described using the 

event graph. 

4.8.2.1.3 NAS-MG 

 

The MG kernel follows only one communication behaviour. The process topology (Figure 

4.20a) corresponds to a 3D mesh (2x2x4). Figure 4.20b shows the detected communication 

pattern for an instance of NAS MG (class A) running on 16 processes. The total number of 

messages in the trace is 22048. The communication pattern shows that processes 

communicate to the nearest neighbour on their layer and the adjacent layer. Also, processes 

on the side layers communicate with each other. For example, P1 communicates with P13 

and P4 communicates with P16.  The NAS MG is used to test near and far communications. 

This can be easily noticed in the detected patterns. For example, P1 communicates with the 

far process P13 and also it communicates with its near neighbors (P1, P3 and P5). The 

communication pattern is detected 109 times in the trace.  

When using the knowledge-directed approach, all the communications occurred within the 

comm3 routine. According to [Lu 04] they mentioned that every process when executing 

comm3 it sends 6 messages and receives 6 messages exchanged in the three dimensions 

coordinate. Our dynamic analysis approach proves these results and extends it by 

representing the communication pattern using an event graph. 
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Figure 4.20. NAS MG Class A Communication Topology & Pattern 

 

4.8.2.2 Weather Forecasting & Research Model 

We tested our pattern detection algorithm on a trace file generated by the VampirTrace 

[VampirTrace] trace analysis tool (this trace is different than the one presented in the 

previous section but was generated from the same system). The trace file had 336960 point-

to-point events. In this trace, we detected two main patterns, one consists of point-to-point 

operations and the other one is composed of collective operations. The right side  

Processes in WRF communicate based on a 2D nearest-neighbor topology. In the following, 

we tested our pattern detection approach on different traces generated from WRF. The 

results show that the communication pattern follows the same communication structure 

(2D nearest-neighbor or 2D-Stencil) as indicated in the program’s documentation. For the 

first trace, the detected pattern occurred 535 times. 

When using the suffix tree approach the number of resulting repeats was 534. However, 

when applying our n-gram algorithm there was only one pattern detected which is the only 
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true pattern. In the suffix tree approach, it returned overlapping repeats. For example, when 

considering only this part of the whole trace for P1 

‘abcdabcdabcdabcdabcdabcdabcdabcdabcd’ (where a: Send to 5, b: Receive from 5, c: 

Send to 2, and d: Receive from 2) then the resulting patterns are shown in Table 4.7. 

Table 4.7.  Suffix Tree Detection Example of WRF Sample Trace 

 Pattern Occurrences Positions 

1 abcd 9 0, 4, 8, 12, 16, 20, 24, 28, 32 

2 abcdabcd 8 0, 4, 8, 12, 16, 20, 24, 28 

3 abcdabcdabcd 7 0, 4, 8, 12, 16, 20, 24 

4 abcdabcdabcdabcd 6 0, 4, 8, 12, 16, 20 

5 abcdabcdabcdabcdabcd 5 0, 4, 8, 12, 16 

6 abcdabcdabcdabcdabcdabcd 4 0, 4, 8, 12 

7 abcdabcdabcdabcdabcdabcdabcd 3 0, 4, 8 

8 abcdabcdabcdabcdabcdabcdabcdabcd 2 0, 4 

It clearly shows that in the suffix tree approach the number of detected repeats is quite high 

with respect to the true number of patterns in the trace. When applying the n-gram approach, 

only the first pattern ‘abcd’ was detected which makes the communication pattern 

construction algorithm much easier than when considering all the other detected patterns. 

Figure 4.21 presents the communication pattern (right) and its corresponding 

communication topology which clearly shows a 2D stencil communication behaviour. 

When applying the pattern detection algorithm on a larger trace of the WRF application 

the same pattern was detected with 3510 occurrences.  

Our analysis shows that this repeating pattern exists in different contexts of the program. 

Here, a context means the function that the pattern occurs in. The detected pattern is 

repeated 3510 in the trace file. 
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Figure 4.21.  WRF Communication Pattern 

 

The point-to-point communication pattern exists in the START_DOMAIN_EM and 

SOLVE_EM functions. START_DOMAIN_EM is called once in the program and 

SOLVE_EM function is called 100 times. The START_DOMAIN_EM call occurs before 

the SOLVE_EM calls. The detected pattern in the execution trace helped us locate the 

important communications in the program. These inter-process communications were used 

in setting up the data to compute several weather parameters such as moisture coefficients 

and the diagnostic quantities pressure. 
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The execution trace contained two collective patterns (patterns from MPI collective 

operations) as shown in Figure 4.22. The root process in the collective operations is P1. 

Moreover, Pattern 2 shows in the first 3 elements of Pattern 1 but was detected at different 

locations in the trace that were not part of the occurrences of Pattern 1. 

4.8.2.3 2D Solution to Cellular Nuclear Burning – FLASH 2.0 

The largest trace file in our case study was generated from the two-dimensional 

implementation of the Cellular Nuclear Burning problem [FLASH 2]. Flash solves 

complex systems of equations for hydrodynamics and nuclear burning which uses 

Paramesh library [Paramesh] for adaptive mesh refinement on rectangular grid. The 

generated trace file contained 633490 point-to-point MPI events generated from 16 

processes. We were able to detect 202 distinct patterns. Some of these patterns were 

repeated a few times and others were repeated for a few thousand times.  The total 

execution time for detecting the patterns was 228 seconds. This long execution time is due 

to the large number of distinct patterns in the trace. 

Figure 4.23 shows two patterns that were detected using the pattern detection algorithm. 

The pattern in Figure 4.23a is repeated 927 times and pattern in Figure 4.23b was only 

repeated 5 times in the trace. It can be seen in the two patterns that processes P6 to P15 

have the same communications (process patterns). That is why in the communication 

pattern construction algorithm we iterate on all the positions of the detected process 

patterns. If not all of the positions were taken into account then some of the communication 

patterns will not be detected in the trace. These two patterns are used in filling the guard 

cells in the mesh. We also detected more complex patterns that we cannot include in this 

work due to space limitation. 
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We also tested the pattern matching algorithm on this trace to detect similar patterns to an 

input pattern. In this case study, we were able to detect similar patterns that differ in 

message size, tag value, and that have different number of communications. For example, 

when considering the message envelope for pattern in Figure 4.23b, we detected 4 instances 

of the pattern when the size of the message sent from P1 to P6 is 24. The input pattern 

differs from the detected patterns in the message size which is 0. In this example, a 

maximum edit distance of 1 was allowed. 

 

Figure 4.23. Two Detected Patterns in the 2D Cellular Problem 

We detected many other similar patterns using the similar pattern detection algorithm. In 

the case studies, we found out that when n increases, the total execution time increases. 

This can be justified since the number of verified windows using the edit distance function 

increases. Moreover, in some cases, we found that the window size should be less than the 

size of the pattern but also not less than m – k in order to have a similar match. 
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4.9 Summary 

In this chapter, we presented a new approach for detecting repeating communication 

patterns and matching similar communication patterns in MPI execution traces. Our 

approach is based on the concept of n-grams applied in different areas such as statistical 

natural language processing, DNA and Musical notes. We presented several algorithms 

that we have developed to guide in the detection process. The presented algorithms are: 

1. The detection of maximal repeats in a process trace. This algorithm extracts all the 

repeating sequences of MPI events in each process trace separately. 

2. The detection and removal of tandem repeats in a process trace. This algorithm removes 

all contiguous repeats from the trace which reduces the size of the trace significantly. 

3. An algorithm for finding similar patterns based on a predefined input pattern in the 

MPI trace. This algorithm runs on each process trace separately and finds the sequences 

on each process trace that match the input pattern. 

4. The construction of communication patterns based on the detected process patterns 

gathered in 1 & 3. 

We elaborated on the steps in each algorithm in a separate section and provided a running 

example that illustrates the algorithm. 

We have shown how our approach for detecting repeating communication patterns in the 

trace utilizes the knowledge in the trace as opposed to the existing approaches that are 

syntactic where they only consider the MPI trace as a mere string of message passing events. 

The results showed that a knowledge-directed approach improves the quality of detection 

patterns in terms of reducing the numbers of false positives and true negatives respectively. 

  



150 

 

Chapter 5. Execution Phases in MPI Traces 
 

 

 

5.1 Introduction 

Programs are designed to have several execution phases where each phase is meant to 

represent a specific behaviour in the program such as its initialization, computations, and 

outputting the results. A phase can also be comprised of several sub-phases. Locating the 

phases in the execution trace can be utilized for different purposes such as program 

comprehension, reducing simulation time, system reconfiguration and adaptive 

optimizations [Gu 06].  

In this thesis, we propose a novel approach for localizing computational phases in large 

HPC traces. We define a computational phase as part of a trace where a particular program 

computation is invoked. For example, a trace that is generated from a compiler should 

contain events that represent the various compiler’s computational phases including 

initialization of variables, parsing, preprocessing, lexical analysis, semantic analysis, and 

so on. Knowing where each of these phases occurs in the trace is usually a challenging task 

since there is no support at the programming language level of how to explicitly indicate 

the beginning and end of each phase. This is further complicated in the context of HPC 

applications where a phase can be performed by multiple processes running in parallel. But, 

if done properly, the recovery of computational phases (and their sub-phases) can reduce 

considerably the time and effort spent by software engineers on understanding what goes 

on in a trace.  

The presented phase detection approach encompasses two main steps. First, we detect 

communication patterns that characterize the way processes communicate with each other 



151 

 

throughout the execution of the program. We achieve this by applying the communication 

pattern detection algorithm presented in Chapter 4. The second step, which is also the main 

contribution of this chapter, consists of an approach for automatically grouping the 

extracted patterns into dense homogenous clusters that indicate the presence of 

computational phases. We achieve the second step using information theory concepts such 

as Shannon entropy [Gray 11] and the Jensen-Shannon Divergence measure [Grosse 02]. 

The description and explanation of the phase detection approach along with two case 

studies from well-known HPC programs and benchmarks are presented in the following 

sections. 

5.2 Phase Detection Approach 

Figure 5.1 shows our execution phase detection approach. The trace is first divided into 

multiple process traces in which the events of each process are grouped together. The next 

step is to detect communication patterns from the process traces. For this, we use an 

algorithm that we presented in Chapter 4. These patterns are then input to the phase 

detection component. The phase detection method looks for changes in communication 

patterns throughout the program execution.  Note that a phase may be composed of multiple 

patterns.  

