

TECHNIQUES TO FACILITATE THE UNDERSTANDING

OF INTER-PROCESS COMMUNICATION TRACES

LU’AY ALAWNEH

A THESIS

IN

THE DEPARTMENT

OF

ELECTRICAL AND COMPUTER ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

CONCORDIA UNIVERSITY

MONTRÉAL, QUÉBEC, CANADA

APRIL 2012

© LU’AY ALAWNEH

ii

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Lu’ay Alawneh

 Entitled: Techniques to Facilitate the Understanding of Inter-

Process Communication Traces

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

complies with the regulations of the University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee:

 Chair

 External Examiner

 External to Program

 Examiner

 Examiner

 Thesis Supervisor

Approved by ___

 Dr. Robin A.L. Drew, Dean

 Faculty of Engineering & Computer Science

iii

iv

Abstract

High Performance Computing (HPC) systems play an important role in today’s heavily

digitized world, which is in a constant demand for higher speed of calculation and

performance. HPC applications are used in multiple domains such as telecommunication,

health, scientific research, and more. With the emergence of multi-core and cloud

computing platforms, the HPC paradigm is quickly becoming the design of choice of

many service providers.

HPC systems are also known to be complex to debug and analyze due to the large number

of processes they involve and the way these processes communicate with each other to

perform specific tasks. As a result, software engineers must spend extensive amount of

time understanding the complex interactions among a system’s processes. This is usually

done through the analysis of execution traces generated from running the system at hand.

Traces, however, are very difficult to work with due to the overwhelming size of typical

traces. The objective of this research is to present a set of techniques that facilitates the

understanding of the behaviour of HPC applications through the analysis of system traces.

The first technique consists of building an exchange format called MTF (MPI Trace

Format) for representing and exchanging traces generated from HPC applications based on

the MPI (Message Passing Interface) standard, which is a de facto standard for inter-

process communication for high performance computing systems. The design of MTF is

validated against well-known requirements for a standard exchange format.

The second technique aims to facilitate the understanding of large traces of inter-process

communication by automatically extracting communication patterns that characterize their

main behaviour. Two algorithms are presented. The first one permits the recognition of

v

repeating patterns in traces of MPI (Message Passing Interaction) applications whereas the

second algorithm searches if a given communication pattern occurs in a trace. Both

algorithms are based on the n-gram extraction technique used in natural language

processing.

Finally, we developed a technique to abstract MPI traces by detecting the different

execution phases in a program based on concepts from information theory. Using this

approach, software engineers can examine the trace as a sequence of high-level

computational phases instead of a mere flow of low-level events.

The techniques presented in this thesis have been tested on traces generated from real HPC

programs. The results from several case studies demonstrate the usefulness and

effectiveness of our techniques.

vi

Acknowledgments

I would like to express my sincere gratitude to my supervisor Dr. Abdelwahab Hamou-

Lhadj for his constructive scientific advice, encouragement, abundance help, and

invaluable assistance. His supervision throughout the different stages of my PhD studies

provided me with inspiration to explore new research ideas from different research fields.

I would like to thank Dr. Hamou-Lhadj for his encouragement and support.

I would like to thank the committee members for all the feedback they provided throughout

the course of my PhD research.

I would like to thank all the members of the Software Behaviour Analysis (SBA) Research

Lab at Concordia University for sharing knowledge and for their support.

I would like to thank my parents and my family members for the moral support to complete

this research.

Special thanks to my precious wife Yasmin for her love and support throughout the entire

course of my PhD research.

vii

Dedication

To my parents

To my wonderful wife Yasmin

To my beautiful daughters Tala & Zeina

viii

List of Abbreviations

ATEMPT A Tool Event ManiPulaTion

BIC Bayesian Information Criterion

cCCG compressed Complete Call Graph

CST Compressed Suffix Tree

CTF Compact Trace Format

DNA Deoxyribonucleic Acid

ED Edit Distance function

EMF Eclipse Modeling Framework

EPILOG Event Processing, Investigating, and Logging

ITL Intel Trace Analyzer

GraX Graph Exchange Format

GXL Graph Exchange Language

HPC High Performance Computing

KDM Knowledge Discovery Metamodel

KOJAK Kit for Objective Judgment and Knowledge-based Detection of

Performance Bottlenecks

LZW Lemel-Ziv-Welch

MPI Message Passing Interface

MPMD Multiple Program, Multiple Data

NAS NASA Advanced Supercomputing

OTF Open Trace Format

RSF Rigi Standard Form

SDDF Self-Defining Data Format

ix

SLOG Scalable Log format

SMG Semicoarsening Multigrid Solver

SPMD Single Program, Multiple Data

STF Structured Trace Format

TA Tuple Attribute Language

TAU Tuning and Analysis Utilities

UML Unified Modeling Language

VAMPIR Visualization and Analysis of MPI Resources

XMI XML Metadata Interchange

XML Extensible Markup Language

x

Table of Contents

Chapter 1. Introduction & Motivations .. 18

1.1 Problem Statement .. 18

1.2 The focus on traces of inter-process communications 20

1.3 Thesis Contributions ... 21

1.3.1 Exchange Format of MPI Traces .. 21

1.3.2 Communication Patterns Extraction ... 22

1.3.3 Execution Phase Detection ... 22

1.4 Organization of the Thesis .. 23

Chapter 2. Background ... 25

2.1 Introduction ... 25

2.2 Message Passing Interface .. 25

2.2.1 Point-to-Point Communications.. 27

2.2.2 Collective Communications .. 29

2.3 Trace Abstraction Techniques .. 31

2.3.1 Sampling ... 31

2.3.2 Filtering ... 32

2.3.3 Grouping ... 32

2.3.4 Utility Removal ... 33

2.3.5 Pattern Detection ... 33

2.3.6 Visualization Techniques .. 33

2.4 Inter-process Communication Trace Formats ... 34

2.4.1 Self-Defining Data Format ... 34

2.4.2 Pajé .. 35

2.4.3 EPILOG .. 35

2.4.4 Structured Trace Format ... 36

2.4.5 Open Trace Format ... 37

2.4.6 Scalable Log format .. 37

2.4.7 Paraver Trace Format .. 38

2.4.8 TAU Trace Format .. 38

2.4.9 Research Studies that target the Scalability of MPI Traces 38

xi

2.5 Visualization Techniques for Inter-process Communication Traces 41

2.5.1 Message Passing Visualization with ATEMPT .. 42

2.5.2 ParaGraph ... 42

2.5.3 JumpShot... 43

2.5.4 Pajé Visualization Tool ... 44

2.5.5 Vampir .. 45

2.5.6 ParaProf... 46

2.5.7 Visual Analysis of Inter-Process Comm. for Large-Scale Parallel Comp. ... 47

2.6 Communication Patterns Detection .. 47

2.6.1 Detecting Patterns in MPI Communication Traces 47

2.6.2 Exploitation of Dynamic Comm. Patterns through Static Analysis 48

2.6.3 Automatic analysis of inefficiency patterns in parallel applications 48

2.6.4 Visualization of Repetitive Patterns in Event Traces 49

2.6.5 TraceVis: An Execution Trace Visualization Tool 49

2.6.6 Fast Detection of Communication Patterns in Distributed Executions 50

2.6.7 An Approach for Matching Comm. Patterns in Parallel Applications 50

2.6.8 Scalable Parallel Debugging with g-Eclipse ... 50

2.6.9 A Scalable Approach to MPI Application Performance Analysis 51

2.7 Phase Detection ... 51

2.7.1 Automatic Phase Detection of MPI Applications ... 52

2.7.2 Automatic Detection of Parallel Applications Computation Phases 52

2.7.3 Automatic Phase Detection and Structure Extraction of MPI Applications . 53

2.8 Summary ... 53

Chapter 3. MPI Exchange Format (MTF) .. 55

3.1 Introduction ... 55

3.2 The Domain of MPI Traces .. 57

3.3 Requirements for the Design of MTF ... 58

3.3.1 Expressiveness .. 58

3.3.2 Scalability ... 59

3.3.3 Extensibility .. 59

3.3.4 Openness ... 59

xii

3.4 MTF Components ... 60

3.4.1 MTF Metamodel ... 60

3.4.2 Syntactic Form .. 66

3.5 MTF Tool Support .. 68

3.5.1 The MTF Trace Repository .. 69

3.5.2 MTF Query Language... 70

3.5.3 MTF Trace Generation Engine ... 73

3.6 Scalability of MPI Traces ... 73

3.6.1 Call Graph Normalization ... 73

3.6.2 Converting Call Graph to an Ordered Directed Acyclic Graph 76

3.7 Validation of MTF .. 78

3.8 Case Study .. 80

3.8.1 Scalability of MTF .. 80

3.8.2 Querying MTF .. 85

3.9 Summary ... 86

Chapter 4. Communication Pattern Detection .. 88

4.1 Introduction ... 88

4.2 Communication Patterns ... 90

4.3 Overall Approach .. 93

4.4 Repeating Communication Patterns Detection ... 94

4.4.1 Detailed Repeating Patterns Detection Approach ... 97

4.4.2 Process Repeating Patterns Detection ... 98

4.5 Communication Pattern Matching .. 114

4.6 Tandem Repeats Removal Algorithm ... 119

4.7 Communication Patterns Construction Algorithm.. 125

4.8 Case Studies .. 130

4.8.1 Repeating Pattern Detection Comparison ... 130

4.8.2 Sample of Detected Patterns on Target Systems .. 138

4.9 Summary ... 149

Chapter 5. Execution Phases in MPI Traces ... 150

5.1 Introduction ... 150

xiii

5.2 Phase Detection Approach .. 151

5.2.1 Phase Detection ... 152

5.2.2 Phase Analysis .. 158

5.3 Case Study .. 159

5.3.1 SMG2000 .. 159

5.3.2 NAS BT .. 168

5.4 Summary ... 174

Chapter 6. Conclusions & Future Work ... 175

6.1 Thesis Contributions ... 175

6.2 Directions for Future Research ... 176

6.2.1 Support of other message passing paradigms ... 176

6.2.2 Support traces of inter-process communication based on shared memory . 177

6.2.3 MTF as part of the Knowledge Discovery metamodel (KDM) 177

6.2.4 Formal language for representing traces of inter-process communication . 177

6.2.5 Communication patterns visualization .. 178

6.2.6 Metrics to categorize communication patterns ... 178

6.2.7 Phase detection to support homogeneous segmentation 178

6.2.8 Experimenting with software engineers .. 179

6.3 Closing Remarks ... 179

References …………………………………………………………………………..180

Appendix A The detailed specification of MTF .. 193

Appendix B SMG2000 Communication Patterns ... 212

xiv

List of Figures

Figure 2.1 Message Passing Environment .. 26

Figure 2.2. Screenshot of Jumpshot Tool .. 44

Figure 2.3. Screenshot of Vampir Tool ... 46

Figure 3.1. MPI Trace Representation .. 58

Figure 3.2. The MTF Metamodel ... 61

Figure 3.3. An example of an MPI trace captured with MTF and carried by GXL 67

Figure 3.4 The MTF Tool Architecture .. 68

Figure 3.5. Simple Query Examples ... 72

Figure 3.6. Collapse Contiguous Calls ... 74

Figure 3.7. Collapse Recursive Calls .. 75

Figure 3.8. Message Compaction Example .. 76

Figure 3.9. Tree to DAG Conversion Example .. 78

Figure 4.1. Repeating Communication Pattern (top) and Process Topology (bottom) 91

Figure 4.2. The wavefront pattern and topology ... 91

Figure 4.3. Examples of known communication patterns... 92

Figure 4.4. Pattern detection and pattern matching approach ... 93

Figure 4.5. Pattern Detection Based on Syntactic Methods.. 96

Figure 4.6. Detailed Repeating Pattern Detection Approach .. 98

Figure 4.7. Reverse Pattern Lookup Example .. 104

Figure 4.8. Reverse-Forward Pattern Lookup Example ... 112

Figure 4.9. Example of the pattern matching algorithm ... 118

Figure 4.10. Butterfly Pattern with Contiguous Repeats .. 120

Figure 4.11. Tandem Repeats Removal Example ... 125

Figure 4.12. Step1: Sample Traces from four Parallel Processes 128

Figure 4.13. Communication Construction Example ... 129

Figure 4.14. Wavefront Pattern (2x3 Process Topology) ... 131

Figure 4.15. Detected Communication Patterns ... 132

Figure 4.16. SMG2000 Communication Patterns ... 135

Figure 4.17. SMG2000 Detected Patterns using Routine-Call Directed Approach 137

Figure 4.18. LU Global Communication Pattern ... 140

xv

Figure 4.19. NAS CG Pattern and Topology .. 142

Figure 4.20. NAS MG Class A Communication Topology & Pattern 144

Figure 4.21. WRF Communication Pattern ... 146

Figure 4.22. Detected Collective Pattern .. 146

Figure 4.23. Two Detected Patterns in the 2D Cellular Problem 148

Figure 5.1. Phase Detection Approach ... 152

Figure 5.2. Heterogeneous Sequence Segmentation Example .. 158

Figure 5.3. Process Topology for SMG2000 4x4x2 ... 160

Figure 5.4. DJS values for the whole sequence (max DJS at 443, τ = 0.06) 162

Figure 5.5. Binary Tree Representing the Segmentation Hierarchy (SMG 2000) 164

Figure 5.6. Detected Phases in SMG2000 .. 167

Figure 5.7. NAS BT Process Topology .. 168

Figure 5.8. Communication Pattern used in X Solve.. 170

Figure 5.9. Communication Pattern used in X Solve Cell .. 171

Figure 5.10. Communication Patterns in Y Solve and Z Solve 171

Figure 5.11. Binary Tree Representing the Segmentation Hierarchy (BT) 173

xvi

List of Tables

Table 2.1. Blocking and Non-blocking Send Operations ... 28

Table 2.2. Blocking and Non-blocking Send Operations ... 29

Table 2.3. MPI Collective Operations .. 30

Table 3.1. Main Constraints in MTF Metamodel ... 65

Table 3.2. Processes Specified in a Query .. 70

Table 3.3 Point-to-Point Queries .. 70

Table 3.4. Collective Queries.. 71

Table 3.5. Message-Related Queries .. 71

Table 3.6. Validating MTF against requirement for a standard exchange format 79

Table 3.7 Empirical Results .. 84

Table 3.8. MPI Trace Statistics ... 85

Table 4.1. Number of Detected Repeats for P1 for Sweep3D .. 133

Table 4.2. Performance Analysis for Sweep3D Traces .. 134

Table 4.3. Detected Repeats for P2 for SMG2000 ... 136

Table 4.4. Performance Analysis for SMG2000 Traces ... 137

Table 4.5. Patterns Detected with Routine Call Graph ... 140

Table 4.6 Input Pattern for Wavefront originating from P1 .. 141

Table 4.7. Suffix Tree Detection Example of WRF Sample Trace 145

Table 5.1. SMG2000 Statistics for SMG2000 Trace ... 160

Table 5.2. Recursive Segmentation ... 163

Table 5.3. Initialization Sub-Phases... 165

Table 5.4. Setup Sub-Phases ... 166

Table 5.5. Solve Sub-Phases ... 166

Table 5.6. Statistics for BT Trace ... 168

Table 5.7. Communication Pattern used in Copy Faces ... 170

Table 5.8. Recursive Segmentation .. 172

Table 5.9. BT Detected Sub-Phases .. 174

xvii

List of Algorithms

Algorithm 4.1. Reverse Pattern Lookup Algorithm .. 101

Algorithm 4.2. Check pattern occurrences ... 103

Algorithm 4.3. Reverse-Forward Pattern Lookup Algorithm ... 107

Algorithm 4.4. Pattern matching ... 116

Algorithm 4.5. Tandem Repeats Detection ... 122

Algorithm 4.6. Possible Tandem Repeats Detection .. 123

Algorithm 4.7. Communication Patterns Construction... 127

18

Chapter 1. Introduction & Motivations

This thesis targets the analysis of traces generated from inter-process communication

applications that use the message passing paradigm. The objective is to develop techniques

to facilitate the understanding of the content of large inter-process communication traces.

In the following, we will motivate the idea behind this research and outline the main

contributions of this work.

1.1 Problem Statement

High Performance Computing (HPC) benefits from parallel computing systems in order to

solve computation-intensive scientific problems. As opposed to sequential computing,

parallel computing decomposes the problem into sub-problems that run on different

computational units in order to solve the problem in a reasonable amount of time. In most

cases, the computational units need to collaborate in order to complete a specific task. This

collaboration is achieved using two main programming paradigms which are the shared

memory and distributed memory paradigms. In shared memory, processes collaborate by

sharing the same memory space. On the other hand, a distributed memory application

consists of many processes running on different distributed processors that interact using

the message passing model. These parallel programs may consist of thousands of processes

that are coordinating to solve a specific large scale problem. In this thesis, we focus on

distributed memory applications with specific interest in programs that use the Message

Passing Interface [MPI] (an accepted standard for writing parallel applications using

message passing) for inter-process communication.

19

Although the benefits of HPC applications are numerous, they tend to be difficult to debug

and analyze, causing significant delays in production and maintenance times. This is

mainly due to the large number of inter-communicating processes they involve and the size

of data to be processed. Therefore, it becomes necessary to develop program analysis

techniques that can facilitate the understanding of these types of applications.

Program analysis techniques are grouped in two categories: Static analysis and dynamic

analysis. Static analysis techniques study the source code and the available documentation.

They do not involve the execution of the system. Despite their popularity, static analysis

techniques tend to be conservative to the understanding of the behavioural aspects of

software, especially in the context of parallel systems where system attributes can only be

detected during run-time. Dynamic analysis techniques, the focus of this thesis, revolve

around the examination of traces generated from running an instrumented version of the

software system. Dynamic analysis of software systems has the advantage of being precise

since it depicts the system’s actual behaviour. Dynamic analysis, however, suffers from the

huge volume of data that is generated, which hinders any viable analysis. There is a need

for techniques that enable software engineers to understand and analyze large traces despite

the trace being massive.

The objective of this thesis is two-fold:

• Build an exchange trace format that leverages the synergy among the various trace

analysis tools.

• Develop techniques to reduce the size of traces to allow their analysis. Using these

techniques, software engineers can browse a trace at a higher level of abstraction

than the low-level events.

20

In the next section, we discuss the motivations behind the selection of the analysis of

message passing programs. Section 1.3 presents the main contributions of this thesis.

Finally, the outline of the thesis is presented in Section 1.4.

1.2 The focus on traces of inter-process communications

In this work, we focus on inter-process communication traces generated from HPC

applications which use the MPI standard as the inter-process communication model. HPC

applications are used in different domains such as bioinformatics, cryptography,

telecommunications and others. These applications tend to be complex and require

excessive inter-process communication in order to achieve their goals. Consequently, it

becomes more difficult to maintain and understand these types of applications when

compared to sequential programs. One of the main factors that hinder the comprehension

of such applications is the excessive inter-process interactions. Therefore, understanding

the inter-process communication can provide valuable insight into the behaviour of HPC

applications. Our motivations behind studying inter-process communication traces can be

summarized as follows:

1. The wide acceptance of the message passing model for inter-process communication.

2. The complexity of parallel programs as a result of the large number of their

communicating processes and the huge amount of data to be processed.

3. The need for a standard exchange format for the available tools for dynamic analysis

of parallel message-passing applications which is expected to improve the synergy

among them.

21

4. The need for new techniques for inter-process communication trace abstraction in order

to facilitate the understanding of the large amounts of trace data generated from

executing these systems.

1.3 Thesis Contributions

The main contributions of this thesis are discussed in what follows:

1.3.1 Exchange Format of MPI Traces

Recently, there has been an increase in the number of tools to help software engineers

analyze the behaviour of HPC applications. These tools provide several features that

facilitate the understanding and analysis of the information contained in inter-process

communication traces generated from running an HPC application. They, however, use

different formats to represent traces, which hinders interoperability and sharing of data.

We address this by proposing an exchange format called MTF (MPI Trace Format) for

representing and exchanging traces generated from HPC applications based on the MPI

standard. The design of MTF is validated against well-known requirements for a standard

exchange format, with an objective being to lead the work towards standardizing the way

MPI traces are represented in order to allow better synergy among tools. We have also

developed a set of queries to facilitate the retrieval of data from MTF traces. Additionally,

we have applied concepts from graph theory in order to represent MTF traces in a more

compact format. The model and its ability to scale to large traces are tested against traces

generated from running large HPC programs.

22

1.3.2 Communication Patterns Extraction

We propose a new approach that facilitates the understanding of large traces of inter-

process communication by extracting communication patterns that characterize the main

behaviour embedded in a trace. Two algorithms are proposed. The first one permits the

recognition of repeating patterns in traces of MPI applications whereas the second

algorithm searches if a given communication pattern occurs in a trace. Both algorithms are

based on the n-gram extraction technique used in natural language processing. In this thesis,

we also present a pattern detection technique that overcome the main limitation of existing

approaches and which lies in the fact that they generate many patterns among which many

are noise. This appears to be due to the fact that they treat a trace as a mere string of events

for which they apply various pattern matching techniques. In other words, they are blind

to the different parts of a trace. In this thesis, we propose an approach that uses the routine

call tree to guide the pattern extraction process. We show the effectiveness and efficiency

of our approach in detecting communication patterns from large traces generated from

different HPC programs systems.

1.3.3 Execution Phase Detection

We present a novel approach that aims to simplify the analysis of large execution traces

generated from HPC applications through the semi-automatic extraction of computational

phases from large traces. These phases, which characterize the main computations of the

traced scenario, can be used by software engineers to browse the content of a trace at

different levels of abstraction. Our approach is based on the application of information

theory principles to the analysis of sequences of communication patterns found in HPC

traces. The results of the proposed approach when applied to traces of large HPC industrial

23

systems demonstrate its effectiveness in identifying the main program phases and their

corresponding sub-phases.

1.4 Organization of the Thesis

The rest of this thesis is organized as follows:

Chapter 2 – Background

This chapter starts by presenting the main concepts in MPI. Then, we review existing trace

abstraction techniques. The chapter details the related work that targets the development

of trace formats for traces generated from HPC. Moreover, it details the state of the art of

the communication patterns detection approaches followed by the latest work conducted

on detecting phases in MPI programs.

Chapter 3 – MPI Trace Format

This chapter starts by describing the domain of MPI traces followed by a presentation of

the requirements for having a standard exchange format. The MTF metamodel and its

components are presented in the chapter. Furthermore, an approach for compacting traces

of MPI programs is presented. The chapter is concluded by different case studies that

demonstrate the usefulness of the model in terms of the application of different queries and

the scalability of the model.

Chapter 4 – Communication Patterns

The chapter starts by illustrating the communication patterns and their importance in

understanding the inter-process communication behaviour in the program. Then, the

chapter details the different techniques that are used in the detection of communication

patterns. Finally, different case studies are presented to demonstrate the effectiveness of

the presented techniques.

24

Chapter 5 – Phase Detection

This chapter presents a new approach for detecting execution phases in MPI programs

based on the concepts in information theory. The chapter starts by explaining the

importance of identifying the different execution phases in the program then it presents the

methodology for the detection of execution phases. The chapter concludes with a case

study that illustrates the different steps in the phase detection process and the accuracy of

the results.

Chapter 6 – Conclusion

This chapter discusses the contributions of the thesis and the directions for future work.

The chapter then concludes with some closing remarks.

25

Chapter 2. Background

2.1 Introduction

In this chapter, we start by explaining the message passing interface (MPI) along with its

main functions. Then, we discuss the different trace abstraction techniques. Thereafter, we

survey the state of the art of related research studies that target the dynamic analysis of

MPI programs. First, we present the prominent execution trace formats for MPI trace

analysis tools. Second, we discuss a list of trace analysis and visualization tools for HPC

MPI programs. Third, the most relevant communication pattern detection studies are

explained. Finally, we present the existing execution phase detection techniques for MPI

programs.

2.2 Message Passing Interface

Message passing is an effective inter-process communication paradigm that enables the

exchange of data and synchronization among processes in parallel programs. Existing

software libraries that facilitate this kind of communication among processes are called

Message Passing Environments (MPE). The most popular message passing environment is

the Message Passing Interface (MPI) which has become a standard in the industry and

academia. The primary goals of MPI are efficient communication and portability. Although

several message-passing libraries exist on different systems, MPI is popular for the

following reasons:

• Fully Asynchronous: process communications and computations can overlap.

• Group Membership: Processes may be grouped based on context.

26

• Synchronization Variables: these variables are used to enforce synchronization.

They include the source and destination information, message labelling, and

context information.

• Portability: the MPI specification is publicly available for implementation on any

environment.

MPI is a framework that facilitates the inter-process communication in parallel programs

based on message passing. Every process consists of a program counter and address space

and may also have multiple threads (program counters and associated stacks) sharing a

single address space. MPI targets the communication among processes which have separate

address spaces. Figure 2.1 depicts a typical distributed parallel environment. It is composed

of different processors that contain one or more processes and a mean for inter-process

communication which is in this case based on MPI. Processes in MPI programs are

arranged in a specific process topology. A process topology is the way the processes are

virtually represented on a grid (Cartesian) or a graph structure.

Figure 2.1 Message Passing Environment

Processor

Process

Process

Processor

Process Process

Processor

Process Process

 Processor

Process

Message Passing

Interface

Process

27

MPI supports two types of programming paradigms [MPI]:

1. SPMD (Single Program, Multiple Data): All the processes will run the same

program on multiple sets of data in order to complete the task.

2. MPMD (Parallel Programs, Multiple Data): Processes will run different programs

on multiple sets of data in order to complete the task or set of tasks.

The MPI library routines provide a set of functions that support the following [MPI]:

• Point-to-point communication.

• Collective communication.

• Communication contexts.

• Process topologies.

• Data-type manipulation.

The following sections will provide a detailed study on the point-to-point and collective

MPI communications.

2.2.1 Point-to-Point Communications

Point-to-point communication involves sending and receiving messages between two

processes [MPI]. This is the simplest form of data transfer in a message-passing model.

One process acts as the sender and the other acts as the receiver. The message consists of

an envelope that indicates the source, destination, tag, communicator and data. There are

two modes in communication in point-to-point MPI operations:

• Blocking: the program will not return from the subroutine call until the copy to/from

the system buffer has finished.

• Non-blocking: the program immediately returns from the subroutine call. It is not

assured that the copy to/from the system buffer has completed so that the program

28

has to check for the completion of the copy. MPI uses different routines to check

or to wait for the completion of the operation.

Message exchange should occur between two processes that belong to the same group. A

group of processes in MPI is defined as a Communicator. A communicator is an object that

represents a group of processes and their communication medium or context. These

processes exchange messages to transfer data. Communicators encapsulate a group of

processes such that communication is restricted to processes within that group. A message

is sent with a specific user-defined tag value that can be used at the receiver to identify the

incoming message. Also, a receiving process may accept a message regardless of the tag

by specifying MPI_ANY_TAG as the tag in the posted Receive.

Table 2.1. Blocking and Non-blocking Send Operations

Mode Blocking
Non-

blocking
Description

Standard MPI_Send MPI_Isend MPI may buffer the message

Buffered MPI_Bsend MPI_Ibsend
A Send operation may start and complete

without waiting for a posted matching Receive.

Synchronous MPI_Ssend MPI_Issend

A Send operation may start whether or not a

matching Receive has been posted. However,

the operation will not complete successfully

unless a matching Receive is posted and started

to receive the message

Ready MPI_Rsend MPI_Irsend

A Send operation that uses the Ready mode of

communication cannot start unless the

matching Receive is already posted.

MPI provides four types of Send-operations, each of them available in a blocking and a

non-blocking variant. Table 2.1 provides the names of the four operations for each mode

29

of communication. Receive operations can be blocking and non-blocking and can match

any of the modes of the send operation. A blocking receive operation can match a non-

blocking send operation and vice-versa.

Table 2.2 shows the two different MPI receive operations. The length of the received

message must be less than or equal to the length of the receive buffer. A message can be

received only if its envelope matches the Source, Tag, and Communicator in the Receive

operation unless specified otherwise.

Table 2.2. Blocking and Non-blocking Send Operations

Mode Non-blocking Description

Blocking MPI_Recv
The process will block until the operation

is completed.

Non-Blocking MPI_Irecv
The process will resume after posting the

receive operation.

In non-blocking mode of communication, the process can use the MPI_Wait operation in

order to wait for the completion of the Send/Receive operation. Moreover, the process may

use the MPI_Test to check for the completion of the operation. The completion of a send

indicates that the sending process is free to access the send buffer. The completion of a

Receive indicates that the Receive buffer contains the message and it is ready to be

accessed by the receiver.

2.2.2 Collective Communications

Collective communication involves exchanging information among a group

(communicator) of processes. MPI provides a set of routines that handle this type of

communication. Basically, these collective routines are based on the point-to-point routines.

Thus, a combination of point-to-point MPI operations can achieve the same functionality

30

of the collective ones. However, collective communication routines do not use tags for

message send and receive operations. Table 2.3 presents the different types of collective

operations defined in MPI. Collective communication can be one-to-many, many-to-one,

or many-to-many. The single originating process in the one-to-many routines or the single

receiving process in the many-to-one routines is called the root.

Table 2.3. MPI Collective Operations

Operation Description

Barrier

Used to block the calling process until all processes have entered the

function. Forces synchronization among the processes in the

communicator.

Broadcast
MPI_Bcast operation is used to broadcast a message from a root

process to all other processes in the communicator.

Gather
MPI_Gather collects the contents of each process’ data and send it to

the root process, which stores the messages in rank order.

Scatter
MPI_Scatter is a one-to-all type of communication and is the opposite

of MPI Gather.

AllGather

MPI Allgather gathers the data from each process in the communicator

and sends them to all the processes in the communicator so all the

processes will have the same copy of each process’ data.

All-To-All

MPI_Alltoall is an extension of MPI_ALLGATHER where each

process sends distinct data to every other process in the communicator.

The jth block sent from Process i is received by Process j and is placed

in the ith block of the receiver's buffer.

Reduce
MPI_Reduce will store the result of a specific arithmetic operation in

the root process.

A basic rule for collective communication is that all processes must execute the same

collective communication operations in the same order. This enforces synchronization

among the group’s processes. However, MPI does not guarantee this synchronization and

31

recommends using the Barrier operation. Collective operations in MPI have the following

rules:

• Type matching conditions are stricter than the ones in point-to-point

communication.

• The amount of data sent must be exactly the same as the amount specified by the

receiver.

• Collective operations come in blocking versions only.

• Collective operations do not use a tag argument which means that they are matched

strictly according to the order of execution.

• Collective operations come in standard mode only.

It is recommended to use the collective operations when needed instead of using point-to-

point operations for that purpose.

2.3 Trace Abstraction Techniques

Execution trace size is one of the major drawbacks of the dynamic analysis of software

systems. Therefore, in order to make dynamic analysis a favourable approach it is

necessary to provide means for reducing the amount of trace data without losing its main

characteristics. In this section, we present the main trace abstraction techniques found in

the literature.

2.3.1 Sampling

Sampling [Chan 03] is used effectively in the dynamic analysis of software systems and is

performed by processing a number of sampled events from the trace rather than processing

the whole trace file. The sampling method can be performed in different ways such as

32

selecting every nth event from the trace file, randomly or using a customized method.

Sampling helps in reducing the trace file size but with a drawback that some key events

may have been skipped using this method. In the scope of our work, we do not intend to

apply sampling to traces of inter-process communication applications.

2.3.2 Filtering

Filtering the trace data based on different factors such as the type of objects, the time

interval, a slice from an object type and others is another way of reducing the amount of

trace data to the software engineer [Hamou-Lhadj 05]. This is another effective abstraction

technique that is found in many trace analysis tools (e.g. [JumpShot]). In traces for method

calls, filtering also includes techniques such as stack depth limitation (the nesting level of

the method in the trace) determined by a threshold. Only method calls that appear up to the

specified threshold are taken into account during the analysis. In inter-process

communication traces, filtering may be used by hiding some processes and their

corresponding events, hiding specific types of events and others such as showing messages

with size greater than a specific value.

2.3.3 Grouping

Grouping [Cornelissen 08] or clustering is an abstraction technique that groups events or

processes (in case of parallel applications) according to specific criteria. This technique is

different from sampling and filtering in that it attempts to apply some rules to group the

objects under study to provide a higher level of abstraction. The result of this technique is

another set of objects that simplify the understanding of the trace under study.

33

2.3.4 Utility Removal

An execution trace contains a lot of information that in many cases may not be useful in

understanding the program [Hamou-Lhadj 05]. Therefore, removing these elements will

reduce the size of the trace and will make it more beneficial for program comprehension.

These elements are called utilities. Utilities could be methods, classes, packages, processes

and threads that do not implement important functionality of the system. They are used to

provide support to the functions that implement the core functionality.

2.3.5 Pattern Detection

Software programs repeat the same or similar behaviour throughout the program run which

can be extracted and presented to the software engineer. These repeated behaviours can be

detected in the trace files using different techniques. This repeating behaviour is known as

patterns. A pattern is a sequence of events that is repeating non-contiguously in the trace

file. In traces of method calls, a repeated pattern is a sequence of method calls (at different

nesting levels) that are repeated non-contiguously in the trace file. In inter-communication

traces, a pattern is a set of inter-process communications that are repeating non-

contiguously throughout the trace. Detecting repeating patterns reduces the effort of

understanding the trace file as the scattered patterns in the trace file are presented to the

software engineer automatically.

2.3.6 Visualization Techniques

Trace visualization [Cornelissen 2009] plays a significant role in program comprehension

since it abstracts the trace data into different views that provide meaningful information to

the software engineer. Trace visualization is considered an abstraction technique since each

34

visualization view presents different information that may be very high-level or very

detailed based on the objective of the analysis. Most visualization techniques provide some

features that allow the user to abstract the trace data by grouping events, hiding events,

highlighting events and others.

2.4 Inter-process Communication Trace Formats

In this section, we present different types of trace formats. Some of these formats are

generic and can be applied to traces of MPI programs. Another set of trace formats is

designed specifically to carry traces of HPC programs that use MPI for inter-process

communication.