The challenge is to automatically identify groups of homogenous patterns and distinguish 

them from each other. We achieve this by measuring the degree for which multiple patterns 

can be considered homogenous using the Jensen-Shannon divergence metric. Finally, we 

analyze the execution phases. The result might necessitate further fine-tuning of the pattern 

detection technique or the phase detection algorithm until satisfactory phases are obtained. 
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This last step is done manually. In the following section, we discuss our phase detection 

approach in more detail. 

 

Figure 5.1. Phase Detection Approach 

 

5.2.1 Phase Detection 

Our phase detection approach is inspired by studies in the field of bioinformatics, more 

particularly, the analysis of DNA sequences. In [Li 02], the authors proposed a recursive 

algorithm for segmenting a DNA sequence into more homogeneous sub-domains. The 

algorithm follows the divide-and-conquer approach proposed in [Cormen 90], which relies 

on information theory concepts. More precisely, the algorithm uses Shannon entropy 

[Shannon 48, Gray 11] and the Jensen-Shannon divergence measures [Grosse 02] to guide 

the segmentation process.  

We adapted this algorithm to the segmentation of a MPI trace, in which the symbols 

represent the communication patterns identified in the previous step. The length of the 

sequence is the number of instances of the patterns. It should be noted that another 

alternative would have been to apply the sequence segmentation to the original trace. This 
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would however been impractical given the high number of events involved, hence the use 

of communication patterns.  

The segmentation process starts by measuring the degree of heterogeneity of the sequence. 

For this, Shannon entropy is used [Gray 11]. Shannon entropy measures the amount of 

information in a sequence by assessing how much randomness exists in the sequence. A 

sequence for which all the symbols appear with the same probability will result in low 

entropy (meaning that the uncertainty about the data is at its minimum). On the other hand, 

the higher the entropy, the more variations exists in the data (i.e., the more heterogeneous 

the data is).  The Shannon entropy H of a sequence S of length N with k distinct symbols 

is defined using the following equation [Gray 11]. 
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Where Nj is the number of times symbol j appears in sequence S. Once the Shannon entropy 

of a sequence is measured, the next step is to identify places in the sequence where 

heterogeneous behaviour occurs. This process is done recursively based on the following 

steps: 

1. For each position i in the sequence, we measure the entropy of the left subsequence 

and the right subsequence from position i. Note that the left and right subsequences 
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Where Nj
l is the number of times symbol j appears in the left subsequence Sl and Nj

r is 

the number of times symbol j occurs in the right subsequence Sr. 

2. For each two subsequences, we measure their similarity by comparing the entropy 

values using the Jensen-Shannon Divergence (DJS) measure [Grosse 02] and which 

is presented below. The higher DJS, the more heterogeneous the subsequences are: 

rlJS H
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N

i
HD

−
−−=    (5.4) 

3. We select the subsequences for which DJS has the highest value and apply the 

segmentation process recursively to these subsequences until a stopping criterion is 

met, which is explained in what follows. 

In order to determine the criterion for stopping the recursive segmentation process, Li et al. 

proposed to use the model selection framework presented in [Li 02] where a model can be 

evaluated by a combination of the degree to which the model fits the data and the 

complexity of the model itself. In sequence segmentation, we have two models. The first 

model M1 is represented by the whole sequence S whereas the second model M2 is 

represented by the left and right subsequences (Sl and Sr) respectively. The objective is to 

find a model at the boundary between the under-fitting models (models that do not fit the 

data well) and over-fitting models (models that fit the data too well using many parameters). 

Li et al. [Li 02] proposed to use the Bayesian Information Criterion (BIC) [Akaike 78] in 

order to balance the goodness-of-fit of the model to the data with respect to the number of 

parameters in the model. The BIC is defined by: 

K)Nlog()Llog(2BIC +−=     (5.5) 
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Where L is the maximum likelihood of the model, K is the number of free parameters in 

the two models, and N is the sample (sequence) size. The value of K is calculated using (kl 

+ kr + 1 – k) where kl is the number of distinct parameters in Sl, kr is the number of distinct 

parameters in Sr and k is the number of distinct parameters in S. In the following, we will 

explain how BIC can be used to derive the stopping criterion for recursive sequence 

segmentation based on Shannon entropy. The likelihood for S (before segmentation) is 

determined by: 
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where pj is equal to Nj/N (the probability of symbol j in sequence S). Therefore, the log-

likelihood is determined by: 
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It can be easily shown that the log-likelihood (log L1) before segmentation is equal to (-

NH) where H is the Shannon Entropy for the whole sequence S. 

Additionally, the likelihood for the left and right subsequences (after segmentation) is 

determined by: 
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Similarly, it can be easily shown that log L2 = -Nl Hl – NrHr. The likelihood L is measured 

by the increase of likelihood from the two models as L2/L1. Therefore, the increase of log-

likelihood is log(L2/L1) = NH – (NlHl + NrHr) which is equal to NDJS (see Equation 5.4). 

The maximized value of L (maximum likelihood) occurs at the point with the maximum 

DJS value. In order for segmentation to continue, the BIC value should be reduced to the 

minimum (close to zero or ΔBIC < 0). By replacing log(L) by JSD̂N  in Equation 5.5, it will 

lead to the following: 

KNDN JS )log(ˆ2      (5.10) 

where JSD̂ is the maximum Jensen-Shannon divergence value. This means that the 

segmentation will continue if the maximum DJS value is above log(N)K/2N. The advantage 

of this approach is that the user’s intervention is not required to determine the threshold 

value in order to stop segmentation. Therefore, the threshold value is calculated as: 

NKN 2/)log(  =  (5.11) 

JSD̂  should be greater than τ in order for segmentation to continue. Li et al [Li 02] proposed 

to use a measure of the segmentation strength s which is measured by the relative increase 

of 2NDJS from the BIC threshold using the following: 

K)Nlog(

K)Nlog(D̂N2
s JS −=       (5.12) 

Segmenting the sequence based on Equation 5.12 when s > 0 will have the same effect as 

segmenting the sequence when DJS is greater than the dynamic threshold calculated based 

on Equation 5.10. In other words, the segmentation strength must always be positive value 
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in order to continue the segmentation process. Moreover, the value of s can be adjusted to 

be greater than a user-specified value s0 where s > s0 > 0. Varying s0 will vary the numbers 

of detected subsequences. A larger s threshold value s0 will result in a smaller and more 

fine-grained number of subsequences. 

The output of the segmentation algorithm can be depicted in a binary tree where every 

subsequence is divided into two subsequences based on the position of the maximum DJS 

value. The accuracy of the recursive segmentation algorithm is at the price of its relatively 

slower computational time since many passes through the data are needed to measure the 

DJs for left and right subsequences. 

The graph in Figure 5.2c clearly shows the borders of each segment in the sequence. It 

shows that at points 3, 9, 17 and 21 there are peak divergence values. The algorithm will 

select the highest divergence value (0.97 at position 9). Then, it will run the same algorithm 

for the left and the right subsequences for further segmentation. Figure 2b shows the 

segmentation tree and how each sequence is further segmented into left and right segments. 

The table presented in Figure 5.2a shows the values that correspond to each subsequence 

during the segmentation process. Also, the tree that corresponds to the subsequences is 

shown in Figure 5.2b. This example demonstrates usefulness of the Shannon entropy and 

the Jensen-Shannon divergence in sequence segmentation. 
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S AAABBBBBBCCCCCCCCDDDDEE 

 ps pe Djs pc s 

S0 1 23 0.97 9 8.81 

S1 1 9 0.79 3 3.49 

S2 10 23 0.96 17 6.06 

S3 1 3 -0.17 - -1.0 

S4 4 9 -0.08 - -1.19 

S5 10 17 0.0 - -1.0 

S6 18 23 0.79 21 2.66 

S7 18 21 -0.12 - -1.0 

S8 22 23 -0.25 - -1.5 

(a) Segmentation Data 

 

  

 

(b) Segmentation Tree 

     

p DJS p DJS 

 

1 0.168 12 0.671 

2 0.332 13 0.65 

3 0.577 14 0.64 

4 0.515 15 0.66 

5 0.533 16 0.7 

6 0.583 17 0.81 

7 0.661 18 0.6 

8 0.772 19 0.48 

9 0.965 20 0.41 

10 0.8 21 0.39 

11 0.72 22 0.15 

(c) DJS values for each element in S0 

Figure 5.2. Heterogeneous Sequence Segmentation Example (ps: start position, pe: end 

position, H: Shannon Entropy, JSD̂ : Jensen-Shannon Divergence, pc: cutting point, τ: 

threshold, and s: segmentation strength) 

 

5.2.2 Phase Analysis 

In this step, we verify the accuracy of the detected phases. This step is done semi-

automatically. We start by mapping the phases to the original execution trace. Since each 

process has its own trace file, we need to map the segments to their locations in each 

process trace. For each process trace, the beginning of the phase will be based on the first 

pattern in the sequence and the end of the phase will be based on the end of the last pattern 

in the sequence. We use the routine-call tree in order to determine the routine that is 

S0 
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S6 S3 S4 

S8 

S5 
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performing this pattern. For example, if the pattern occurs at nesting level 5, then we go up 

in the call hierarchy until we find the highest routine call (without crossing any preceding 

communication patterns) that is responsible for performing the communication. We check 

that the routine is indeed responsible for the phase. We do this by referring to the source 

code or any available documentation. If not that, then the phase detection failed. In this 

case, we need to re-execute the pattern detection and the phase detection steps by changing 

the parameters. 

5.3 Case Study 

In this section, we show the effectiveness of our approach by applying it to two large traces 

generated from the NAS BT benchmark and the SMG2000 industrial HPC system. 

5.3.1 SMG2000 

In this section, we show the effectiveness of our approach by applying it to a large trace 

generated from the SMG2000 (described in Section 4.8.1) industrial HPC system 

[SMG2000].  SMG2000 is a SPMD (Single Program Multiple Data) program that uses data 

decomposition to solve the problem. SMG2000 performs a large number of non-nearest-

neighbor point-to-point communication operations [Geimer 06]. 

At a high-level, SMG2000 performs three distinct phases to solve the problem as reported 

in [Tiwari 11]. These phases are Initialization, Setup and Solve. The setup phase starts by 

a call to the HYPRE_StructSMGSetup routine and the Solve phase starts by a call to the 

HYPRE_StructSMGSolve routine. The initialization phase occurs before the setup phase 

and encompasses the trace events that occur before the HYPRE_StructSMGSetup routine. 