2.4.1 Self-Defining Data Format (SDDF)

The Self Defining Data Format is one of the leading trace formats that have been used for

representing trace data generated from distributed applications [Aydt 94]. It is a general-

purpose format that is designed to be a meta-format for defining data record structures.

SDDF trace files consist of a header and packet sections. The header determines the type

of encoding used in the trace file (binary or ASCII). The binary representation of SDDF

can be used when compactness is sought. On the other hand, the ASCII representation is

used when portability and readability are needed. The packets describe information about

the trace files such as the time the trace was generated. The main packet, which defines the

data record structures, is called the ‘Record Descriptor’. The trace data exists in the ‘Record

Data’ packet which is represented using the Record Descriptor packet. Another advantage

of using SDDF is its flexibility. Therefore, trace format developers can define new trace

formats by extending the meta-format provided by SDDF. SDDF, however, is not

specifically designed to support MPI operations, which renders its applicability to support

35

traces generated from HPC systems based on MPI a difficult task. Also, it does not suggest

a well-known data carrier for exchanging the trace data.

2.4.2 Pajé

Pajé trace format is a generic trace format that provides the ability to define the structure

of the traces based on the targeted problem [Kergomm 03]. Similar to SDDF, the trace data

format of Pajé is self-defined. The meta-format (the trace structure) is defined in the trace

file in a hierarchical manner that classifies all types of traceable elements. A Pajé trace file

is composed of two definition categories that define the format of the generic instructions

about the experiment and the format of the event traces respectively. Pajé, also, contains

two data categories (the trace data) which represent instances of the two definition

categories. The trace file contains the definition of the events followed by the events

themselves. Events with different unique identifiers can have the same names. This allows

adding different fields for the same event type based on the tracing requirement. Though

the Pajé trace format provides flexible ways of defining different event formats, it is

difficult to represent all the properties of MPI traces such as matching point-to-point

operations and their corresponding wait and test statements.

2.4.3 EPILOG

The Event Processing, Investigating, and Logging (EPILOG) format is a binary trace

format for representing traces of MPI and OpenMP (a paradigm for shared memory

programming) applications [Wolf 04]. An EPILOG trace file consists of two sections. A

header which contains information related to the EPILOG file such as the EPILOG version

number. The second part is the records section. EPILOG uses two record types; the

definition record and the event record. Each record consists of a header and a body. The

36

header defines the length and the type of the record body. Definition records are used to

define the types and objects that will be used in the trace file. For example, a definition

record can be used to define the trace for the MPI send operation. Also, EPILOG defines

records for the communicator and the locations in the MPI application so they can be

referenced by other record definitions. The event records are used to capture run-time

information. EPILOG provides a trace format specifically designed for MPI traces.

However, a main drawback of using EPILOG is the fact that it provides a binary trace

format that hinders portability of the trace format on different platforms.

2.4.4 Structured Trace Format

The Structured Trace Format (STF) handles traces generated from large applications using

several physical files [STF]. The purpose is to properly control the size problem of large

trace files to avoid having trace files that take up more than ten gigabytes. STF defines a

set of files mainly the index file (locates other STF files), the declaration file, the event

data file and the statistics file. The declaration file defines the record formats of the traced

units such as the methods Enter and Exit. The data file contains the trace data based on the

format defined in the declaration file. Finally, the statistics file contains some profiling

information based on the trace. The Intel Trace Collector (ITC) tool [STF] produces traces

in the STF format. STF traces can be analyzed using the Intel Trace Analyzer (ITA)

performance analysis tool. This trace format does not meet the simplicity requirement for

a standard exchange format as it is complex to use since it requires managing different

types of data files. Moreover, this trace format is proprietary which contradicts the

openness requirement for a standard exchange format.

37

2.4.5 Open Trace Format

The Open Trace Format (OTF) uses different streams (files) to represent trace data for HPC

parallel applications [Knüpfer 06a]. A stream usually corresponds to one process in the

program. However, traces of one process must exist in one stream only in order to preserve

the execution of the process’ events. Each stream contains definitions for the trace events

such as the routine names, the MPI operations used in the trace file as well as the

information regarding the processes and the MPI communicators in the application. The

definitions of the traces are followed by the events traced in the program. Some statistical

information may also follow the trace events in the stream. OTF defines an index file that

is used to map each process to its stream (file). This file is used by the OTF library to locate

and map the streams for each process. OTF uses ASCII encoding in order to be presented

as a platform independent trace file format. Finally, OTF uses compression techniques in

order to provide reduced trace file size. Based on our experiments, we believe that OTF is

an efficient trace file format. However, it does not use a popular data carrier which makes

it difficult to be read by other tools. Moreover, OTF stores the events sequentially without

taking the scalability problem into account.

2.4.6 Scalable Log format (SLOG)

The Scalable Log format (SLOG-2) [Margaris 09] is a hierarchical trace file format that is

built with the intention to support the visualization of huge trace files efficiently. Its main

purpose is to enable only loading the displayed time window in memory without the need

to load the whole trace file which may exceed in some cases multiple gigabytes. Therefore,

this trace format avoids removing some trace data in order to reduce the file size. Each

hierarchy represents a level of abstraction which is composed of different time intervals.

38

The deeper we go in the hierarchy the more intervals that we discover. The SLOG file

format has a binary tree structure that is defined recursively with the root node being the

interval from 0 to the last event end time in the trace.

2.4.7 Paraver Trace Format

The Paraver Trace Format [Paraver] uses one file to store the trace data. It defines the

following record types: Enter/Leave events for routine calls, Atomic events for capturing

performance counters information, and communication events for point-to-point and

collective communication events. In addition to timestamp sorting of events, Paraver

permits the sorting of events by their event type. Paraver provides the description of events

based on their physical and logical locations by using two fixed hierarchies. The logical

location description contains threads, processes and applications. The physical location

contains CPUs, Nodes of multiple CPUs and systems of multiple nodes. Moreover, Paraver

supports additional configuration files that are used to configure the display of event types.

2.4.8 TAU Trace Format

TAU (Trace Analysis Utilities) trace format [Shende 04] uses a binary encoding for trace

events. It is used by the TAU profiling tool [Shende 05]. The trace format uses a single file

to define and store the trace data. Initially, traces are gathered from each process separately

and then merged into the single file. All record types use the exact same number of bytes

to represent the events, which limits the extensibility of the trace format.

2.4.9 Research Studies that target the Scalability of MPI Traces

In this section, we present a number of research studies that target the scalability problem

of MPI traces.

39

2.4.9.1 ScalaTrace

Noeth et al. [Noeth 09] presented ScalaTrace that provides a compressed trace format for

MPI traces. The compression takes place at two stages: intra-process compression followed

by inter-process compression. At the process level, they represent the identical sequences

of MPI events caused from loops using one regular section descriptor (RSD) which

specifies how many times the sequence is repeated. The intra-process compression is then

followed by an inter-process compression using a binary tree where similar RSDs with

matching counts are merged. The main advantage of their approach is that the compression

preserves the temporal ordering of events. However, this approach has the following two

main disadvantages:

• The approach only targets Single Process Multiple Data (SPMD) applications

where all processes behave similarly which makes their approach useful for these

cases only.

• Even though the approach keeps the ordering of events, it is still lossy as it provides

approximate timestamps and not the exact values that were collected at the tracing

time.

Moreover, this study only provided compression of MPI events in the program and did not

take into account other kind of information such as user routine calls.

2.4.9.2 Construction and Compression of CCG for Post-mortem Trace Analysis

Knüpfer et al. [Knüpfer 05] proposed the usage of compressed Complete Call Graphs

(cCCG) in order to represent traces of single and parallel process programs. In parallel

process programs, each process trace will have its own cCCG. The cCCG is a directed

acyclic graph as in their approach they tend to combine regular patterns into common sub-

40

trees. Representing the routine call tree as a directed acyclic graph was previously

conducted by [Larus 99, Reiss 01] and later improved by [Hamou-Lhadj 04]. However,

Knupfer et al. do not look for identical sub-trees. They search for compatible trees by

comparing the sub-trees’ top nodes only and assuming that if all the references of the child

nodes of the two compared root nodes are pointing to the same sub-tree then the two sub-

trees are considered to be compatible. This trade-off for time complexity reduces the

accuracy of the compression algorithm. Furthermore, they represent the timing information

as delta times (duration) instead of the timestamps that are gathered at execution time. In

order to recover the original timestamp, the traversal of the graph from the root node to the

designated node is required. Two sub-trees are considered similar when the delta times in

both the sub-trees’ nodes deviate within a specified bound. Therefore, when considering a

small deviation bound, the number of similar sub-trees will be very low which will result

in a lower compression ratio. When constructing the CCG, they take the graph branching

factor into consideration (number of direct children to the node). If the branching factor is

beyond a threshold, then artificial nodes will be inserted into the graph between the parent

and its children by splitting the children into two or more groups.

2.4.9.3 ScalaExtrap

Wu et al. [Wu 11] presented an approach for the extrapolation of an application's

communication traces and their execution times from small traces in order to simulate

traces at larger scale. The extrapolation method is based on the communication topology

identification at smaller numbers of processes. They proposed the usage of a set of linear

equations in order to obtain the relation between communication traces for traces with

different number of processes that will enable the extrapolation of communication traces.

41

Regarding the extrapolation of timing information, they employed curve fitting approaches

to represent trends in delta times over traces with varying number of processes. The authors

only considered SPMD HPC MPI programs with stencil and mesh process arrangements

that only exploit one communication pattern throughout their execution. However, when

considering more complex problems such as SMG2000 which has several communication

patterns and have varying communication behaviour when considering different problem

sizes, the presented extrapolation technique will be limited.

2.4.9.4 Logicalization of Communication Traces from Parallel Execution

This work [Qu 09] presents a framework to automatically construct a single logical trace

that is a representative of the overall parallel execution when the communication pattern is

a regular stencil. The approach is based on identifying the communication topology of the

application and converting all point-to-point communication calls between physical

processes to logical calls representing the global communication pattern. The methodology

is independent of the numbering of processes in the system. The key contribution is an

algorithmic framework to identify the global communication topology from distributed

message exchange data that is effective and efficient. This work provides only a logical

representation of the complete execution trace. Therefore, the resulting trace is lossy and

cannot recover the original trace from the logical one.

2.5 Visualization Techniques for Inter-process Communication Traces

Visualization techniques for traces generated from parallel applications can be divided into

three main types; behavioural, structural and statistical. Behavioural techniques visualize

the execution of the program over time. Structural techniques are used to describe the

structure of communication such as the communication topology among processes.

42

Statistical techniques present summary information about the execution trace such as the

number of events, the size of data exchanged and so on. These techniques have

implementations in 2D and 3D space diagrams. In the following, we present the state-of-

the-art of the research studies that have been proposed in the literature for the visualization

of inter-process communication traces.

2.5.1 Message Passing Visualization with ATEMPT

ATEMPT [Kranzlmüller 95] “A Tool Event ManiPuliaTion” is a tool that applies the

concept of event graphs for visualizing communications among the processes in parallel

applications. An event graph [Kranzlmüller 00] consists of a horizontal line for each

process, vertices that represent the event and directed edges between the events which

represent the process communication or the sequential program flow. In inter-process

communication applications, the edges are used to represent messages exchanged among

the program processes. The purpose of ATEMPT is to help software engineers detecting

errors such as a send event with no receive event, and performance analysis of parallel

applications. One main advantage of ATEMPT is that it applies the concept of trace

abstraction to limit the analysis to the points of interest. However, the abstraction is

performed in a semi-automatic way by allowing the user to specify the main areas of

interest in the graph.

2.5.2 ParaGraph

Paragraph [Heath 03] is a performance and behavioural visualization tool of parallel

programs based on MPI. It is a post-mortem tool that displays execution traces pictorially

in an animated manner. Also, it provides some graphical statistical views that provide

summaries about the performance of the application under test. ParaGraph was initially

43

developed based on PICL (Portable Instrumented Communication Library) in 1989 and

was modified later to support the new message passing specification (MPI). ParaGraph

supports views for processor utilization such as the utilization count, Gantt chart, Kiviat

diagram and concurrency profile. Also, ParaGraph supports several displays that depict the

communication among the processes in the program such as the space-time diagram and

the communication matrix. Also, ParaGraph supports an animated view that has a node for

each process’ status (busy, overhead, idle, sending, receiving, or collective

communication) and arcs between the nodes to represent the communication activity

between the processes. ParaGraph contains many other views that we cannot include in

this context for space limitation.

2.5.3 JumpShot

JumpShot-4 [Jumpshot] is a visualization tool that supports the SLOG-2 trace format. An

advantage of JumpShot-4 is the Level-of-detail support which means that it does not need

to read the whole trace file into memory. It only reads the data needed at each level of

abstraction. The main view in JumpShot is the space-time view which also provides a

Gantt-like chart for each process in order to show the activities each process is involved in.

Moreover, it uses arrows to depict the messages among the different processes in the

program. Figure 2.2 shows an example of the JumpShot-4 tool. Each horizontal line

belongs to a process in the program which contains all the actions that were performed by

a process. Also, as can be seen, the arrows show the messages being exchanged among the

processes. As can be seen, the program provides zooming functions, filtration, searching,

scrolling and others.

44

Figure 2.2. Screenshot of Jumpshot Tool

2.5.4 Pajé Visualization Tool

Pajé [Paje] is a versatile trace based visualization tool designed to help performance

debugging of large-sized parallel applications. From trace files, recorded during the

execution of parallel programs, Pajé builds a graphical representation of the behaviour of

these programs, to help programmers identify their “performance errors”. Pajé provides

two types of visualization techniques to represent graphically containers, state, events,

variables and links. The first and most used is the space-time window, which actually draws

a Gantt-chart display that uses arrows to represent interactions among processes. The

second type of display is used to dynamically show statistical information about a selected

slice of time in the space-time window. Pajé is designed to be interactive, scalable and

extensible which, according to its developers, enables it to handle a very large amount of

traces efficiently.

45

2.5.5 Vampir

Vampir [Vampir] is a commercial performance and visualization tool that is supported by

the Center for Information Services and High Performance Computing (ZIH) of TU

Dresden. The main objective of Vampir is to support scalable visualization of inter-process

communication of OTF traces generated from MPI using the VampirTrace tracing tool.

Vampir contains several display views such as the message statistics view, matrix chart,

summary chart, Gantt-charts, summary timeline and counter timeline. Vampir has a set of

flexible filter operations, which are used to reduce the amount of information displayed

and to help its users to spot more easily performance problems. Figure 2.3 shows a

screenshot of Vampir. Furthermore, Vampir provides a hierarchical visualization, based on

Gantt charts, which allows users to view trace data in different levels of abstraction such

as process, thread, and the process cluster. An advantage of using the hierarchical technique

is its scalability. This technique supports up to 50 times more processes than only using the

Gantt chart.

46

Figure 2.3. Screenshot of Vampir Tool

2.5.6 ParaProf

ParaProf [Paraprof] is a visualization tool for parallel applications. It is part of the Tuning

and Analysis Utilities (TAU) [Shende 05] project, a joint project between the University

of Oregon, Los Alamos National Laboratory, in the United States, and Julich Research

Center, Germany. ParaProf is designed to be portable, extensible and scalable and is

organized in four main components. The visualization component supports 3D

visualizations, thread-based views, function-based views and phase-based views. The 3D

views include Triangle Mesh Plot (provides metrics for program functions and threads),

3D Bar Plot, and the 3D Scatter Plot. The thread-based view provides statistics for each

thread and a call graph of the functions executed in the program. The function-based views

include statistical information depicted using function bar chart and function histograms.

47

Finally, the phase-based views show statistical data related to each execution phase in the

parallel program.

2.5.7 Visual Analysis of Inter-Process Comm. for Large-Scale Parallel Computing

Muelder et al. [Muelder 09] proposed a new visualization approach for understanding

communication behaviours and identifying performance for large scale parallel programs

that consist of thousands to millions of processes. In their approach, they focus on the

system as a whole before digging down into individual processes or MPI calls. They

propose three views with different levels of abstraction. The highest level of abstraction

view presents the system as a whole and provides information on how the overall

communication is impacting the system performance. A more detailed view considers the

communications among groups of processes (ignores individual processes). In this view,

the MPI calls can be viewed regardless of the number of participating processes. The third

view shows the details for individual views and individual MPI calls. Furthermore, they

used opacity scaling to resolve the overlapping of the plotted MPI calls.

2.6 Communication Patterns Detection

In this section, we present the state of the art of the research studies that targeted the

detection of communication patterns in inter-process communication applications.

2.6.1 Detecting Patterns in MPI Communication Traces

The authors [Preissl 08] proposed an algorithm for the detection of repeating patterns in

MPI traces. Their approach is based on compressed suffix trees to detect the maximal

repeats in every process trace separately. For each process trace, they select certain

maximal repeats and not all of them by using seed events or sub-graph properties and in

48

some cases they used static analysis to determine the most important areas in the code and

use their events accordingly. They only consider a subset of the maximal repeats since it

takes a prohibitive time to compute the communication patterns based on all maximal

repeats. However, our analysis shows that the same maximal repeat may be part of different

communication patterns. Therefore, this factor should be taken into consideration when

filtering most of the detected maximal repeats. After selecting the start repeats, they start

building the communication pattern starting from one maximal repeat on process i. Then,

they compute the maximal and minimal intervals by locating the matching events on the

other processes. This step is done iteratively until the communication pattern is complete

and all the maximal repeats were included in the iterations.

2.6.2 Exploitation of Dynamic Communication Patterns through Static Analysis

In [Preissl 10], the authors applied their communication pattern detection approach

supported by static analysis in order to detect point-to-point communication patterns that

correspond to collective MPI operations. The objective of this work is to replace point-to-

point communication patterns by collective MPI operations that have better performance

than using an equivalent communication based on MPI point-to-point operations.

2.6.3 Automatic analysis of inefficiency patterns in parallel applications

Wolf et al. [Wolf 07] utilized the knowledge from virtual topologies in order to identify

patterns of inefficient behaviour due to long wait states caused from inefficient application

of the parallel programming model. The communication topology (virtual topology) is used

to identify the phases of inter-process communication in the program. This work is

different than our communication pattern detection since it only looks for patterns of

inefficient behaviour resulting from processes in long wait states. Also, they presume

49

knowledge of the communication topology in the program which helps them in identifying

the different parallel communication phases in the program. Our approach looks for inter-

process communication patterns by investigating message passing events.

2.6.4 Visualization of Repetitive Patterns in Event Traces

The authors [Knüpfer 06b] proposed an algorithm to remove contiguous repeating patterns

from the trace in order to reduce the size of the trace. The algorithm is based on the

compressed complete call graph (cCCG) and the pattern graph (a derivative of the cCCG).

An advantage of using cCCG is that it references all call sequences that are equal with

respect to call structure and temporal behaviour, which improves trace compression. In

their algorithm, they only detect contiguous pattern repetitions. They claim that patterns

found at interspersed locations are identified as the same pattern which is not the case when

studying large traces with hundreds of distinct patterns. Moreover, this approach does not

detect communication patterns. It only detects repeating patterns on each process trace

separately.

2.6.5 TraceVis: An Execution Trace Visualization Tool

TraceVis [Roberts 05] is a trace visualization tool for parallel program executions. In

TraceVis, the pattern detection algorithm depends on the human ability to process

enormous amounts of visual data. The trace graph view in TraceVis is used to locate

regions of similar inter-process communications. Though this may be possible for

reasonable trace sizes, dealing with huge traces that involve a large number of processes is

merely impossible.

50

2.6.6 Fast Detection of Communication Patterns in Distributed Executions

The authors [Kunz 97] presented a technique based on finite state automata to find

communication patterns in the trace that match an input pattern. The pattern matching

algorithm is performed by determining the longest process pattern in the input

communication pattern which will be used as the search string in the pattern matching

algorithm. They start building the communication pattern by locating the partner events on

the other process traces. This approach is only concerned with detecting patterns based on

a pre-defined input pattern. In our work, we propose two algorithms for detecting repeating

patterns and matching a pre-defined pattern.

2.6.7 An Approach for Matching Communication Patterns in Parallel Applications

The authors [Ma 08] proposed an approach for comparing the communication patterns

found in the traces generated from different systems to find the degree of similarity

between them. The degree of similarity between two applications is measured using the

correlation coefficient followed by an undirected communication graph that depicts the

communication topology among the processes. Then, the similarity between the generated

graphs is determined using graph isomorphism metrics. This work is different from our

work as it compares traces generated from different systems.

2.6.8 Scalable Parallel Debugging with g-Eclipse

The authors [Köckerbauer 10] proposed the use of a pattern matching technique to simplify

the debugging of large message passing parallel programs by identifying patterns in the

trace file that are similar to a predefined pattern. First, the user specifies a description of

the communication pattern to be searched for in the trace file. This pattern description is

51

then translated to abstract syntax trees. The ASTs are then scaled up to the number of

processes in the trace (or the number of the target processes in the trace). The pattern

matching process is run on each process trace individually. In their work, they used a hash-

based search to detect exact and similar patterns on each process trace. Finally, the

matching patterns are merged in order to get the communication pattern which should be

exact or a variation of the user’s specified pattern.

2.6.9 A Scalable Approach to MPI Application Performance Analysis

Moore et al. [Moore 05] proposed a pattern matching method for detecting patterns of

inefficient behaviour based on wait states in order to be used in KOJAK (a performance

analysis tool for high performance parallel applications) [KOJAK]. These patterns of

inefficient behaviour are identified by converting the trace into a compact call-path profile

which classifies patterns based on the time spent. This approach only looks for events that

cause performance degradation and does not focus on the inter-process communication

patterns.

2.7 Phase Detection

The execution of a program exhibits a similar cyclic behaviour which can be identified as

several execution phases [Gu 06]. In the literature, several studies investigated the

usefulness of the program execution phases in performance optimization, reducing

profiling overhead, system reengineering, and in program comprehension. In MPI

programs, there exist a small number of studies that target the detection of execution phases.

52

2.7.1 Automatic Phase Detection of MPI Applications

In their study [Casas 07], Casas et al. applied the wavelet transform technique in the signal

processing field to automatically detect the main execution phases in MPI applications.

The algorithm identifies phases by separating execution regions based on their iterative

frequency. A region with high frequency of iterations will be separated from a low

frequency one. This work targets the detection of computation phases in MPI programs.

The different MPI phases (initialization, computation, and output) are categorized based

on their frequency of iterative behaviour where in the computation phase most of the

parallel iterations exist. The objective of this work is to provide the analyst with an initial

abstraction level that provides an overview about the system under study before studying

the source code. Casas et al. indicated that the computation phase in MPI programs is

usually large and more effort should be invested in an algorithm that identifies the sub-

computational phases.

2.7.2 Automatic Detection of Parallel Applications Computation Phases

Gonzalez et al. [González 09] presented an approach to facilitate the analysis of message

passing parallel applications using the density-based clustering techniques to detect

computation phases that occur between the parallel communications in the program. They

apply the density-based approach on data obtained from performance counters provided by

modern processors. The main objective of this work is to detect the most important regions

of execution in the program. They use CPU bursts to outline the different regions in the

program. A CPU burst is considered as a CPU computation region between two

consecutive communications. Therefore, a burst is identified by the duration and the set of

performance counters.

53

2.7.3 Automatic Phase Detection and Structure Extraction of MPI Applications

Casas et al. [Casas 10] extended the previous work that uses wavelet transform from signal

processing in order to detect the different sub-phases in the computational phase. They base

their approach on the iterative behaviour found in MPI traces where CPU bursts are

followed by process communication. They derive the signals from different metrics that

are based on inter-process communication and computing bursts. They assume that the

highest frequencies of communications (signals) appear in the computation phases.

Therefore, their approach detects regions with highest frequencies and identifies them as

the computational phase in the program.

2.8 Summary

The focus of this thesis is on developing techniques to facilitate the understanding of inter-

process communication traces. Therefore, the work in this thesis lies within the domain of

program comprehension. We focus on two research problems which are the modeling of

MPI execution traces and their abstraction. In abstraction, we target communication

patterns detection and matching techniques and execution phase detection techniques.

This chapter targeted a survey of the related studies. In the following, we comment on the

surveyed research studies.

• None of the surveyed trace formats targeted the development of an exchange format

that meets the requirements for a standard one. Existing trace formats are not scalable

to carry very large execution traces. Additionally, approaches that targeted the

scalability proposed lossless trace formats which may cause the loss of potential trace

information.

54

• The existing communication pattern detection techniques do not take into account the

quality of the detected patterns. Usually, they detect a large set of false positives. Also,

existing techniques do not scale up to large traces.

• Only a few phase detection techniques have been proposed in the literature. These

techniques focus mainly on performance analysis. We believe that our work on

detecting execution phases from execution traces with a focus on program

comprehension is considered unique and novel.

55

Chapter 3. MPI Exchange Format (MTF)

3.1 Introduction

Several techniques and tools have emerged to facilitate the analysis of HPC applications

(e.g. [TAU, Vampir, and Heath 03]). These tools come with many features including trace

analysis algorithms, visualization layouts, optimization algorithms, pattern detection

methods, and others that can help in studying the runtime behaviour of these applications

for performance analysis, debugging, deadlock detection, and so on. These tools, however,

do not interoperate due to a lack of a common exchange format for representing HPC traces.

Clearly, a common trace format that enables synergy and sharing of data among tools is

needed, and reduces the effort and cost required to represent HPC traces.

The objective of this chapter is to present MTF (Message Passing Interface Trace Format),

an exchange format that we have developed to represent runtime information generated

from HPC applications. The focus is on inter-process communication traces based on the

message passing paradigm, with a particular interest in MPI [MPI]. MTF supports the

modeling of MPI operations, the application’s processes and the way they interact in a

specific usage scenario, and the routine calls that are executed by each process during a

particular execution.

There exist several exchange formats in the literature for HPC-generated traces (presented

in Chapter 2), but most of them do not scale up to large traces or they support lossy versions

of the original trace. Many of them are also proprietary and represent traces in binary

format which hinders their portability and understandability.

56

MTF is built with several requirements in mind to facilitate its adoption and enable it to

become a standard exchange format for traces generated from HPC applications. One of

the key requirements that we have carefully addressed is the ability for MTF to support

very large traces. This is particularly important in the context of traces since typical traces

may contain millions of events, especially if generated from HPC applications that involve

a large number of computing nodes (which is very common in practice). The specification

of MTF is openly available. The MTF model itself is represented as an Ecore model

developed using the Eclipse Modeling Framework (EMF) [EMF]. MTF also reuses

existing data carriers such as XML. We have also developed a query language and an API

that can be readily used to extract information from MTF models. In sum, we believe that

MTF supports key features that can make it a common exchange format for representing

and sharing information generated from HPC systems, and if adopted, we believe it can

lead the work towards a standard exchange format for MPI traces.

The rest of the chapter is organized as follows. In Section 3.2, we present the domain of

MPI traces. In Section 3.3, we present the requirements for a standard exchange format.

Section 3.4 presents the MTF metamodel and its main components. Section 3.5 presents

the MTF tool support. In Section 3.6, we present an approach for compacting MPI traces

based on the directed acyclic graph which is supported by MTF. Section 3.7 presents the

validation of MTF. Finally, Section 3.8 presents a case study that shows the effectiveness

of MTF to support large traces generated from different systems and benchmarks. We

conclude the chapter in Section 3.9.

57

3.2 The Domain of MPI Traces

An MPI trace depicts the execution of the running processes in the program along with the

messages exchanged among them. HPC applications often follow the Single Program

Multiple Data (SPMD) paradigm in which the program tasks are run in parallel on multiple

processors to maximize performance.

As mentioned in the background chapter, communication among processes is based on

executing MPI operations supported by the MPI environment. MPI supports two

communication modes: point-to-point and collective communications. Point-to-point

operations are blocking and non-blocking operations. They only involve two processes (a

sender and a receiver). On the other hand, collective operations involve all the processes

in a communicator that is specified in the call. Collective operations can only run in

blocking mode in order to guarantee the synchronization among the processes. The MPI

specifications [MPI] provide detailed description of the various MPI operations. An MPI

trace can be considered as a set of streams of data, where each stream corresponds to one

process in the program. Each trace contains the routines executed by the process, the MPI

operations invoked by the process to communicate with other processes, the messages sent

and received, and many other details such as timestamps.

Figure 3.1 shows an example of two processes that execute in parallel four functions f1, f2,

f3, and f4. The label on the edge is added here to show the order of execution within each

process. The interaction between these two processes is also shown as typical Send and

Receive MPI operations along the exchanged messages. The message object is created by

merging the atomic sent-message and received-message events on the sender and receiver

respectively.

58

1
3

4

2

Send

1
3

2

Send

Msg 1

P1 Trace

4

Recv

5

Recv

5

Msg 2

f2
f3

f4

f1

f2

f5

f4

P2 Trace

MPI Trace

f1

Figure 3.1. MPI Trace Representation

3.3 Requirements for the Design of MTF

A trace format should meet certain requirements in order to qualify as a common exchange

format. These requirements are summarized in [St-Denis 00] and include expressiveness,

scalability, openness, simplicity, and transparency. Although our proposed metamodel is

developed to meet most of these requirements, in this thesis, we focus on expressiveness,

scalability, extensibility, and openness. We used these key requirements as guiding

principles in the design of MTF.

3.3.1 Expressiveness

An exchange format should be expressive enough to capture the needed information to

enable various types of analyses. After studying the MPI specifications and the related

research studies, it has become clear that all the information needed for MPI operations

must be captured in order to be used during the analysis phase. For example, when tracing

an MPI_Send operation, we need to store information about the sender, receiver, data type,

59

tag value, communicator, size of sent data, and the address of send buffer. We also need to

record the routines executed by each process and the order of execution to be able to

identify where in the program a specific communication of multiple processes occur. MTF

was carefully designed to provide support for all these concepts.

3.3.2 Scalability

An exchange format should be scalable to support a large amount of information efficiently

and in a way that does not degrade access to the instance data. This is particularly important

in the area of trace analysis since the size of typical trace files can easily reach tens to

hundreds of gigabytes. To achieve this, we employed a compaction scheme presented by

Hamou-Lhadj et al. [Hamou-Lhadj 04] and in which the authors used graph-theory

concepts to compact large traces of routine calls in the design of their exchange format

CTF (Compact Trace Format) [Hamou-Lhadj 04].

3.3.3 Extensibility

Exchange formats should be easily extended in order to support new or different data types.

Also, they should be extended without affecting previous versions of the trace data. This

is important especially when the analysis tools evolve and may acquire new types of data

to cope with the emerging analysis techniques. We believe that the design of the MTF

model follows sound object-oriented concepts that make it readily extensible to support

additional trace elements.

3.3.4 Openness

In order to qualify for a standard exchange format, we believe that a trace format should

be freely available to its users along with the metamodel, the semantics of its components,

60

and the syntactic form. This also opens the door for further improvements to the model or

possibilities to customize it to specific needs. MTF specifications are open and we are

working on the finalization of the implementation of the model along with the interfaces

that will allow querying the trace data.

3.4 MTF Components

In this section, we present the MTF exchange format. The definition of an exchange format

involves two main components [Bowman 00]: A metamodel (also called a schema) that

describe the abstract syntax or the structure of the entities to exchange and the way they

are connected, and the syntactic form, which describes how the instance data of the

metamodel is represented in a trace file.

3.4.1 MTF Metamodel

Figure 3.2 shows a UML class diagram that describes the MTF metamodel. The entities of

this metamodel are discussed in the following subsections. The exact definition of the

classes of the metamodel including their attributes, associations, constraints, and semantics

are presented in Appendix A using as similar template as the OMG1 template for defining

the UML metamodel.

3.4.1.1 Usage Scenario

The Scenario class is used to describe a certain usage scenario which is used in generating

one or more execution traces. MTF permits that a usage scenario can be represented by

different traces showing both normal and exceptional executions.

1 http://www.omg.org/uml

61

Figure 3.2. The MTF Metamodel

62

3.4.1.2 Trace Types

The class Trace is used to describe information about the collected trace such as the name,

the time the trace was collected, etc. To create specialized types of traces, one can simply

extend this class. In our metamodel, we define the MsgTrace class to represent traces of

point-to-point messages exchanged in the application. On the other hand, the class

ProcessTrace is used to represent all the traces generated from a particular process in the

program. The class Trace is a concrete class and it is meant to represent the whole execution

trace of the program.

3.4.1.3 Processor and Process

The Processor class is used to capture the machine and the node on which a process is

running. A process in the MPI program is represented using the Process class.

3.4.1.4 Traceable Unit

An execution trace generated from running HPC applications contains different kinds of

information such as routine calls, MPI operation calls, messages, I/O operations and others.

In MTF, the abstract class TraceableUnit is used for extending the metamodel with any

kind of events that may be generated during the program execution. Therefore, the

extensibility requirement is captured by our metamodel using the TraceableUnit abstract

class.

3.4.1.5 Edge

The Edge class is used to represent the traces in a graph structure. The type attribute

specifies the type of edges to be used. The model supports three types which are the

63

sequence, fork-sequence and recursive edges. We will show an example of each edge in

Figure 3.6.

3.4.1.6 Message

The Message class represents the messages exchanged using point-to-point operations only.

It captures information regarding the sender, receive, data size, data type and tag value. An

Instance of the MessageLink class is used as a link between a message and its

corresponding MPI operation. Each message is linked to two MPI operations.

3.4.1.7 MPI Operations

The MPOperation is the base class for all types of operations defined in the MPI

specifications. This class is further specialized to represent specific MPI operations such

as Initialize, Finalize, point-to-point operations (represented by the class PointToPointOp)

and the Collective operations (represented by the class CollectiveOperation). The

PointToPointOp class is extended into specific operations modeling blocking send and

receive MPI operations (represented using the classes Send and Receive), non-blocking

send and receive operations (classes NonBlockingSend and NonBlockingReceive).