This information will be used in the validation of the detected phases. Our approach, as we 

will show in the subsequent section, also detects sub-phases in each phase. We used the 
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VampirTrace [VampirTrace] tracing tool to generate the traces from running SMG2000. 

The execution scenario is based on a 4x4x2 process topology (Figure 5.3) and a 2x2x2 

input problem size.  

  

Figure 5.3. Process Topology for SMG2000 4x4x2 

Table 5.1 presents some statistics about the generated trace. The total number of message 

passing events based on point-to-point communications is 248768. Moreover, each process 

exchanges data by performing 14 collective operations (a total of 448 collective 

communication events for all processes). Table 5.1 shows that this is relatively a large trace 

with more than 15 Million events. 

Table 5.1.  SMG2000 Statistics for SMG2000 Trace 

Trace Attribute Value 

Size of Trace 1 GB 

Number of Processes 32 

Total Number of Events 15392281 

Point-to-point Communication Events 248768 

Collective Communication Events 448 
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5.3.1.1 Pattern Detection 

We used our pattern detection algorithm described in Chapter 4 to detect the 

communication patterns in the SMG2000 trace. The algorithm resulted in 47 distinct 

patterns (3 collective and 44 point-to-point communication patterns). The total number of 

patterns instances is 2065.  

The validation of the communication patterns is performed using a combination of static 

and dynamic analysis. The static analysis part is to locate the routines that are responsible 

for the communication.  In all communication routines, each process sends data to a group 

of processes and then receives data from the same group. The group of processes is 

determined in the calling routine and is passed to the routine responsible for handling the 

communication events. The dynamic analysis part is to trace these groups of processes for 

each process and then compare them to the partner processes in each pattern. We present 

the list of all point-to-point communication patterns in Appendix B. 

5.3.1.2 Phase Detection 

We applied the recursive segmentation steps to the communication pattern sequence 

detected in the previous step. The results are presented in what follows. Figure 5.4 shows 

the Jensen-Shannon divergence distribution for each pattern position in the whole sequence.  

As we can see, the sequence can be split into two subsequences at peak point 443. Two 

sequences have emerged that we call S1 (patterns positions 1 to 443) and S2 (starting from 

position 444). The curve that represents sequence S1 (position 1 to 443) in Figure 5.4 shows 

that the data is still highly heterogeneous, whereas the smooth curve for S2 (positions 444 

to 2065) shows high homogeneity. It is worth mentioning that when we mapped the first 

postion in S2 (position 444) to the original trace, we found that it represents a call to the the 
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routine HYPRE_StructSMGSolve, which seems to indicate that the Solve phase has started 

to take place at this position.  

  

Figure 5.4. DJS values for the whole sequence (max DJS at 443, τ = 0.06) 

The recursive segmentation continues as long as the segmentation strength s is positive. As 

previously described, the segmentation strength s can be also specified by the user in order 

to control the number of detected sub-phases. A higher s value means a smaller number of 

phases. In this study, we segmented based on two values s > 0 and s > 0.5.  

When using s > 0 (general case), the total number of segments (including S0) was 67 and 

the number of leaf nodes (phases) was 34. However, when considering further 

segmentation with s > 0.5, the total number of segments was reduced to 27 and the number 

of leaf nodes was reduced to 14. We examined both computational phase sets obtained with 

s > 0 and s > 0.5 and found the difference is in the level of granularity of the phases. With 

s > 0, we obtained fine-grained phases than with s > 0.5. In this case study, we only show 

in Table 2 the resulting sequences from the recursive segmentation algorithm when 

allowing segmentation for s greater than 0.   

0

0.05

0.1

0.15

0.2

0.25

0.3

1 222 443 664 885 1106 1327 1548 1769 1990

Je
n

se
n

-S
h

an
n

o
n

 D
iv

e
rg

e
n

ce

S1 S2 



163 

 

Table 5.2.  Recursive Segmentation (ps: start position, pe: end position, l: length, DJS: 

Jensen-Shannon Divergence, pc: cutting position of max divergence, τ: threshold, s: 

Segmentation Strength, and P: parent node, hyphen (-) means no s for length = 1) 

 ps pe l DJS pc τ s P 

 

 ps pe l DJS pc τ s P 

S0 1 2065 2065 0.28 443 0.06 3.94 NA S33 38 39 2 -0.25 38 0.5 -1.5 S20 

S1 1 443 443 0.33 145 0.19 0.73 S0 S34 40 42 3 0.75 41 0.26 1.85 S20 

S2 444 2065 1622 0.02 2061 0.01 0.85 S0 S35 40 41 2 -0.25 40 0.5 -1.5 S34 

S3 1 145 145 0.38 23 0.07 4.05 S1 S36 42 42 1 0 41 0 - S34 

S4 146 443 298 0.44 264 0.19 1.26 S1 S37 146 264 119 0.19 162 0.2 -0.06 S4 

S5 1 23 23 0.5 5 0.2 1.53 S3 S38 265 443 179 0.28 294 0.15 0.95 S4 

S6 24 145 122 0.25 42 0.2 0.28 S3 S39 265 294 30 0.76 276 0.16 3.63 S38 

S7 1 5 5 0.92 2 0.23 2.97 S5 S40 295 443 149 0.33 365 0.48 -0.32 S38 

S8 6 23 18 0.44 17 0.23 0.89 S5 S41 265 276 12 0.43 270 0.3 0.44 S39 

S9 1 2 2 -0.25 1 0.5 -1.5 S7 S42 277 294 18 0.36 280 0.35 0.05 S39 

S10 3 5 3 0.66 3 0.26 1.49 S7 S43 265 270 6 -0.08 269 0.43 -1.19 S41 

S11 3 3 1 0 2 0 - S10 S44 271 276 6 0.79 274 0.22 2.66 S41 

S12 4 5 2 -0.25 4 0.5 -1.5 S10 S45 271 274 4 -0.12 273 0.5 -1.25 S44 

S13 6 17 12 -0.04 16 0.3 -1.14 S8 S46 275 276 2 -0.25 275 0.5 -1.5 S44 

S14 18 23 6 0.79 21 0.22 2.66 S8 S47 277 280 4 0.81 278 0.25 2.22 S42 

S15 18 21 4 -0.12 20 0.5 -1.25 S14 S48 281 294 14 0.45 286 0.41 0.11 S42 

S16 22 23 2 -0.25 22 0.5 -1.5 S14 S49 277 278 2 -0.25 277 0.5 -1.5 S47 

S17 24 42 19 0.42 37 0.34 0.25 S6 S50 279 280 2 -0.25 279 0.5 -1.5 S47 

S18 43 145 103 0.26 87 0.52 -0.51 S6 S51 281 286 6 0.88 282 0.22 3.08 S48 

S19 24 37 14 0.45 29 0.41 0.11 S17 S52 287 294 8 0.97 290 0.19 4.18 S48 

S20 38 42 5 0.92 39 0.23 2.97 S17 S53 281 282 2 -0.25 281 0.5 -1.5 S51 

S21 24 29 6 0.88 25 0.22 3.08 S19 S54 283 286 4 0.81 284 0.25 2.22 S51 

S22 30 37 8 0.97 33 0.19 4.18 S19 S55 283 284 2 -0.25 283 0.5 -1.5 S54 

S23 24 25 2 -0.25 24 0.5 -1.5 S21 S56 285 286 2 -0.25 285 0.5 -1.5 S54 

S24 26 29 4 0.81 27 0.25 2.22 S21 S57 287 290 4 0.81 288 0.25 2.22 S52 

S25 26 27 2 -0.25 26 0.5 -1.5 S24 S58 291 294 4 0.81 292 0.25 2.22 S52 

S26 28 29 2 -0.25 28 0.5 -1.5 S24 S59 287 288 2 -0.25 287 0.5 -1.5 S57 

S27 30 33 4 0.81 31 0.25 2.22 S22 S60 289 290 2 -0.25 289 0.5 -1.5 S57 

S28 34 37 4 0.81 35 0.25 2.22 S22 S61 291 292 2 -0.25 291 0.5 -1.5 S58 

S29 30 31 2 -0.25 30 0.5 -1.5 S27 S62 293 294 2 -0.25 293 0.5 -1.5 S58 

S30 32 33 2 -0.25 32 0.5 -1.5 S27 S63 444 2061 1618 0.01 1821 0.06 -0.76 S2 

S31 34 35 2 -0.25 34 0.5 -1.5 S28 S64 2062 2065 4 0.58 2062 0.25 1.31 S2 

S32 36 37 2 -0.25 36 0.5 -1.5 S28 S65 2062 2062 1 0 2061 0 - S64 

         S66 2063 2065 3 -0.17 2064 0.53 -1.32 S64 
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It is difficult to know in advance how to set s and even if we succeed to determine a proper 

limit for s for one system, there is no guarantee that it would work for another system. We 

anticipate that a tool that supports our technique to allow flexibility to the user to change s 

on the fly. Table 5.2 shows all the parameters used in the calculation of the segmentation 

process. The DJS is the maximum divergence value of the point that the segmentation is 

performed at. It should be noted that the max DJS must be always greater than τ in order to 

allow segmentation which is met by Equation 10.  

 

Figure 5.5. Binary Tree Representing the Segmentation Hierarchy (SMG 2000)  
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Figure 5.5 shows the hierarchy of the segments represented as a binary tree. The leaf nodes 

in the tree represent the detected sub-phases in the trace. The detected sub-phases for 

segmentation strength greater than 0 are (33 phases): 

S9.S11.S12.S13.S15.S16.S23.S25.S26.S29.S30.S31.S32.S33.S35.S36.S18.S43.S45.S46.S49.S50.S53.S55. 

S56.S59.S60.S61.S62.S40.S63.S65.S66 

By going up the hierarchy, we can get a coarse-grained view of the phases.  The leaf nodes 

(double rounded) when the allowed segmentation strength is above 0.5 are (14 phases):  

S9.S11.S12.S13.S15.S16.S6.S37.S41.S42.S40.S63.S65.S66 

 It is clear how changing the segmentation strength can affect the number of detected 

phases in the trace. 

5.3.1.3 Phase Analysis 

We mapped the phases to the original trace and analyzed the routines that were called at 

the beginning of each phase. The detailed descriptions of the routines of the SMG2000 are 

found on the SMG2000 website [SMG2000]. We used these descriptions to validate 

whether the phases we detected were valid or not. The following was concluded from our 

analysis. 