The metamodel also depicts the relationship between the non-blocking operations and the

wait and test operations represented by the WaitOp and TestOp respectively.

Collective operations (run in blocking mode only) such as a barrier and broadcast are

represented using classes that inherit directly from the CollectiveOperation class. It should

be noted that the presented metamodel in Figure 6 does not include all of the implemented

classes that represent the MPI operations to avoid cluttering the model.

64

3.4.1.8 Collective Data

The data exchanged during the execution of collective operations is modeled using the

CollectiveData class. It represents the information about the data being exchanged by each

process when executing a collective MPI operation. MPI requires that all the processes in

a communicator be involved in the collective communication.

3.4.1.9 Trace Patterns

Traces may contain several patterns that are defined as sequences of events that are

repeated non-contiguously in a trace. MPI applications may contain two types of patterns

which depict specific behaviours in the program. The communication patterns may be

detected in the point-to-point and collective messages and the routine call patterns may be

detected in the routine call events in the trace. According to Hamou-Lhadj et al. [Hamou-

Lhadj 04], who presented an exchange format for representing traces of routine calls, the

analysis of patterns found in a trace might reveal important information about the behaviour

of the system. In MTF, the class TracePattern is the base class for the CommPattern

(represents communication patterns) and the RoutinePattern (represents routine call

patterns). Moreover, the class PatternOccurrence represents a single occurrence of a give

pattern in the trace.

3.4.1.10 Well-formedness of MTF

The well-formedness of MTF is supported by adding the necessary constraints that must

be met in order to provide a correct representation of the MPI traces. Table 3.1 outlines the

main constraints that are supported in the metamodel. The complete list of constraints can

be found in the description of MTF in Appendix A.

65

Table 3.1. Main Constraints in MTF Metamodel

1 Instances of MPOperation class are always leaves (they do not have an outgoing

edge).

2 Data type between matching point-to-point operations must match unless

MPI_BYTE data type is specified.

3 A call to MPI_Init must precede any other MPI call in the program, except for

MPI_Initialized routine that can be used to check if MPI_Init has been called or not.

4 Every process in the MPI environment must call MPI_Finalize before exiting unless

a call to MPI_Abort has been made.

5 The StartTime of an MPI_Wait statement cannot occur before the StartTime of the

corresponding Send or Receive operations.

6 A collective operation should match the same type of collective operation in all other

processes. Therefore, the maximum number of matched operations may not exceed

the number of processes in a communicator.

7 The end-time for a Barrier object of one process cannot be before the start-time for

any of the matched Barrier objects of the other processes.

8 An object of type Barrier cannot reference an object of type CollectiveData.

9 The type signature (SendSize, SendDataType) for MPI_Bcast at the root process

must be equal to the type signature of the matching MPI_Bcast on all processes

(receiving processes) in the communicator.

10 In a Gather operation, The receiving buffer for non-root process should be equal to

null.

11 Instances of AllGather do not reference a root process.

12 Instances of AllToAll do not reference a root process.

13 Only an edge with a fork-sequence type can have more than one child node.

66

3.4.2 Syntactic Form

The syntactic form of an exchange format describes the way the data (instances of the

abstract syntax metamodel) is carried. There exist several data carriers including XMI

(XML Metadata Interchange) [XMI-OMG], GXL (Graph Exchange Language) [Holt 00],

TA (Tuple Attributes language) [Holt 98], etc. These syntactic forms vary depending on

whether they are based on XML or not, their ability to carry the metamodel as well as the

instance data, their compactness, etc.

We suggest that an adequate syntactic form that can be used with MTF should have the

following characteristics:

1. It should be compact in order to be able to handle very large traces and enable the

scalability of the trace analysis tools.

2. It needs to be able to carry the metamodel as well as the data (instance of the

metamodel). This will allow tools to check the consistency of the data against the

metamodel.

3. It should be open and portable. This excludes proprietary and binary syntactic

forms that are dependent on a particular technology.

4. It should have tool support available such as parsers and viewers.

5. It should be adopted by tool vendors. This requirement favors well accepted data

carriers such as the ones that have been standardized (e.g. XMI).

Except for Requirement 1, all other requirements can be met by a known XML-based

language such as GXL, which is widely accepted in academia and industry [Holt 00].

However, when the GXL file is loaded into memory, the XML tags, which are considered

verbose, will not be part of the loaded trace.

67

GXL is built on a number of pre-existing syntactic forms for exchanging software artefacts

such as GraX [Ebert 99], TA [Holt 98], and RSF [Müller 88]. Figure 3.3 shows an example

using GXL to represent an MPI trace which is used in the case study of this chapter to show

the effectiveness of MTF to capture large MPI traces.

<gxl>
<graph>
<node id = “scen001”>
<attr name = “description”>
<string> Weather Research and Forecasting Model
Test</string>
</attr>
</node>
<node id = “trace001”>
<attr name = “startTime”>
<double> 12:00:00 </double> </attr>
<attr name = “endTime”>
<double> 12:00:40 </double> </attr>
<attr name = “comments”> <string> Sample MPI
trace of Weather Research and Forecasting Model
code </string></attr>
</node>
<node id = “PRCR00001”>
<attr name = “ProcessorName”>
<string> Processor 1</string> </attr></node>
<node id = “PRC00001”>
<attr name ="rank">
<int> 0 </int></attr>
<attr name ="ProcessName">
<string> Process 1 </int></attr></node>
<node id = “PRC00002”>
<attr name ="rank">
<int> 1 </int></attr>
<attr name ="ProcessName">
<string> Process 2 </int></attr></node>
--- REMAINING PROCESS NODES {2 - 15}
<node id = “COMM 1000000000”>
<attr name ="COMMName">
<string> MPI Communicator 0
</string></attr></node>
<node id = “trc000001”>
<attr name ="MPOperationName">
<string> MPI_Init </string></attr>
<attr name ="startTime">
<double> 0.00070105 </double></attr>
<attr name ="endTime">
<double> 0.0008256 </double></attr></node>

<node id = “trc000002”>
<attr name ="MPOperationName">
<string> MPI_Init </string></attr>
<attr name ="startTime">
<double> 0.00070185 </double></attr>
<attr name ="endTime">
<double> 0.0008311 </double></attr>
</node>
--- REMAINING MPI_Init NODES
<node id = “trc000017”>
<attr name ="MPOperationName">
<string> MPI_Bcast </string></attr>
<attr name ="startTime">
<double> 0.001653567 </double></attr>
<attr name ="endTime">
<double> 0.0233165 </double></attr>
</node>
<node id = “trc000018”>
<attr name ="MPOperationName">
<string> MPI_Bcast </string></attr>
<attr name ="startTime">
<double> 0.00172138 </double></attr>
<attr name ="endTime">
<double> 0.0297359 </double></attr>
</node>

--- REMAINING TRACE NODES
trace001
<edge from = “scen001” to =
“trace001”></edge>
<edge from = “trace001”to =
“trc000001”></edge>
<edge from = “trc000001” to =
“PRC00002”></edge>
<edge from = “trace001”to =
“trc000002”></edge>
<edge from = “trace001”to =
“trc000003”></edge>

--- REMAINING EDGES
</graph>
</gxl>

Figure 3.3. An example of an MPI trace captured with MTF and carried by GXL

68

3.5 MTF Tool Support

In this section, we present a prototype tool that we have developed to support the analysis

of MTF traces. Our tool is written in Java as an Eclipse plug-in. Figure 3.4 shows the

architecture of the tool.

MTF

Trace

Importer

MPI Application

MTF Query

Engine

MTF Trace Generation

Engine
MPI Trace Visualizer

MTF Trace Repository
MTF

Trace

Exporter

Figure 3.4 The MTF Tool Architecture

The tool consists of four main components presented here and discussed in more detail in

the subsequent sections:

• The MPI trace repository: We used EMF (Eclipse Modeling Framework) [EMF] to

create an Ecore model from which we generated the implementation of the MPI

metamodel classes. The MPI trace query engine: We have developed a powerful

query language that can retrieve all sort of information from an MPI trace modeled

in MTF.

• The MPI Trace Generation Engine: We have developed an engine that permits

generating traces in the form of MTF (carried in GXL).

69

• The MPI Visualizer: The visualizer aims to visualize MPI traces in a usable manner.

The implementation of this component is not completed, and therefore, it is not

included in this chapter.

• MTF Trace Importer and the MTF Trace Exporter are two modules used to convert

the MTF traces from and to other trace formats respectively. We developed

importers for OTF [OTF] and SLOG [SLOG] trace format, two commonly traces

format used for MPI traces.

3.5.1 The MTF Trace Repository

The MTF trace repository is based on the Eclipse Modeling Framework (EMF), which is a

modeling framework and code generation facility for building applications based on a

structured data model [EMF]. The advantages of using EMF are as follows:

1. It explicitly represents the data model which gives a clear understanding of the data

structure.

2. It generates an implementation from the model automatically.

3. If there is an update to the model, the corresponding implementation is also updated

automatically.

4. It provides the flexibility to import a UML model (such as the MTF class diagram)

created using any supported UML CASE tool such as Rational Rose [Rose].

In our work, we created an Ecore model by importing the MTF class diagram into EMF.

We were then able to generate a Java implementation of the class diagram that is used by

the other components of the tools such as the query engine.

70

3.5.2 MTF Query Language

In order to facilitate the use of MTF, we have implemented a set of queries in our EMF-

based tool for accessing and retrieving of specific information about MPI traces. Every

query has an implementation that can retrieve information about traces related to a single,

group, or all the processes in a specific communicator.

Table 3.2 shows the part of the query that determines which processes the query should run

on. For example, when specifying a query with (3-6) as the process parameter, it means

that the query will only return a slice of a trace that involves processes 3 to 6 inclusive. In

the following, we explain the different types of queries implemented in our toolset for MPI

traces.

Table 3.2. Processes Specified in a Query

Process (pn) Traces related to one process only.

Processes (pm - pn) Traces related to a sequence of processes.

Processes (pa, pc, pm,…, pn) Traces related to a selected number of processes.

Processes in Communicator c1 All processes in an MPI communicator.

3.5.2.1 Point-to-Point-Related Queries

Point-to-point related queries retrieve information that pertains to MPI point-to-point

operations. Table 3.3 shows the information that the queries supported by our tool are

capable of retrieving for point-to-point processes.

Table 3.3 Point-to-Point Queries

1 All point-to-point operations for a specific set of processes.

2 All Send operations for a specific set of processes.

3 All Receive operations for a specific set of processes.

4
All point-to-point operations sent and/or received between time t1 and time t2 for a

set of processes where size of data is less than, equal to, or greater than sizen.

71

3.5.2.2 Collective-Related Queries

Collective related queries retrieve information that pertains to collective operations. Since

collective operations involve all the processes in a communicator, we have only

implemented the queries that are related to traces of one process or all the processes in a

communicator. Table 3.4 shows the collective queries supported by our tool.

Table 3.4. Collective Queries

1 All Collective operations related to one process or all the processes in a

communicator.

2 All traces related to a specific collective operation for all processes in the group.

3 All Collective operations executed between time t1 and time t2 related to one

process in a communicator.

4 All Collective operations executed between time t1 and time t2 related to one

process in a communicator where size of data sent/received is less than, equal

to, or greater than sizen.

3.5.2.3 Message-Related Queries

Message-related queries target traces of messages exchanged in point-to-point operations.

Table 3.5 shows the main queries used to retrieve information related to messages

transferred using point-to-point operations.

Table 3.5. Message-Related Queries

1 All messages in the MPI trace.

2 All messages exchanged among a group of processes.

3 All messages exchanged among a group of processes between time t1 and time t2

related to where size of data sent/received is less than, equal to, or greater than

sizen.

72

Figure 3.5 shows a few simple query examples that can be used in our tool to retrieve

information from the trace under study.

Example 1: retrieve all messages in Communicator C1

SELECT ALL MESSAGES IN COMM(C1)

Example 2: retrieve all messages between process 1 and process 2

SELECT ALL MESSAGES BETWEEN PROCESS(1,2) IN COMM(C1)

Example 3: retrieve all point-to-point operations between process 1 and process 2

SELECT POINT_TO_POINT_OPERATIONS BETWEEN PROCESS(1,2) IN COMM(C1)

Example 4: retrieve all collective messages among all processes in communicator C1

SELECT COLLECTIVE_OPERATIONS AMONG ALL PROCESSES IN COMM(C1)

Example 5: retrieve all Broadcast messages that Process 1 performed

SELECT BROADCAST FOR PROCESS(1) IN COMM(C1)

Figure 3.5. Simple Query Examples

This query language can also be used to compute statistical information such as the time

duration of a particular process in a MPI communication, the number of bytes a process

sent to other processes and the number of bytes a process received from other processes

during MPI communications. Also, we provide some queries for retrieving profiling

information from the MPI execution trace. For this purpose, we define the following

functions:

Process-fan-in: A process fan-in represents the number of bytes received by a process. This

includes messages received by point-to-point as well as collective operations. A process

fan-in includes data received using the following operations.

Bytes Received(p) = ∑ p = receiver Message.DataSize + ∑ p CollectiveData.RcvSize

Process-fan-out: A process fan-out consists of the number of bytes sent by a process. This

includes messages sent by point-to-point as well as collective operations. A process fan-

out includes data sent using the following operations.

Bytes Sent(p) = ∑ p = sender Messages.DataSize + ∑ p CollectiveData.SendSize

73

3.5.3 MTF Trace Generation Engine

Trace generation is another important feature in a trace analysis tool. We built our own

tracing API which generates MPI traces based on our proposed trace format, MTF. We

used the MPI standard Profiling Interface (PMPI) [MPI], for the instrumentation of the

various MPI operations in a given program.

3.6 Scalability of MPI Traces

In this section, we present a set of techniques for compacting MPI execution traces that are

based on graph theory. First we present some rules that can be used to normalize the

original call tree and then we present a technique to convert the normalized graph into a

directed acyclic graph.

3.6.1 Call Graph Normalization

The trace of each process in an MPI program can be represented as a routine call tree where

MPI routines are at the leaf level. Usually, these programs generate many contiguously

repeating events in the execution trace. These contiguous occurrences can be collapsed

resulting in a normalized version of the original graph. This increases the possibility of

finding similar sub-trees in the call graph as will be illustrated in the directed acyclic graph

example.

Contiguous repetitions are often caused by the presence of loops and recursive calls in the

code or the way the scenario is executed. Removing these repetitions from a trace can

considerably reduce its size as shown by Hamou-Lhadj et al. in [Hamou-Lhadj 09].

Contiguous repetitions can be removed by collapsing the repetitions into one node in the

graph. However, a trace file needs also to provide all of its original data including the

74

timestamps. We therefore propose to keep an array of timestamps associated with the

remaining node. For example, if we have the following repetitive events (A, t1), (A, t2), and

(A, t3), where A is the event and ti represents the timestamp, then we can collapse them into

one node (A,{t1, t2, t3}) that keeps track of the timestamps in an array. Note that we only

consider the routine name. If the value of the parameters for each call needs to be preserved

then this compaction will fail. However, it is usually sufficient to understand that a

particular routine is executed to build a mental model of the program without having to

worry about the details of the call.

A

B B C B

A

B

seq: 2

C B

A

B B B B

D

A

B

seq: 2

B B

D

A

B B B B

seq: 4

A

B

(a)

(b)

(c)

A

B C B C

fseq: 2

A
(d)

B C

Figure 3.6. Collapse Contiguous Calls

Figure 3.6 shows four examples of how we collapse repetitive nodes in the trace. As

mentioned earlier, the numbers on the edges represent the order of calls and are added here

for clarification. Collapsed nodes should be at the same nesting level of calls. Example 3a

shows that only the first two occurrences of ‘B’ can be collapsed. Example 3b shows that

since the third occurrence of ‘B’ is calling ‘D’, then only the first two occurrences of ‘B’

can be collapsed. Example 3c shows that all four occurrences of ‘B’ can be collapsed since

they all occur at the same nesting level and none of them is calling another node. The edge

75

from ‘A’ to ‘B’ includes the order of its occurrence along with the number of repetitions.

Moreover, in Figure 3d another type of edge is used. We call this as a fork-sequence which

indicates that the ‘B, C’ sequence is repeated twice in the graph and is being called by ‘A’.

The fork-sequence edge is the only edge type that allows more than one child node. This

is a constraint that is added to our metamodel.

Also, nodes that occur from recursive calls can be collapsed into one node. For example,

Figure 3.7 shows that ‘A’ is repeated 5 times in the tree resulting from recursive calls in

the program. We collapse recursive calls by keeping the first call to ‘A’ and then by using

a recursive edge with the number of repetitions to another node called ‘A’ which represents

the recursive calls.

A
1

rec = 5
A

A A A1 A3 4A 2 A5

Figure 3.7. Collapse Recursive Calls

Messages exchanged between two processes can also be collapsed into one message node

if they are identical while keeping track of the message timestamps in an array. Figure 3.8

shows an example depicting how the same message can be collapsed into one message

node while keeping the associated timestamps. The metamodel in the next section shows

that a Message class is associated with the Send and Receive classes using the

MessageLink class. A message instance may have many MessageLink instances to a Send

and Receive operations. The MessageLink class will simplify the retrieval of the

timestamps from the timestamp array in the Message node.

76

As can be seen from the previous example, there are three types of edges; the sequence

edge ‘seq’, the recursive edge ‘rec’, and the fork-sequence edge ‘fseq’. These edge types

are represented by an attribute in the MTF metamodel.

f1

seq: 3

Send Receive

seq: 3

Msg 1, ts1

f2 f3

f1

f2 f4

P2

Msg 1, ts3

Msg 1, ts2

P1 f1

seq: 3

Send Receive

seq: 3

Msg 1

ts1, ts2,ts3

f2 f3

f1

f2 f4

P2P1

Figure 3.8. Message Compaction Example

3.6.2 Converting Call Graph to an Ordered Directed Acyclic Graph

Our second compaction mechanism consists of representing repetitions that appear non-

contiguously in the trace (also known as trace patterns) only once in a trace. For this

purpose, we adapted the compactness scheme presented by Hamou-Lhadj and Lethbridge

[Hamou-Lhadj 04] and in which the authors proposed to transform a call tree into an

ordered Directed Acyclic Graphs (DAG) where similar sub-trees are represented only once

[Downey 80]. The authors showed that this transformation provided maximum

compactness of the trace data while it preserved the order of calls and other attributes of

the original trace.

In order to convert the call tree into an ordered directed acyclic graph, we used a variant of

Valiente’s algorithm [Valiente 00] which was modified by Hamou-Lhadj et al. [Hamou-

77

Lhadj 04] and applied it to traces of routine calls. Valiente’s approach is a bottom-up

approach for finding isomorphic trees where it traverses a tree from the leaves to the root

node. The algorithm assigns each node a certificate number. Two nodes n1 and n2 will have

the same certificate number if they belong to two sub-trees rooted at n1 and n2 that are

isomorphic. Each node will have a signature value which is a concatenation of the node

label and the certificate values of its child nodes. The signature value will be used in the

calculation of the certificates. A leaf node will have its label as its signature. Therefore, in

a bottom-up fashion, nodes with the same signature will be assigned the same certificate

value.

Figure 3.9 shows an example of converting a tree into an ordered DAG after removing

contiguous repetitions (Figure 3.9b). It should be noted that the presented graph have

ordered edges from left to right. As shown in Figure 3.9b, two edges are of type seq

(represents a sequence of the same event) and another two are of type rec (represents a set

of recursive calls). The edge contains the number of repetitions which indicates how many

times the node is originally represented. Figure 5c shows the final DAG which contains 9

nodes and 11 edges compared to 23 nodes and 22 edges in the original tree.

This simple example shows that the DAG provides a good compaction ratio compared to

the original tree. It should be noted that without the graph normalization step, the three sub-

trees in Figure 3.9a (with bolded nodes) will not be considered equivalent and the

conversion to DAG will not be efficient. Similarly, the two sub-trees that represent the

recursive calls for F will not be considered equivalent. We believe that this is the first time

this technique is used for MPI traces.

78

A

F

RB

F

B

B

C C D

F

F C D K L

F

F

F C DL

(a) Original Call Graph:

A

F
R

B

C D F

seq: 1,1,1 rec: 2, 3
seq = 2

seq: 2, 1 , 2

(c) Ordered DAG:

A

F RB F BB

C D F C D K F C D

seq = 2 rec = 2 rec = 3 seq = 2

L

seq = 2

(b) Normalized Graph:

D

K L

Figure 3.9. Tree to DAG Conversion Example

3.7 Validation of MTF

In this section, we discuss how MTF meets the requirements for a standard exchange

format that we presented in Section 3. Table 3.6 summarizes the evaluation of MTF with

79

respect of each requirement. As shown in Table 3.6, the design of MTF meets many of

these requirements. It is expressive, fully supporting MPI functions. It is built with

simplicity in mind using proper and well recognized modeling practices. It is also designed

with transparency in mind by suggesting a data carrier that can not only carry MTF instance

data but MTF metamodel (i.e., the abstract syntax) as well. This will allow tools that do

not support MTF to check the well-formedness of an MTF trace with respect to the

metamodel by reconstructing, on the fly, the metamodel from the MTF file. The design of

MTF also favours reuse of an existing solution. First, many object-oriented design

techniques have been used to build the MTF metamodel, which should readily enable tool

builders to support MTF. Also, we recommend reusing an existing data carrier (e.g., GXL)

rather than creating a new one so as to avoid reinventing the wheel. We also believe that

MTF is easily extendible.

Table 3.6. Validating MTF against requirement for a standard exchange format

Requirement Justification

Expressiveness

MTF supports all the necessary information for MPI point-to-point

and collective operations that enable the analysis of MPI traces using

MPI trace analysis tools.

Scalability

We showed how MTF is capable or representing MPI traces as a

directed acyclic graph. Also, we showed how contiguous events can

be supported using the list of timestamps.

Extensibility
MTF can be extended in many ways to support new types of traces

by extending the Trace and the TraceableUnit classes.

Openness

MTF is provided as a metamodel and has been published in two

different please. Also, a website will be shortly made available from

which MTF specifications and accompanying tools can be

downloaded.

80

3.8 Case Study

This section includes two parts for validating the scalability and the querying of MTF.

3.8.1 Scalability of MTF

In this section, we provide some results that show the usefulness of the compaction

approach. Furthermore, we provide some results gathered from running some of the queries

implemented in MTF. We used a 1.83 GHz Intel Core 2 Duo CPU with 3.0 GB of RAM

for our experiments. In order to show the ability for MTF to represent MPI traces generated

from large systems in a compact form, we tested it on several trace files generated by the

VampirTrace tracing tool [VampirTrace].

VampirTrace generates traces in the OTF format presented in Chapter 2. The OTF format

does not apply any compaction on the trace events themselves. It uses zlib [Gailly 02] to

compress the trace file into several streams. However, the number of events in the

uncompressed OTF file maps exactly to the number of events generated from the target

system. In our study, we take OTF traces and apply our compaction techniques on them.

More precisely, we load OTF traces as a call tree. Each call tree represents the calls

executed by one process. The point-to-point messages are linked to their corresponding

MPI calls as was shown previously in Figure 3.1. Then, we perform our collapsing rules

on the nodes in the tree as well as on the point-to-point messages. Finally, we convert each

call tree into a DAG which will result in an MTF representation of the original OTF trace.

We targeted four programs provided by the NAS Parallel Benchmark [NAS]. We used the

VampirTrace tracing tool to generate traces in OTF format. Also, we tested it on an OTF

trace file that is generated from the Weather Research and Forecasting (WRF) model

[WRF]. The scalability study is also applied to large traces generated from SMG2000

81

[SMG2000] and Sweep3D [Sweep3D] programs. In the following, we show the

compaction gain obtained by turning OTF traces into MTF.

• The NAS Parallel Benchmarks (NPB 3.3)

The NAS parallel benchmarks [NAS] are a suite of benchmarks for performance evaluation

of parallel supercomputers. They are developed and maintained by the NASA Advanced

Supercomputing (NAS) Division (formerly the NASA Numerical Aerodynamic

Simulation Program) based at the NASA Ames Research Center. In this case study, we

target four programs that are part of the NPB suite (CG, MG, LU, and SP). We briefly

describe each target program along with the results of the compaction rate on two traces

from each program generated by the VampirTrace tool.

CG: This program represents a Conjugate Gradient method to compute an approximation

to the smallest Eigen value of a large and sparse symmetric positive definite matrix. This

kernel is useful for unstructured grid computations in order to test irregular long distance

communication that employs unstructured matrix vector multiplication. We tested our

compaction algorithm on two traces generated from running CG on 16 and 32 processes

respectively. Table 3.7 shows the test results along with the compaction rate obtained after

applying our compaction method. The results show that the compaction rate obtained using

MTF is almost 78% in both cases, which is considerably high. We can also notice that the

number of nodes that represent routines in all MTF traces is considerably low compared to

the original traces (561 instead of 3509121 in the case of 16 processes). This is normal

since the traced program is relatively small; it does not contain a lot of routines. In OTF,

each call is represented as a separate object, which significantly increases the number of

times the same routine appears in the trace. This number becomes higher as the number of

82

processes increases. This demonstrates the need to represent routine calls of HPC

applications as ordered DAGs.

MG: This program represents a simplified MultiGrid kernel which requires highly

structured long distance communication and is used to test short and long distance data

communication. We tested our compaction algorithm on two traces generated from running

MG on 16 and 32 processes respectively. The results in Table 3.7 show that the compaction

in both cases is almost 50%, which is satisfactory but also shows that further improvements

to our approach are needed to obtain better results. For example, we can improve the way

we measure the way two sequences of calls are deemed similar. In this thesis, we are only

considering identical matching. Perhaps, we need to consider other matching criteria such

as ignoring the number of contiguous repetitions when comparing two sequences of calls.

However, the resulting MTF model will lose some information about the original traces.

Further studies should be conducted to investigate ways to balance compaction and the

quality of the information that we want to capture.

LU: This problem performs a synthetic computational fluid dynamics (CFD) calculation

by solving regular-sparse, block (5 X 5) lower and upper triangular systems. We tested

MTF on two traces with 32 and 64 processes. Table 3.7 shows the compaction rate for the

trace of 32 processes and 64 processes respectively. The trace of 64 processes contains

more than 18 million events (nodes). It has a slightly smaller compaction rate (65%)

compared to the 32 processes’ trace (69%).

SP: This problem offers a solution of multiple, independent systems of non- diagonally

dominant, scalar, and pentadiagonal equations. SP solves three sets of uncoupled systems

of equations in the x, y, and in the z dimensions starting with the x-dimension. This problem

83

only accepts a square number of processes. In the case of 64 processes the compaction rate

was 73.1%. However, when considering 100 processes, the compaction rate was reduced

to 66%. Table 3.7 shows the details for the MTF compaction of the SP traces.

• Weather Forecasting & Research (WRF) Model:

WRF [39] is a next-generation mesoscale numerical weather prediction system developed

to help in both operational forecasting and atmospheric research studies. We ran the

compaction technique on a trace that is generated from the WRF model on 16 processes.

The results in Table 3.7 show that the compaction rate is 51%.

• SWEEP3D

Sweep3D [Sweep3D] models a 3D discrete ordinates neutron transport and represents the

heart of a real ASCI application. This code was developed at LLNL and is included in the

ASCI Blue Benchmark Suite. We generated two traces from running the program using 16

and 32 processes. The compaction rate for the trace generated from running 16 processes

is 44% as shown in Table 3.7. However, the compaction gain increased when for traces

generated from running the program on 32 processes. This shows that for larger traces

(with more processes) the gain achieved may be higher.

• SMG2000

SMG2000 [SMG2000] is a parallel semicoarsening multigrid solver applied for linear

systems based on finite difference, finite volume or finite element discretization of the

diffusion equation on logical rectangular grids. In the case of SMG2000, we tested the

compaction algorithm on three traces generated from running the program on 16, 32, and

64 processes respectively. As can be seen in Table 3.7, the compaction rate in the three

84

cases is around 50%. SMG2000 is a very complex system in terms of inter-process

communication and shows to have many different patterns.

As shown in Table 3.7, we have clearly demonstrated that using MTF results in a

significant reduction in the number of model elements, which in our point of view, can

improve the scalability of analysis tools. It is worth mentioning that the compaction

algorithm took in some cases several hours to complete which necessitates the search for

faster algorithms such as the VF2 [Cordella 01] and nauty [McKay 81] algorithms that

have linear time and space complexities.

Table 3.7. Empirical Results (#P: number of Processes, N: number of Nodes, E: number

of Edges, A =∑(N0, E0, M0) , B = ∑(Nc, Ec, Mc), CR: the Compaction Rate = (1 – B /

A) * 100%, M :number of Messages, 0: before compaction, c: after compaction)

 #P N0 E0 M0 A Nc Ec Mc B
CR

(%)

CG 16 3509121 3509105 47104 7065330 561 1479281 42716 1522558 78

CG 32 7139585 7139553 134656 14413794 1121 3039969 119252 3160342 78

MG 16 609874 609858 11024 1230756 648 608280 7588 616516 49

MG 32 692690 692658 21728 1407076 561 689428 15001 704990 50

LU 32 10473947 10473915 1644936 22592798 1518 6009007 986054 6996579 69

LU 64 18310623 18310559 3542924 40164106 2990 12088359 2046493 14137842 68

SP 64 9525649 9525585 1232256 20283490 2881 4340289 1112352 5455522 73

SP 100 14359525 14359425 2406600 31125550 4501 8465901 2188443 10658845 66

WRF 16 272373 272357 25680 570410 8779 245752 21881 276412 51

Sweep 16 962244 962228 239616 2164088 546 960772 239472 1200790 44

Sweep 32 4867550 4867518 1181578 10916646 672 4867518 380198 5248388 52

SMG 16 2095262 2095246 489148 4679656 336 2095246 179543 2275125 51

SMG 32 2084228 2084196 519168 4687592 1090 2081284 518902 2601276 44

SMG 64 10593512 10593448 2662152 23849112 1344 10593448 778816 11373608 52

85

3.8.2 Querying MTF

In Table 3.8, we present part of the results obtained by querying the MTF trace data using

our proposed query language. Since collective operations are executed on all processes

simultaneously, we can see that all the processes execute the same number of collective

operations as expected. Also, since the program uses non-blocking point-to-point

operations, we noticed that the MPI_wait operation was used by all processes to represent

non-blocking calls. For example, Process 5 has 3210 MPI_wait operations that were used

to detect the completion of the 1605 MPI_Isend and 1605 MPI_Irecv operations. Finally,

the size of data helps in identifying which process or processes have the highest load in the

program.

Table 3.8. MPI Trace Statistics

P Init Fin Wait Bcast Gather Scatterv Isend Irecv Sent (bytes)
Received

(bytes)

P1 1 1 2140 640 120 60 1070 1070 159205808 565756448

P2 1 1 3210 640 120 60 1605 1605 213522608 186419232

P3 1 1 3210 640 120 60 1605 1605 213522608 186419232

P4 1 1 2140 640 120 60 1070 1070 158508560 131405184

P5 1 1 3210 640 120 60 1605 1605 236278352 209174976

P6 1 1 4280 640 120 60 2140 2140 289913264 262809888

P7 1 1 4280 640 120 60 2140 2140 289913264 262809888

P8 1 1 3210 640 120 60 1605 1605 234899216 207795840

P9 1 1 3210 640 120 60 1605 1605 236278352 209174976

P10 1 1 4280 640 120 60 2140 2140 289913264 262809888

P11 1 1 4280 640 120 60 2140 2140 289913264 262809888

P12 1 1 3210 640 120 60 1605 1605 234899216 207795840

P13 1 1 2140 640 120 60 1070 1070 159198128 132094752

P14 1 1 3210 640 120 60 1605 1605 213522608 186419232

P15 1 1 3210 640 120 60 1605 1605 213522608 186419232

P16 1 1 2140 640 120 60 1070 1070 158508560 131405184

Total 16 16 51360 10240 1920 60 25680 25680 3591519680 3591519680

86

We also provide an example of using two of the implemented queries in the MTF

metamodel to query information about the trace generated from running SWEEP3D on 16

processes.

• We queried the number of point-to-point messages exchanged between each pair of

processes in the program. The results show that based on a rectangular grid, each

process is communicating with its direct neighboring processes only. All

neighboring processes sent 4992 messages to each other.

• In running the query for calculating the size of data sent from on process to another,

the results showed that all the pair processes exchanged the same amount of data

(38338560 bytes).

This shows that MTF queries are able to collect detailed information from the target traces

that can be used for statistical analysis of the execution trace.

3.9 Summary

We presented a new exchange format for MPI traces generated from HPC applications,

called MTF. MTF is built with the requirements for a standard trace exchange format. We

provided a detailed specification of the abstract syntax (metamodel) of MTF in the form of

a UML class diagram and an associated documentation. We also discussed the syntactic

form that should be used with MTF. We also presented the main components in MTF that

will be part of a toolkit for generating and querying MTF traces. MTF is lossless but traces

can be represented using a compact format as a directed acyclic graph constructed from the

original routine call tree. MTF supports different levels of abstractions such as inter-

process communication traces and routine call traces. Finally, we showed how MTF can

represent large MPI traces generated from different MPI HPC programs and benchmarks.

87

Additionally, we tested MTF using different queries supported using the proposed query

language.

88

Chapter 4. Communication Pattern Detection

4.1 Introduction

High Performance Computing (HPC) systems that use the message passing paradigm for

inter-process communication tend to follow specific communication patterns throughout

their execution. These communication patterns play an important role in the analysis of

HPC by providing detailed views of the inter-process communication behaviour in the

program. These views can in turn help in the understanding of the overall program

behaviour. Moreover, they provide useful information about the parallel programs such as

their parallel structures and communication topologies. This information can be further

exploited for debugging and the validation of the actual behaviour with respect to the

intended inter-process communication.

However, as the system undergoes several ad-hoc maintenance tasks, it becomes difficult

to know which patterns are being supported. This is further complicated by the fact that

documentation is rarely updated when changes to the system are made, making it almost

impossible to know which parts of the system follow specific communication patterns.