Initialization Phase: This phase starts at phase S9 and includes the phases that are in the 

sub-tree rooted at S7. Table 5.3 describes the detected sub-phases of the initialization phase. 

Setup Phase: The HYPRE_StructSMGSetup is responsible for starting the setup phase. It 

starts executing at point 6 in the sequence which corresponds to S8 in Figure 5.5. The Setup 

phase spans the sub-trees rooted at S8, S6 and S4. Table 5.4 provides a description of the 

sub-phases in the Setup phase. 

Table 5.3.  Initialization Sub-Phases 

S Description 
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S9 This sub-phase uses the ‘gather’ collective communication operation in the 

HYPRE_StructGridAssemble routine. Also, the hypre_InitializeTiming and 

hypre_BeginTiming routines are being called at the beginning of this sub-phase for 

tracking the timing of the initialization phase. Additionally, it contains the 

MPI_Init which is responsible for the initialization of MPI in each process. 

S11 The point-to-point communication pattern that was used in this phase is Pattern 1 

described at the beginning of the case study. The main executed routine is 

HYPRE_StructMatrixAssemble which only found in this phase in the whole trace. 

S12 S12 uses the ‘reduce’ collective operation and is responsible for tracking timing 

information at the end of the initialization phase (hypre_EndTiming and 

hypre_PrintTiming ,hypre_FinalizeTiming). 

Table 5.4. Setup Sub-Phases 

S Description 

S13 The call to HYPRE_StructSMGSetup is in this sub-phase. There are several 

routines that are distinct to this sub-phase. Also, The hypre_InitializeTiming and 

hypre_BeginTiming routines are being called in this phase to track the timing of 

the Setup phase. 

S15 

S16 

S6 

S17 

S21 

S22 

These sub-phases are similar in terms of the routines they execute but they differ 

in terms of the communication patterns that are performed. S6 and S17 are the 

longest phases and contain the highest number of communication patterns. The 

routines in the other phases (S15, S16, S21, and S22) are all a subset of the routines 

executed in these two sub-phases. 

S20 This sub-phase executes the same routines in S6 and S17 but it also contains the 

hypre_EndTiming, hypre_PrintTiming and hypre_FinalizeTiming to track the 

timing at the end of the Setup phase. 

Solve Phase: The execution of HYPRE_StructSMGSolve starts at point 444 (belongs to 

S2) and ends at point 2065 (in S2). Therefore, the sub-tree rooted at S2 corresponds to the 

Solve phase of the program. Table 5.5 presents the description of the sub-phases. 

Table 5.5. Solve Sub-Phases 
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S Description 

S23 HYPRE_StructSMGSolve is executed at the beginning of S23 and indicates the 

start of the Solve phase. Also, in S23, the hypre_InitializeTiming and 

hypre_BeginTiming routines are being called at the beginning of the Solve phase 

for tracking the timing of the phase. This phase represents the major execution in 

the Solve phase. It includes 1618 executed patterns. This indicates that the 

communication patterns used in this phase are highly homogeneous. 

S25 This phase is very short and performs only one communication pattern and the 

main routine that is executed is hypre_SMGResidual. 

S26 Reduce collective communication is used to track the timing (hypre_PrintTiming 

and hypre_EndTiming) information to mark the end of the initialization phase. 

 

Figure 5.6 shows the main execution phases in the program where the length of each phase 

is based on the total execution time spent during that phase.  

 

Figure 5.6. Detected Phases in SMG2000 

The Finalize phase did not involve any inter-process communication. It started after the 

completion of the HYPRE_StructSMGSolve routine. It was identified based on the routine 

call tree where we considered the first sub-tree after all the communications as the Finalize 

phase. The Finalize phase contains the MPI_Finalize routine that is responsible for the 

termination of the MPI communication and also other routines that are responsible for the 

destruction of the grid that was constructed in the initialization phase. 

Initialize (17%)  Setup (44%) Solve (35%) Finalize (2%) 
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5.3.2 NAS BT 

The Block Tridiagonal benchmark is part of the NAS PB [NAS] suite. It uses an implicit 

algorithm to solve the 3-D compressible Navier-Stokes equations. We generated the trace 

using VampirTrace [VampirTrace]. Table 5.6 shows some statistics on the generated trace. 

The process topology is presented in Figure 5.7. 

Table 5.6. Statistics for BT Trace  

Trace Attribute Value 

Size of Trace 0.43GB 

Number of Processes 16 

Number of Iterations 200 

Input Size 24x24x24 

Total Number of Events 6856270 

Point-to-point Communication Events 154560 

Collective Communication Events 160 

 

 

Figure 5.7. NAS BT Process Topology 
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According to Geisler et al. [Geisler 99], the execution of NAS BT is divided into seven 

distinct execution phases as follows: 

1. Initialization: sets all the initial values. 

2. Copy Faces: exchanges boundary values between neighboring processes. 

3. Solve Phase: 

a. X Solve: solves the problem in the x-dimension. 

b. Y Solve: solves the problem in the y-dimension. 

c. Z Solve: solves the problem in the z-dimension. 

4. Add: performs a matrix update. 

5. Final Clean up: verifies the solution integrity, cleans up data, and prints the final 

results. 

In the following, we present the steps that were involved in the phase detection process.  

5.3.2.1 Pattern Detection 

We used our pattern detection algorithm described in Chapter 4 to detect the 

communication patterns in the NAS BT trace. The algorithm resulted in 16 distinct patterns 

(3 collective and 13 point-to-point communication patterns). The total number of patterns 

instances is 7446 (sequence length). The collective communications are Broadcast, Reduce 

and All-Reduce.  

Table 5.7 presents the events involved in the communication pattern that is used in the 

Copy Faces routine. This pattern is repeated 201 times in the trace. This is a complex 

pattern that involves near and far 2-way neighbour communication. This pattern is 

represented textually due to its complexity which will result in cluttering when represented 

using the event graph. The reason why the pattern is repeated 201 times instead of 200 

(number of iterations) is that there is a dummy iteration before the time step function [NAS 

Changes]. 
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Table 5.7. Communication Pattern used in Copy Faces (P: Process, e: event, S2: Send to 

2, R2: Receive from 2) 

P e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 

P1 S2 S4 S5 S13 S8 S14 R2 R4 R5 R13 R8 R14 

P2 S3 S1 S6 S14 S5 S15 R3 R1 R6 R14 R5 R15 

P3 S4 S2 S7 S15 S6 S16 R4 R2 R7 R15 R6 R16 

P4 S1 S3 S8 S16 S7 S13 R1 R3 R8 R16 R7 R13 

P5 S6 S8 S9 S1 S12 S2 R6 R8 R9 R1 R12 R2 

P6 S7 S5 S10 S2 S9 S3 R7 R5 R10 R2 R9 R3 

P7 S8 S6 S11 S3 S10 S4 R8 R6 R11 R3 R10 R4 

P8 S5 S7 S12 S4 S11 S1 R5 R7 R12 R4 R11 R1 

P9 S10 S12 S13 S5 S16 S6 R10 R12 R13 R5 R16 R6 

P10 S11 S9 S14 S6 S13 S7 R11 R9 R14 R6 R13 R7 

P11 S12 S10 S15 S7 S14 S8 R12 R10 R15 R7 R14 R8 

P12 S9 S11 S16 S8 S15 S5 R9 R11 R16 R8 R15 R5 

P13 S14 S16 S1 S9 S4 S10 R14 R16 R1 R9 R4 R10 

P14 S15 S13 S2 S10 S1 S11 R15 R13 R2 R10 R1 R11 

P15 S16 S14 S3 S11 S2 S12 R16 R14 R3 R11 R2 R12 

P16 S13 S15 S4 S12 S3 S9 R13 R15 R4 R12 R3 R9 

 

Figure 5.8 presents four communication patterns that are used in the X Solve routine. Each 

pattern only involves four processes in the program. These four patterns always occur 

together. However, the patterns are disconnected and cannot construct one global 

communication pattern that involves all the processes in the trace. Therefore, each pattern 

will be represented as a separate symbol in the pattern sequence. Each pattern instance is 

repeated 603 times in the trace. 

 

Figure 5.8. Communication Pattern used in X Solve 
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represented as a separate symbol in the pattern sequence. Each pattern repeats 603 times in 

the trace. 

 

Figure 5.9. Communication Pattern used in X Solve Cell 

 

Figure 5.10 shows the communication patterns used in Y Solve, Y Solve Cell, Z Solve, and 

Z Solve Cell respectively. These patterns are also repeated 603 times in the trace. 

 

Figure 5.10. Communication Patterns in Y Solve and Z Solve 
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segmentation algorithm. This is due to the repeating nature of the BT program (the program 

has 201 iterations that are identical in terms of communication patterns).  

Table 5.8. Recursive Segmentation (ps: start position, pe: end position, l: length, DJS: 

Jensen-Shannon Divergence, pc: cutting position of max divergence, τ: threshold, s: 

Segmentation Strength, and P: parent node, hyphen (-) means no s for length = 1) 

S ps pe l DJS pc Τ s P 

S0 1 7446 7446 0.01 18 0.01 0.72 NA 

S1 1 18 18 0.95 6 0.12 7.2 S0 

S2 19 7446 7428 0.01 7433 0 0.49 S0 

S3 1 6 6 0.57 5 0.22 1.63 S1 

S4 7 18 12 0.24 8 0.45 -0.47 S1 

S5 1 5 5 -0.1 4 0.46 -1.22 S3 

S6 6 6 1 0 5 0 - S3 

S7 19 7433 7415 0 33 0.01 -0.44 S2 

S8 7434 7446 13 1.03 7439 0.14 6.23 S2 

S9 7434 7439 6 0.84 7436 0.22 2.92 S8 

S10 7440 7446 7 1.01 7442 0.2 4.03 S8 

S11 7434 7436 3 -0.17 7435 0.53 -1.32 S9 

S12 7437 7439 3 -0.17 7438 0.53 -1.32 S9 

S13 7440 7442 3 -0.17 7441 0.53 -1.32 S10 

S14 7443 7446 4 0.69 7445 0.25 1.75 S10 

S15 7443 7445 3 0.21 7443 0.53 -0.6 S14 

S16 7446 7446 1 0 7445 0 - S14 

 

Figure 5.11 depicts the binary tree that resulted from the segmentation algorithm for the 

communication pattern sequence. The leaf nodes in the tree represent the detected sub-

phases in the trace. The detected sub-phases for segmentation strength greater than 0 are 

(33 phases): 

S5.S6.S4.S7.S11.S12.S13.S15.S16 

In the following section, we present the detected phases using the recursive segmentation 

algorithm in more detail. 
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Figure 5.11. Binary Tree Representing the Segmentation Hierarchy (BT) 
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Table 5.9. BT Detected Sub-Phases 

Phase Description 

S5 Initialization 

S6 Copy Faces 

S4 X Solve 

S7 Very long phase. Starts with X Solve Cell and contains (Copy Faces, X 

Solve, X Solve Cell, Y Solve, Y Solve Cell, Z Solve and Z Solve Cell sub-

phases) 

S11 Y Solve Cell 

S12 Z Solve 

S13 Z Solve Cell 

S15 Add, Verify, Copy Faces 

S16 Print Results 

 

5.4 Summary 

In this chapter, we presented a new approach for detecting execution phases in MPI 

programs based on the sequence of communication patterns extracted from MPI execution 

traces. We presented all the steps that are needed in order to detect the execution phases 

along with an illustrative example. We validated the results of our phase detection approach 

on two traces of SMG2000 system and NAS BT benchmark with respect to the documented 

phases in [Tirawi 11] and [Geisler 99] respectively. Our phase detection approach did not 

only detect the main program phases but also the corresponding sub-phases.  
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Chapter 6. Conclusions & Future Work 
 

 

Dynamic analysis holds a lot of potential in helping with program comprehension tasks. 