Several approaches for detecting repeating communication patterns in parallel programs

[Preissl 08, Kunz 97, Ma 09] have been proposed. However, these approaches are purely

syntactic. In other words, they treat a message passing trace as a mere string for which they

apply the pattern matching methods. This often results, as we will show in this chapter, in

a large number of patterns among which many of them are noise. These approaches do not

guarantee the detection of all valid patterns either. To further complicate matters, using

these techniques, software engineers need to identify the valid patterns among all the ones

89

that are detected. This task is usually done manually, which hinders the practical value of

these approaches. There is therefore a need for techniques that can automatically identify

valid patterns.

In this thesis, we present a pattern detection approach that uses additional information

about a trace to guide the detection process. More precisely, we use the routine calls

invoked in an MPI process trace to act as delimiters that can indicate the beginning and

end of valid patterns. The objective is to improve the quality of the detected communication

patterns as well as reducing the number of false positives.

In addition to this, we propose another algorithm that detects patterns in a trace that are

similar to a pre-defined pattern (i.e., a known communication pattern provided as input).

The objective is to allow software engineers to verify whether the traced scenario

implements a specific communication pattern or not. This is particularly important in the

context of distributed systems since some applications are implemented according to

known (and documented) process communication topologies [Palma 09].

The rest of the chapter is organized as follows. Section 4.2 gives an overview of the

communication patterns. Section 4.3 presents the main approach for communication

pattern detection and matching. The repeating communication patterns detection approach

and the algorithms for detecting repeating patterns on each process trace separately are

presented in Section 4.4. Section 4.5 presents the communication pattern matching

algorithm. Section 4.6 presents the algorithm for removing contiguous repeats in message

passing traces. The communication patterns construction algorithm is presented in Section

4.7 followed by a case study in Section 4.8. Finally, the chapter is summarized in Section

4.9.

90

4.2 Communication Patterns

An inter-process communication pattern describes the way several program processes

interact to accomplish a specific task. HPC applications may have one or more

communication patterns throughout their execution. Generally, a pattern can be viewed as

a sequence of events that are repeated non-contiguously in a trace. In parallel programs, a

communication pattern is more complex than that since it involves multiple processes -

each represented in a trace file that we call a process trace. We refer to patterns that are

repeated in one process trace as process patterns. A communication pattern is usually a

collection of process patterns.

MPI communication patterns may involve point-to-point operations (operations that

involve only two processes) and/or collective operations (operations that involve all the

processes). For example, a communication pattern may only involve MPI collective

operations such as MPI_Bcast (an MPI operation that can be used by a process to broadcast

a message to all other processes), and MPI_Gather (this is used by a process to collect

information from other processes).

An example of a communication pattern is shown in Figure 4.1. The figure depicts a sample

trace generated from running four processes in parallel. Each horizontal line represents the

events from each process. When matching the MPI events on the partner processes, a

communication pattern will be generated. The figure represents a 2D-nearest-neighbor

communication pattern (with a 4 x 1 process topology) that is repeated three times at

different locations in the graph. Non-MPI events are represented using dark bars. The graph

that we used to depict the communication events is the event graph [Kranzlmüller 00]

where time is on the x-axis and the events flow from left to right.

91

Figure 4.1. Repeating Communication Pattern (top) and Process Topology (bottom)

A process topology is the way the processes are arranged in a certain structure. MPI has

two types of process topologies which are the Cartesian (this example) and the graph

topologies [MPI].

When detecting communication patterns, we look for the way the program processes are

communicating and not what data they are exchanging. For example, each pattern instance

in Figure 4.1 may have different data but the processes are still communicating based on

the same pattern.

Figure 4.2. The wavefront pattern and topology

In addition, some known communication patterns are well documented in the literature

[Palma 09]. They are often used as guidelines for the proper way to implement an inter-

process communication mechanism (for more details about the list of documented

communication patterns, please refer to [Palma 09]). For example, Figure 4.2a presents the

wavefront communication pattern that is used to sweep data from the first node to the last

P1

P2

P3

P4

P1 P2 P3 P4

Process Topology

(b) Topology (a) Wavefront Pattern

P1 P2 P3

P4 P5 P6

P7 P8 P9

P1

P2

P3

P4

P5

P6

P7

P8

P9

92

node diagonally as depicted in the 2D process topology in Figure 4.2b. A wavefront pattern

represents a sweep where processes should first receive the messages from other processes

before sending to the next ones. For example, P5 should first wait for messages from P2

and P4 before sending to P6 and P8.

Figure 4.3 shows another example of a documented communication pattern, and which

presents two patterns that are used in implementing collective communications. The Binary

Tree pattern (Figure 4.3a) is used to implement All-to-One MPI collective operations. For

example, the MPI_Reduce operation is implemented using this pattern. The Butterfly

Pattern shown in Figure 4.3b is a communication pattern that is used to implement All-to-

All MPI collective operations.

Figure 4.3. Examples of known communication patterns

Detecting communication patterns from message passing programs helps software

engineers in understanding the inter-process communication behaviour in these programs

by providing abstract views from the whole execution trace. Also, it has been shown that

these patterns can help software engineers in debugging MPI applications and in

performance optimization [Preissl 08]. For example, a software engineer may decide to

replace a point-to-point communication pattern by collective operations [Preissl 10]. Also,

(b) Butterfly Pattern

P1

P2

P3

P4

P5

P6

P7

P8

(a) Binary Tree Pattern

93

communication patterns can play an important role in revealing the process communication

topology which usually helps in understanding the structure of the MPI program as a whole

and determining the different computational phases in the program.

4.3 Overall Approach

The objective of this chapter is two-fold: (a) detecting patterns in MPI traces no matter if

they are among the documented ones or not, and (b) searching if a given pattern exists in a

trace to help software engineers verify if the processes in the traced scenario communicate

according to a known communication pattern. We anticipate that software engineers would

most likely use this capability to detect the existence of documented communication

patterns (such as the wavefront pattern, the butterfly pattern, etc.) in a trace.

Figure 4.4. Pattern detection and pattern matching approach

The approach for achieving both objectives is presented in Figure 4.4. In both cases, we

first start by decomposing the input MPI trace into n trace files (T1… Tn), each

corresponding to a process in the trace. During this step, we also preprocess the information

contained in a trace by ignoring the message envelope (message size, tag and data type)

MPI

Trace

Input

Pattern

Tandem

Repeats

Removal

Algorithm

Pattern

Matching

Algorithm

Pattern

Detection

Algorithm

T’1 … T’2

T’1

.
.
.

T’n

T1

.
.
.

Tn

L1
.
.
.

Ln

Communicatio

n Pattern

Construction

{Pd1}

.
.
.

{Pdn}

{Pm1}
.
.
.

{Pmn}

94

since we are only interested in the way the processes communicate independently from the

data they exchange. The pattern detection algorithm is used to detect repeated sequences

in each process. The pattern matching algorithm is used to find the patterns in a trace that

match a given pattern. In this case, the input pattern is also decomposed into n process

patterns (L1… Ln). Each process pattern Li is compared to its process trace file Ti in order

to extract its similar patterns. Note that the patterns do not have to be identical. A measure

of similarity is discussed later in the Chapter. An additional step that may be required

before the detection and matching processes start is the removal of contiguous (or tandem)

repeats from each process trace separately. Removing contiguously repeating events may

reduce the trace size and improve the quality of detected patterns. The algorithm for

removing contiguously repeating MPI events is discussed in the chapter.

After extracting the patterns from each process trace (for both algorithms), they are used

as input for the communication patterns construction algorithm to generate the inter-

process communication patterns. In the following, we present each algorithm in the

presented approach in a separate section.

4.4 Repeating Communication Patterns Detection

In this section, we present the communication patterns detection approach in MPI traces.

The main idea is to initially detect the repeating patterns on each process trace and then

construct the communication patterns by matching the partner repeats (patterns) found on

different processes in the program.

Each process trace can be viewed as a stream of events which contains repeating sequences

of events. There are several types of repeats that may exist in a stream of data. We consider

the following types of repeats that will be used later in the pattern detection algorithm. Let

95

consider p1 as the start position of Substring S1, p2 the start position of substring S2, and l

is their length):

1. Tandem (contiguous) Repeats: repeats that are directly adjacent to each other. Given

a string S of length n, a Tandem repeat in S is a tuple (p1, p2, l) such that

∃S[p1 .. p1 + l – 1] = S[p2 .. p2 + l – 1] and p2 > p1 and S[p2 - 1] = S[p1 + l – 1].

2. Maximal (interspersed) Repeat: a repeat that cannot be extended to the left and to the

right. Given a string S of length n, a maximal repeat in S is a tuple (p1, p2, l) such that

∃S[p1 .. p1 + l – 1] = S[p2 .. p2 + l – 1] and p2 > p1 and S[p1 + l] ≠ S[p1 + l] and S[p1 -

1] ≠ S[p2 - 1]

3. Super Maximal Repeat: a maximal repeat that does not occur in any other maximal

repeat.

When considering each process trace as a string that contains message passing events, we

can utilize existing data mining techniques to detect the repeating patterns in each process

trace. The main advantage of this approach is that it only deals with the message passing

events which makes the trace size smaller than when considering other kinds of events such

as routine calls. However, this approach has numerous disadvantages.

• It may result in a large number of patterns with many patterns as false positives due to

three main reasons. First, a pure syntactic approach allows the detection of overlapping

patterns; this case can be easily seen in Figure 4.5. Second, many detected patterns might

end up as a combination of other patterns (a combination of valid and invalid patterns).

Finally, in many cases it is difficult to determine the beginning of the pattern. For

example, when considering this process trace of message passing events

'R3S2S3R2R3S2S3R2R3S2S3R2R3S2S3R2R3' (where S2 means ‘Send to process 2’

and R2 means ‘Receive from process 2’), the sequence 'R3S2S3R2' will be detected as

96

the pattern. This is due to the existence of the R3 event at the beginning of the trace.

However, the real pattern in this case is 'S2S3R2R3'. This case can be easily found when

testing the pattern detection algorithm on different trace files.

• Some valid patterns may not be discovered at all since they exist within a larger invalid

pattern. This usually occurs when the trace has a large number of events and there are a

lot of repetitions in the trace.

Considering only message passing events results in the detection of very long patterns that

are a composition of different adjacent patterns that are repeated in the same sequence in

the trace. Therefore, processing all of these patterns is time consuming and requires in many

cases the user’s intervention in order to determine the valid patterns.

Sequence: (mirrors a process trace generated from Sweep3D)

abababacacacbdbdbdadadadabababacacacbdbdbdadadadabababacacacbdbdbdadadad

Detected Patterns: Number in brackets shows how many times the maximal repeat

occurs in the sequence above

a (27), aba (9), ababa (6), abababacacacbdbdbdadadad (3), ac (9), acac (6), b (18), bd

(9), bdbd (6), da (11), dad (9), dada (8), dadad (6), dadada (5), d (18),

abababacacacbdbdbdadadadabababacacacbdbdbdadadad (2)

Valid Patterns:

ab (9),ac (9),bd (9),ad (9),abababacacacbdbdbdadadad (3)

Figure 4.5. Pattern Detection Based on Syntactic Methods

Some of these limitations can be illustrated in the example of Figure 4.5, which is taken

from a real system execution. The presented sequence simulates a large trace that is

generated from running the Sweep3D [Sweep3D] program. We denote the MPI events as

symbols for simplicity. The valid communication patterns for this application are known

and documented in [Sweep3D]. Sweep3D implements a wavefront pattern with a sweep

from each corner in the process topology to its opposite corner. The example shows that 16

97

patterns were detected despite the fact that only five patterns are valid patterns. In addition,

the approach missed two valid patterns ‘ab’ and ‘ad’. This shows that when applying a

pattern detection approach directly to a trace of message passing events alone the quality of

the detected patterns is low. The longest valid pattern ‘abababacacacbdbdbdadadad’ is a

supermaximal repeat that can be composed from the smaller valid patterns.

4.4.1 Detailed Repeating Patterns Detection Approach

Figure 4.6 presents our detailed approach for detecting communication patterns in MPI

traces. First, the traces of MPI operations and routine calls are collected. Then, we build the

routine call tree for each MPI process. This can be done by simply computing the nesting

level (using the event entry and exit events) for each routine call (including the MPI events

which occur at the leaf level in the tree). Therefore, the whole routine call tree does not need

to be present in memory at the same time. We extract the MPI events from the trace along

with the routine calls that occur directly at the higher level in the call tree.

The routine calls with their timestamps will generate unique constructs in the trace and will

not appear in any detected pattern since they exist only once in the trace (the timestamp is

unique for each routine call). This will guarantee the detection of accurate patterns since the

routine event can identify the start and end positions of the repeats. In some cases, when the

direct callers of the MPI routines are wrapper functions, the routine call events at the direct

higher nesting level will be selected instead.

The size of the trace can be reduced by removing the contiguous repeats before the detected

process at Step 3. Also, another advantage of removing the contiguous repeats is that it

enables the detection of patterns in their general form. For example, ‘ababcdcdefef’ can be

represented as ‘abcdef’ when removing the contiguous repeats in the trace. After detecting

98

all the process patterns in Step 4, the construction of the communication patterns will be

handled using the communication pattern construction algorithm in Step 5. All the detected

patterns will be then stored in the pattern database, which is the result of the approach.

Figure 4.6. Detailed Repeating Pattern Detection Approach

In the following, we detail on the two different versions that are used in the process

repeating patterns detection. The tandem repeats detection algorithm and the

communication patterns construction algorithm are presented in Section 4.6 and Section

4.7 respectively.

4.4.2 Process Repeating Patterns Detection

The pattern detection algorithm uses the concept of n-grams found in statistical natural

language processing. In the classical n-gram pattern detection approach [Karp 72], the

algorithm looks for all n-size patterns in a string. However, this approach is too costly

especially when used for long strings with unknown patterns sizes. Therefore, we

T1 . . . Ti . . . Tn

2. Build the Routine Call Tree for each process trace

3. Remove Tandem Repeats from each Ti (optional)

4. Detect Maximal Repeats (Patterns) in each T’i

5. Patterns Database

T1 . . . Ti . . . Tn

T’1 . . . T’i . . . T’n

6. Construct Communication Patterns

 {PL1} . . . {PLi} . . . {PLn}

{CPd}

1. Trace MPI Programs to Collect Events of:

• Routine Calls

• MPI Operations

99

developed a new algorithm that detects patterns as it goes through the trace. We used bi-

grams (length = 2) as the minimum length of a pattern. The pattern length increases

whenever a new occurrence is detected. This is borrowed from the LZW data compression

algorithm [Welch 84], where whenever a sequence already exists in the pattern database,

the algorithm appends the next character in the text to the end of the sequence. However,

our algorithm differs from the LZW algorithm in that it tries to detect a pattern at the other

positions of its prefix pattern (‘ab’ is the prefix of ‘abc’). This algorithm runs on each

process trace separately and detects all process patterns which will then be input to the

communication pattern construction algorithm. We developed two versions of the n-gram

based pattern detection algorithm. In the following section, we present the Reverse Pattern

Lookup Algorithm followed by the Reverse-Forward Pattern Lookup algorithm in Section

4.4.2.2.

4.4.2.1 Reverse Pattern Lookup Algorithm

In this section, we present our initial version of the pattern detection algorithm. Algorithm

4.1 uses three main objects in the algorithm. The n-gram object keeps track of the current

n-gram and its position. A pattern object contains the pattern sequence, its positions in the

trace and its frequency (number of occurrences). The Pattern List is the dictionary that

holds the detected pattern objects. Moreover, we use two pointers that slide over the trace

in order to return the next n-gram that will be used in detecting the patterns. Since the

minimum length of a repeat is two, we should be able to read a bi-gram from the trace.

Therefore, the two pointers are always adjacent so a bi-gram could be returned when

needed. In the algorithm, we also show how the n-gram grows in size whenever a pattern

is detected.

100

The first five lines are declarations that will be used by the algorithm. The aNewPattern

indicates whether the current pattern is new or existing. The aMatch variable indicates

whether the current pattern can be constructed from its prefix pattern at its previous

positions (returned by the check pattern occurrences algorithm). The tandemRepeats is an

integer value indicating how many times the current pattern is repeated contiguously right

after its current position.

The algorithm starts by reading the first bi-gram (LZW starts by reading a character from

the string), at line 6, which will be considered as the first pattern added to the detected

patterns list. At line 10, the algorithm will check if the detected pattern is repeated

contiguously in the following events in the trace. If the pattern is repeated contiguously

more than once, then the two pointers will advance ((repeats - 1) * pattern size) steps

forward in the trace.

The pointers will start at the beginning of the last detected tandem repeat since it may be

part of a bigger pattern. The algorithm will repeatedly read the next bi-grams from the trace

file and add them to the pattern list until a bi-gram match is detected. In this case, the

algorithm will enter the do-while loop at line 15 and will add the next event from the trace

to the right of the matching bi-gram which will result in a tri-gram (this is similar to the

LZW approach). This occurs by the call to the ConstructNGram function at line 18, which

is a utility function that adds the next event in the trace to the current n-gram.

101

Algorithm 4.1. Reverse Pattern Lookup Algorithm

Then, the algorithm will check whether the tri-gram can be constructed from the previous

occurrence of its bi-gram by calling the checkPatternOccurence function at line 21 (this is

Pattern Detection: this algorithm runs for each

process separately to find repeating patterns

Г: checkPatternOccurence

advanceSteps = (tandemRepeats - 1) * patternSize

1. PatternList: List of extracted patterns

2. aNewPattern: Boolean

3. aMatch: Boolean

4. tandemRepeats: Integer

5. currentPattern: Pattern

6. while(next n-gram is not null){

7. p = position of nextNGram

8. aNewPattern = UpdatePatternList(nextNGram, p)

9. currentPattern = getPattern(nextNGram)

10. tandemRepeats = checkTandem(currentPattern)

11. if (tandemRepeats > 1) then

12. advancePointers(advanceSteps)

13. end if

14. if aNewPattern is false then

15. do{

16. aMatch = false

17. currentPattern = getPattern(nextNGram)

18. nextNGram = constructNGram(nextNGram)

19. UpdatePatternList(nextNGram , p)

20. nextPattern = getPattern(nextNGram)

21. aMatch = checkPatternOccurence(nextPattern,p, currentPattern)

22. tandemRepeats = checkTandem(currentPattern)

23. if (tandemRepeats > 1) then

24. aMatch = true

25. advancePointers(advanceSteps)

26. end if

27. if aMatch is false then

28. remove nextPattern from PatternList

29. end if

30. } while(aMatch)

31. end if

32. end while

102

not part of the LZW algorithm and this is the main difference that enables our algorithm to

detect complete maximal repeats).

In the checkPatternOccurence function, if the previous occurrence of the bi-gram can be

constructed to match the detected tri-gram, the frequency of the tri-gram pattern will be

incremented and the frequency of the bi-gram will be decremented. Since we have a

repeating tri-gram, the algorithm will read the next event and add it to the tri-gram (line

18) and again check if the previous occurrence (line 21) of the tri-gram can be extended to

match the new quad-gram. Again, at line 22, the algorithm will check whether the new

constructed pattern has a tandem repeat or not, if yes, the two pointers will be advanced as

described previously. As can be seen from the algorithm, the n-gram will grow in size

whenever it has a match in the pattern list. If the constructed n-gram cannot be detected at

any previous position of its prefix n-gram, then it will be removed from the list at line 28.

We also present the Check Pattern Occurrence in Algorithm 4.2. This algorithm is being

called by the code presented in Algorithm 1 as ‘checkPatternOccurence’ or ‘Г function. It

is used to detect if the new pattern can also be detected at the previous positions of its prefix

patterns (e.g., for a pattern ‘abcd’ its prefix pattern is ‘abc’). The algorithm will iterate on

the positions of the prefix pattern in order to find whether the next pattern can be detected

at these positions (line 3).

Line 4 makes sure not to continue the iteration when the prefix pattern position is the same

as the next pattern position. Also, lines 6 through 10 make sure not to continue in the

current iteration if next pattern already has the current position curPosition. If none of the

conditions at line 4 and 6 is true, then the next unigram in the trace that follows the prefix

pattern at curPosition will be appended to prefix pattern. Whenever the prefix pattern can

103

be extended to match the new pattern, the frequency of the prefix pattern is decremented

and its position is removed (lines 17 to 20 in Algorithm 2). In the following, we

demonstrate using a short example how the n-gram based algorithm is able to detect the

different types of repeats in the trace.

Algorithm 4.2. Check pattern occurrences

Figure 4.7 presents an example of a trace of 17 point-to-point communication events (S2

means Send to 2 and R2 means Receive from 2). The algorithm starts by reading the first

bi-gram ‘S2, S3’ at position 1 and add it as a new pattern to the pattern list. Since there is

CheckPatternOccurrence: checks if nextPattern can be

constructed from the previous positions of current Pattern.

Returns true if nextPattern can be found at its prefixPattern’s
previous positions

Signature: nextPattern, nextPatternPosition, prefixPattern

1. curPosition: position of the prefixPattern

2. aMatch = false

3. for each curPosition of prefixPattern positions{

4. if curPosition EQUALS nextPatternPosition then

5. continue // get next position

6. if nextPattern has curPosition then

7. aMatch = true

8. prefixPattern.decrementFrequency

9. prefixPattern.removePosition(curPosition)

10. continue //get next position

11. end if

12. currentNGram = prefixPattern.getNGram

13. currentNGram.position = curPosition

14. add next unigram to currentNGram at curPosition

15. if nextPattern.NGram EQ currentNGram then

16. aMatch = true

17. prefixPattern.decrementFrequency

18. prefixPattern.removePosition(curPosition)

19. nextPattern.incrementFrequency

20. nextPattern.addPosition(curPosition)

21. end if

22. end for each

23. return aMatch

104

no contiguous repeat for the pattern, the next bi-gram ‘S3, R2’ will be read and added as a

new pattern.

Trace:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S2 S3 R2 S5 S2 S3 R2 S2 S3 R2 S2 S3 R2 S4 S2 S3 R2

Execution:

Pattern New? Tand? Freq. Pos. Next Action

1 S2 S3 Yes No 1 1 Get next bi-gram

2 S3 R2 Yes No 1 2 Get next bi-gram

3 R2 S5 Yes No 1 3 Get next bi-gram

4 S5 S2 Yes No 1 4 Get next bi-gram

5 S2 S3 No No 2 1, 5 Const. from cur. n-gram

6 S2 S3 R2 Yes Yes 4 1, 5, 8, 11 Append event at position 14

7 S2 S3 R2 R4 Yes No 1 11 Get next bi-gram

8 S4 S2 Yes No 1 14 Get next bi-gram

9 S2 S3 No No 2 8, 12 Construct from current n-gram

10 S2 S3 R2 No No 5 1, 5, 8, 11, 15 End of Trace

Detected Pattern Frequency Positions

S2 S3 R2 5 1, 5, 8, 11, 15

Figure 4.7. Reverse Pattern Lookup Example

Similarly, there is no contiguous repeat for this new pattern, therefore the algorithm will

continue reading until it reads ‘S2, S3’ at position 5. Since this is an existing pattern, its

frequency will be incremented and its position will be added to the pattern positions list.

Again the algorithm will check for contiguous repeats which also do not exist in this case.

However, since this is an existing pattern, the next unigram in the trace will be added to

the pattern resulting in ‘S2, S3, R2’ as a new pattern. The algorithm will detect that there

are two contiguous repeats (tandem) of this pattern. Also, the check pattern occurrence

function will be called and detect that at position 1 (position of prefix pattern ‘S2, S3’ this

new pattern can be detected). Then, the algorithm will append the next event following the

105

last tandem repeat which will result in the pattern found at row 7 in the Execution table in

Figure 5. When the algorithm reaches the end of the trace, it will find that ‘S2, S3, R2’ is

the only maximal repeat with frequency more than 1 in the trace. This example shows how

the n-gram-based algorithm is able to detect patterns (maximal repeats) in trace files of

MPI applications.

4.4.2.2 Reverse-Forward Pattern Lookup Algorithm

In this section, we present a modified version of the algorithm presented in the previous

section. The first difference in this algorithm is that we first detect all the bi-grams in the

trace along with their starting positions. Another difference is that in the previous versions,

the algorithm checks for contiguous repeats (tandem repeats) as it reads the events from

the trace. In this version, we do not check for tandem repeats as this step is currently

handled before the detection process. The first line in Algorithm 4.3 calls the

ExtractBiGrams (presented in the code snippet below) routine at line 1 which is responsible

for the extraction of all the bi-grams and their start positions in the trace. After detecting

all the bi-grams, it removes the bi-grams that only exist once in the trace since they are not

part of any repeating pattern. The advantage of having the bi-grams information available

prior to the detection process is that the algorithm will be able to construct a pattern at all

its positions that start with its prefix bi-gram directly after encountering its first occurrence

in the trace. In the previous algorithm, it is only possible to detect a pattern after

encountering its starting bi-gram at least twice in the trace. This is one of the main

differences between the current version and the previous one.

In ExtractBiGrams, whenever a bi-gram at position i is read it will be added to the pattern-

positions-list of that bi-gram. The algorithm will continue reading the remaining bi-grams

106

until it reaches the end of the trace. At this stage, all detected bigrams will have a frequency

of zero to indicate that they are still not part of the final detected patterns-list. The

frequency attribute will be updated during the pattern detection process.

Algorithm 4.3 continues at line 2 by reading the first bi-gram from the trace. This while-

loop will stop when it reaches the end of the trace. At line 3, the if-statement will check

whether the new pattern (bi-gram) exists in the patterns-list (all bi-grams were detected and

added to the patterns-list along with their starting positions in the trace prior to the detection

process, only those bi-grams that exist only once were removed from the patterns-list). At

line 4, the algorithm enters the do-while loop where the actual detection logic exists. Line

5 defines the overlap variable that holds the number of overlaps the pattern has. Two

occurrences of a pattern overlap when the last event’s position in the first occurrence is

greater than the start position of the second occurrence of the pattern. For example, the two

occurrences of pattern aba in ababa overlap and overlap will be equal 1. Line 6 defines

the distance variable which holds the distance between the start positions of the first two

overlapping occurrences of a pattern.

Routine: ExtractBiGrams

1. for i = 0 to trace.size - 2

2. bigram = trace[i] + trace[i+1]

3. if bigram ∉ PatternsList then

4. addToPatternList(bigram)

5. bigram.frequency = 0

6. end for

7. addToPositionsList(bigram, i)

8. remove bigrams with one position only

9. end for

107

Algorithm 4.3. Reverse-Forward Pattern Lookup Algorithm

Algorithm: Pattern Detection – Maximal Repeats Detection

This algorithm runs for each process separately to find repeating patterns

1. ExtractBiGrams

2. while [(pattern = nextBiGram) is not null]

3. if pattern ∈ PatternsList then

4. do
5. overlap = 0 // number of overlapping patterns

6. distance = -1 // distance between two overlapping patterns

7. matches = 0 // number of matches for new pattern

8. prevPattern = pattern //points to the previous pattern

9. latestEvent = pattern.addNextEvent() //add next event to pattern

10. if latestEvent is null OR not MPI_EVENT then break

11. if pattern IS NOT NEW then continue //get next bi-gram

12. else UpdatePatternList(pattern , pattern.position)

13. prevPosition = prevPattern.firstPosition

14. prevMatch = false

15. for i = 0 to prevPattern.positions.size
16. currentPosition = prevPattern.positions.get(i)

17. nextEventIndex = currentPosition + pattern.length - 1

18. if nextEventIndex GT trace.size - 1 then break

19. if trace.get(nextEventIndex) EQ latestEvent then

20. if currentPosition NE pattern.position then

21. nextPattern.add(currentPosition)

22. matches++

23. end-if

24. if currentPosition GT prevPosition AND prevMatch AND

 currentPosition – pattern.length LT prevPosition then

25. overlap++

26. if distance EQ -1 THEN distance = currentPosition – prevPosition

27. end-if
28. prevMatch = true

29. else prevMatch = false

30. end-if

31. prevPosition = currentPosition

32. end-for
33. if overlap GT 0 then

34. if overlap GT matches – distance then matches = 0

35. if overlap EQ matches then

36. pattern.lineIndex = pattern.lastPosition + distance

37. else nextNGram.lineIndex = pattern.position + pLength - 1

38. end-if

39. if matches EQ 0 then

40. remove pattern from PatternsList

41. else

42. pattern.incrementFrequency(matches - overlap)

43. prevPattern.decrementFrequency(matches - overlap)

44. end-if

45. while matches GT 0 //do-while loop

46. end-if

47. end-while

108

The matches variable is used to calculate the number of matches a pattern has at the other

occurrences (except the current position) of its prefix pattern (previous pattern). Therefore,

when all occurrences of a pattern are overlapping, the number of matches will be equal to

the number of overlaps. For example, the first aba in the previous example has one overlap

and one match in the trace which means that it is not a true pattern.

The prevPattern holds the value of the previous pattern. The latestEvent variable gets the

value of the next event in the trace (the event to the right of the current pattern) at Line 9.

At this point, the pattern variable has one extra event and the prevPattern holds the value

of pattern prior to appending the new event. Line 10 will check whether the latestEvent is

null (end of the trace) or if the event is not an inter-process communication event. If the

event is null then it means that the detection process is complete. If the event is not a

message passing event then the algorithm will read a new bi-gram from the trace. At line

11, if pattern already exists in the patterns-list, then it means that this pattern was already

detected and the algorithm will continue to read the next bi-gram in the trace. The next bi-

gram starts at the position of the latestEvent in the trace unless it is a non-message passing

event. If pattern is not in the patterns-list, then it will be added along with its current

position at line 12. At line 13, the prevPosition variable will be set to hold the value of the

first position of prevPattern. The variable prevMatch (set to false at line 14) will be used

later and it indicates whether there was a match or not at the other pattern position. The

for-loop at line 15 will iterate over all the positions of the prevPattern. This loop contains

the logic that is used to verify whether pattern exists at the other positions of its prefix

pattern (prevPattern). At line 16, the currentPosition will get the value of the i-th position

of prevPattern positions. Line 17 will calculate the position of the next event

109

(nextEventIndex) in the trace that will be appended to prevPattern. Line 18 will check if

the value of the nextEventIndex is still less than the size of the trace. If it is larger than the

trace size, then the loop will break and the algorithm will read the next bi-gram if it did not

yet reach the end of the trace. Line 19 will check if the event at nextEventIndex is equal to

the latestEvent read at line 8. If the two events are equal then it implicitly means that pattern

exists at the i-th position of prevPattern. In the previous version, we were comparing the

pattern as a whole which is not necessary. The if-statement at line 20 will check if

currentPosition does not exist in the positions-list of pattern. If the condition is true,

currentPosition will be added to the positions-list of pattern at line 21. At line 22, the

matches variable will be incremented since there is a match. The condition at line 24 will

check if the two occurrences of the pattern are overlapping. First the condition will check

if currentPosition is greater than prevPosition and then it will check if there was a previous

match using the prevMatch variable.

Finally, the condition will check if the expression ‘currentPosition – pLength (pattern

length)’ is less than the value of previous position. If this condition is met, then it means

that there is an overlap and the value of overlap will be incremented at line 25. At line 26,

the algorithm calculates the distance between the two overlapping occurrences of the

pattern. This value is only calculated for the first overlapping pair of a pattern. That is why

we initialize distance value to -1. At line 28, the prevMatch is set to true when there is a

match, otherwise it will be set to false at line 29. Line 31 assigns the value of

currentPosition to prevPosition to use it in the next iteration of the for-loop. When the for-

loop iterates on all the positions of prevPattern, the condition of the if-statement at line 33

is evaluated. The expression after the if-statement at line 34 resets the value of matches to

110

zero if the condition (overlap > matches – distance) is met. In the following example, we

show why this expression is being used. Consider the following trace which has a long

repeating pattern:

abababacacacbdbdbdadadad abababacacacbdbdbdadadad abababacacacbdbdbdadadad

For the first pattern ‘ab’, when we add the next event it will be ‘aba’ that will have matches

= 8, overlap = 6 and distance = 2 which means that the condition will return false and the

matches will not be reset to zero. If this condition was true then the long pattern

‘abababacacacbdbdbdadadad’ will not be detected. Therefore, using this expression, longer

true patterns that are composed of overlapping shorter patterns can be detected. In the

previous version of the algorithm we did not have this validation. Therefore, a case like

this example which is a snapshot of a Sweep3D trace will not have the long pattern detected

which represents the global communication behaviour.

If the number of overlaps is equal to the number of matches, then it means that all the

occurrences of the pattern are overlapping. Therefore, at line 36, the pointer that reads from

the trace is advanced distance steps to the right of the last position of previous pattern

otherwise the pointer will be moved to the last event of the current pattern at line 38. For

example, when the long pattern ‘abababacacacbdbdbdadadad’ is extended to the right, it

will be ‘abababacacacbdbdbdadadada’ which is not a true pattern. However, overlap will

be equal to matches which is equal to 2 in this case and the pattern will be removed from

the patterns-list. In the case of suffix tree, this longer pattern will be returned as a repeat at

the end of the detection process. The statement at line 40 will be executed if there were no

matches to pattern in the trace which will remove pattern from the patterns-list. If there

were matches to pattern then the frequency of pattern will be incremented by ‘matches -

111

overlap’ and the frequency of prevPattern will be decremented by ‘matches - overlap’

(lines 42 and 43 respectively). If there were matches to pattern then the do-while loop will

continue and it will append another event to pattern which will continue until there are no

more matches.

Finally, if the algorithm did not reach the end of the trace, it will read a new bi-gram at line

2 and the algorithm will execute until the end of the trace. At the end of the algorithm, all

the patterns will be detected but only the ones with frequency more than 1 will be

considered as true patterns.

In Figure 4.8, we present the same example presented in the previous section in order to

outline the main differences in the two versions of the algorithm. The first step (1) is to

extract the bi-grams (bi-grams table) and then remove the patterns that exist only once in

the trace. Then, the pattern detection will start at step (2). The first bigram in the trace is

S2S3 which already exists in the patterns-list (extracted using the ExtractBiGrams routine).

The frequency of S2S3 will be set to 5 at this stage. The advantage here is that we already

know all the positions that this bi-gram exists at. Therefore, we can check if we can extend

it to a larger pattern at all its positions early in the detection process. In the first version, at

this point we only know that this bi-gram exists at position 0 only. By appending the event

at line 2 in the trace, the pattern S2S3R2 will be our next candidate. The algorithm will

check if it exists at the other positions of its prefix pattern S2S3. Step 2 in the detection

process shows that S2S3R2 exists at all other positions of S2S3.

Therefore, the pattern is detected at an earlier stage in the detection process. The frequency

of S2S3 will be decremented to 0 and the frequency of S2S3R2 will be 5. Then, the event

at line 4 will be appended to S2S3R2 resulting in the longer pattern S2S3R2R5.

112

(1) Trace

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S2 S3 R2 S5 S2 S3 R2 S2 S3 R2 S2 S3 R2 S4 S2 S3 R2

(1) Extracting BiGrams Table

 BiGram Positions

→

 BiGram Positions

1 S2S3 1, 5, 8, 11, 15 1 S2S3 1, 5, 8, 11, 15

2 S3R2 2, 6, 9, 12, 16 2 S3R2 2, 6, 9, 12, 16

3 R2S5 3 3 R2S2 7, 10

4 S5S2 4

5 R2S2 7, 10

6 R2S4 13

7 S4S2 14

(2) Pattern Detection Execution

Pattern i New? Positions Next Action

1 S2 S3 1 No 1, 5, 8, 11, 15 Add next event to S2S3 → S2S3R2

2 S2 S3 R2 1 Yes 1, 5, 8, 11, 15

Does S2S3R2 exist at positions 5 → add 5

Does S2S3R2 exist at positions 8 → add 8

Does S2S3R2 exist at positions 11 → add 11

Does S2S3R2 exist at positions 15 → add 15

3 S2 S3 R2 S5 1 No 1
Check if it exists at all positions of S2S3R2 → It only

exists once → remove it from the db

4 S5 S2 4 Yes 3 Not in BiGrams table → get next bi-gram at 5

5 S2 S3 5 No 1, 5, 8, 11, 15 Add next event to S2S3 → S2S3R2

6 S2 S3 R2 5 No 1, 5, 8, 11, 15 Already exists → Append event at position 8

7 S2 S3 R2 S2 5 Yes 5, 8

Does S2S3R2S2 exist at positions 1 → No

Does S2S3R2S2 exist at positions 8 → add 8

Does S2S3R2S2 exist at positions 11 → No

Does S2S3R2S2 exist at positions 15 → No

→ matches = 1 and overlap = 1 → remove pattern and

advance pointer to 11

8 S2 S3 11 No 1, 5, 8, 11, 15 Not in BiGrams table → get next bi-gram

9 S2 S3 R2 11 No 1, 5, 8, 11, 15 Add next event to S2S3 → S2S3R2

10 S2 S3 R2 S4 11 No 1, 5, 8, 11, 15 Does not exist at any other positions → remove

11 S4 S2 14 Yes 14 Not in BiGrams table → get next bi-gram at 15

12 S2 S3 15 No 1, 5, 8, 11, 15 Add next event to S2S3 → S2S3R2

13 S2 S3 R2 15 No 1, 5, 8, 11, 15 End of Trace

Detected Pattern Frequency Positions

S2 S3 R2 5 1, 5, 8, 11, 15

Figure 4.8. Reverse-Forward Pattern Lookup Example

113

However, this pattern does not exist at any other positions of S2S3R2 and will be removed

from the patterns-list. The algorithm will then read the bi-gram at line 4 which does not

exist in the bi-grams list. Therefore, it will not be added to the patterns-list and the next bi-

gram will be read from the trace. S2S3 at line 5 already exists in the trace therefore the

algorithm will add the event at line 7 resulting in S2S3R2 which already exists in the

patterns-list.

The event next to S2S3R2 at position 8 will be appended resulting with the pattern

S2S3R2S2. This pattern exists at two overlapping locations. According to the algorithm,

since matches = 1 and overlap = 1 then the pattern will be removed from the patterns-list

and the index i will be advanced to position 11. At position 11, the bi-gram S2S3 exists as

well as S2S3R2.

Then, S4 at position 14 will be appended resulting in S2S3R2S4 which does not exist at

any other position and will be removed as well. Bi-gram S4S2 does not exist in the patterns-

list therefore the next bi-gram S2S3 will be read which already exists. Finally, the

constructed pattern S2S3R2 already exists in the patterns-list. At this point, the algorithm

reached the end of the trace and based on the frequencies of the patterns only S2S3R2 will

be detected as a true pattern in the trace.

Algorithm’s Complexity:

The presented algorithm runs in linear time with respect to the trace size (n). The

ExtractBiGrams routine only requires n steps to execute. The complexity of the pattern

detection algorithm can be measured as follows:

- Steps required to Execute ExtractBiGrams: n

114

- Steps required to read the trace events (lines 2 & 9; together, these two lines will read

the trace events from left to right): n

- Steps required to Execute Pattern Detection: ∑P Ri where P is the total number of

repeats (not only the ones with frequency more than 1) and Ri is the number of

occurrences for each repeat. The detection of every occurrence of the pattern adds

one step to the total execution time. Therefore, for each pattern, the total number of

steps that will be added to the total execution time of the algorithm will be the number

of its occurrences in the trace (R).


=

+=
p

1 i

iR 2n omplexity C (4.1)

Since the number of repeats in a string is always less than n [Grissa 07] and the number of

occurrences for each pattern is linear with n it is easy to deduce that the algorithm’s

complexity will run in O(n).

With respect to the space complexity of the algorithm, it was implemented by representing

every detected pattern by a unique hash code. Therefore, since the maximum number of

patterns is always less than n, the algorithm’s memory usage will depend on the number of

patterns and the size of the hash code for each pattern. This also guaranties that the

algorithm’s space usage will grow linear with the size of the input trace.

4.5 Communication Pattern Matching

In this section, we present our algorithm for extracting similar communication patterns in

an MPI trace to a predefined input pattern. The pattern under study can be provided by the

user or it can be provided from the list of patterns detected using the algorithm presented

in the previous section. The input communication pattern is stored as a list where each

115

entry corresponds to the sequence of events of one process only. These events are inter-

process communication events such as this send event ‘MPI_Send (target = P5, Size =

256)’.

Similar to the pattern detection algorithm, this algorithm finds similar patterns on each

process trace separately. The output of this algorithm is input to the communication pattern

construction algorithm presented later. The degree of similarity between the patterns is

determined by the number of shared events between them.

We use the Edit-Distance [Levenshtein 66] (also known as Levenshtein Distance) function

to calculate the degree of similarity between the two patterns. In order to determine the

areas in the trace that could potentially match the input pattern, we use the Lemma proposed

by Jokinen and Ukkonen [Jokinen 91] for our filtration process. This Lemma is based on

calculating the shared n-grams between the pattern and the target string. Several research

studies for approximate string matching exist that are based on this Lemma [Cao 05,

Rasmussen 06]. The Lemma is presented in the following:

Lemma: N-gram based Filter (Jokinen and Ukkonen [Jokinen 91])

Let a string S1 of length m with at most k edit distance from another string S2 of

length m, then at least m+1– kn+n of the n-grams in S1 occur in S2.

The process of determining similar patterns consists of two steps. The first step is the

filtration process which uses the above lemma, and the second step is the edit-distance

function. We slide a window of length m, which is the length of the input pattern on a

process trace until there is a potential match (window shares at least m + 1 – kn + n with

the pattern). A window that is identified as a potential match is verified using the edit-

distance function.

116

In order to reduce the number of verified windows, and to reduce the total execution time

consequently, we use positioned n-grams to preprocess the pattern. We build a table for all

the n-grams in the pattern with their positions in the pattern. We use the positioned n-grams

table in the filtration process to shift the window to the right (in the trace) based on the

position of the first n-gram found in the window under test. For example, if the position of

the n-gram in the n-gram table is 3 and the same n-gram was found at position 5 in the

window, then we slide the window to the right by two steps to avoid verifying two non-

matching windows using the edit-distance function.

Algorithm 4.4. Pattern matching

Algorithm 4.4 describes our procedure for detecting communication patterns that are

similar to a pattern P. As mentioned previously, this algorithm runs for every process

separately. In line 5, it will iterate on each window in the trace. The window (w) may shift

Pattern Matching: runs for each process separately

p: pattern under study of size m

threshold = pattern size – n + 1 – k.n

k:maximum allowed edit distance

firstSharedNGramDisplacement: displacement between position of first shared

n-gram in w and its position in the n-gram position table

1. w: window of size m

2. MatchingPatternList: List of matched windows

3. // MatchingPatternList also holds the position of w

4. sharedNGrams: Integer

5. while(next w is not null){

6. if (firstSharedNGramDisplacement > 0) then

7. shiftWindow(firstSharedNGramDisplacement)

8. end if

9. sharedNGrams = countSharedNGrams(p, w)

10. if sharedNGrams > threshold then

11. if editDistance(p, w) <= k then

12. add w to MatchingPatternList

13. jump to next adjacent window

14. end if

15. end if

16. end while

117

to the right based on its position in the n-gram positioned table (lines 6-8). Based on the

number of shared n-grams between the pattern and the window determined in line 9, the

edit distance will be computed in line 11. If edit distance is less than or equal to k, then the

window w will be added to the MatchingPatternList at line 12 and the window will be

shifted to start at the next adjacent window at line 13. Every process in the MPI trace should

have its own MatchingPatternList which will be used in the algorithm described in the next

section for the construction of the communication patterns. The MatchingPatternList

contains the patterns and their start positions in the trace.

We demonstrate our pattern matching algorithm using the example shown in Figure 4.9.

We used alphabets instead of MPI events for simplicity. The figure shows the input pattern

and to its right its n-grams along with their positions (n-gram position table). The window

size is the same as of the size of the pattern. We slide the window on the string and find

the number of shared n-grams. For window #12 and window #22, the window is shifted to

the right based on the position of the ‘ab’ n-gram (line 7 in the algorithm). Also, since a

match was detected at window # 16 with k = 1, the window was shifted to point at window

22.

This example shows the usefulness of using the concept of n-grams in the filtration step.

The filtration step reduces the execution time since it reduces the number of windows to

be checked using the edit distance (ED) function. The filtration step could be improved in

order to avoid checking non-matching windows using the edit distance function. One more

issue that needs to be tuned is the window size. In some cases, the window size should be

decreased to minimum of (m – k). For example, window # 9 ‘b c d e f y’ has an edit distance

118

of 2 while if we consider the window as ‘b c d e f’ (size is m – k + 1) then the edit distance

will be 1 which increases the degree of similarity to the input pattern.

Input Pattern: a b c d e f → 0: a b, 1: b c, 2: c d, 3: d e, 4: e f

Trace: a b c d m h k o b c d e f y e a b h d e f r s a b c d e f

m = 6, n = 2, k = 1, t >= m – n + 1 – kn → t >= 3 shared n-grams

W# Window Shared n-grams ED Action

1 a b c d m h ab, bc, cd 2

2 b c d m h k bc, cd Skip window

3 c d m h k o cd Skip window

4 d m h k o b Skip window

5 m h k o b c bc Skip window

6 h k o b c d bc, cd Skip window

7 k o b c d e bc, cd, de 3

8 o b c d e f bc, cd, de, ef 1

9 b c d e f y bc, cd, de, ef 2

10 c d e f y e cd, de, ef 5

11 d e f y e a de, ef Skip window

12 e f y e a b ab at position 4 4 Jump to w#16

13 f y e a b h

14 y e a b h d

15 e a b h d e

16 a b h d e f ab, de, ef 1 Jump to w#22

17 b h d e f r

18 h d e f r s

19 d e f r s a

20 e f r s a b

21 f r s a b c

22 r s a b c d ab at position 2 Jumpt to w#24

23 s a b c d e

24 a b c d e f ab,bc,cd,de,ef 0 Done

Figure 4.9. Example of the pattern matching algorithm

The same can be done for window # 10 since ‘c d e f’ has an edit distance of 2 while ‘c d e

f y e’ has an edit distance of 5. Currently, we are handling these cases in another step (after

the execution of the algorithm) by checking windows with at most 2k edit distance and

reducing their window size to verify if a shorter window may have a similar match to the

input pattern. However, we have to keep in mind that a matching window may be contained

119

in a larger pattern which is not the same as the input pattern. Therefore, the software

engineer should be informed that a group of windows are similar to or match the input

pattern but they exist in a larger pattern in the trace which means that the input pattern may

be a subset of some patterns in the trace.

Once all the similar patterns were detected for each process. We start building the

communication patterns using the Communications Patterns Construction algorithm

presented in the next section. In order to consider the communication pattern as a similar

match, we need to check whether the total edit distance (sum of all edit distances from each

process similar match) is still within the specified threshold. This is computed by relating

the total number of errors (differences) to the total number of events in the constructed

communication pattern. Therefore, some similar patterns per process may be within the

specified threshold but their communication pattern may have an error that is larger than

the threshold.

The size of the input communication pattern is based on the number of processes involved

in the communication. Therefore, in order to detect a wavefront pattern (for example) on a

grid topology of 5x5, the input pattern will be different than when detecting it on a grid of

2x2. Therefore, the knowledge about the communication pattern should be applied in order

to extrapolate the pattern from a small process topology to a larger one. For example, the

events for Process 1 for a sweep from P1 to P4 in the 2x2 topology will be ‘Send to 2, Send

to 3’. However, in case of 5x5 the events for P1 will be ‘Send to 2, Send to 6’.

4.6 Tandem Repeats Removal Algorithm

MPI traces may contain two or more communication patterns that are not identical but

correspond to the same communication behaviour. This can be due to:

120

• The varying number of iterations (loops) at different stages in the program.

• The ordering of events at different stages in the program.

• Different number of events.

In the case of differences caused by loops, in order to detect these similar repeating

behaviours in the trace, we need to abstract the trace by removing events caused by these

extra iterations. These events appear contiguously in each process trace and can be detected

and removed prior to the communication pattern detection process. Patterns detected after

removing the contiguously repeating patterns will be in their general form.

Figure 4.10. Butterfly Pattern with Contiguous Repeats

For example, Figure 4.10 shows two examples of a butterfly communication pattern. This

pattern is used in implementing MPI collective operations. Figure 4.10a depicts a butterfly

pattern that is not appearing in its general form. By removing the contiguous repeats (grey)

from the trace we can represent the pattern in its general form as shown in Figure 4.10b.

More complex cases may exist resulting from an excessive number of contiguously

repeating patterns.

For the purpose of studying the communication behaviour in MPI programs, these

contiguous repeats will only increase the effort of mining the important communication

(a) An Instance of Butterfly Pattern

P1

P2

P3

P4

P5

P6

P7

P8
(b) General Butterfly Pattern

121

patterns in the trace file. Moreover, in some cases, the excess of these contiguous repeats

in the trace will prevent the discovery of the communication pattern. Therefore, there

should be a technique to remove these contiguously repeating patterns. Another advantage

of removing the contiguously repeating patterns is the reduction of the trace size which

will make the process of mining the communication patterns faster.

The removal of contiguous repeats is performed on each process trace separately. We

developed this algorithm based on the concept of n-grams. However, in this algorithm we

used only bi-grams to help in detecting the tandem repeats on each process trace. This

algorithm is iterative; therefore it will be repeated until all the tandem repeats are removed

from the trace.

Algorithm 4.5 represents the main loop for detecting the tandem repeats. The algorithm

will repeat until the input size is fixed (all tandem repeats are removed). First, the algorithm

will extract all adjacent bi-grams from the input trace. Extracted bi-grams and their

positions will be stored in a hash table where the key is the bi-gram and the value is the

array of starting positions in the trace for each bi-gram. Then, the algorithm will start by

reading a bi-gram from the input trace, if the bi-gram exists in the bi-gram hash table then

the detectPossibleTandem function will be called to detect if there is a tandem repeat. If

the value of index returned by the detectPossibleTandem function is greater than the value

of i, then it means that one or more tandem repeat was detected and then the bi-gram at

index position will be read from the input trace. The algorithm will repeat iteratively until

all tandem repeats are detected and removed from the trace. The reason why we iterate

until the size of the trace is fixed is that when removing some tandem repeats, new tandem

repeats may appear in the trace.

122

Algorithm 4.5. Tandem Repeats Detection

The detectPossibleTandem algorithm is presented in Algorithm 4.6. It will verify if there

is a contiguous repeat at two consecutive positions of a specific bi-gram (referred to as key

in the algorithm). If a contiguous repeat is detected, it will check if there is another tandem

repeat right to the already detected one. If the algorithm does not detect any tandem repeat

it will return the same initial value of index (index has position as initial value). If one or

more repeats were detected, the algorithm will return the value of index which is the

position of the next bi-gram after the tandem repeat.

Detect Tandem Repeats

1. traceSize = 0

2. ht // holds the repeats and their positions

3. tr // the list of tandem repeats and their positions

4. while (traceSize != trace.size)

5. Extract All Bi-Grams from trace

6. Keep Bi-Grams that are repeated in trace

7. index = 0

8. for (i = 0; i < trace.size; i++)

9. current.addTwoGrams(trace)

10. if current is-not-in-Bi-Grams list then continue

11. index = detectPossibleTandem(current, i, trace, tr)

12. if (index > i) then

13. i = index

14. index = 0

15. current = “”

16. end if

17. end-i-for-loop

18. traceSize = trace.size

19. removeTandemRepeats(trace, tr)

20. clear tr

21. clear ht

22. end-while

123

Algorithm 4.6. Possible Tandem Repeats Detection

Algorithm 4.6 starts by assigning the value of position to the index variable at line 1. At

line 2, the algorithm will get the list of positions (sequence) of the key (bi-gram) passed in

the parameters list and will get the index i of position in the positions list. The possible

pattern length pLength is calculated at line 5. At line 6 the possible pattern s1 is extracted

from the input. It should be noted that we calculate pLength and s1 before entering the while

loop. When the algorithm enters the loop at line 7 it will get the positions values at i and i

+1 using the statements at lines 8 and 9 respectively. At line 10, the algorithm will return

Detect Possible Tandem

Parameter List: key, position, trace, tr

1. index = position

2. positions = get-all-positions-of(key)

3. i = get index of position in positions

4. if i is last index in positions then return index

5. pLength = positions[i+1] – position

6. s1 = trace.sublist(position, position + pLength)

7. while (i < positions.size - 2)

8. position1 = positions[i]

9. position2 = positions[i + 1]

10. if (position2 + pLength – 1 ≥ trace.size) return index

11. if (position2 – position1 > pLength) return index

12. gram1 = trace[position2 – 1]

13. gram2 = trace[position2 + pLength – 1]

14. if (gram1 == gram2) then

15. s2 = trace.sublist(position2, position2 + pLength)

16. if (s1.equals(s2)) then

17. tr.add(position2, s1)

18. index = position2 + pLength

19. else

20. return index

21. end if

22. else

23. return index

24. end if

25. i++

26. end-while

27. return index

124

if the string starting at position2 to the end of the trace is less than the pLength value. The

gram1 and gram2 variables at lines 12 and 13 hold the events from the trace found at

positions (position2 -1) and (position2 + pLength – 1) respectively. If these two values are

different, the algorithm does not need to check the whole events to confirm equality. If they

are equal, the string of events from position2 to position2 + pLength will be extracted and

then will be checked for equality. If the two strings are equal, then a tandem repeat is

detected and the value of position2 and s1 will be added to the tandem repeats hash table.

The algorithm will loop until there are no additional tandem repeats detected. The

algorithm will return the value of the index just right after the last detected tandem repeat.

Figure 4.11 presents an example to illustrate the tandem repeats detection using our

algorithm. The figure depicts a trace of 17 events (we use alphabets to represent events for

simplicity). We only present the iterations for key = ‘ab’ since it is the only one that will

result in the detection of tandem repeats which is shown in the Execution part of the figure.

The Bi-grams and Positions columns are retrieved in Algorithm 4.5. The two bi-grams ‘dm’

and ‘ma’ will be removed from the list since they occurred only once in the trace and

certainly will not help in detecting a tandem repeat. The example shows that there are two

tandem repeats ‘abcd’ at positions 4 and 8 respectively. The figure clearly explains the 3

steps that were executed to detect the tandem repeats at the two different locations.

There exist several approaches for detecting tandem repeats using suffix trees [Stoye 02,

Adjeroh 03]. These approaches have the limitations of using the suffix trees in terms of

space complexity. Our approach depends on the concept of n-grams and does not have the

space limitation caused by the large suffix trees.

125

 Trace:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a b c d a b c d a b c d m a b c d

 Execution:

 Bi-grams Positions # Execution (iterations from the Detect Possible Tandem)

ab 0, 4, 8, 13 key = ab, position = 0 , i = 0, pLength = 4, s 1= abcd

bc 1, 5, 9, 14 1 Position1 = 0, position2 = 4, gram1 = d, gram2 = d

cd 2, 6, 10, 15 s2 = abcd → s2 == s1 → add s1 and position 4 to TR

da 3, 7 2 Position1 = 4, position2 = 8, gram1 = d, gram2 = d

dm* 11 s2 = abcd → s2 == s1 → add s1 and position 8 to TR

ma* 12 3 Position1 = 8, position2 = 13

* will be removed 13 – 8 > 4 → return index = 12

Tandem Repeats (TR) Table Trace after removing tandem repeats

Pattern Positions

0 1 2 3 4 5 6 7 8

a b c d m a b c d

Abcd 4, 8

Figure 4.11. Tandem Repeats Removal Example

4.7 Communication Patterns Construction Algorithm

In this section, we present the algorithm for assembling the process patterns detected either

through the pattern detection algorithm or the pattern matching algorithm into

communication patterns that encompass all the communicating processes. We input the

process detected patterns (detected in the previous steps) into this algorithm and start

iterating on all corresponding patterns (for pattern p1, its corresponding patterns are those

patterns that have partner events with p1) until a communication pattern is constructed.

When using this algorithm to construct each process patterns (maximal repeats) detected

using the pattern detection algorithm presented in Section 4.4, the output will be the set of

all communication patterns that are repeating in the trace. On the other hand, when using

this algorithm to construct the similar matching patterns on each process detected using the

126

pattern matching algorithm presented in Section 4.5, the output will be the set of all

communication patterns that are similar to the given input communication pattern.

The communication pattern construction algorithm is presented in Algorithm 4.7. We

introduce the following definitions to help in understanding the algorithm:

1. CP (ptj , pok): returns the communication pattern cpm that the process pattern ptj found

at position pok belongs to. If ptj does not already belong to a communication pattern,

CP will create a new one and return it as cpm.

2. PEL(ptj , pok): returns the list of partner events pel found in other process traces

(events that do not belong to any detected pattern but will be part of a communication

pattern).

3. PPL(ptj , pok): returns the process patterns with which pattern ptj has partner events.

The algorithm starts iterating on each process at line 1. At line 2, the algorithm iterates on

each detected pattern. For each pattern position (line 3), the corresponding patterns on the

other processes will be detected by locating their partner events. We iterate on the positions

of each detected pattern since at different positions the same pattern may have different

partner patterns which will result in the construction of different communication patterns.

At line 4, we retrieve the communication pattern for pattern ptj at position pok. If ptj at

position pok is already part of a communication pattern, then it will be returned using CP.

Otherwise, a new communication pattern will be created and returned by CP. We retrieve

the partner single events list (pel) for pattern ptj at position pok at line 5 using PEL. We use

the partner events list, since an event that is included in a pattern may have a partner event

that is not included in any pattern at a partner process. The single partner events will not

127

be detected using the process pattern detection algorithm since we consider the minimum

pattern size as two events (bi-gram).

Communication-Patterns-Construction

1. for-each process pri

2. for-each pattern ptj  pri-patterns-list

3. for-each position pok  ptj-positions-list

4. cpm = CP (ptj , pok)

5. pel = PEL(ptj , pok)

6. for-each e  pel

7. if e at pos(e) ∉ cpm then

8. add e to cpm

9. add pos(e) to cpm

10. end-if

11. end-for-each

12. cpl = PPL(ptj , pok)

13. for-each p  cpl

14. if p at pos(p) ∉ cpm then

15. add p to cpm

16. add pos(p) to cpm

17. end-if

18. end-foreach

19. end-foreach

20. end-foreach

21. end-foreach

Algorithm 4.7. Communication Patterns Construction

We iterate on the pel (lines 6-11) where every single event (along with its position in the

trace) will be added to the resulting communication pattern with the condition that its

process does not have any other partner events that belong to a detected process pattern. At

line 12, all the partner process patterns will be retrieved and then added (if they do not

already exist) to the communication pattern inside (lines 13-18). After the algorithm

finishes iterating on all the process patterns, it will output the distinct communication

patterns. The resulting communication patterns may involve all or a subset of the processes

in the trace.

128

We present an example that illustrates the communication pattern detection approach. We

first present traces generated from running four processes represented as routine call trees

in Figure 4.12. Routines that appear at the leaf level are removed since they do not hold

any MPI events. In Figure 4.13, we present the different stages of the communication

pattern detection approach. Figure 4.13(b) shows the extracted events that will be entered

into the repeating process pattern detection algorithm. We extracted the MPI events (e.g.

S2 and R3) and their direct calling methods along with their timestamps. Any routine call

events that appear at the same nesting level with the message passing events will be

removed from the trace.

Figure 4.12. Step1: Sample Traces from four Parallel Processes

F1 F2
S2
S3

F3

F2

F3

S2
S3

S2
S3
S2
S3

R2
R3
R2
R3

R2
R3
R2

R3

F2
R1
S4

F3

F2

F3

F1

R1
S4

R1
S4
R1

S4

R4
S1
R4
S1

R4
S1
R4
S1

F2
R1
S4

F3

F2

F3

F1

R1
S4

R1
S4
R1

S4

R4
S1
R4
S1

R4
S1
R4

S1

F2
R2
R3

F3

F2

F3

F1

R2
R3

R2
R3
R2
R3

S2
S3
S2
S3

S2
S3
S2
S3

(P1) (P2) (P3) (P4)

129

(a) Process Traces Extracted from Routine Call Trees

P1: (F2t1) S2S3S2S3 (F3t2) R2R3R2R3 (F2t3) S2S3S2S3 (F3t4) R2R3R2R3

P2: (F2t1) R1S4R1S4 (F3t2) R4S1R4S1 (F2t3) R1S4R1S4 (F3t4) R4S1R4S1

P3: (F2t1) R1S4R1S4 (F3t2) R4S1R4S1 (F2t3) R1S4R1S4 (F3t4) R4S1R4S1

P4: (F2t1) R2R3R2R3 (F3t2) S2S3S2S3 (F2t3) R2R3R2R3 (F3t4) S2S3S2S3

(b) Traces after removing contiguous repeats

 1 2 3 4 5 6 7 8 9 10 11 12

P1 (F2t1) S2 S3 (F3t2) R2 R3 (F2t3) S2 S3 (F3t4) R2 R3

P2 (F2t1) R1 S4 (F3t2) R4 S1 (F2t3) R1 S4 (F3t4) R4 S1

P3 (F2t1) R1 S4 (F3t2) R4 S1 (F2t3) R1 S4 (F3t4) R4 S1

P4 (F2t1) R2 R3 (F3t2) S2 S3 (F2t3) R2 R3 (F3t4) S2 S3

(c) Detected Process Patterns

P1:PT1 = [S2,S3], PT2 = [R2,R3] P2: PT3 = [R1,S1], PT4 = [R4,S1]

P3:PT5 = [R1,S1], PT6 = [R4,S1] P4: PT7 = [R2,R3], PT8 = [S2,S3]

(d) Execution

P Pattern CP?* Corresponding Patterns Communication Pattern (CP)

P1 PT1 at 2 No PT3 at 2, PT5 at 2 CP1{PT1,PT3,PT5}

P1 PT1 at 8 No PT3 at 8, PT5 at 8 CP2{PT1,PT3,PT5}

P1 PT2 at 5 No PT4 at 5, PT6 at 5 CP3{PT2,PT4,PT6}

P1 PT2 at 11 No PT4 at 11, PT6 at 11 CP4{PT2,PT4,PT6}

P2 PT3 at 2 CP1 PT1 at 2, PT7 at 2 CP1{PT1,PT3,PT5,PT7}

P2 PT3 at 8 CP2 PT1 at 8, PT7 at 8 CP2{PT1,PT3,PT5,PT7}

P2 PT4 at 5 CP3 PT2 at 5, PT8 at 5 CP3{PT2,PT4,PT6, PT8}

P2 PT4 at 11 CP4 PT2 at 11, PT8 at 11 CP4{PT2,PT4,PT6, PT8}

P3 PT5 at 2 CP1 PT1 at 2, PT7 at 2 CP1{PT1,PT3,PT5,PT7}

P3 PT5 at 8 CP2 PT1 at 8, PT7 at 8 CP2{PT1,PT3,PT5,PT7}

P3 PT6 at 5 CP3 PT2 at 5, PT8 at 5 CP3{PT2,PT4,PT6, PT8}

P3 PT6 at 11 CP4 PT2 at 11, PT8 at 11 CP4{PT2,PT4,PT6, PT8}

P4 PT7 at 2 CP1 PT3 at 2, PT5 at 2 CP1{PT1,PT3,PT5,PT7}

P4 PT7 at 8 CP3 PT3 at 8, PT5 at 8 CP2{PT1,PT3,PT5,PT7}

P4 PT8 at 5 CP2 PT4 at 5, PT6 at 5 CP3{PT2,PT4,PT6, PT8}

P4 PT8 at 11 CP4 PT4 at 11, PT6 at 11 CP4{PT2,PT4,PT6, PT8}

* CP?: Does this process pattern already belong to a communication pattern?

(e) Detected Distinct Communication Patterns

Figure 4.13. Communication Construction Example

P1
P2
P3
P4

 Pattern 1 (CP1+CP3) Pattern 2(CP1+CP3)

130

In this example, we removed contiguous repeats prior to the detection process as shown in

Figure 4.13(b). We consider the first event to be at position 1. We apply the pattern

detection algorithm on each process trace and detected the patterns PT1 to PT8.

The detected process patterns are shown in Figure 4.13(c). In Figure 4.13(d), we show

execution steps that lead to the construction of the communication patterns.

We start by selecting pattern PT1 from process P1. The algorithm iterates on all the

positions where PT1 appears (positions 2 and 8) and locates all the corresponding patterns

at the other processes. Four communication patterns are created CP1 to CP4. At the end of

the algorithm, only two distinct communication patterns are extracted. The detected

patterns correspond to a wavefront pattern. Pattern 1 is a sweep from P1 to P4 and pattern

2 is a sweep from P4 to P1 as shown in Figure 4.13(e).

4.8 Case Studies

In this section, we test our pattern detection and pattern matching approaches on several

traces generated from well-known benchmarks and real HPC applications. In Section 4.8.1,

we provide two case studies with a comparison with other pattern detection techniques. We

will provide the results from applying both the syntactic-directed and the knowledge-

directed approaches. In Section 4.8.2, we provide several communication patterns that were

detected from traces of different programs.

4.8.1 Repeating Pattern Detection Comparison

In this section, we test our repeating pattern detection approach on two traces generated

from Sweep3D and SMG2000. The analysis includes comparison with the syntactic-

directed approach.

131

4.8.1.1 Sweep3D

Sweep3D [Sweep3D] includes the streaming and the scattering operators. The streaming

operator is solved by sweeps (wavefront) from each angle to the opposite angle in the grid.

The scattering operator is solved iteratively. Sweep3D parallelism is based on the

wavefront communication patterns. In case of a 2-dimensional grid, the sweep3D will have

four sweeps (wavefront) from each corner to the opposite corner.

Figure 4.14. Wavefront Pattern (2x3 Process Topology)

Figure 4.14 shows the four sweeps in a 2x3 process topology. Each sweep sends data from

a corner to its opposite corner in the grid. In case of a 3-dimensional grid, Sweep3D will

consist of eight sweeps (originating from each corner) per iteration.

We tested our approach on six traces generated from running the program using different

process topologies and variable number of iterations. In all cases, Sweep3D had the same

communication behaviour, i.e., wavefront pattern. The global communication pattern

(composition of all wavefront patterns) was repeated the same number of times as the

number of iterations (specified as input to the program). Figure 4.15 presents the detected

communication wavefront patterns and the global communication pattern composed from

the four separate wavefront patterns.

P2 P1

P4 P3

P6 P5

P1 P2

P3 P4

P5 P6

P2 P1

P4 P3

P6 P5

P2 P1

P4 P3

P6 P5

(a) (b) (c) (d)

132

As we can see, the first wavefront is from P6 to P1 followed by the wavefront from P2 to

P5. The next wavefront is from P5 to P2 followed by the last wavefront from P1 to P6. The

four wavefront patterns compose together a global communication pattern that is repeated

12 times in the trace for a 2x3 process topology and 12 iterations. In each global

communication pattern, each single wavefront pattern is repeated 30 times. Without

detecting the occurrences of the contiguous repeats it would not be possible to represent

the pattern in the compact form shown in Figure 4.15. Hence, it would be large and

cluttered and it would require more effort to understand the communication behaviour

otherwise. The pattern in Figure 4.15(a) corresponds to the sweep shown in Figure 4.14(a).

The pattern in Figure 4.15(b) corresponds to the sweep shown in Figure 4.14(b) and so on

for cases Figure 4.15(c) and Figure 4.15(d). This shows that our approach is capable of

detecting the valid patterns in a system that uses the wavefront pattern as its communication

pattern.

Figure 4.15. Detected Communication Patterns

As indicated in [Preissl 08], the detected communication pattern is large and was not

presented in their work. In this work, we present the detected pattern in its compact form

which provides the software engineer with a clear understanding of the communication

behaviour in the program.