However, the large amount of data in typical execution traces generated from instrumented 

versions of HPC systems hinders the applicability of dynamic analysis techniques. This led 

to the emergence of many techniques and tools to facilitate the understanding of the traces 

of HPC programs. 

In this thesis, we presented several techniques that aim to simplify and improve the analysis 

of traces of HPC programs that use MPI for inter-process communication. In the following 

section, we summarize the contributions of this thesis. 

6.1 Thesis Contributions 

MPI Trace Format: different trace formats limit the interoperability among trace analysis 

tools. We have developed an exchange format for traces of MPI programs. We studied the 

domain of MPI traces and provided the exchange format as a metamodel. The MTF 

metamodel is built to meet the requirements for a standard exchange format. It is built to be 

scalable, extensible, simple and maintainable. We provided a set of queries that can be 

applied to retrieve trace data. We also provided an example that shows how GXL carries 

the trace information. We ran different experiments on the metamodel that tested its ability 

to query information from the execution trace as well as its ability to scale to large execution 

traces. MTF was published in the Elsevier Future Computer Generation Systems journal 

and in the Proc. of the International Conference for Program Comprehension (ICPC) 2011.  
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Communication Patterns Detection Techniques: We presented a new approach for 

detecting communication patterns from MPI traces based on the concept of n-grams. We 

have developed different algorithms and showed their applicability on traces generated from 

HPC programs. We believe that our communication patterns detection approach 

outperforms the existing studies in terms of quality and performance. Communication 

patterns can help in understanding HPC programs as they reduce the effort of exploring the 

whole trace by providing an abstract view of the communication behaviour in the program. 

The pattern detection and matching approaches were published in the Proc. of the European 

Conference on Software Maintenance and Reengineering (CSMR), 2011.  

Execution Phase Detection of HPC Programs: We presented a new approach for 

detecting execution phases in MPI programs based on information theory principles. To our 

knowledge, this is the first study that targets the detection of phases based on the inter-

process communication behaviour in the program. We demonstrated the effectiveness of the 

phase detection technique using two large traces and the results showed the accuracy of the 

method. This work has been accepted for publication in the International Conference on 

Program Comprehension [Alawneh 12]. 

6.2 Directions for Future Research 

In this section, we discuss possible future directions in our research. 

6.2.1 Support of other message passing paradigms 

In this thesis, we have presented a metamodel for trace information generated from HPC 

programs with specific focus on systems that use the MPI for inter-process communication. 

In order to support the neutrality requirement, we need to support other message passing 

models. Moreover, it should be possible to make the model open to any type of inter-process 
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communication in distributed systems that use messages for exchanging data. MTF is 

designed to be extensible and should be able to accommodate any message passing model. 

6.2.2 Support traces of inter-process communication based on shared memory 

In this thesis, we did not target traces generated from inter-process communication based 

on the shared memory model. Different types of applications use this model for inter-

process communication. Moreover, some systems use a hybrid of the message passing and 

the shared memory models. MTF is designed to be extensible and should be able to 

accommodate this new requirement. 

6.2.3 MTF as part of the Knowledge Discovery metamodel (KDM) 

Currently, MTF supports traces generated from routine calls and MPI. It has the main 

components to support traces generated from distributed applications that use MPI for inter-

process communication. The Knowledge Discovery Metamodel (KDM) [KDM] is a 

metamodel that targets a widespread set of software applications, platforms and 

programming languages such as modern enterprise applications which involve multiple 

technologies and programming languages. The goal of KDM is to facilitate the integration 

between different tools that capture information about complex enterprise applications. In 

[Alawneh 09], we proposed that execution traces should be considered as a new domain. 

We proposed the usage of KDM to contain this domain. We need to investigate how MTF 

could be used with KDM. 

6.2.4 Formal language for representing traces of inter-process communication 

Execution traces generated from MPI programs should be expressed formally in a language 

that is similar or an extension to some formal languages such as π-calculus. Formal methods 
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can also be used to model the various trace abstraction methods and enable their comparison 

without the need to generate traces.  

6.2.5 Communication patterns visualization 

In this work, we used the event graph [Kranzlmüller 00] for visualizing communication 

patterns. However, we have shown by example that this technique is limited to relatively 

small patterns. Moreover, the event graph will be of less benefit when the presented patterns 

are irregular and contain many process interactions. Proposing a new technique that is 

capable of solving this problem will add a great benefit to the existing trace analysis tools. 

6.2.6 Metrics to categorize communication patterns 

Complex HPC programs may have many different communication patterns. In many cases, 

it would be necessary to categorize these patterns based on different factors such as the 

number of messages, the number of processes involved in the communication, the size of 

data being exchanged and others. In the literature, we have seen different metrics that 

provide statistics based on each process separately. We believe that a new set of metrics that 

characterize the complexity of communication patterns can be very useful in speeding up 

the program comprehension process of inter-process communication traces. 

6.2.7 Phase detection to support homogeneous segmentation 

In this thesis, we targeted the detection of phases in heterogeneous sequences of 

communication patterns. As part of future work, we intend to extend the recursive 

segmentation algorithm in order to segment sequences of homogeneous communication 

patterns sequences. This becomes necessary since HPC programs tend to have repetitive 
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communication behaviour which may result in long homogeneous sequences that will not 

be able to be segmented using the current recursive segmentation approach. 

6.2.8 Experimenting with software engineers 

As future work, we need to work with software engineers to further validate the techniques 

presented in this thesis. Software engineers can provide useful feedback that can further 

improve the trace abstraction techniques. 

6.3 Closing Remarks 

Large execution traces and the lack of a common exchange format for trace analysis tools 

of HPC programs limit the applicability of the dynamic analysis approach in the process of 

program comprehension. We have presented several techniques that cope with the problem 

of trace size. We showed the usefulness of these techniques using several case studies. The 

intention behind the development of these techniques is to reduce the impact of the size of 

traces on the process of understanding the content of these traces and the program in general. 
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Appendix A - The detailed specification of MTF 
 

1) Scenario 

 

Semantics 

 

Objects of the Scenario class represent the system scenario executed in order to generate 

the traces that need to be studied. 

 

Attributes 

 

– desc: Specifies a description of the usage scenario such as the name of the scenario, 

input data, etc. 

 

Associations 

 

– Trace [1..*]: References the execution traces that are generated after the execution 

of the usage scenario. One scenario may have more than one trace object. 

 

2) Trace 

 

Semantics 

 

A concrete class representing common information about traces generated from the 

execution of the system. 

 

Attributes 

 

– TraceID: A unique identifier for the generated trace. 

– StartTime: Specifies the starting time of the generation of the trace. 

– EndTime: Specifies the ending time of the generation of the trace. 

– Comments: Specifies comments that software engineers might need in order to 

describe the circumstances under which the trace is generated. 

 

Associations 

 

– Scenario [1]: References the usage scenario that is exercised so as to generate the 

trace. 

– PatternOccurrence [*]: References the occurrences of the execution patterns that 

are invoked in the trace. 

– ProcessTrace: A Trace may have many instances of ProcessTrace. 

– MsgTrace: A Trace may have only one instance of MsgTrace. 

 

Constraints 

 

[1] StartTime and EndTime should be different 
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self.EndTime >= self.StartTime 

 

3) ProcessTrace 

 

Semantics 

 

An object of the ProcessTrace represents a trace generated from all operations executed by. 

This class inherits from the Trace class. 

 

Attributes 

 

No additional attributes. The start and end time for a ProcessTrace are different from 

those of the parent Trace class. However, MTF is designed that the ProcessTrace call can 

access the StartTime and EndTime of the parent Trace class. The start time is the start time 

of the first routine call and the end time is end time of the lass routine call for a process. 

 

Associations 

 

– Trace: the ProcessTrace class has an association with its parent class. An instance 

of ProcessTrace can only belong to one instance of Trace class. 

– Process: A ProcessTrace may have only one instance of Process class. 

– TraceableUnit [0..*]: A reference to all instances of TraceableUnit class that are of 

types MPOperation and Message. 

 

Constraints 

 

– ProcessTrace references objects created from RoutineCall class only. 

 

4) MsgTrace 

 

Semantics 

 

An object of the MsgTrace represents a trace generated from all the messages (instances of 

Message class). This class inherits from the Trace class. 

 

Attributes 

 

No additional attributes. 

 

Associations 

 

– Trace: the MsgTrace class has an association with its parent class. An instance of 

MsgTrace can only belong to one instance of Trace class. 

– Message: A MsgTrace may have as many instances of the Message class in the 

trace. 
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– CollectiveData: A MsgTrace may have as many instances of the CollectiveData 

class in the trace. 

 

Constraints 

 

– MsgTrace references objects created from Message class only. 

– No Start and End times are used for this class. 

 

5) TracePattern 

 

Semantics 

 

TracePattern is an abstract class that represents communication and routine-call patterns in 

the trace. 