(a) P6 to P1

30 times

(b) P2 to P5

30 times

(c) P5 to P2

30 times

(d) P1 to P6

30 times

12 Occurrences = number of iterations

P1

P2

P3

P4

P5

P6

133

Table 4.1 shows the number of detected patterns when using the syntactic approaches (i.e.,

the ones that only process messages passed between processes) based on the suffix tree

algorithm [Sadakane 07] and our n–gram algorithm. We also show the detected patterns

based on routine call tree approach presented in this chapter using the n-gram algorithm.

Table 4.1. Number of Detected Repeats for P1 for Sweep3D (2x3 process topology and

12 iterations) System (Relevant Patterns = 5)

Pattern Detection

Technique
P FP TN Precision Recall

Syntactic Matching based on

Suffix Tree Method
133 129 1 3% 80%

Syntactic Matching based N-

Gram Method
20 15 0 40% 100%

Routine call-directed

Approach Based on the N-

Gram Method

5 0 0 100% 100%

The number of repeats detected using the suffix tree approach for process P1 is 133 which

is very large for such a small trace of P1 (2880 messages). Moreover, 129 of the detected

patterns are not valid patterns. Furthermore, the approach missed one valid pattern. In the

n-gram approach without the routine call tree, the number of detected repeats is 20 with no

false positives and no true negatives. The other processes have the same number of repeats

for both methods and the same number of false positives and false negatives. This is due

to the nature of the Sweep3D which is repetitive and only follows several wavefront

communication behaviours. When applying the detection with the support of the routine

call trees for each process, we detected five patterns, which reflect the valid patterns of the

Sweep3D application. The table also shows that our algorithm for this trace has precision

and recall values that are 100%. We were able to calculate the precision and recall for this

134

system as we already know the communication behaviour in Sweep3D. Therefore, this can

be used as a validation for our communication pattern detection approach.

We also compared the results in terms of performance (see Table 4.2). We used different

process topologies to vary the number of processes. CST stands for stands for Compressed

Suffix Tree [Sadakane 07] which is an algorithm used to detect communication patterns by

processing message passing events. As we can see, the routine call trees based technique

performs better than CST, thanks to our previous n-gram algorithm. In other words, a call

tree based approaches not only improves effectiveness (i.e. quality of the patterns) but it is

also efficient if combined with an efficient extraction algorithm.

Table 4.2. Performance Analysis for Sweep3D Traces

Process

Topology
It. Messages

Routine call

with n-gram

n-gram

(s)

CST

(s)

2 x 3 12 20160 0.78 0.72 5.23

6 x 3 12 51840 2.45 1.674 5.700

5 x 5 40 256000 5.83 4.20 43.00

7 x 4 74 532800 9.156 7.20 40.40

8 x 8 120 2150400 28.74 22.27 285.64

8 x 16 120 4454400 56.45 52.23 480.83

4.8.1.2 SMG2000

SMG2000 [SMG2000] uses a complex communication pattern [Geimer 06]. The

parallelism is achieved by data decomposition. SMG2000 performs a large number of non-

nearest-neighbor point-to-point communication operations and can be considered a stress

test for the network subsystems of a machine [Wolf 08]. We tested our pattern detection

approach on several traces generated from different scenarios by varying the number of

processes and the problem size.

135

Figure 4.16. SMG2000 Communication Patterns (Topology: 8x1x1 Problem Size: 2x2x2)

Figure 4.16 shows the seven detected repeating patterns for the 8x1x1 process topology

and a 2x2x2 problem size. Figure 4.16(a) (61 occurrences) and Figure 4.16(b) (17

occurrences) correspond to the nearest-neighbor communication pattern where every

process is only communicating with its direct neighbors. It can be noticed that Figure

4.16(a) and Figure 4.16(b) correspond to the same pattern with a difference in the events

ordering. Figure 4.16(c) (18 occurrences) is a more complex case where the processes

communicate with non-direct neighbor processes, which corresponds to the specifications

of SMG2000. For Figure 4.16(d) (137 occurrences) and Figure 4.16(e) (76 occurrences),

it can be noticed that for P1 and P8 there is only one event in each case which we do not

detect using our n-gram approach as we consider a bi-gram as the smallest pattern.

However, the communication pattern construction algorithm adds these single partner

events to the communication pattern as previously described in the algorithm. The pattern

in Figure 4.16(d) moves the data from P1 to P8 while the pattern in Figure 4.16(e) moves

the data in the opposite direction. The pattern in Figure 4.16(f) (36 occurrences) shows that

there is a repeating communication pattern between processes P1 and P5 only. The pattern

in Figure 4.16(g) (18 occurrences) shows that the communication pattern involves only

processes P1, P3, P5 and P7. In [Preissl 08], only the pattern in Figure 4.16(a) was

(a) (b) (c) (d) (e)

P1

P2

P3

P4

P5

P6

P7

P8
(f) (g)

136

presented as the main communication pattern. In our work, we present all the detected

patterns that correspond to the same scenario.

Table 4.3 shows the resulting patterns when applying the various techniques to the trace of

process P2 for SMG2000 with 8x1x1 process topology and 2x2x2 problem size. When

applying the n-gram approach directly on the trace generated from P2 (1028 message

passing events) without considering the routine call tree, the number of detected process

patterns was 25. The suffix tree approach resulted in 52 patterns. However, the number of

detected patterns when applying the algorithm using the routine call tree was reduced to

10. When removing contiguous repeats from the trace, the number of patterns with the

routine-call directed approach was reduced to 5 which is the exact number of patterns).

Table 4.3. Detected Repeats for P2 for SMG2000 (8x1x1 Process Topology and 2x2x2

Problem Size, Relevant Patterns = 5, P: Patterns)

Pattern Detection

Technique
P FP TN Precision Recall

Syntactic Matching

based on Suffix Tree

Method

52 48 0 10% 100%

Syntactic Matching

based N-Gram Method
25 20 0 20% 100%

Routine call-directed

Approach Based on the

N-Gram Method

10 5 0 50% 100%

In another scenario where we used a 2x2x2 process topology (3D mesh) and 2x2x2

problem size another set of patterns was detected. However, without the knowledge of the

routine calls, some patterns were not detected using any of the pure string matching

techniques. Moreover, the number of detected patterns for P1 when using the suffix tree on

137

the trace of message passing events was 208 which is considerably high compared to the

true number of patterns which is 25.

Figure 4.17. SMG2000 Detected Patterns using Routine-Call Directed Approach

Figure 4.17 shows an example of two communication patterns that were not detected when

applying the pattern detection approach directly to the message passing events. The Pattern

in Figure 4.17(a) involves all the processes in the trace and depicts a nearest neighbour

communication pattern. For example, P1 communicates with P2, P3 and P5 which are its

neighbours. However, the pattern in Figure 4.17(b) involves only four processes from the

trace and shows that all processes communicate with each other.

Table 4.4. Performance Analysis for SMG2000 Traces

Topology
Problem

Size
MPI Events

Routine call

tree n-gram

(s)

n-gram

(s)

CST

(s)

8x1x1 2x2x2 9312 1.25 0.98 3.33

2x2x2 2x2x2 25416 1.33 1.40 17.13

4x4x2 2x2x2 248768 12.56 10.82 70.96

16x1x1 10x10x10 978296 73.98 68.71 387.07

32x1x1 10x10x10 2363156 162.14 147.65 804.12

64x1x1 10x10x10 5324304 359.54 354.32 1204.90

This example shows that using the routine call tree in the detection process helps in

improving the quality of the detection process by uncovering patterns that cannot be

P1

P2

P3

P4

P5

P6

P7

P8
(b) (a)

138

detected directly from a trace of message passing events. Similar to the Sweep3D example,

our approach performs also better in terms of execution time than a pure suffix tree based

approach as can be seen in Table 4.4.

It is clear that the two patterns in Figure 4.17 when represented by the event graph are not

very easy to follow due to the irregular order of events as opposed to the patterns in Figure

4.16. This opens another research question on how to find a better visualization technique

than event graphs to represent communication patterns.

4.8.2 Sample of Detected Patterns on Target Systems

In this section, we present sample detected patterns applied to different systems using our

n-gram based techniques.

4.8.2.1 NAS Parallel Benchmark

In this section, we target three programs (LU, CG, and MG) that are part of the NAS

Parallel Benchmark suite (described in Section 3.8.1). We briefly describe each target

program along with the detected communication patterns.

4.8.2.1.1 NAS-LU

LU is similar to Sweep3D in that it uses diagonal pipelining method (wavefront) method,

to perform communication of partition boundaries. An iteration in LU consists of two

sweeps [Mudalige 08], one sweep starting from the top-left corner to the bottom-right

corner in the process topology followed by a sweep in the opposite direction. In the

following, we test our approach on a trace generated from LU in order to verify if the

communication pattern used in LU corresponds to a wavefront pattern. The tested trace is

generated from running 8 processes with a 2x4 process topology, a problem size of 64 x

139

64 x 64, and 250 iterations. When applying the pattern detection algorithm on the trace

(without considering the routine call graph) we were able to detect the global

communication behaviour in the trace. It should be noted that according to the NPB

documentation found at [NAS-Changes] a dummy iteration was added before the time step

loop in LU for consistency with the other benchmarks in NPB. This justifies the number

of occurrences of the global communication pattern to be 251 rather than 250. The global

communication pattern is depicted in Figure 4.18. When applying the suffix tree approach

on the LU trace, we were not able to detect the global communication behaviour. In Figure

4.18, it is noticed that the two sweeps are preceded by a 2D-nearest neighbor pattern in all

the occurrences. This pattern is used to perform some computations prior to the sweeps.

The suffix tree approach was only able to detect each repeating pattern separately. However,

our approach is able to detect each repeating pattern separately as well as the global

communication pattern shown in Figure 4.18. Moreover, the number of detected repeats

using the suffix tree approach for P1 (for example) is 383 repeats where in our approach it

was only 6 repeats. The problem with suffix tree is that it detects a large number of repeats

which most of them are considered as false positives. Also, using our algorithm, there are

two cases of the communication pattern that are preceded with two occurrences of the 2D-

nearest neighbour pattern and there is one case that the two sweeps were followed by one

occurrence of the 2D nearest neighbour pattern.

140

Figure 4.18. LU Global Communication Pattern

When using the information from the routine call graph, we were able to detect the patterns

shown in Table 4.5. The numbers of occurrences for each pattern are consistent with the

number presented in Figure 4.18.

Table 4.5. Patterns Detected with Routine Call Graph

Wavefront Pattern Occurrences

Sweep from P1 to P8 15562 = 251 x 62

Sweep from P8 to P1 15562 = 251 x 62

2D-nearest neighbor 254 = 251 + 3

We apply the pattern matching technique to the LU program since we already know that

the communication pattern used in the program is a wavefront pattern. The pattern

matching algorithm differs than the pattern detection one since we need to provide an input

pattern and then look for it in the trace. Therefore, the pattern needs to be entered properly

and should match the number of processes and their topology. We used the same example

(2x4 process topology). The first step is to generate the pattern events for each process

P1 to P8 sweep
62 times

P1

P2

P3

P4

P5

P6

P7

P8

251 Occurrences = number of iterations + 1

P1 to P8 sweep
62 times

2D-nearest
1 time

141

separately. Then, we can match each process patterns separately and construct the

communication pattern. The process topology is the most important factor when building

the input pattern since it determines the partner processes that each process will

communicate with. Moreover, it will determine the originating process in the wavefront.

When considering P1 as the originating process the input pattern for each process should

look like the events shown in Table 4.6. The pattern matching algorithm will use the events

for each process to look for the matching process patterns in the trace. After detecting all

the occurrences of each pattern in the trace, the communication construction algorithm will

start by matching the partner events based on their positions in the trace.

Table 4.6 Input Pattern for Wavefront originating from P1

Process Input Pattern

P1 Send to P2, Send to P5

P2 Receive from P1, Send to P3, Send to P6

P3 Receive from P2, Send to P4, Send to P7

P4 Receive from P3, Send to P8

P5 Receive from P1, Send to P6

P6 Receive from P5, Receive from P2, Sent to P7

P7 Receive from P6, Receive from P3, Send to P8

P8 Receive from P7, Receive from P4

In this example, we set the error value to be 0 which means that we are looking for exact

matches to the input pattern. However, the error value can be set to another value when we

are looking for similar patterns to the input one. It should be noted that the ordering of

events may be different, for example P1 may send to P5 before sending to P2. These

different combinations can be handled since our algorithm uses the edit distance function.

After running the pattern matching algorithm the number of detected wavefront patterns

that originate from P1 and end at P8 was 15562. This validates the pattern matching

142

algorithm since we already know the number of wavefronts originating from P1. Moreover,

it validates that the repeating pattern detection algorithm is correct since also the number

of detected patterns was verified using the pattern matching algorithm.

4.8.2.1.2 NAS-CG

This kernel is useful for unstructured grid computations in order to test irregular long

distance communication that employs unstructured matrix vector multiplication. We tested

our algorithm on the NAS CG (class W) benchmark.

Figure 4.19. NAS CG Pattern and Topology

Figure 4.19 shows the communication pattern (left) and its corresponding MPI virtual

topology. The main communication behaviour in CG follows a 2D-stencil which was

detected by our algorithm as shown in Figure 4.19.

As can be seen from the pattern, processes (P1 to P4) form a sub-group and processes (P5

to P8) form another sub-group of communication. Data is being exchanged between the

two sub-groups through processes (P3 to P6) at the center of the communication pattern.

Moreover, to validate the detection algorithm we compared the communication topology

to the one presented in [Cappello 00] and found that they are identical. In [Lee 09], the

 P2

 P1

 P3

 P4

 P5

 P6

 P7

 P8

P1

P2

P3

P4

P5

P6

P7

P8

143

authors presented some analysis regarding the two-subgroups and how they communicate.

In our work, we were able to provide the full communication pattern described using the

event graph.

4.8.2.1.3 NAS-MG

The MG kernel follows only one communication behaviour. The process topology (Figure

4.20a) corresponds to a 3D mesh (2x2x4). Figure 4.20b shows the detected communication

pattern for an instance of NAS MG (class A) running on 16 processes. The total number of

messages in the trace is 22048. The communication pattern shows that processes

communicate to the nearest neighbour on their layer and the adjacent layer. Also, processes

on the side layers communicate with each other. For example, P1 communicates with P13

and P4 communicates with P16. The NAS MG is used to test near and far communications.

This can be easily noticed in the detected patterns. For example, P1 communicates with the

far process P13 and also it communicates with its near neighbors (P1, P3 and P5). The

communication pattern is detected 109 times in the trace.

When using the knowledge-directed approach, all the communications occurred within the

comm3 routine. According to [Lu 04] they mentioned that every process when executing

comm3 it sends 6 messages and receives 6 messages exchanged in the three dimensions

coordinate. Our dynamic analysis approach proves these results and extends it by

representing the communication pattern using an event graph.

144

Figure 4.20. NAS MG Class A Communication Topology & Pattern

4.8.2.2 Weather Forecasting & Research Model

We tested our pattern detection algorithm on a trace file generated by the VampirTrace

[VampirTrace] trace analysis tool (this trace is different than the one presented in the

previous section but was generated from the same system). The trace file had 336960 point-

to-point events. In this trace, we detected two main patterns, one consists of point-to-point

operations and the other one is composed of collective operations. The right side

Processes in WRF communicate based on a 2D nearest-neighbor topology. In the following,

we tested our pattern detection approach on different traces generated from WRF. The

results show that the communication pattern follows the same communication structure

(2D nearest-neighbor or 2D-Stencil) as indicated in the program’s documentation. For the

first trace, the detected pattern occurred 535 times.

When using the suffix tree approach the number of resulting repeats was 534. However,

when applying our n-gram algorithm there was only one pattern detected which is the only

P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P11
P12

P13
P14
P15
P16

13 14

15 16

x

y

z

west

south

9 10

11 12

5 6

7 8

1 2

3
11

4

145

true pattern. In the suffix tree approach, it returned overlapping repeats. For example, when

considering only this part of the whole trace for P1

‘abcdabcdabcdabcdabcdabcdabcdabcdabcd’ (where a: Send to 5, b: Receive from 5, c:

Send to 2, and d: Receive from 2) then the resulting patterns are shown in Table 4.7.

Table 4.7. Suffix Tree Detection Example of WRF Sample Trace

 Pattern Occurrences Positions

1 abcd 9 0, 4, 8, 12, 16, 20, 24, 28, 32

2 abcdabcd 8 0, 4, 8, 12, 16, 20, 24, 28

3 abcdabcdabcd 7 0, 4, 8, 12, 16, 20, 24

4 abcdabcdabcdabcd 6 0, 4, 8, 12, 16, 20

5 abcdabcdabcdabcdabcd 5 0, 4, 8, 12, 16

6 abcdabcdabcdabcdabcdabcd 4 0, 4, 8, 12

7 abcdabcdabcdabcdabcdabcdabcd 3 0, 4, 8

8 abcdabcdabcdabcdabcdabcdabcdabcd 2 0, 4

It clearly shows that in the suffix tree approach the number of detected repeats is quite high

with respect to the true number of patterns in the trace. When applying the n-gram approach,

only the first pattern ‘abcd’ was detected which makes the communication pattern

construction algorithm much easier than when considering all the other detected patterns.

Figure 4.21 presents the communication pattern (right) and its corresponding

communication topology which clearly shows a 2D stencil communication behaviour.

When applying the pattern detection algorithm on a larger trace of the WRF application

the same pattern was detected with 3510 occurrences.

Our analysis shows that this repeating pattern exists in different contexts of the program.

Here, a context means the function that the pattern occurs in. The detected pattern is

repeated 3510 in the trace file.

146

Figure 4.21. WRF Communication Pattern

The point-to-point communication pattern exists in the START_DOMAIN_EM and

SOLVE_EM functions. START_DOMAIN_EM is called once in the program and

SOLVE_EM function is called 100 times. The START_DOMAIN_EM call occurs before

the SOLVE_EM calls. The detected pattern in the execution trace helped us locate the

important communications in the program. These inter-process communications were used

in setting up the data to compute several weather parameters such as moisture coefficients

and the diagnostic quantities pressure.

Collective Pattern 1 Collective Pattern 2

MPI_Bcast

MPI_Gather

MPI_Gatherv

MPI_Gather

MPI_Scatterv

MPI_Bcast

MPI_Gather

MPI_Gatherv

60 repetitions 116 repetitions

Figure 4.22. Detected Collective Pattern

P2 P1 P3

P6 P5 P7

P10 P9 P11

P4

P8

P12

P14 P13 P15 P16

Topology

P1
P2

P3
P4

P5
P6

P7
P8

P9
P10

P11
P12

P13
P14

P15

P16

147

The execution trace contained two collective patterns (patterns from MPI collective

operations) as shown in Figure 4.22. The root process in the collective operations is P1.

Moreover, Pattern 2 shows in the first 3 elements of Pattern 1 but was detected at different

locations in the trace that were not part of the occurrences of Pattern 1.

4.8.2.3 2D Solution to Cellular Nuclear Burning – FLASH 2.0

The largest trace file in our case study was generated from the two-dimensional

implementation of the Cellular Nuclear Burning problem [FLASH 2]. Flash solves

complex systems of equations for hydrodynamics and nuclear burning which uses

Paramesh library [Paramesh] for adaptive mesh refinement on rectangular grid. The

generated trace file contained 633490 point-to-point MPI events generated from 16

processes. We were able to detect 202 distinct patterns. Some of these patterns were

repeated a few times and others were repeated for a few thousand times. The total

execution time for detecting the patterns was 228 seconds. This long execution time is due

to the large number of distinct patterns in the trace.

Figure 4.23 shows two patterns that were detected using the pattern detection algorithm.

The pattern in Figure 4.23a is repeated 927 times and pattern in Figure 4.23b was only

repeated 5 times in the trace. It can be seen in the two patterns that processes P6 to P15

have the same communications (process patterns). That is why in the communication

pattern construction algorithm we iterate on all the positions of the detected process

patterns. If not all of the positions were taken into account then some of the communication

patterns will not be detected in the trace. These two patterns are used in filling the guard

cells in the mesh. We also detected more complex patterns that we cannot include in this

work due to space limitation.

148

We also tested the pattern matching algorithm on this trace to detect similar patterns to an

input pattern. In this case study, we were able to detect similar patterns that differ in

message size, tag value, and that have different number of communications. For example,

when considering the message envelope for pattern in Figure 4.23b, we detected 4 instances

of the pattern when the size of the message sent from P1 to P6 is 24. The input pattern

differs from the detected patterns in the message size which is 0. In this example, a

maximum edit distance of 1 was allowed.

Figure 4.23. Two Detected Patterns in the 2D Cellular Problem

We detected many other similar patterns using the similar pattern detection algorithm. In

the case studies, we found out that when n increases, the total execution time increases.

This can be justified since the number of verified windows using the edit distance function

increases. Moreover, in some cases, we found that the window size should be less than the

size of the pattern but also not less than m – k in order to have a similar match.

(a) (b)

P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P11
P12
P13
P14
P15
P16

149

4.9 Summary

In this chapter, we presented a new approach for detecting repeating communication

patterns and matching similar communication patterns in MPI execution traces. Our

approach is based on the concept of n-grams applied in different areas such as statistical

natural language processing, DNA and Musical notes. We presented several algorithms

that we have developed to guide in the detection process. The presented algorithms are:

1. The detection of maximal repeats in a process trace. This algorithm extracts all the

repeating sequences of MPI events in each process trace separately.

2. The detection and removal of tandem repeats in a process trace. This algorithm removes

all contiguous repeats from the trace which reduces the size of the trace significantly.

3. An algorithm for finding similar patterns based on a predefined input pattern in the

MPI trace. This algorithm runs on each process trace separately and finds the sequences

on each process trace that match the input pattern.

4. The construction of communication patterns based on the detected process patterns

gathered in 1 & 3.

We elaborated on the steps in each algorithm in a separate section and provided a running

example that illustrates the algorithm.

We have shown how our approach for detecting repeating communication patterns in the

trace utilizes the knowledge in the trace as opposed to the existing approaches that are

syntactic where they only consider the MPI trace as a mere string of message passing events.

The results showed that a knowledge-directed approach improves the quality of detection

patterns in terms of reducing the numbers of false positives and true negatives respectively.

150

Chapter 5. Execution Phases in MPI Traces

5.1 Introduction

Programs are designed to have several execution phases where each phase is meant to

represent a specific behaviour in the program such as its initialization, computations, and

outputting the results. A phase can also be comprised of several sub-phases. Locating the

phases in the execution trace can be utilized for different purposes such as program

comprehension, reducing simulation time, system reconfiguration and adaptive

optimizations [Gu 06].

In this thesis, we propose a novel approach for localizing computational phases in large

HPC traces. We define a computational phase as part of a trace where a particular program

computation is invoked. For example, a trace that is generated from a compiler should

contain events that represent the various compiler’s computational phases including

initialization of variables, parsing, preprocessing, lexical analysis, semantic analysis, and

so on. Knowing where each of these phases occurs in the trace is usually a challenging task

since there is no support at the programming language level of how to explicitly indicate

the beginning and end of each phase. This is further complicated in the context of HPC

applications where a phase can be performed by multiple processes running in parallel. But,

if done properly, the recovery of computational phases (and their sub-phases) can reduce

considerably the time and effort spent by software engineers on understanding what goes

on in a trace.

The presented phase detection approach encompasses two main steps. First, we detect

communication patterns that characterize the way processes communicate with each other

151

throughout the execution of the program. We achieve this by applying the communication

pattern detection algorithm presented in Chapter 4. The second step, which is also the main

contribution of this chapter, consists of an approach for automatically grouping the

extracted patterns into dense homogenous clusters that indicate the presence of

computational phases. We achieve the second step using information theory concepts such

as Shannon entropy [Gray 11] and the Jensen-Shannon Divergence measure [Grosse 02].

The description and explanation of the phase detection approach along with two case

studies from well-known HPC programs and benchmarks are presented in the following

sections.

5.2 Phase Detection Approach

Figure 5.1 shows our execution phase detection approach. The trace is first divided into

multiple process traces in which the events of each process are grouped together. The next

step is to detect communication patterns from the process traces. For this, we use an

algorithm that we presented in Chapter 4. These patterns are then input to the phase

detection component. The phase detection method looks for changes in communication

patterns throughout the program execution. Note that a phase may be composed of multiple

patterns.

The challenge is to automatically identify groups of homogenous patterns and distinguish

them from each other. We achieve this by measuring the degree for which multiple patterns

can be considered homogenous using the Jensen-Shannon divergence metric. Finally, we

analyze the execution phases. The result might necessitate further fine-tuning of the pattern

detection technique or the phase detection algorithm until satisfactory phases are obtained.

152

This last step is done manually. In the following section, we discuss our phase detection

approach in more detail.

Figure 5.1. Phase Detection Approach

5.2.1 Phase Detection

Our phase detection approach is inspired by studies in the field of bioinformatics, more

particularly, the analysis of DNA sequences. In [Li 02], the authors proposed a recursive

algorithm for segmenting a DNA sequence into more homogeneous sub-domains. The

algorithm follows the divide-and-conquer approach proposed in [Cormen 90], which relies

on information theory concepts. More precisely, the algorithm uses Shannon entropy

[Shannon 48, Gray 11] and the Jensen-Shannon divergence measures [Grosse 02] to guide

the segmentation process.

We adapted this algorithm to the segmentation of a MPI trace, in which the symbols

represent the communication patterns identified in the previous step. The length of the

sequence is the number of instances of the patterns. It should be noted that another

alternative would have been to apply the sequence segmentation to the original trace. This

MPI Trace

Communication Pattern Detection

Phase Detection

Phase Analysis

{CP}

{PH}

 T1 T2 … Tn

153

would however been impractical given the high number of events involved, hence the use

of communication patterns.

The segmentation process starts by measuring the degree of heterogeneity of the sequence.

For this, Shannon entropy is used [Gray 11]. Shannon entropy measures the amount of

information in a sequence by assessing how much randomness exists in the sequence. A

sequence for which all the symbols appear with the same probability will result in low

entropy (meaning that the uncertainty about the data is at its minimum). On the other hand,

the higher the entropy, the more variations exists in the data (i.e., the more heterogeneous

the data is). The Shannon entropy H of a sequence S of length N with k distinct symbols

is defined using the following equation [Gray 11].

−=
=

k

j

jj

N

N

N

N
H

1

log (5.1)

Where Nj is the number of times symbol j appears in sequence S. Once the Shannon entropy

of a sequence is measured, the next step is to identify places in the sequence where

heterogeneous behaviour occurs. This process is done recursively based on the following

steps:

1. For each position i in the sequence, we measure the entropy of the left subsequence

and the right subsequence from position i. Note that the left and right subsequences

must not be empty. Hl and Hr which represent the entropy of the left and right

subsequences are computed as follow:

i

N
log

i

N
H

k

1j

l
j

l
j

l −=
=

 (5.2)


−−

−=
=

k

1j

r
j

r
j

r
iN

N
log

iN

N
H (5.3)

154

Where Nj
l is the number of times symbol j appears in the left subsequence Sl and Nj

r is

the number of times symbol j occurs in the right subsequence Sr.

2. For each two subsequences, we measure their similarity by comparing the entropy

values using the Jensen-Shannon Divergence (DJS) measure [Grosse 02] and which

is presented below. The higher DJS, the more heterogeneous the subsequences are:

rlJS H
N

iN
H

N

i
HD

−
−−= (5.4)

3. We select the subsequences for which DJS has the highest value and apply the

segmentation process recursively to these subsequences until a stopping criterion is

met, which is explained in what follows.

In order to determine the criterion for stopping the recursive segmentation process, Li et al.

proposed to use the model selection framework presented in [Li 02] where a model can be

evaluated by a combination of the degree to which the model fits the data and the

complexity of the model itself. In sequence segmentation, we have two models. The first

model M1 is represented by the whole sequence S whereas the second model M2 is

represented by the left and right subsequences (Sl and Sr) respectively. The objective is to

find a model at the boundary between the under-fitting models (models that do not fit the

data well) and over-fitting models (models that fit the data too well using many parameters).

Li et al. [Li 02] proposed to use the Bayesian Information Criterion (BIC) [Akaike 78] in

order to balance the goodness-of-fit of the model to the data with respect to the number of

parameters in the model. The BIC is defined by:

K)Nlog()Llog(2BIC +−= (5.5)

155

Where L is the maximum likelihood of the model, K is the number of free parameters in

the two models, and N is the sample (sequence) size. The value of K is calculated using (kl

+ kr + 1 – k) where kl is the number of distinct parameters in Sl, kr is the number of distinct

parameters in Sr and k is the number of distinct parameters in S. In the following, we will

explain how BIC can be used to derive the stopping criterion for recursive sequence

segmentation based on Shannon entropy. The likelihood for S (before segmentation) is

determined by:

=
=

k

1j

j
N

jp)S(1L (5.6)

where pj is equal to Nj/N (the probability of symbol j in sequence S). Therefore, the log-

likelihood is determined by:

=
=

k

1j

j

j
N

N
logN)S(1Llog (5.7)

It can be easily shown that the log-likelihood (log L1) before segmentation is equal to (-

NH) where H is the Shannon Entropy for the whole sequence S.

Additionally, the likelihood for the left and right subsequences (after segmentation) is

determined by:

)p()p(N,S,S(2L
r

k

1j

r

jNr

j

lk

1j

l

jNl

j)lrl =
==

 (5.8)

Where pl
j is equal to Nl

j/N and pr
j is equal to Nr

j/N. Nl is the cutting point (also length of

left subsequence). The log-likelihood is determined by:

+=
==

r
k

1j

r

jr

j

l
k

1j

l

jl

jlrl
N

N
logN

N

N
logN)N,S,S(2Llog (5.9)

156

Similarly, it can be easily shown that log L2 = -Nl Hl – NrHr. The likelihood L is measured

by the increase of likelihood from the two models as L2/L1. Therefore, the increase of log-

likelihood is log(L2/L1) = NH – (NlHl + NrHr) which is equal to NDJS (see Equation 5.4).

The maximized value of L (maximum likelihood) occurs at the point with the maximum

DJS value. In order for segmentation to continue, the BIC value should be reduced to the

minimum (close to zero or ΔBIC < 0). By replacing log(L) by JSD̂N in Equation 5.5, it will

lead to the following:

KNDN JS)log(ˆ2  (5.10)

where JSD̂ is the maximum Jensen-Shannon divergence value. This means that the

segmentation will continue if the maximum DJS value is above log(N)K/2N. The advantage

of this approach is that the user’s intervention is not required to determine the threshold

value in order to stop segmentation. Therefore, the threshold value is calculated as:

NKN 2/)log(= (5.11)

JSD̂ should be greater than τ in order for segmentation to continue. Li et al [Li 02] proposed

to use a measure of the segmentation strength s which is measured by the relative increase

of 2NDJS from the BIC threshold using the following:

K)Nlog(

K)Nlog(D̂N2
s JS −= (5.12)

Segmenting the sequence based on Equation 5.12 when s > 0 will have the same effect as

segmenting the sequence when DJS is greater than the dynamic threshold calculated based

on Equation 5.10. In other words, the segmentation strength must always be positive value

157

in order to continue the segmentation process. Moreover, the value of s can be adjusted to

be greater than a user-specified value s0 where s > s0 > 0. Varying s0 will vary the numbers

of detected subsequences. A larger s threshold value s0 will result in a smaller and more

fine-grained number of subsequences.

The output of the segmentation algorithm can be depicted in a binary tree where every

subsequence is divided into two subsequences based on the position of the maximum DJS

value. The accuracy of the recursive segmentation algorithm is at the price of its relatively

slower computational time since many passes through the data are needed to measure the

DJs for left and right subsequences.

The graph in Figure 5.2c clearly shows the borders of each segment in the sequence. It

shows that at points 3, 9, 17 and 21 there are peak divergence values. The algorithm will

select the highest divergence value (0.97 at position 9). Then, it will run the same algorithm

for the left and the right subsequences for further segmentation. Figure 2b shows the

segmentation tree and how each sequence is further segmented into left and right segments.

The table presented in Figure 5.2a shows the values that correspond to each subsequence

during the segmentation process. Also, the tree that corresponds to the subsequences is

shown in Figure 5.2b. This example demonstrates usefulness of the Shannon entropy and

the Jensen-Shannon divergence in sequence segmentation.

158

S AAABBBBBBCCCCCCCCDDDDEE

 ps pe Djs pc s

S0 1 23 0.97 9 8.81

S1 1 9 0.79 3 3.49

S2 10 23 0.96 17 6.06

S3 1 3 -0.17 - -1.0

S4 4 9 -0.08 - -1.19

S5 10 17 0.0 - -1.0

S6 18 23 0.79 21 2.66

S7 18 21 -0.12 - -1.0

S8 22 23 -0.25 - -1.5

(a) Segmentation Data

(b) Segmentation Tree

p DJS p DJS

1 0.168 12 0.671

2 0.332 13 0.65

3 0.577 14 0.64

4 0.515 15 0.66

5 0.533 16 0.7

6 0.583 17 0.81

7 0.661 18 0.6

8 0.772 19 0.48

9 0.965 20 0.41

10 0.8 21 0.39

11 0.72 22 0.15

(c) DJS values for each element in S0

Figure 5.2. Heterogeneous Sequence Segmentation Example (ps: start position, pe: end

position, H: Shannon Entropy, JSD̂ : Jensen-Shannon Divergence, pc: cutting point, τ:

threshold, and s: segmentation strength)

5.2.2 Phase Analysis

In this step, we verify the accuracy of the detected phases. This step is done semi-

automatically. We start by mapping the phases to the original execution trace. Since each

process has its own trace file, we need to map the segments to their locations in each

process trace. For each process trace, the beginning of the phase will be based on the first

pattern in the sequence and the end of the phase will be based on the end of the last pattern

in the sequence. We use the routine-call tree in order to determine the routine that is

S0

S2 S1

S6 S3 S4

S8

S5

S7

159

performing this pattern. For example, if the pattern occurs at nesting level 5, then we go up

in the call hierarchy until we find the highest routine call (without crossing any preceding

communication patterns) that is responsible for performing the communication. We check

that the routine is indeed responsible for the phase. We do this by referring to the source

code or any available documentation. If not that, then the phase detection failed. In this

case, we need to re-execute the pattern detection and the phase detection steps by changing

the parameters.

5.3 Case Study

In this section, we show the effectiveness of our approach by applying it to two large traces

generated from the NAS BT benchmark and the SMG2000 industrial HPC system.

5.3.1 SMG2000

In this section, we show the effectiveness of our approach by applying it to a large trace

generated from the SMG2000 (described in Section 4.8.1) industrial HPC system

[SMG2000]. SMG2000 is a SPMD (Single Program Multiple Data) program that uses data

decomposition to solve the problem. SMG2000 performs a large number of non-nearest-

neighbor point-to-point communication operations [Geimer 06].

At a high-level, SMG2000 performs three distinct phases to solve the problem as reported

in [Tiwari 11]. These phases are Initialization, Setup and Solve. The setup phase starts by

a call to the HYPRE_StructSMGSetup routine and the Solve phase starts by a call to the

HYPRE_StructSMGSolve routine. The initialization phase occurs before the setup phase

and encompasses the trace events that occur before the HYPRE_StructSMGSetup routine.

This information will be used in the validation of the detected phases. Our approach, as we

will show in the subsequent section, also detects sub-phases in each phase. We used the

160

VampirTrace [VampirTrace] tracing tool to generate the traces from running SMG2000.

The execution scenario is based on a 4x4x2 process topology (Figure 5.3) and a 2x2x2

input problem size.

Figure 5.3. Process Topology for SMG2000 4x4x2

Table 5.1 presents some statistics about the generated trace. The total number of message

passing events based on point-to-point communications is 248768. Moreover, each process

exchanges data by performing 14 collective operations (a total of 448 collective

communication events for all processes). Table 5.1 shows that this is relatively a large trace

with more than 15 Million events.

Table 5.1. SMG2000 Statistics for SMG2000 Trace

Trace Attribute Value

Size of Trace 1 GB

Number of Processes 32

Total Number of Events 15392281

Point-to-point Communication Events 248768

Collective Communication Events 448

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

x

y

z

west

south

161

5.3.1.1 Pattern Detection

We used our pattern detection algorithm described in Chapter 4 to detect the

communication patterns in the SMG2000 trace. The algorithm resulted in 47 distinct

patterns (3 collective and 44 point-to-point communication patterns). The total number of

patterns instances is 2065.

The validation of the communication patterns is performed using a combination of static

and dynamic analysis. The static analysis part is to locate the routines that are responsible

for the communication. In all communication routines, each process sends data to a group

of processes and then receives data from the same group. The group of processes is

determined in the calling routine and is passed to the routine responsible for handling the

communication events. The dynamic analysis part is to trace these groups of processes for

each process and then compare them to the partner processes in each pattern. We present

the list of all point-to-point communication patterns in Appendix B.

5.3.1.2 Phase Detection

We applied the recursive segmentation steps to the communication pattern sequence

detected in the previous step. The results are presented in what follows. Figure 5.4 shows

the Jensen-Shannon divergence distribution for each pattern position in the whole sequence.

As we can see, the sequence can be split into two subsequences at peak point 443. Two

sequences have emerged that we call S1 (patterns positions 1 to 443) and S2 (starting from

position 444). The curve that represents sequence S1 (position 1 to 443) in Figure 5.4 shows

that the data is still highly heterogeneous, whereas the smooth curve for S2 (positions 444

to 2065) shows high homogeneity. It is worth mentioning that when we mapped the first

postion in S2 (position 444) to the original trace, we found that it represents a call to the the

162

routine HYPRE_StructSMGSolve, which seems to indicate that the Solve phase has started

to take place at this position.

Figure 5.4. DJS values for the whole sequence (max DJS at 443, τ = 0.06)

The recursive segmentation continues as long as the segmentation strength s is positive. As

previously described, the segmentation strength s can be also specified by the user in order

to control the number of detected sub-phases. A higher s value means a smaller number of

phases. In this study, we segmented based on two values s > 0 and s > 0.5.

When using s > 0 (general case), the total number of segments (including S0) was 67 and

the number of leaf nodes (phases) was 34. However, when considering further

segmentation with s > 0.5, the total number of segments was reduced to 27 and the number

of leaf nodes was reduced to 14. We examined both computational phase sets obtained with

s > 0 and s > 0.5 and found the difference is in the level of granularity of the phases. With

s > 0, we obtained fine-grained phases than with s > 0.5. In this case study, we only show

in Table 2 the resulting sequences from the recursive segmentation algorithm when

allowing segmentation for s greater than 0.

0

0.05

0.1

0.15

0.2

0.25

0.3

1 222 443 664 885 1106 1327 1548 1769 1990

Je
n

se
n

-S
h

an
n

o
n

 D
iv

e
rg

e
n

ce

S1 S2

163

Table 5.2. Recursive Segmentation (ps: start position, pe: end position, l: length, DJS:

Jensen-Shannon Divergence, pc: cutting position of max divergence, τ: threshold, s:

Segmentation Strength, and P: parent node, hyphen (-) means no s for length = 1)

 ps pe l DJS pc τ s P

 ps pe l DJS pc τ s P

S0 1 2065 2065 0.28 443 0.06 3.94 NA S33 38 39 2 -0.25 38 0.5 -1.5 S20

S1 1 443 443 0.33 145 0.19 0.73 S0 S34 40 42 3 0.75 41 0.26 1.85 S20

S2 444 2065 1622 0.02 2061 0.01 0.85 S0 S35 40 41 2 -0.25 40 0.5 -1.5 S34

S3 1 145 145 0.38 23 0.07 4.05 S1 S36 42 42 1 0 41 0 - S34

S4 146 443 298 0.44 264 0.19 1.26 S1 S37 146 264 119 0.19 162 0.2 -0.06 S4

S5 1 23 23 0.5 5 0.2 1.53 S3 S38 265 443 179 0.28 294 0.15 0.95 S4

S6 24 145 122 0.25 42 0.2 0.28 S3 S39 265 294 30 0.76 276 0.16 3.63 S38

S7 1 5 5 0.92 2 0.23 2.97 S5 S40 295 443 149 0.33 365 0.48 -0.32 S38

S8 6 23 18 0.44 17 0.23 0.89 S5 S41 265 276 12 0.43 270 0.3 0.44 S39

S9 1 2 2 -0.25 1 0.5 -1.5 S7 S42 277 294 18 0.36 280 0.35 0.05 S39

S10 3 5 3 0.66 3 0.26 1.49 S7 S43 265 270 6 -0.08 269 0.43 -1.19 S41

S11 3 3 1 0 2 0 - S10 S44 271 276 6 0.79 274 0.22 2.66 S41

S12 4 5 2 -0.25 4 0.5 -1.5 S10 S45 271 274 4 -0.12 273 0.5 -1.25 S44

S13 6 17 12 -0.04 16 0.3 -1.14 S8 S46 275 276 2 -0.25 275 0.5 -1.5 S44

S14 18 23 6 0.79 21 0.22 2.66 S8 S47 277 280 4 0.81 278 0.25 2.22 S42

S15 18 21 4 -0.12 20 0.5 -1.25 S14 S48 281 294 14 0.45 286 0.41 0.11 S42

S16 22 23 2 -0.25 22 0.5 -1.5 S14 S49 277 278 2 -0.25 277 0.5 -1.5 S47

S17 24 42 19 0.42 37 0.34 0.25 S6 S50 279 280 2 -0.25 279 0.5 -1.5 S47

S18 43 145 103 0.26 87 0.52 -0.51 S6 S51 281 286 6 0.88 282 0.22 3.08 S48

S19 24 37 14 0.45 29 0.41 0.11 S17 S52 287 294 8 0.97 290 0.19 4.18 S48

S20 38 42 5 0.92 39 0.23 2.97 S17 S53 281 282 2 -0.25 281 0.5 -1.5 S51

S21 24 29 6 0.88 25 0.22 3.08 S19 S54 283 286 4 0.81 284 0.25 2.22 S51

S22 30 37 8 0.97 33 0.19 4.18 S19 S55 283 284 2 -0.25 283 0.5 -1.5 S54

S23 24 25 2 -0.25 24 0.5 -1.5 S21 S56 285 286 2 -0.25 285 0.5 -1.5 S54

S24 26 29 4 0.81 27 0.25 2.22 S21 S57 287 290 4 0.81 288 0.25 2.22 S52

S25 26 27 2 -0.25 26 0.5 -1.5 S24 S58 291 294 4 0.81 292 0.25 2.22 S52

S26 28 29 2 -0.25 28 0.5 -1.5 S24 S59 287 288 2 -0.25 287 0.5 -1.5 S57

S27 30 33 4 0.81 31 0.25 2.22 S22 S60 289 290 2 -0.25 289 0.5 -1.5 S57

S28 34 37 4 0.81 35 0.25 2.22 S22 S61 291 292 2 -0.25 291 0.5 -1.5 S58

S29 30 31 2 -0.25 30 0.5 -1.5 S27 S62 293 294 2 -0.25 293 0.5 -1.5 S58

S30 32 33 2 -0.25 32 0.5 -1.5 S27 S63 444 2061 1618 0.01 1821 0.06 -0.76 S2

S31 34 35 2 -0.25 34 0.5 -1.5 S28 S64 2062 2065 4 0.58 2062 0.25 1.31 S2

S32 36 37 2 -0.25 36 0.5 -1.5 S28 S65 2062 2062 1 0 2061 0 - S64

 S66 2063 2065 3 -0.17 2064 0.53 -1.32 S64

164

It is difficult to know in advance how to set s and even if we succeed to determine a proper

limit for s for one system, there is no guarantee that it would work for another system. We

anticipate that a tool that supports our technique to allow flexibility to the user to change s

on the fly. Table 5.2 shows all the parameters used in the calculation of the segmentation

process. The DJS is the maximum divergence value of the point that the segmentation is

performed at. It should be noted that the max DJS must be always greater than τ in order to

allow segmentation which is met by Equation 10.

Figure 5.5. Binary Tree Representing the Segmentation Hierarchy (SMG 2000)

0

2 1

3 4

5 6

7 8

9 10

1

1

1

2

1

3
14

1

5

1

6

17 18

19 20

21 22

23 24

25 26

27 28

29 30 31 32

33 34

35 36

3

7
38

39 4

0

4

1

4

2

43 44

45 46

47
48

49 50 51 52

53 54

55 56

57 58

59 60 61 62

6

3
64

6

5

6

6

165

Figure 5.5 shows the hierarchy of the segments represented as a binary tree. The leaf nodes

in the tree represent the detected sub-phases in the trace. The detected sub-phases for

segmentation strength greater than 0 are (33 phases):

S9.S11.S12.S13.S15.S16.S23.S25.S26.S29.S30.S31.S32.S33.S35.S36.S18.S43.S45.S46.S49.S50.S53.S55.

S56.S59.S60.S61.S62.S40.S63.S65.S66

By going up the hierarchy, we can get a coarse-grained view of the phases. The leaf nodes

(double rounded) when the allowed segmentation strength is above 0.5 are (14 phases):

S9.S11.S12.S13.S15.S16.S6.S37.S41.S42.S40.S63.S65.S66

 It is clear how changing the segmentation strength can affect the number of detected

phases in the trace.

5.3.1.3 Phase Analysis

We mapped the phases to the original trace and analyzed the routines that were called at

the beginning of each phase. The detailed descriptions of the routines of the SMG2000 are

found on the SMG2000 website [SMG2000]. We used these descriptions to validate

whether the phases we detected were valid or not. The following was concluded from our

analysis.

Initialization Phase: This phase starts at phase S9 and includes the phases that are in the

sub-tree rooted at S7. Table 5.3 describes the detected sub-phases of the initialization phase.

Setup Phase: The HYPRE_StructSMGSetup is responsible for starting the setup phase. It

starts executing at point 6 in the sequence which corresponds to S8 in Figure 5.5. The Setup

phase spans the sub-trees rooted at S8, S6 and S4. Table 5.4 provides a description of the

sub-phases in the Setup phase.

Table 5.3. Initialization Sub-Phases

S Description

166

S9 This sub-phase uses the ‘gather’ collective communication operation in the

HYPRE_StructGridAssemble routine. Also, the hypre_InitializeTiming and

hypre_BeginTiming routines are being called at the beginning of this sub-phase for

tracking the timing of the initialization phase. Additionally, it contains the

MPI_Init which is responsible for the initialization of MPI in each process.

S11 The point-to-point communication pattern that was used in this phase is Pattern 1

described at the beginning of the case study. The main executed routine is

HYPRE_StructMatrixAssemble which only found in this phase in the whole trace.

S12 S12 uses the ‘reduce’ collective operation and is responsible for tracking timing

information at the end of the initialization phase (hypre_EndTiming and

hypre_PrintTiming ,hypre_FinalizeTiming).

Table 5.4. Setup Sub-Phases

S Description

S13 The call to HYPRE_StructSMGSetup is in this sub-phase. There are several

routines that are distinct to this sub-phase. Also, The hypre_InitializeTiming and

hypre_BeginTiming routines are being called in this phase to track the timing of

the Setup phase.

S15

S16

S6

S17

S21

S22

These sub-phases are similar in terms of the routines they execute but they differ

in terms of the communication patterns that are performed. S6 and S17 are the

longest phases and contain the highest number of communication patterns. The

routines in the other phases (S15, S16, S21, and S22) are all a subset of the routines

executed in these two sub-phases.

S20 This sub-phase executes the same routines in S6 and S17 but it also contains the

hypre_EndTiming, hypre_PrintTiming and hypre_FinalizeTiming to track the

timing at the end of the Setup phase.

Solve Phase: The execution of HYPRE_StructSMGSolve starts at point 444 (belongs to

S2) and ends at point 2065 (in S2). Therefore, the sub-tree rooted at S2 corresponds to the

Solve phase of the program. Table 5.5 presents the description of the sub-phases.

Table 5.5. Solve Sub-Phases

167

S Description

S23 HYPRE_StructSMGSolve is executed at the beginning of S23 and indicates the

start of the Solve phase. Also, in S23, the hypre_InitializeTiming and

hypre_BeginTiming routines are being called at the beginning of the Solve phase

for tracking the timing of the phase. This phase represents the major execution in

the Solve phase. It includes 1618 executed patterns. This indicates that the

communication patterns used in this phase are highly homogeneous.

S25 This phase is very short and performs only one communication pattern and the

main routine that is executed is hypre_SMGResidual.

S26 Reduce collective communication is used to track the timing (hypre_PrintTiming

and hypre_EndTiming) information to mark the end of the initialization phase.

Figure 5.6 shows the main execution phases in the program where the length of each phase

is based on the total execution time spent during that phase.

Figure 5.6. Detected Phases in SMG2000

The Finalize phase did not involve any inter-process communication. It started after the

completion of the HYPRE_StructSMGSolve routine. It was identified based on the routine

call tree where we considered the first sub-tree after all the communications as the Finalize

phase. The Finalize phase contains the MPI_Finalize routine that is responsible for the

termination of the MPI communication and also other routines that are responsible for the

destruction of the grid that was constructed in the initialization phase.

Initialize (17%) Setup (44%) Solve (35%) Finalize (2%)

S13,S15,S16,S6,
S37,S41,S42,S40

S9,S11, S12

S63,S65,S66

168

5.3.2 NAS BT

The Block Tridiagonal benchmark is part of the NAS PB [NAS] suite. It uses an implicit

algorithm to solve the 3-D compressible Navier-Stokes equations. We generated the trace

using VampirTrace [VampirTrace]. Table 5.6 shows some statistics on the generated trace.

The process topology is presented in Figure 5.7.

Table 5.6. Statistics for BT Trace

Trace Attribute Value

Size of Trace 0.43GB

Number of Processes 16

Number of Iterations 200

Input Size 24x24x24

Total Number of Events 6856270

Point-to-point Communication Events 154560

Collective Communication Events 160

Figure 5.7. NAS BT Process Topology

13 14

15 16

x

y

z

west

south

9 10

11 12

5 6

7 8

1 2

3 4

169

According to Geisler et al. [Geisler 99], the execution of NAS BT is divided into seven

distinct execution phases as follows:

1. Initialization: sets all the initial values.

2. Copy Faces: exchanges boundary values between neighboring processes.

3. Solve Phase:

a. X Solve: solves the problem in the x-dimension.

b. Y Solve: solves the problem in the y-dimension.

c. Z Solve: solves the problem in the z-dimension.

4. Add: performs a matrix update.

5. Final Clean up: verifies the solution integrity, cleans up data, and prints the final

results.

In the following, we present the steps that were involved in the phase detection process.

5.3.2.1 Pattern Detection

We used our pattern detection algorithm described in Chapter 4 to detect the

communication patterns in the NAS BT trace. The algorithm resulted in 16 distinct patterns

(3 collective and 13 point-to-point communication patterns). The total number of patterns

instances is 7446 (sequence length). The collective communications are Broadcast, Reduce

and All-Reduce.

Table 5.7 presents the events involved in the communication pattern that is used in the

Copy Faces routine. This pattern is repeated 201 times in the trace. This is a complex

pattern that involves near and far 2-way neighbour communication. This pattern is

represented textually due to its complexity which will result in cluttering when represented

using the event graph. The reason why the pattern is repeated 201 times instead of 200

(number of iterations) is that there is a dummy iteration before the time step function [NAS

Changes].

170

Table 5.7. Communication Pattern used in Copy Faces (P: Process, e: event, S2: Send to

2, R2: Receive from 2)

P e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12

P1 S2 S4 S5 S13 S8 S14 R2 R4 R5 R13 R8 R14

P2 S3 S1 S6 S14 S5 S15 R3 R1 R6 R14 R5 R15

P3 S4 S2 S7 S15 S6 S16 R4 R2 R7 R15 R6 R16

P4 S1 S3 S8 S16 S7 S13 R1 R3 R8 R16 R7 R13

P5 S6 S8 S9 S1 S12 S2 R6 R8 R9 R1 R12 R2

P6 S7 S5 S10 S2 S9 S3 R7 R5 R10 R2 R9 R3

P7 S8 S6 S11 S3 S10 S4 R8 R6 R11 R3 R10 R4

P8 S5 S7 S12 S4 S11 S1 R5 R7 R12 R4 R11 R1

P9 S10 S12 S13 S5 S16 S6 R10 R12 R13 R5 R16 R6

P10 S11 S9 S14 S6 S13 S7 R11 R9 R14 R6 R13 R7

P11 S12 S10 S15 S7 S14 S8 R12 R10 R15 R7 R14 R8

P12 S9 S11 S16 S8 S15 S5 R9 R11 R16 R8 R15 R5

P13 S14 S16 S1 S9 S4 S10 R14 R16 R1 R9 R4 R10

P14 S15 S13 S2 S10 S1 S11 R15 R13 R2 R10 R1 R11

P15 S16 S14 S3 S11 S2 S12 R16 R14 R3 R11 R2 R12

P16 S13 S15 S4 S12 S3 S9 R13 R15 R4 R12 R3 R9

Figure 5.8 presents four communication patterns that are used in the X Solve routine. Each

pattern only involves four processes in the program. These four patterns always occur

together. However, the patterns are disconnected and cannot construct one global

communication pattern that involves all the processes in the trace. Therefore, each pattern

will be represented as a separate symbol in the pattern sequence. Each pattern instance is

repeated 603 times in the trace.

Figure 5.8. Communication Pattern used in X Solve

Figure 5.9 shows another case of a disconnected communication pattern (a pattern that does

not involve all the processes in the trace). This communication pattern is used in the X

Solve Cell routine. Similar to the pattern in Figure 5.8, each pattern instance will be

P1
P2
P3
P4

P5
P6
P7
P8

P9
P10
P11
P12

P13
P14
P15
P16

171

represented as a separate symbol in the pattern sequence. Each pattern repeats 603 times in

the trace.

Figure 5.9. Communication Pattern used in X Solve Cell

Figure 5.10 shows the communication patterns used in Y Solve, Y Solve Cell, Z Solve, and

Z Solve Cell respectively. These patterns are also repeated 603 times in the trace.

Figure 5.10. Communication Patterns in Y Solve and Z Solve

5.3.2.2 Phase Detection

We applied the recursive segmentation steps to the communication pattern sequence

detected in the previous step. Table 5.8 lists the segmentation steps for segmentations

strength greater than zero (s0 > 0). The segmentation resulted in 17 segments (including

S7). Segment S7 is very long and cannot be further segmented using the recursive

P1
P2
P3
P4

P5
P6
P7
P8

P9
P10
P11
P12

P13
P14
P15
P16

P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P11
P12
P13
P14
P15
P16

 (a) Y Solve (b) Y Solve Cell (c) Z Solve (d) Z Solve Cell

172

segmentation algorithm. This is due to the repeating nature of the BT program (the program

has 201 iterations that are identical in terms of communication patterns).

Table 5.8. Recursive Segmentation (ps: start position, pe: end position, l: length, DJS:

Jensen-Shannon Divergence, pc: cutting position of max divergence, τ: threshold, s:

Segmentation Strength, and P: parent node, hyphen (-) means no s for length = 1)

S ps pe l DJS pc Τ s P

S0 1 7446 7446 0.01 18 0.01 0.72 NA

S1 1 18 18 0.95 6 0.12 7.2 S0

S2 19 7446 7428 0.01 7433 0 0.49 S0

S3 1 6 6 0.57 5 0.22 1.63 S1

S4 7 18 12 0.24 8 0.45 -0.47 S1

S5 1 5 5 -0.1 4 0.46 -1.22 S3

S6 6 6 1 0 5 0 - S3

S7 19 7433 7415 0 33 0.01 -0.44 S2

S8 7434 7446 13 1.03 7439 0.14 6.23 S2

S9 7434 7439 6 0.84 7436 0.22 2.92 S8

S10 7440 7446 7 1.01 7442 0.2 4.03 S8

S11 7434 7436 3 -0.17 7435 0.53 -1.32 S9

S12 7437 7439 3 -0.17 7438 0.53 -1.32 S9

S13 7440 7442 3 -0.17 7441 0.53 -1.32 S10

S14 7443 7446 4 0.69 7445 0.25 1.75 S10

S15 7443 7445 3 0.21 7443 0.53 -0.6 S14

S16 7446 7446 1 0 7445 0 - S14

Figure 5.11 depicts the binary tree that resulted from the segmentation algorithm for the

communication pattern sequence. The leaf nodes in the tree represent the detected sub-

phases in the trace. The detected sub-phases for segmentation strength greater than 0 are

(33 phases):

S5.S6.S4.S7.S11.S12.S13.S15.S16

In the following section, we present the detected phases using the recursive segmentation

algorithm in more detail.

173

Figure 5.11. Binary Tree Representing the Segmentation Hierarchy (BT)

5.3.2.3 Phase Analysis

Table 5.9 presents the detected phases in the BT trace. S5 maps to the Initialization phase

that exists in every MPI program. S6 contains the pattern presented in Table 5.7 which

corresponds to the Copy Faces phase in the program. S4 corresponds to the X-Solve phase.

S7 is a very long phase with repeating behaviour of (Copy Faces, X Solve, X Solve Cell, Y

Solve, Y Solve Cell, Z Solve and Z Solve Cell) sub-phases. It is clear that S7 is the longest

phase that corresponds to the Solve phase in BT. S11 corresponds to the Y Solve Cell sub-

phase. The Z Solve and Z Solve Cell sub-phases are detected in S12 and S13 respectively.

The Add, Verify and Copy Faces sub-phases occur in the S15 segment. Finally, S16 is

responsible for printing the results.

The recursive segmentation algorithm was able to detect most of the program sub-phases.

The S7 sub-phase is very homogeneous due to its repetitive nature. Further analysis could

be applied to S7 in order to detect the repeating behaviour.

0

2 1

8 3 4 7

10 9

14 13

5 6

12 11

16 15

174

Table 5.9. BT Detected Sub-Phases

Phase Description

S5 Initialization

S6 Copy Faces

S4 X Solve

S7 Very long phase. Starts with X Solve Cell and contains (Copy Faces, X

Solve, X Solve Cell, Y Solve, Y Solve Cell, Z Solve and Z Solve Cell sub-

phases)

S11 Y Solve Cell

S12 Z Solve

S13 Z Solve Cell

S15 Add, Verify, Copy Faces

S16 Print Results

5.4 Summary

In this chapter, we presented a new approach for detecting execution phases in MPI

programs based on the sequence of communication patterns extracted from MPI execution

traces. We presented all the steps that are needed in order to detect the execution phases

along with an illustrative example. We validated the results of our phase detection approach

on two traces of SMG2000 system and NAS BT benchmark with respect to the documented

phases in [Tirawi 11] and [Geisler 99] respectively. Our phase detection approach did not

only detect the main program phases but also the corresponding sub-phases.

175

Chapter 6. Conclusions & Future Work

Dynamic analysis holds a lot of potential in helping with program comprehension tasks.

However, the large amount of data in typical execution traces generated from instrumented

versions of HPC systems hinders the applicability of dynamic analysis techniques. This led

to the emergence of many techniques and tools to facilitate the understanding of the traces

of HPC programs.

In this thesis, we presented several techniques that aim to simplify and improve the analysis

of traces of HPC programs that use MPI for inter-process communication. In the following

section, we summarize the contributions of this thesis.

6.1 Thesis Contributions

MPI Trace Format: different trace formats limit the interoperability among trace analysis

tools. We have developed an exchange format for traces of MPI programs. We studied the

domain of MPI traces and provided the exchange format as a metamodel. The MTF

metamodel is built to meet the requirements for a standard exchange format. It is built to be

scalable, extensible, simple and maintainable. We provided a set of queries that can be

applied to retrieve trace data. We also provided an example that shows how GXL carries

the trace information. We ran different experiments on the metamodel that tested its ability

to query information from the execution trace as well as its ability to scale to large execution

traces. MTF was published in the Elsevier Future Computer Generation Systems journal

and in the Proc. of the International Conference for Program Comprehension (ICPC) 2011.

176

Communication Patterns Detection Techniques: We presented a new approach for

detecting communication patterns from MPI traces based on the concept of n-grams. We

have developed different algorithms and showed their applicability on traces generated from

HPC programs. We believe that our communication patterns detection approach

outperforms the existing studies in terms of quality and performance. Communication

patterns can help in understanding HPC programs as they reduce the effort of exploring the

whole trace by providing an abstract view of the communication behaviour in the program.

The pattern detection and matching approaches were published in the Proc. of the European

Conference on Software Maintenance and Reengineering (CSMR), 2011.

Execution Phase Detection of HPC Programs: We presented a new approach for

detecting execution phases in MPI programs based on information theory principles. To our

knowledge, this is the first study that targets the detection of phases based on the inter-

process communication behaviour in the program. We demonstrated the effectiveness of the

phase detection technique using two large traces and the results showed the accuracy of the

method. This work has been accepted for publication in the International Conference on

Program Comprehension [Alawneh 12].

6.2 Directions for Future Research

In this section, we discuss possible future directions in our research.

6.2.1 Support of other message passing paradigms

In this thesis, we have presented a metamodel for trace information generated from HPC

programs with specific focus on systems that use the MPI for inter-process communication.

In order to support the neutrality requirement, we need to support other message passing

models. Moreover, it should be possible to make the model open to any type of inter-process

177

communication in distributed systems that use messages for exchanging data. MTF is

designed to be extensible and should be able to accommodate any message passing model.

6.2.2 Support traces of inter-process communication based on shared memory

In this thesis, we did not target traces generated from inter-process communication based

on the shared memory model. Different types of applications use this model for inter-

process communication. Moreover, some systems use a hybrid of the message passing and

the shared memory models. MTF is designed to be extensible and should be able to

accommodate this new requirement.

6.2.3 MTF as part of the Knowledge Discovery metamodel (KDM)

Currently, MTF supports traces generated from routine calls and MPI. It has the main

components to support traces generated from distributed applications that use MPI for inter-

process communication. The Knowledge Discovery Metamodel (KDM) [KDM] is a

metamodel that targets a widespread set of software applications, platforms and

programming languages such as modern enterprise applications which involve multiple

technologies and programming languages. The goal of KDM is to facilitate the integration

between different tools that capture information about complex enterprise applications. In

[Alawneh 09], we proposed that execution traces should be considered as a new domain.

We proposed the usage of KDM to contain this domain. We need to investigate how MTF

could be used with KDM.

6.2.4 Formal language for representing traces of inter-process communication

Execution traces generated from MPI programs should be expressed formally in a language

that is similar or an extension to some formal languages such as π-calculus. Formal methods

178

can also be used to model the various trace abstraction methods and enable their comparison

without the need to generate traces.

6.2.5 Communication patterns visualization

In this work, we used the event graph [Kranzlmüller 00] for visualizing communication

patterns. However, we have shown by example that this technique is limited to relatively

small patterns. Moreover, the event graph will be of less benefit when the presented patterns

are irregular and contain many process interactions. Proposing a new technique that is

capable of solving this problem will add a great benefit to the existing trace analysis tools.

6.2.6 Metrics to categorize communication patterns

Complex HPC programs may have many different communication patterns. In many cases,

it would be necessary to categorize these patterns based on different factors such as the

number of messages, the number of processes involved in the communication, the size of

data being exchanged and others. In the literature, we have seen different metrics that

provide statistics based on each process separately. We believe that a new set of metrics that

characterize the complexity of communication patterns can be very useful in speeding up

the program comprehension process of inter-process communication traces.

6.2.7 Phase detection to support homogeneous segmentation

In this thesis, we targeted the detection of phases in heterogeneous sequences of

communication patterns. As part of future work, we intend to extend the recursive

segmentation algorithm in order to segment sequences of homogeneous communication

patterns sequences. This becomes necessary since HPC programs tend to have repetitive

179

communication behaviour which may result in long homogeneous sequences that will not

be able to be segmented using the current recursive segmentation approach.

6.2.8 Experimenting with software engineers

As future work, we need to work with software engineers to further validate the techniques

presented in this thesis. Software engineers can provide useful feedback that can further

improve the trace abstraction techniques.

6.3 Closing Remarks

Large execution traces and the lack of a common exchange format for trace analysis tools

of HPC programs limit the applicability of the dynamic analysis approach in the process of

program comprehension. We have presented several techniques that cope with the problem

of trace size. We showed the usefulness of these techniques using several case studies. The

intention behind the development of these techniques is to reduce the impact of the size of

traces on the process of understanding the content of these traces and the program in general.

180

References

[Adjeroh 03] D. Adjeroh, J. Feng, “Locating all tandem repeat families in a

sequence,” In Proc. of IEEE Computational Systems Bioinformatics

Conference, Palo Alto, CA, pages 676–681, 2003.

[Akaike 78] H. Akaike, “A Bayesian analysis of the minimum AIC procedure,”

Annals of the Institute of Statistical Mathematics 30 (Part A), pages

9-14, 1978.

[Alawneh 09] L. Alawneh, A. Hamou-Lhadj, “Execution Traces: A New Domain

that Requires the Creation of a Standard Metamodel,” Book Chapter

in the Book Series on Communications in Computer and Information

Science, Springer Berlin Heidelberg, pages 253-263, 2009.

[Alawneh 10] L. Alawneh, A. Hamou-Lhadj, “An Exchange Format for

Representing Dynamic Information Generated from High

Performance Computing Applications,” In Future Generation

Computer Systems, The International Journal of Grid Computing and

eScience, 27(4), Elsevier Press, pages 381-394, 2011.

[Alawneh 11a] L. Alawneh, A. Hamou-Lhadj, “Pattern Recognition Techniques

Applied to the Abstraction of Traces of Inter-Process

Communication,” In Proc. of the 15th European Conference on

Software Maintenance and Reengineering (CSMR 2011), pages 211-

220, 2011.

[Alawneh 11b] L. Alawneh, A. Hamou-Lhadj, “MTF: A Scalable Exchange Format

for Traces of High Performance Computing Systems,” In Proc. of

the 19th IEEE International Conference on Program

Comprehension (ICPC), pages 181-184, 2011.

[Alawneh 12] L. Alawneh, A. Hamou-Lhadj, “Identifying Computational Phases

from Inter-Process Communication Traces of HPC Applications,” In

Proc. Of the International Conference on Program Comprehension

(ICPC 2012), pages 133-142, 2012.

[Aloision 02] G. Aloisio, D. Talia, “Grid Computing: Towards a New Computing

Infrastructure,” In Future Generation Computer Systems, Vol. 18(8),

Elsevier Science, pages v-vi, 2002.

181

[Aydt 94] R. A. Aydt, “The Pablo Self-Defining Data Format,” Technical

report, Department of Computer Science, University of Illinois,

1994. http://wotug.kent.ac.uk/parallel/performance/tools/pablo/.

[Ball 99] T. Ball, “The Concept of Dynamic Analysis,” In Proc. of the 7th

European Software Engineering Conference, Springer-Verlag,

pages 216-234, 1999.

[Becker 07] D. Becker, F. Wolf, W. Frings, M. Geimer, B. J. N. Wylie, B. Mohr,

“Automatic Trace-Based Performance Analysis of Metacomputing

Applications,” In Proc. of the International Parallel and Distributed

Processing Symposium, IEEE Computer Society, pages 1-10, 2007.

[Bowman 00] I. T. Bowman, M. W. Godfrey, and R. C. Holt, “Connecting

Architecture Reconstruction Frameworks,” In Journal of

Information and Software Technology, 42(2), pages 91-102, 2000.

[Brown 92] P. F. Brown, V. J. Della Pietra, P. V. deSouza, J. C. Lai, and R. L.

Mercer, “Class-based n-gram models of natural language,” In

Journal of Computational Linguistics, vol. 18, pages 467–479, 1992.

[Cao 05] X. Cao, S. C. Li, and A. K. H. Tung. “Indexing DNA Sequences

Using q-grams,” In Proc. of the International Conference on

Database Systems for Advanced Applications (DASFAA), pages 4-

16, 2005.