 

Attributes 

 

– desc: Specifies a textual description that a software engineer assigns to the 

execution pattern. 

 

Associations 

 

– PatternOccurrence [*] References the instances of the pattern in the trace. 

 

Constraints 

 

[1] The PatternOccurrence objects belong to the same trace. 

 

 

6) CommPattern 

 

Semantics 

 

CommPattern inherits from the TracePattern class. It represents the inter-process 

communication patterns in the trace. 

 

Attributes 

 

– No additional attributes. 

 

Constraints 

 

[2] The CommPattern class only references instances of Message and CollectiveData 

classes. 
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7) RoutinePattern 

 

Semantics 

 

RoutinePattern inherits from the TracePattern class. It represents the routine call patterns 

in the trace. 

 

Attributes 

 

– No additional attributes. 

 

Constraints 

 

[3] The RoutinePattern class only references instance of RoutineCall class. 

 

 

8) PatternOccurence 

 

Semantics 

 

This class represents the instances of an execution pattern. 

 

Associations 

 

– TracePattern [1] References the TracePattern object for which this object represents 

an occurrence of the pattern. 

– Trace [1] References the Trace object where the pattern pointed to by the 

PatternOccurrence object appears. 

– TraceableUnit [*] References the TraceableUnit instances that belong to the pattern 

occurrence. 

 

Constraints 

 

No additional constraints. 

 

9) TraceableUnit 

 

Semantics 

 

This is an abstract meta-class which represents any traceable element in an execution trace. 

This class is not restricted to the Message Passing metamodel. Any execution trace 

metamodel can use this class. 

 

Attributes 
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– TraceableUnitID:  a unique identifier assigned to the traceable unit. 

– StartTime:  a timestamp specifies when the traceable unit started execution. 

– EndTime:  a timestamp specifies when the traceable unit finished execution. 

 

Associations 

 

– Process [1] : references the Process object that represents the process in which 

this traceable unit is executed. 

 

– MPITrace [1]:  in our model, every TraceableUnit element belongs to one trace 

represented by the class MPITrace. Other traces such as method call traces should 

have another class defined such as ‘MethodCallTrace’ to capture traces of MPI 

operations. 

 

– PatternOccurence [0..1]: a reference to the PatternOccurence class. Every traceable 

unit may belong to one pattern occurrence object. 

 

Constraints 

 

[1] The StartTime timestamp of TraceableUnit objects that belong to one process must 

be sorted in an ascending order. This guarantees the order of execution of the message 

passing operations. Traces of type Message and traces of type Point-to-point operation 

may have the same start or end times. 

 

10) Edge 

 

Semantics 

 

Edge is a concrete class that represents an edge from a caller routine to a callee routine in 

the trace. 

 

Attributes 

 

– repeat: indicates how many instances of the callee are represented by the edge. 

– type: indicates the type of the edge; recursive, sequence or fork-sequence. 

 

Associations 

 

– TraceableUnit [1] a parent traceable unit may have many outgoing edges. 

– TraceableUnit [1..*] a child traceable unit may have only one incoming edge. 

 

Constraints 

 

No additional constraints. 
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11) Process  

 

Semantics 

 

This class represents a software process. Instances of this class may represent processes in 

a distributed environment or may represent processes running on the same processor.  

 

Attributes 

 

– ProcessID: a unique identifier in the model that identifies the process. 

– Rank: the rank of the process in an MPI group. 

– ProcessName: the name designated to the process in the trace. 

 

Associations 

 

– TraceableUnit [*]:  a process may have many instances of traceable units. 

– Communicator [*]:  a process may belong to many MPI communicators. 

– Processor [1]:  a process runs on one processor only. 

 

12) Processor 

 

Semantics 

 

This class represents the processor that a process runs on. 

 

Attributes 

 

– ProcessorID: a unique identifier is specified for every processor in the system. 

– ProcessorName: the name designated to the processor in the trace. 

 

Associations 

 

– Process [*]: a processor may contain many running processes. 

 

 

 

13) Communicator 

 

Semantics 

 

This class belongs to the Message Passing environment. A communicator represents a 

group of processes that communicate through message passing. Processes in a 

communicator are ranked from 0 to n-1, where n is the total number of processes. 

 

Attributes 
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– CommID: the unique identifier for an MPI communicator. 

 

Associations 

 

– Process [1..*]: a communicator may contain one or many processes. 

– MPOperation [*]: a communicator may be used by many message passing 

operations. 

 

14) Message 

 

Semantics 

 

This class captures messages exchanged in point-to-point communications. Message is a 

direct child of the TraceableUnit meta-class. 

 

Attributes 

 

– DataType: the type of data in the message. 

– DataSize: the size of data in the message. 

– Tag: the tag sent in the message. 

 

Associations 

 

– MsgTrace: An instance of message belongs to one MsgTrace only. 

– MessageLink: Message may have many instances of MessageLink. 

– Process (sender): a message may have only one sender. 

– Process (receiver): a message may have only one receiver. 

 

Constraints 

 

– Instances of the class Message only correspond to data exchanged in point-to-point 

operations. 

 

15) MessageLink 

 

Semantics 

 

MessageLink is a concrete class that represents a link between an instance of Message and 

its corresponding point-to-point operations. 

 

Attributes 

 

– MessageLinkID: the id of the message link. 

 

Associations 
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– Message[1] MessageLink may have an association with one instance of Message.  

– Send [1]: a message link is associated with one Send operation. 

– Receive [1]: a message link is associated with one Receive operation. 

 

Constraints 

 

No additional constraints. 

 

16) RoutineCall 

 

Semantics 

 

Routine is a concrete class that represents all the instances of routine calls in the trace. 

 

Attributes 

 

– routineCallName: the name of the routine. 

– nestingLevel: the nesting level of the routine in the call tree. 

 

Associations 

 

– No additional associations. 

 

Constraints 

 

No additional constraints. 

 

17) MPOperation  

 

Semantics 

 

A concrete class is at the core of our message passing execution trace model. It acts as a 

super-class for every message passing operation such as Send, Receive, Gather and 

Broadcast. An MPOperation is a traceable element and is a direct child to the RoutineCall 

class. 

 

Attributes 

 

– No additional attributes. 

 

Associations 

 

– Communicator [0..1]: a message passing operation may reference up to one 

communicator object. 
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Constraints 

 

No additional constraints. 

 

18) Initialize 

 

Semantics 

 

This class models the MPI_Init routine which is responsible for the initialization of the 

MPI environment. It is the first MPI call in the program. The initialization of the MPI 

environment includes synchronization of processes and adding processes to the 

MPI_COMM_WORLD communicator. In our trace metamodel, MPI_Init inherits from 

MPOperation. 

 

Associations 

 

– MPI_Init is a child of the MPOperation class. Therefore, it will inherit all the 

associations of its parent class. 

 

Constraints 

 

[1] A call to MPI_Init must precede any other MPI call in the program, except for 

MPI_Initialized routine that can be used to check if MPI_Init has been called or not. 

 

19) Finalize 

 

Semantics 

 

This class models the MPI_Finalize routine that is used to clean up the MPI state. Each 

process must call MPI_Finalize before it exits. Before calling MPI_Finalize, each process 

must ensure that all pending non-blocking communications are (locally) complete.  

 

Associations 

 

MPI_Finalize is a child of the MPOperation class. Therefore, it will inherit all the 

associations of its parent class. 

 

Constraints 

 

[1] Every process in the MPI environment must call MPI_Finalize before exiting unless 

a call to MPI_Abort has been made. 

 

 

20) PointToPointOperation 

 

Semantics 
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This class is the super-class for blocking and non-blocking point to point operations in the 

message passing environment. It inherits directly from the MPOperation class. 

 

Constraints 

 

[1] Datatype between matching point-to-point operations must match unless 

MPI_BYTE data type is specified. 

 

21) Send 

 

Semantics 

 

This class represents a message passing send operation. Send is a direct child of the 

MPOperation class. Blocking Send operations are directly instantiated from the Send class. 

Non-blocking operations are instantiated from the NonBlockingSend class described below. 

 

Attributes 

 

– SendDataAddress: address of sent data. 

– SendDataSize: number of sent elements. 

– SendDataType: the type of data being sent to destination process. 

– Tag: the tag value (integer) sent with the message. 

– SendType: this attribute specifies the type of the send operation (Standard, Buffered, 

Synchronous and Ready). 

 

Associations 

 

– Process [0..1]: the receiving process. 

– Receive [0..1]: a message passing send may reference (match) zero or one message 

passing receive operations. 

 

Constraints 

 

[1] Send operation must specify a receiving process. 

[2] A blocking Send with SendType ≠ Buffered cannot terminate before a matching 

Receive is posted (end time of send operation must be after start time of receive 

operation). 

[3] A blocking Send with SendType = Synchronous cannot terminate before a 

matching Receive is posted. 

 

22) NonBlockingSend 

 

Semantics 
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This class represents non-blocking send operations. A process that makes a non-blocking 

send call proceeds right after the send call has been made.  

 

Attributes 

 

No additional attributes. 

 

Associations 

 

– WaitOperation [0..1]: an object of a non-blocking send operation may be referenced 

by one WaitOperation object. 

– TestOperation [0..*]: an object of a non-blocking send operation may be referenced 

by zero or more TestOperation objects. 

23) Receive 

 

Semantics 

 

This class represents the message passing Receive operation. It is a direct child of the 

PointToPointOperation class.  Matching the Send and Receive operations is done by 

comparing the values to the instances of the Messsage class. 

 

Attributes 

 

– RcvDataAddress: address of the received message buffer at the receiver. 

– RcvDataSize: number of elements received at the Receive address. 

– Tag: an integer value that should be matched with the coming process unless if 

specified as MPI_ANY_TAG. 

 

Associations 

 

– Send [0..1]: a message passing receive may reference (match) zero or one message 

passing send operations. 

– Process [0..1]: represents the sender of the message. A receive operation may 

specify MPI_ANY_SOURCE, in this case the Source process can not be 

determined as part of the trace for the receive operation. The source will be 

determined once the message is received at the receiver. 

 

Constraints 

 

No additional constraints.   

 

24) NonBlockingReceive 

 

Semantics 
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This class represents a trace of a non-blocking message passing Receive operation. It 

provides a handle to an object that will be used to check for the completion of the receive 

operation. A process that uses a non-blocking receive will proceed after calling the receive 

operation.  

 

Attributes 

 

No additional attributes. 

 

Associations 

 

– WaitOperation [0..1]: an object of a non-blocking receive class may be referenced 

by one WaitOperation objects. 

– TestOperation [0..*]: an object of a non-blocking receive class may be referenced 

by zero or more TestOperation objects. 

 

25) WaitOperation 

 

Semantics 

 

This class represents the different types of Wait operations provided by MPI which can be 

used to wait and check for the completion of non-blocking message passing operations. 

 

Attributes 

 

No additional attributes. 

 

Associations 

 

– NonBlockingSend [1]: a wait statement references the non-blocking send object 

that it is performing the wait operation for. 

– NonBlockingReceive [1]: a wait statement references the non-blocking receive 

object that it is performing the wait operation for. 

 

Constraints 

 

[1] The StartTime of an MPI_Wait statement cannot occur before the StartTime of the 

corresponding Send or Receive operations.  

 

26) TestOperation 

 

Semantics 

 

This class represents traces of the different Test operations provided by MPI. An MPI Test 

is similar to MPI Wait except that the process does not wait for the completion of the non-

blocking operation.  
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Attributes 

 

– Flag: this flag returns true if the non-blocking operation has completed successfully, 

false otherwise. 

 

Associations 

 

– NonBlockingSend [0..*]: a test statement references the non-blocking send class 

that it is performing the test operation for.  

 

– NonBlockingReceive [0..*]: a test statement references the non-blocking receive 

class that it is performing the test operation for. 

 

Constraints 

 

[1] The StartTime of an MPI_Test statement cannot occur before the StartTime of the 

corresponding Send or Receive operations.  

 

27) ProbeOperation 

  

Semantics 

 

An MPI probe operation is used to check whether there is an incoming message that 

matches the Source, Tag, and Communicator except for MPI_ANY_SOURCE and 

MPI_ANY_TAG. 

 

Attributes 

 

– Tag: this is an integer value that is sent with the message. 

– Flag: indicates whether the incoming message matches the expected one. 

 

Associations 

 

– Process [0..1]: specifies the source process (sending process). 

 

Constraints 

 

– If MPI_ANY_SOURCE is indicated, ProbeOperation will not have a reference to 

the Sending process. 

 

28) CollectiveOperation 

 

Semantics 

 

This abstract class is the parent class of all the collective operations in the message passing 

environment. Collective operations involve all the processes in a communicator. 
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Associations 

 

– CollectiveData [0..1]: Collective operations other than Barrier will reference one 

object of the CollectiveData. 

– Process [0..1]: represents the root process in the collective operation. 

 

Constraints 

 

[1] A collective operation should match the same type of collective operation in all 

other processes. Therefore, the maximum number of matched operations may not 

exceed the number of processes in a communicator. 

 

29) CollectiveData 

 

Semantics 

 

This class describes the data being exchanged in a collective operation as well as the 

address of the exchanged data for each process. The Barrier operation does not involve any 

data exchange. Therefore, the MPI_Barrier operation does not instantiate a CollectiveData 

association. 

 

Attritbues 

 

– SendSize: the size of sent data. 

– RcvSize: the size of received data. 

– SendAddress: the address of sent data. 

– RcvAddress: the address of received data. 

– SendDataType: the data type of sent data. 

– RcvDataType: the data type of received data. 

 

Associations 

 

– CollectiveOperation [1]: an instance of CollectiveData may belong to one 

CollectiveOperation object. 

– MsgTrace [1]: CollectiveData instance belongs to one instance of MsgTrace only. 

 

Constraints 

 

[1] An object of type Barrier cannot reference an object of type CollectiveData. 

 

30) Barrier 

 

Semantics 
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This class represents the message barrier operation (MPI_Barrier) in a message passing 

environment. It inherits directly from the CollectiveOperation class. 

 

Attributes 

 

No additional attributes. 

 

Associations 

 

No additional associations. 

 

Constraints 

 

[1] The end-time for a Barrier object of one process cannot be before the start-time for 

any of the matched Barrier objects of the other processes. 

[2] A Barrier object cannot have an associated instance of class CollectiveData. 

 

31) Broadcast 

 

Semantics 

 

This class represents the broadcast operation (MPI_Bcast) in the message passing 

environment. It inherits directly from the CollectiveOperation class. 

 

Attributes 

 

No additional attributes. 

 

Associations 

 

No additional associations. 

 

Constraints 

 

[1] The type signature (SendSize, SendDataType) for MPI_Bcast at the root process 

must be equal to the type signature of the matching MPI_Bcast on all processes 

(receiving processes) in the communicator. 

[2] The root process must belong to the communicator group. 

  

 

32) Gather 

 

Semantics 

 

This class represents the gather operation (MPI_GATHER and MPI_GATHERV) in a 

message passing environment. It inherits directly from the CollectiveOperation class. In 
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MPI_Gather, the root process receives the messages and stores them in rank order. The 

receiving buffer (RcvAddress) for non-root processes is ignored for this operation. 

 

Attributes 

 

No additional attributes. 

 

Associations 

 

No additional associations. 

 

Constraints 

 

[1] The type signature (SendSize, SendDataType) for MPI_Gather at the root must be 

equal to the type signature of the matching MPI_Gather on all processes (sending 

processes) in the communicator. 

[2] The gathered (received) message should be sorted based on the process rank in the 

communicator. 

[3] The root process must belong to the communicator. 

[4] The receiving buffer for non-root process should be equal to null. 

 

33) Scatter 

 

Semantics 

 

This class represents the scatter operation (MPI_Scatter and MPI_Scatterv) in a message 

passing environment. It inherits directly from the CollectiveOperation class. The send 

buffer is ignored for all non-root processes. 

 

Attributes 

 

No additional attributes. 

 

Associations 

 

No additional associations. 

 

Constraints 

 

[1] The type signature (SendSize, SendDataType) for MPI_Scatter at the root must be 

equal to the type signature of the matching MPI_Scatter on all processes (receiving 

processes) in the communicator. 

 

34) Reduce 

 

Semantics 
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This class represents the Reduce operation (MPI_Reduce) in a message passing 

environment. Every process will send a value to the root process. 

 

Attributes 

 

– OpType: the type of the executed operation on the received data at the root process. 

 

Associations 

 

No additional associations. 

 

Constraints 

 

[1] All processes provide input buffers and output buffers of the same length, with 

elements of the same type. 

 

35) Allgather 

 

Semantics 

 

Traces from MPI_ALLGATHER and MPI_ALLGATHERV are captured using the 

Allgather class. This class is a direct subclass of the CollectiveOperation class. 

 

Attributes 

 

No additional attributes. 

 

Associations 

 

No additional associations. 

 

Constraints 

 

[1] Instances of AllGather do not reference a root process. 

 

36) AllToAll 

 

Semantics 

 

Traces from MPI_ALLTOALL and MPI_ ALLTOALLV are captured using the AllToAll 

class. 

 

Attributes 

 

No additional attributes. 
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Associations 

 

No additional associations. 

 

Constraints 

 

[1] Instances of AllGather do not reference a root process. 

 

 

37) ReduceScatter 

 

Semantics 

 

Traces from MPI_REDUCE_SCATTER are captured using the ReduceScatter class. 

 

Attributes 

 

– OpType: the type of the executed operation on the received data at the root process. 

 

Attributes 

 

No additional attributes. 

 

Associations 

 

No additional associations. 

 

Constraints 

 

No additional constraints. 

 

 

38) Scan 

 

Semantics 

 

Traces from MPI_Scan operation are captured using the Scan class. The Scan class is a 

subclass of CollectiveOperation class. A Scan operation is used to perform a prefix 

reduction on data exchanged across the group. For a process with rank i, the scan operation 

returns, in the receive buffer, the reduction of the values in the send buffers of processes 

with ranks 0,...,i (inclusive).  

 

Attributes 

 

– OpType: the type of the executed operation on the received data at the root process. 
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Associations 

No additional associations. 

 

Constraints 

 

No additional constraints. 
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Appendix B – SMG2000 Communication Patterns 
 

In the following, we present the point-to-point communication patterns that were detected 

in SMG2000 in Chapter 5. A process p is represented in the 3D grid shown in Figure 5.3 

as follows. Pi,j,k where i is the x-position and j is the y-position and k is the z-position in the 

grid. For example, process P1 is represented as P1,1,1 and process P2 is represented as P2,1,1 

and process P7 is represented as P3,2,1 and P10 is represented as P2,3,1 and P27 is represented 

as P3,3,2. A process does not communicate with itself. 

 

1. Pattern 1: Each process Pi,j,k will send to and receive from processes Pi,j,k±1, Pi,j±1,k±1, 

Pi±1,j,k±1, and Pi±1,j±1,k±1. For example, Process 7 will send and receive from processes 2, 

3, 4, 6, 8, 10, 11, 12, 18, 19, 20, 21, 22, 23, 24, 26, 27, and 28. 

2. Pattern 2: Each process Pi,j,k will send to and receive from processes Pi,j,k±1, Pi,j±1,k±1, 

Pi±1,j,k±1, Pi±1,j±1,k±1, and Pi±1,j±2,k±1.  For example, Process 7 will send and receive from 

processes 2, 3, 4, 6, 8, 10, 11, 12, 14, 15, 16, 18, 19, 20, 22, 23, 24, 26, 27, 28, 30, 31, 

32 whereas Process 1 communicates with 2, 3, 5, 6, 7, 9, 10, 11, 17, 18, 19, 21, 22, 23, 

25, 26, and 27. 

3. Pattern 3: Each process Pi,j,k will send to and receive from processes Pi,j,k±1, Pi,j±1,k±1, 

Pi,j±2,k±1,  Pi±1,j,k±1, Pi±1,j±1,k±1, Pi±,j±2,k±1, Pi±2,j,k±1, Pi±1,j±2,k±1, and Pi±2,j±2,k±1.  For example, 

Process 7 will send and receive from processes 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 

15, 16, 17, 18, 19, 20, 21 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 whereas Process 1 

communicates with 2, 3, 5, 6, 7, 9, 10, 11, 17, 18, 19, 21, 22, 23, 25, 26, and 27. 

4. Pattern 4: Each process Pi,j,k will send to and receive from processes Pi,j,k±1, Pi,j±1,k±1, 

Pi±2,j,k±1 and Pi±2,j±1,k±1. For example, Process 7 will send and receive from processes 1, 
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3, 5, 9, 11, 21, 23, 25, and 27 whereas Process 1 communicates with 3, 5, 7, 17, 19, 21, 

and 23. 

5. Pattern 5: Each process Pi,j,k will send to and receive from processes Pi,j±1,k.  For 

example, Process 7 will send and receive from processes 3 and 11 whereas Process 1 

communicates with process 5 only. 

6. Pattern 6: Each process Pi,j,k will send to and receive from processes Pi,j±2,k.  For 

example, process 7 will send to and receive from 5 whereas process 1 will send to and 

receive from process 3. 

7. Pattern 7: Each process Pi,j,k will send to Pi,j-1,k and receive from process Pi,j+1,k. For 

example, process 7 will send to 3 and receive from 11 whereas process 1 will receive 

from 5. 

8. Pattern 8: Each process Pi,j,k will send to Pi-1,j,k and receive from process Pi+1,j,k. For 

example, process 27 will send to 26 and receive from 28. 

9. Process 9: Each process Pi,j,k will receive from Pi-1,j,k and send to process Pi+1,j,k. For 

example, process 27 will send to 28 and receive from 26. 

10. Process 10: Processes P2,j,1 and P2,j,2 will send to P4,j,1 and P4,j,2 respectively and 

processes P3,j,1 and P3,j,2 will send to P1,j,1 and P1,j,2 respectively. Therefore, processes 

(2, 6, 10, 14, 18, 22, 26, and 30) will send to the second direct neighbor to the West on 

the same grid and processes (3, 7, 11, 15, 19, 23, 27, and 31) will send to the second 

direct neighbor to the East on the same grid. 

11. Process 11: Processes P2,j,1 and P2,j,2 will receive from P4,j,1 and P4,j,2 respectively and 

processes P3,j,1 and P3,j,2 will receive from P1,j,1 and P1,j,2 respectively. Therefore, 

processes (2, 6, 10, 14, 18, 22, 26, and 30) will receive from the second direct neighbor 



214 

 

to the West on the same grid and processes (3, 7, 11, 15, 19, 23, 27, and 31) will receive 

from the second direct neighbor to the East on the same grid. 

12. Pattern 12: Each process Pi,j,k will send to Pi-1,j,k and Pi+1,j,k. For example, process 27 

will send to 26 and 28. 

13. Pattern 13: Each process Pi,j,k will send to Pi+1,j,k and receive from process Pi-1,j,k. For 

example, process 7 will send to 8 and receive from 6. 

14. Pattern 14: Each process Pi,j,k will send to Pi,j+1,k and receive from process Pi,j-1,k. For 

example, process 7 will send to 11 and receive from 3. 

15. Pattern 15: Each process Pi,j,k will send to and receive from Pi±1,j,k, Pi,j±1,k, Pi±1,j±1,k and 

receive from process Pi,j-1,k. For example, process 10 will send to and receive from 5, 

6, 7, 9, 11, 13, 14, and 15. 

16. Pattern 16: Process Pi,j,k will send and receive from processes Pi,j,k±1, Pi±1,j,k±1, Pi±2,j,k±1,  

Pi,j±2,k±1, Pi±1,j±2,k±1, Pi±2,j±2,k±1. For example, Process 7 will send and receive from 

processes 5, 6, 8, 13, 14, 15, 16, 21, 22, 23, 24,29, 30, 31, and 32 whereas Process 1 

communicates with 2, 3, 9, 10, 11, 17, 18, 19, 25, 26, and 27. 

17. Pattern 17: Process Pi,j,k will send to and receive from processes Pi,j,k±1, Pi±2,j,k±1, 

Pi±2,j±2,k±1, Pi,j±2,k±1. For example, process 5 will send to and receive from 7, 13, 15, 21, 

23, 29, and 31. 

18. Pattern 18: Process Pi,j,k will send to processes Pi,j-1,k, Pi±1,j-1,k and will receive from to 

processes Pi,j+1,k, Pi±1,j+1,k. For example, process 7 will send to processes 2, 3, and 4 and 

will receive from processes 10, 11, and 12. 
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19. Pattern 19: Processes Pi,2,1, Pi,4,1, Pi,2,2 and Pi,4,2 will send one message to Pi-1,2,1, Pi-1,4,1, 

Pi-1,2,2 and Pi-1,4,2 respectively. Therefore, processes (5, 6, 7, 8, 13, 14, 15, 16, 21, 22, 

23, 24, 29, 30, 31 and 32) will send to the direct North process on their same grid. 

20. Pattern 20: Process Pi,j,k will send to processes Pi,j+1,k, Pi±1,j+1,k and will receive from to 

processes Pi,j-1,k, Pi±1,j-1,k. For example, process 7 will send to processes 10, 11, and 12 

and will receive from processes 2, 3, and 4. 

21. Pattern 21: Processes Pi,2,1, Pi,4,1, Pi,2,2 and Pi,4,2 will send one message to Pi+1,2,1, Pi+1,4,1, 

Pi+1,2,2 and Pi+1,4,2 respectively. Therefore, processes (5, 6, 7, 8, 13, 14, 15, 16, 21, 22, 

23, 24, 29, 30, 31 and 32) will send to the direct South process on their same grid. 

22. Pattern 22: Process Pi,j,k will receive from processes Pi,j-1,k±1, Pi±1,j-1,k±1,Pi,j+1,k±1, and 

Pi±1,j+1,k±1. For example, process 8 will receive from 3, 4, 11, 12, 19, 20, 27 and 28. 

23. Pattern 23: Process Pi,j,1 will receive from processes Pi,j,2. For example, process 6 will 

receive from 22 whereas process 27 will send to process 11 (process 11 will receive 

from process 27). 

24. Pattern 24: Process Pi,j,k will send to and receive from processes Pi,j±1,k. For example, 

process 7 will send to and receive from processes 11 and 3. 

25. Pattern 25: Process Pi,j,k will send to and receive from processes Pi,j±1,k and Pi±1,j,k. For 

example, process 6 will send to and receive from 10, 2, 5 and 7. 

26. Pattern 26: Process Pi,j,k will send to and receive from processes Pi,j±1,k and Pi±1,j i±,k. 

For example, process 7 will send to and receive from 11, 12, 10, 2, 3 and 4. 

27. Pattern 27: Process Pi,j,k will send to and receive from Pi±1,j,k, Pi,j±1,k, Pi±1,j±1,k and receive 

from process Pi,j-1,k (this is same as PT15 but the order of messages is random). 
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28. Pattern 28: Process Pi,j,k will send processes Pi,j±1,k. For example, process 14 will send 

to 10 only whereas process 7 will send to 11 and 3. 

29.  Pattern 29: Process Pi,j,k will receive from processes Pi,j±1,k. For example, process 14 

will receive from 10 only whereas process 7 will receive from 11 and 3. 

30. Pattern 30: Process Pi,j,1 will send to process Pi,j,2. Therefore, each process on the first 

grid (upper) will send to its direct neighbor on the adjacent grid. 

31. Pattern 31: Process Pi,j,k will send and receive from processes Pi±1,j,k, Pi,j±2,k, Pi±1,j±2,k, 

and Pi±2,j±2,k. For example, Process P7 sends to and receives from 2, 3, 4, 6, 8, 10, 11, 

12, 14, 15, and16 whereas P1 sends to and receives from 2, 5, 6, 9, and 10. 

32. Pattern 32: Process Pi,j,k will send and receive from processes Pi±1,j,k, Pi±2,j,k,  Pi,j±2,k, 

Pi±1,j±2,k, and Pi±2,j±2,k. For example, Process P7 sends to and receives from 1, 2, 3, 4, 5, 

6, 8, 9, 10, 11, 12, 13, 14, 15, and16 whereas P1 sends to and receives from 2, 3 5, 6, 

7, 9, 10 and 11. 

33. Pattern 33: Process Pi,j,k will send and receive from processes Pi±1,j,k, Pi±2,j,k, and Pi,j±2,k,. 

For example, Process P7 sends to and receives from 1, 3, 5, 9, 10, 1113, and 15 whereas 

P1 sends to and receives from 1, 3 7, 9, and 11. 

34. Pattern 34: Each process Pi,j,k will send to processes Pi,j,k±1, Pi,j±1,k±1, Pi±1,j,k±1, and 

Pi±1,j±1,k±1 and will receive from Pi,j,k, Pi,j±1,k, Pi±1,j,k, and Pi±1,j±1,k. 

35. Pattern 35: Each process Pi,j,k will send to and receive from processes Pi,j±1,k, Pi±1,j,k, 

Pi±2,j,k, Pi±1,j±2,k, and Pi±2,j±2,k. For example, process 7 will send to and receive from 5, 6, 

8 , 13, 14, 15, and 16. 

36. Pattern 36: Each process Pi,j,k will send to and receive from processes Pi±2,j,k, Pi,j±2,k, 

and Pi±2,j±2,k. For example, process 7 will send to and receive from 5, 13, and 15. 
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37. Pattern 37: Process Pi,j,k will receive from processes Pi,j+1,k, Pi±1,j+1,k, Pi,j-1,k, Pi±1,j-1,k. For 

example, process 7 will receive from processes 10, 11, 12, 2, 3, and 4. 

38. Pattern 38: Process Pi,j,1 will receive from processes Pi,j,2, Pi±1,j,2, Pi,j±1,2 and Pi±1,j±1,2. 

For example, process 7 receives from processes 18, 19, 20, 22, 23, 24, 26, 27, and 28. 

39. Pattern 39: Process Pi,j,1 will receive from processes Pi,j,2, Pi±1,j,2, Pi,j±1,2. For example, 

process 7 receives from processes 19, 22, 23, 24, and 27. 

40. Pattern 40: Process Pi,j,k will send to and receive from processes Pi,j±1,k, and Pi±1,j,k. For 

example, process 7 will send and receive from 11, 8, and 3. This is similar to pattern 

25 with the difference in the order of messages. 

41. Pattern 41: Process Pi,j,1 will send to processes Pi,j,2, Pi±1,j,2, Pi,j±1,2. For example, process 

7 receives from processes 19, 22, 23, 24, and 27. 

42. Pattern 42: Process Pi,j,k will send to and receive from processes Pi,j,k±1. 

43. Pattern 43: Process Pi,j,k will send to and receive from processes Pi,j,k±1, Pi,j±1,k and Pi±1,j,k. 

44. Pattern 44: Process Pi,j,k will send to and receive from processes Pi,j±1,k, Pi±1,j,k, Pi,j,k±1,  

Pi,j±1,k±1 and Pi±1,j,k±1. 
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