[Cappello 00] F. Cappello, D. Etiemble, “MPI versus MPI+OpenMP on IBM SP

for the NAS Benchmarks,” In Proc. of High Performance

Networking and Computing Conference (SC2000), pages 12-es,

2000.

[Casas 07] M. Casas, R. M. Badia, and J. Labarta “Automatic phase detection

of MPI applications,” In Proc. of the 14th Conference on Parallel

Computing Parallel Computing, pages 129-136, 2007.

[Casas 10] M.Casas , R. M. Badia , J. Labarta, “Automatic Phase Detection and

Structure Extraction of MPI Applications,” International Journal of

High Performance Computing Applications, v.24 n.3, pages 335-

360, August 2010.

[Chan 03] A. Chan, R. Holmes, GC. Murphy, Ying ATT. Scaling an object-

oriented system execution visualizer through sampling. In Proc. of

182

the 11th Int. Workshop on Program Comprehension (IWPC), IEEE,

pages 237–244, 2003.

[Chan 08] A. Chan, W. Gropp, and E. Lusk, “An efficient format for nearly

constant-time access to arbitrary time intervals in large trace files,”

Journal of Scientific Programming, 16(2-3), pages 155–165, 2008.

[Cordella 01] L.P. Cordella, P. Foggia, C. Sansone, and M. Vento. An improved

algorithm for matching large graphs. In Proc. of the 3rd IAPR-TC15

Workshop on Graph based Representations in Pattern Recognition,

Ischia (Italy), pages 149-159, 2001.

[Cormen 90] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,

“Introduction to Algorithms,” 2nd edition, MIT Press, Cambridge,

MA, 2001.

[Cornelissen 08] B. Cornelissen and L. Moonen, “On large execution traces and trace

abstraction techniques,” Technical Report, TUD-SERG, 2008.

[Cornelissen 09] B. Cornelissen, A. Zaidman, and A. van Deursen, “A Controlled

Experiment for Program Comprehension through Trace

Visualization,” Technical Report, TUD-SERG, 2009.

[Downey 80] J.P. Downey, R. Sethi, R.E. Tarjan, “Variations on the Common

Subexpression Problem,” Journal of the ACM, Volume 27, Issue 4,

pages 758-771, 1980.

[Ebert 99] J. Ebert, B. Kullbach, and A. Winter, “GraX – An Interchange

Format for Reengineering Tools,” In Proc. of the 6th Working

Conference on Reverse Engineering, pages 89–98, 1999.

[EMF] Eclipse Modeling Framework, URL:

http://www.eclipse.org/modeling/emf/.

[FLASH 2] FLASH 2.0 User's Guide, http://flash.uchicago.edu/

[Fürlinger 09] Karl Fürlinger, David Skinner, “Capturing and Visualizing Event

Flow Graphs of MPI Applications,” In Proc. of the 2nd Workshop

on Productivity and Performance (PROPER 2009), pages 218-227,

2009.

[Gailly 02] J. L. Gailly and M. Adler, “zlib 1.1.4 Manual,” 2002. URL:

http://www.zlib.net/manual.html.

183

[Geimer 06] M. Geimer, F. Wolf, B. J. N. Wylie and B. Mohr, “Scalable parallel

trace-based performance analysis,” In Proc. of the 13th European

PVM/MPI Users’ Group Meeting, vol. 4192 of LNCS, pages 303–

312, Bonn, Germany, Springer, 2006.

[González 09] J. González, J. Giménez, J. Labarta, “Automatic Detection of

Parallel Applications Computation Phases,” In Proc. of

International Parallel & Distributed Processing Symposium

(IPDPS), pages 1-11, 2009.

[Gray 11] R. Gray, “Entropy and information theory,” 2nd Edition, New York,

Springer, 2011.

[Geisler 99] J. Geisler and V. Taylor, “Performance coupling: A methodology for

predicting application performance using kernel performance,” In

Proc. of the 9th SIAM Conference on Parallel Processing for

Scientific Computing, pages 125-134, 1999.

[Grissa 07] I. Grissa, G. Vergnaud, C. Pourcel, “CRISPRFinder: a web tool to

identify clustered regularly interspaced short palindromic repeats,”

Nucleic Acids Res 35, W52–57, 2007.

[Grosse 02] I. Grosse, P. Bernaola-Galván, P. Carpena, R. Román-Roldán, J.

Oliver, H.E. Stanley, “Analysis of symbolic sequences using the

Jensen-Shannon divergence,” Physical Review. E, 65, 041905, 2002.

[Gu 06] D. Gu, C. A. Verbrugge, “A Survey of Phase Analysis: Techniques,

Evaluation and Applications,” Sable Technical Report No. 2006-1,

2006.

[Hamou-Lhadj 04] A. Hamou-Lhadj and T. Lethbridge T., “A Metamodel for Dynamic

Information Generated from Object-Oriented Systems,” In Proc. of

the First International Workshop on Meta-models and Schemas for

Reverse Engineering, Electronic Notes in Theoretical Computer

Science Volume 94, pages 59-69, 2004.

[Hamou-Lhadj 05] A. Hamou-Lhadj, "Techniques to Simplify the Analysis of

Execution Traces for Program Comprehension," Ph.D. Dissertation,

School of Information Technology and Engineering (SITE),

University of Ottawa, 2005.

184

[Heath 03] M. T. Heath and J. E. Finger, “Paragraph: A performance

visualization tool for MPI,” A User guide, 2003. URL:

http://www.csar.illinois.edu/software/paragraph/.

[Hermes] R. Strom, D. Bacon, A. Lowry, A. Goldberg, D. Yellin, and S.

Yemini, “Hermes: A Language for Distributed Computing,” Series

in Innovative Technology, Prentice-Hall, 482 pages, 1991.

[Holt 00] R. C. Holt, A. Winter, and A. Schürr A., “GXL: Toward a Standard

Exchange Format,” In Proc. of the 7th Working Conference on

Reverse Engineering, pages 162-171, 2000.

[Holt 98] R. C. Holt, “An Introduction to TA: The Tuple Attribute Language,”

http://swag.uwaterloo.ca/pbs/papers/ta.html.

[Hong 96] C. Hong, B. Lee, G. On, D. Chi, “Replay for Debugging MPI Parallel

Programs,” In Proc. of the Second MPI Developers Conference,

pages 156-160, 1996.

[Huband 01] S. Huband, D. McDonald, “DEPICT: A topology-based debugger

for MPI programs,” In Proc. of the 6th International Workshop on

High-Level Parallel Programming Models and Supportive

Environments (HIPS 2001), Springer, Berlin, pages 109–121, 2001.

[Jain 99] Jain, A. K., Murty, M. N., and Flynn, P. J., “Data clustering: A

review,” ACM Computing Surveys Vo. 31, pages 264–323, 1999.

[Jokinen 91] P. Jokinen and E. Ukkonen “Two algorithms for approximate string

matching in static texts,” In Proc. of the 2nd Annual Symposium on

Mathematical Foundations of Computer Science, pages 240–248.

1991.

[Jumpshot] Omer Zaki, Ewing Lusk, William Gropp, and Deborah Swider,

“Toward scalable performance visualization with Jumpshot,”

Journal of High Performance Computing Applications, Vo. 13(2),

pages 277–288, 1999.

[Karp 72] R. Karp, R. E. Miller, A. L. Rosenberg. “Rapid Identification of

Repeated Patterns in Strings, Trees and Arrays,” In Proc. of 4th

Symposium of Theory of Computing, pages125-136, 1972.

185

[KDM] Object Management Group. Knowledge Discovery Metamodel:

KDM Version 1.1, 2008.

[Kergomm 03] J. Chassin de Kergommeaux, B. de Oliveira Stein, and G. Mouni,

“Paje Input Data Format,” Technical Report, Intel GmbH, Brühl,

Germany, 2003.

[Kim 94] JY. Kim, J. Shawe-Taylor, “Fast string matching using an n-gram

algorithm,” Journal of Software Practice & Experience, 94(1), pages

79–88, 1994.

[Kingsbury 07] B. Kingsbury, “Organizing processes and threads for debugging,” In

Proc. of the 2007 ACM workshop on Parallel and distributed

systems: testing and debugging, pages 21-26, 2007.

[Knüpfer 05] A. Knüpfer, W.E. Nagel, “Construction and Compression of

Complete Call Graphs for Post-Mortem Program Trace Analysis,”

In Proc. of the International Conference on Parallel Processing

(ICCP 2005), , pages 165–172, 2005.

[Knüpfer 06a] A. Knüpfer, R. Brendel, H. Brunst, H. Mix, and W. Nagel,

“Introducing the open trace format (OTF),” In Proc. of the

International Conference on Computational Science (ICS), pages

526-533, 2006.

[Knüpfer 06b] A. Knüpfer, B. Voigt, W.E. Nagel, H. Mix, “Visualization of

repetitive patterns in event traces,” In Proc. of the Workshop on

State-of-the-Art in Scientific and Parallel Computing (PARA), pages

430-439, 2006.

[Köckerbauer 10] T. Köckerbauer, T. Klausecker and D. Kranzlmüller, “Scalable

Parallel Debugging with g-Eclipse,” Book Chapter, Springer Berlin

Heidelberg, pages 115-123, 2010.

[KOJAK] KOJAK, URL: http://icl.cs.utk.edu/kojak/

[Kranzlmüller 00] D. Kranzlmüller. Event Graph Analysis for Debugging Massively

Parallel Programs. PhD thesis, GUP Linz, Joh. Kepler University

Linz (September 2000). http://www.gup.uni-linz.ac.at/~dk/thesis.

[Kranzlmüller 02] D. Kranzlmüller, “Scalable Parallel Program Debugging with

Process Isolation and Grouping,” In Proc. of the 16th International

186

Parallel and Distributed Symposium (IPDPS2002), pages 109-115,

2002.

[Kranzlmüller 95] D. Kranzlmüller, S. Grabner, J. Volkert, “Message Passing

Visualization with ATEMPT,” In Proc. of PARCO 1995 Conference

on Parallel Computing, Gent, Belgium, pages 653-656, 1995.

[Kunz 95] T. Kunz, J.P Black, “Using Automatic Process Clustering for Design

Recovery and Distributed Debugging,” IEEE Transactions on

Software Engineering, Vol. 21, No. 6, pages 515-527, 1995.

[Kunz 97] T. Kunz, M. F. H. Seuren, “Fast detection of communication patterns

in distributed executions,” In Proc. of the conference of the Centre

for Advanced Studies on Collaborative research (CASCON), pages

12, 1997.

[Larus 99] J.R. Larus, “Whole program paths,” In Proc. of the Conference on

Programming Language Design and Implementation, ACM Press,

pages 259-269, 1999.

[Lee 09] I. Lee, “Characterizing communication patterns of nas-mpi

benchmark programs,” In Proc. of Southeast Conference, Atlanta,

pages 158-163, 2009.

[Lethbridge 97] T. C. Lethbridge and N. Anquetil, “Architecture of a Source Code

Exploration Tool: A Software Engineering Case Study,” Computer

Science Technical Report TR-97-07, University of Ottawa, 1997.

[Levenshtein 66] A. Levenshtein, “Binary Codes Capable of Correcting Deletions,

Insertions and Reversals,” Soviet Physics Doklady, vol. 10, no. 8,

pages 707-710, 1966.

[Li 02] W. Li, P. Bernaola-Galvan, F. Haghighi, I. Grosse, “Applications of

recursive segmentation to the analysis of DNA sequences,” Journal

of Computers & Chemistery 26, pages 491-510, 2002.

[Lu 04] Q. Lu, J. Wu, D. Panda, P. Sadayappan, “Applying MPI derived

Datatypes to the NAS Benchmarks: A case study,” In Proc. of the

2004 International Conference on Parallel Processing Workshops,

Montreal, Quebec, Canada, pages 538-545, 2004.

187

[Ma 09] C. Ma, Y. M. Teo, V. March, N. Xiong, I. R. Pop, Y. X. He, S. See,

“An approach for matching communication patterns in parallel

applications,” In Proc. of the IEEE International Symposium on

Parallel & Distributed Processing, pages 1-12, 2009.

[Maghraoui 05] K. El Maghraoui, B. K. Szymanski, C. A. Varela, “An Architecture

for Reconfigurable Iterative MPI Applications in Dynamic

Environments,” In Proc. of the Sixth International Conference on

Parallel Processing and Applied Mathematics (ICPP AM), pages

258-271, 2005.

[McKay 81] B. D. McKay, “Practical graph isomorphism,” Congressus

Numerantium, 30, pages 45-87, 1981.

[Moore 05] S. Moore, F. Wolf, J. Dongarra, S. Shende, A. Malony, and B. Mohr.

“A Scalable Approach to MPI Application Performance Analysis,”

Lecture Notes of Computer Science (LNCS) 3666, pages 309–316,

2005.

[MPI] Message Passing Interface Forum. MPI: A Message Passing

Interface Standard, June 1995. URL: http://www.mpi-forum.org.

[Margaris 09] A. I. Margaris, “Log File Formats for Parallel Applications: A

Review,” International Journal of Parallel Programming, 37(2),

pages 195-222, 2009.

[Mudalige 08] G.R. Mudalige, M.K. Vernon, S.A. Jarvis, “A Plug-and-Play Model

for Evaluating Wavefront Computations on Parallel Architectures,”

In Proc. of the IEEE International Parallel and Distributed

Processing Symposium (IPDPS'08), pages 1-14, 2008.

[Muelder 09] C. Muelder, F. Gygi, and K.-L. Ma, “Visual analysis of inter-process

communication for large-scale parallel computing,” IEEE

Transactions on Viualization and Computer Graphics, 15(6), pages

1129-1136, 2009.

[Müller 88] H. A. Müller, K. Klashinsky, “Rigi – A System for Programming in-

the-large,” In Proc. of the 10th International Conference on

Software Engineering, pages 80-86, 1988.

[NAS] NAS Parallel Benchmarks, http://www.nas.nasa.gov/

188

[NAS-Changes] NAS Parallel Benchmarks Changes,

http://www.nas.nasa.gov/Resources/Software/npb_changes.html

[Navarro 07] G. Navarro, V. Mäkinen, “Compressed full-text indexes,” ACM

Computing Surveys (CSUR), v.39 n.1, pages 2-es, 2007.

[Noeth 09] M. Noeth, P. Ratn, F. Mueller, M. Schulz, B. R. De Supinski,

“ScalaTrace: Scalable compression and replay of communication

traces for high-performance computing,” Journal of Parallel and

Distributed Computing. Vo. 69, pages 696-710, 2009.

[Okita 03] M. Okita, F. Ino, K. Hagihara, “Debugging Tool for Localizing

Faulty Processes in Message Passing Programs,” In Proc. of the

Fifth International Workshop on Automated Debugging, pages 127-

142, 2003.

[OMG] Object Management Group, http://www.omg.org/uml

[PAJE] J. Kergommeaux and B. Stein, “Paje: an extensible and interactive

and scalable environment for visualizing parallel executions,”

Rapport de Recherche, No. 3919, Institut National de Recherche en

Informatique et en Automatique (INRIA), France, 2000.

[Palma 09] N. Palma, “Performance Evaluation of Interconnection Networks

using Simulation: Tools and Case Studies” PhD Dissertation,

Department of Computer Architecture and Technology, University,

Spain, 2009.

[Paramesh] P. MacNeice, K.M. Olson, C. Mobarry, R. de Fainchtein, and C.

Packer, “PARAMESH: a parallel adaptive mesh refinement

community toolkit,” Journal of Computer Physics Communications,

26(3), pages 330-354, 2000.

[ParaProf] R. Bell, A. Malony, and S. Shende, “ParaProf: A portable, extensible,

and scalable tool for parallel performance profile analysis,” Euro-

Par, pages 17-26, 2003.

[Paraver] CEPBA (European Center for Parallelism in Barcelona),

Barcelona/Spain. PARAVER Version 3.0 Trace file Description,

June 2001.

189

[Patel 05] Nikunj Patel, Padma Mundur, “An n-gram based approach to finding

the repeating patterns in musical data,” In Proc. of the European

Internet and Multimedia Systems and Applications (IMSA).

Grindelwald, Switzerland, pages 407-412, 2005.

[Preissl 08] R. Preissl, T. Köckerbauer, M. Schulz, D. Kranzlmüller, B. R. de

Supinski, and D. J. Quinlan, “Detecting patterns in MPI

communication traces,” In Proc. of International Conference on

Parallel Processing (ICPP), pages 230–237, 2008.

[Preissl 10] R. Preissl, B. R. de Supinski, M. Schulz, D. J. Quinlan, D.

Kranzlmüller, T. Panas, “Exploitation of Dynamic Communication

Patterns through Static Analysis,” In Proc. of International

Conference on Parallel Processing (ICPP), pages 51-60, 2010.

[Qu 09] Q. Xu, J. Subhlok, R. Zheng, S. Voss, “Logicalization of

communication traces from parallel execution,” In Proc. of the 2009

IEEE International Symposium on Workload Characterization,

(IISWC), October 4-6, 2009, Austin, TX, USA. pages 34-43, 2009.

[Ranjan 08] R. Ranjan, A. Harwood, R. Buyya, “A case for cooperative and

incentive-based federation of distributed clusters,” Future

Generation Computer, Volume 24(4), pages 280-295, 2008.

[Rasmussen 06] K. Rasmussen, J. Stoye, EW Myers, “Efficient q-Gram Filters for

Finding All ϵ-Matches Over a Given Length,” Journal of

Computational Biology, Volume 13, pages 296–308, 2006.

[Reiss 01] S. P. Reiss and M. Renieris, “Encoding program executions,” In

Proc. of the 23rd International Conference on Software Engineering,

ACM Press, pages 221-230, 2001.

[Roberts 05] J. Roberts and C. Zilles. “TraceVis: an execution trace visualization

tool,” In Proc. of Workshop on Modeling, Benchmarking and

Simulation (MoBS), 2005.

[Rose] Rational Rose, URL: http://www-01.ibm.com/software/rational/

[Safyallah 06] H. Safyallah and K. Sartipi, “Dynamic Analysis of Software

Systems using Execution Pattern Mining,” In Proc. of the 14th IEEE

International Conference on Program Comprehension, pages 84-88,

2006.

190

[Sadakane 07] K. Sadakane. “Compressed suffix trees with full functionality,”

Journal of Theory of Computing Systems, Volume 41(4), pages 589–

607, 2007.

[Shannon 48] C.E. Shannon, “A mathematical theory of communication,” Bell

System Technical Journal, Volume 27, pages 379-423, 1948.

[Shende 04] S. Shende. TAU Source Code, Version 2.13.5. Personal

Communications, 2004.

[Shende 05] S. Shende and A. D. Malony, “The TAU Parallel Performance

System,” International Journal of High Performance Computing

Applications (ACTS Collection), Volume 20, pages 287-331, 2005.

[Singh 09] R. Singh and P. Graham, “Grouping MPI Processes for Partial

Checkpoint and Co-migration,” In Proc. of Euro-Par 2009 Parallel

Processing, Lecture Notes in Computer Science, Volume 5704.

Springer Berlin Heidelberg, pages 69-80, 2009.

[SMG2000] Advanced Simulation and Computing Program: The ASC SMG2000

benchmark code. URL:

http//www.llnl.gov/asc/purple/benchmarks/limited/smg/, 2001.

[Stamatakis 05] A. Stamatakis, M. Ott, T. Ludwig, and H. Meier,

“DRAxML@home: A Distributed Program for Computation of

Large Phylogenetic Trees,” In Future Generation Computer Systems

(FGCS) 21(5), pages725-730, 2005.

[Stoye 02] J. Stoye, D. Gusfield, “Simple and Flexible Detection of Contiguous

Repeats Using a Suffx Tree,” Theorical Computer Sciences, Volume

27(1-2), pages 843-856, 2002.

[St-Denis 00] G. St-Denis, R. Schauer, and R. K. Keller, “Selecting a Model

Interchange Format: The SPOOL Case Study,” In Proc. of the 33rd

Annual Hawaii International Conference on System Sciences, pages

4-7, 2000.

[STF] Intel Trace Collector User’s Guide. URL:

http://www.uybhm.itu.edu.tr/documents/ITC-ReferenceGuide.pdf

[Sweep3d] Sweep3D, Accelerated strategic computing initiative. The ASCI

Sweep3D Benchmark Code. URL:

191

http://public.lanl.gov/hjw/CODES/SWEEP3D/sweep3d.html,

LANL 1995.

[Terzi 06] E. Terzi, P. Tsaparas, “Efficient Algorithms for Sequence

Segmentation,” In Proc. of the SIAM International Conference on

Data Mining, pages 314-325, 2006.

[Tiwari 11] A. Tiwari, J. K. Hollingsworth, C. Chen, M. W. Hall, C. Liao, D.J.

Quinlan, J. Chame, “Auto-tuning full applications: A case study,”

The International Journal of High Performance Computing

Applications, Volume 25(3), pages 286-294, 2011.

[Valiente 00] G. Valiente, “Simple and Efficient Tree Pattern Matching,”

Research Report E-08034, Technical University of Catalonia, 2000.

[Vampir] Vampir Performance Optimization Tool. URL:

http://www.vampir.eu.

[VampirTrace] VampirTrace, ZIH, Technische Universitat, Dresden, http://tu-

dresden.de/die_tu_dresden/zentrale_einrichtungen/zih.

[Volko 05] Z. Volkovich and et al., “The method of n-grams in large-scale

clustering of DNA texts,” Journal of Pattern Recognition, Volume

38(11), pages 1902-1912, 2005.

[Welch 84] T. A Welch., “A technique for high-performance data compression,”

Journal of Computer, 17(6), pages 8-19, 1984.

[Wolf 04] F. Wolf and B. Mohr, “EPILOG Binary Trace-Data Format,”

Technical report, University of Tennessee, 2004.

[Wolf 07] F. Wolf, B. Mohr, J. Dongarra, S. Moore, Automatic analysis of

inefficiency patterns in parallel applications, Journal of

Concurrency and Computation: Practice and Experience, Special

Issue: European–American Working Group on Automatic

Performance Analysis (APART), 19(11), pages 1481–1496, 2007.

[Wolf 08] F. Wolf, D. Becker, M. Geimer, B. J. N. Wylie “Scalable

performance analysis methods for the next generation of

supercomputers,” In Proc. of the John von Neumann Institute for

Computing (NIC) Symposium, volume 39 of NIC-Series, pages 315-

322, 2008.

192

[Woods 99] S. Woods, S. J. Carrière., and R. Kazman R., “A semantic foundation

for architectural reengineering and interchange,” In Proc. of

International Conference on Software Maintenance, pages 391–398,

1999.

[WRF] Weather Research & Forecasting Model (WRF). URL:

http://www.wrf-model.org.

[Wu 11] X. Wu and F. Mueller. “ScalaExtrap: Trace-Based Communication

Extrapolation for SPMD Program,” In Proc. of ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming

(PPoPP), pages 1–10, 2011.

[XMI-OMG] XMI: XML Metadata Interchange ,URL:

http://www.omg.org/technology/documents/formal/xmi.htm

[Xu 06] Q. Xu, J. Subhlok, R. Zheng, and S. Voss, “Localization of

communication traces from parallel execution,” In Proc. of IEEE Int.

Symposium on Workload Charactization (IISWC), Austin, TX,

pages 34-43, 2009.

[Xue 09] R. Xue, X. Liu, M. Wu, Z. Guo, W. Chen, W. Zheng, W. Zhang, and

G. Voelker, “MPIWiz: subgroup reproducible replay of mpi

applications,” In Proc. of the 14th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, pages 251-260,

2009.

[Zheng 05] Jie Zheng, Stefano Lonardi, “Discovery of Repetitive Patterns in

DNA with Accurate Boundaries,” In Proc. of Fifth IEEE Symposium

on Bioinformatics and Bioengineering (BIBE'05), pages 105-112,

2005.

http://www.wrf-model.org/

193

Appendix A - The detailed specification of MTF

1) Scenario

Semantics

Objects of the Scenario class represent the system scenario executed in order to generate

the traces that need to be studied.

Attributes

– desc: Specifies a description of the usage scenario such as the name of the scenario,

input data, etc.

Associations

– Trace [1..*]: References the execution traces that are generated after the execution

of the usage scenario. One scenario may have more than one trace object.

2) Trace

Semantics

A concrete class representing common information about traces generated from the

execution of the system.

Attributes

– TraceID: A unique identifier for the generated trace.

– StartTime: Specifies the starting time of the generation of the trace.

– EndTime: Specifies the ending time of the generation of the trace.

– Comments: Specifies comments that software engineers might need in order to

describe the circumstances under which the trace is generated.

Associations

– Scenario [1]: References the usage scenario that is exercised so as to generate the

trace.

– PatternOccurrence [*]: References the occurrences of the execution patterns that

are invoked in the trace.

– ProcessTrace: A Trace may have many instances of ProcessTrace.

– MsgTrace: A Trace may have only one instance of MsgTrace.

Constraints

[1] StartTime and EndTime should be different

194

self.EndTime >= self.StartTime

3) ProcessTrace

Semantics

An object of the ProcessTrace represents a trace generated from all operations executed by.

This class inherits from the Trace class.

Attributes

No additional attributes. The start and end time for a ProcessTrace are different from

those of the parent Trace class. However, MTF is designed that the ProcessTrace call can

access the StartTime and EndTime of the parent Trace class. The start time is the start time

of the first routine call and the end time is end time of the lass routine call for a process.

Associations

– Trace: the ProcessTrace class has an association with its parent class. An instance

of ProcessTrace can only belong to one instance of Trace class.

– Process: A ProcessTrace may have only one instance of Process class.

– TraceableUnit [0..*]: A reference to all instances of TraceableUnit class that are of

types MPOperation and Message.

Constraints

– ProcessTrace references objects created from RoutineCall class only.

4) MsgTrace

Semantics

An object of the MsgTrace represents a trace generated from all the messages (instances of

Message class). This class inherits from the Trace class.

Attributes

No additional attributes.

Associations

– Trace: the MsgTrace class has an association with its parent class. An instance of

MsgTrace can only belong to one instance of Trace class.

– Message: A MsgTrace may have as many instances of the Message class in the

trace.

195

– CollectiveData: A MsgTrace may have as many instances of the CollectiveData

class in the trace.

Constraints

– MsgTrace references objects created from Message class only.

– No Start and End times are used for this class.

5) TracePattern

Semantics

TracePattern is an abstract class that represents communication and routine-call patterns in

the trace.

Attributes

– desc: Specifies a textual description that a software engineer assigns to the

execution pattern.

Associations

– PatternOccurrence [*] References the instances of the pattern in the trace.

Constraints

[1] The PatternOccurrence objects belong to the same trace.

6) CommPattern

Semantics

CommPattern inherits from the TracePattern class. It represents the inter-process

communication patterns in the trace.

Attributes

– No additional attributes.

Constraints

[2] The CommPattern class only references instances of Message and CollectiveData

classes.

196

7) RoutinePattern

Semantics

RoutinePattern inherits from the TracePattern class. It represents the routine call patterns

in the trace.

Attributes

– No additional attributes.

Constraints

[3] The RoutinePattern class only references instance of RoutineCall class.

8) PatternOccurence

Semantics

This class represents the instances of an execution pattern.

Associations

– TracePattern [1] References the TracePattern object for which this object represents

an occurrence of the pattern.

– Trace [1] References the Trace object where the pattern pointed to by the

PatternOccurrence object appears.

– TraceableUnit [*] References the TraceableUnit instances that belong to the pattern

occurrence.

Constraints

No additional constraints.

9) TraceableUnit

Semantics

This is an abstract meta-class which represents any traceable element in an execution trace.

This class is not restricted to the Message Passing metamodel. Any execution trace

metamodel can use this class.

Attributes

197

– TraceableUnitID: a unique identifier assigned to the traceable unit.

– StartTime: a timestamp specifies when the traceable unit started execution.

– EndTime: a timestamp specifies when the traceable unit finished execution.

Associations

– Process [1] : references the Process object that represents the process in which

this traceable unit is executed.

– MPITrace [1]: in our model, every TraceableUnit element belongs to one trace

represented by the class MPITrace. Other traces such as method call traces should

have another class defined such as ‘MethodCallTrace’ to capture traces of MPI

operations.

– PatternOccurence [0..1]: a reference to the PatternOccurence class. Every traceable

unit may belong to one pattern occurrence object.

Constraints

[1] The StartTime timestamp of TraceableUnit objects that belong to one process must

be sorted in an ascending order. This guarantees the order of execution of the message

passing operations. Traces of type Message and traces of type Point-to-point operation

may have the same start or end times.

10) Edge

Semantics

Edge is a concrete class that represents an edge from a caller routine to a callee routine in

the trace.

Attributes

– repeat: indicates how many instances of the callee are represented by the edge.

– type: indicates the type of the edge; recursive, sequence or fork-sequence.

Associations

– TraceableUnit [1] a parent traceable unit may have many outgoing edges.

– TraceableUnit [1..*] a child traceable unit may have only one incoming edge.

Constraints

No additional constraints.

198

11) Process

Semantics

This class represents a software process. Instances of this class may represent processes in

a distributed environment or may represent processes running on the same processor.

Attributes

– ProcessID: a unique identifier in the model that identifies the process.

– Rank: the rank of the process in an MPI group.

– ProcessName: the name designated to the process in the trace.

Associations

– TraceableUnit [*]: a process may have many instances of traceable units.

– Communicator [*]: a process may belong to many MPI communicators.

– Processor [1]: a process runs on one processor only.

12) Processor

Semantics

This class represents the processor that a process runs on.

Attributes

– ProcessorID: a unique identifier is specified for every processor in the system.

– ProcessorName: the name designated to the processor in the trace.

Associations

– Process [*]: a processor may contain many running processes.

13) Communicator

Semantics

This class belongs to the Message Passing environment. A communicator represents a

group of processes that communicate through message passing. Processes in a

communicator are ranked from 0 to n-1, where n is the total number of processes.

Attributes

199

– CommID: the unique identifier for an MPI communicator.

Associations

– Process [1..*]: a communicator may contain one or many processes.

– MPOperation [*]: a communicator may be used by many message passing

operations.

14) Message

Semantics

This class captures messages exchanged in point-to-point communications. Message is a

direct child of the TraceableUnit meta-class.

Attributes

– DataType: the type of data in the message.

– DataSize: the size of data in the message.

– Tag: the tag sent in the message.

Associations

– MsgTrace: An instance of message belongs to one MsgTrace only.

– MessageLink: Message may have many instances of MessageLink.

– Process (sender): a message may have only one sender.

– Process (receiver): a message may have only one receiver.

Constraints

– Instances of the class Message only correspond to data exchanged in point-to-point

operations.

15) MessageLink

Semantics

MessageLink is a concrete class that represents a link between an instance of Message and

its corresponding point-to-point operations.

Attributes

– MessageLinkID: the id of the message link.

Associations

200

– Message[1] MessageLink may have an association with one instance of Message.

– Send [1]: a message link is associated with one Send operation.

– Receive [1]: a message link is associated with one Receive operation.

Constraints

No additional constraints.

16) RoutineCall

Semantics

Routine is a concrete class that represents all the instances of routine calls in the trace.

Attributes

– routineCallName: the name of the routine.

– nestingLevel: the nesting level of the routine in the call tree.

Associations

– No additional associations.

Constraints

No additional constraints.

17) MPOperation

Semantics

A concrete class is at the core of our message passing execution trace model. It acts as a

super-class for every message passing operation such as Send, Receive, Gather and

Broadcast. An MPOperation is a traceable element and is a direct child to the RoutineCall

class.

Attributes

– No additional attributes.

Associations

– Communicator [0..1]: a message passing operation may reference up to one

communicator object.

201

Constraints

No additional constraints.

18) Initialize

Semantics

This class models the MPI_Init routine which is responsible for the initialization of the

MPI environment. It is the first MPI call in the program. The initialization of the MPI

environment includes synchronization of processes and adding processes to the

MPI_COMM_WORLD communicator. In our trace metamodel, MPI_Init inherits from

MPOperation.

Associations

– MPI_Init is a child of the MPOperation class. Therefore, it will inherit all the

associations of its parent class.

Constraints

[1] A call to MPI_Init must precede any other MPI call in the program, except for

MPI_Initialized routine that can be used to check if MPI_Init has been called or not.

19) Finalize

Semantics

This class models the MPI_Finalize routine that is used to clean up the MPI state. Each

process must call MPI_Finalize before it exits. Before calling MPI_Finalize, each process

must ensure that all pending non-blocking communications are (locally) complete.

Associations

MPI_Finalize is a child of the MPOperation class. Therefore, it will inherit all the

associations of its parent class.

Constraints

[1] Every process in the MPI environment must call MPI_Finalize before exiting unless

a call to MPI_Abort has been made.

20) PointToPointOperation

Semantics

202

This class is the super-class for blocking and non-blocking point to point operations in the

message passing environment. It inherits directly from the MPOperation class.

Constraints

[1] Datatype between matching point-to-point operations must match unless

MPI_BYTE data type is specified.

21) Send

Semantics

This class represents a message passing send operation. Send is a direct child of the

MPOperation class. Blocking Send operations are directly instantiated from the Send class.

Non-blocking operations are instantiated from the NonBlockingSend class described below.

Attributes

– SendDataAddress: address of sent data.

– SendDataSize: number of sent elements.

– SendDataType: the type of data being sent to destination process.

– Tag: the tag value (integer) sent with the message.

– SendType: this attribute specifies the type of the send operation (Standard, Buffered,

Synchronous and Ready).

Associations

– Process [0..1]: the receiving process.

– Receive [0..1]: a message passing send may reference (match) zero or one message

passing receive operations.

Constraints

[1] Send operation must specify a receiving process.

[2] A blocking Send with SendType ≠ Buffered cannot terminate before a matching

Receive is posted (end time of send operation must be after start time of receive

operation).

[3] A blocking Send with SendType = Synchronous cannot terminate before a

matching Receive is posted.

22) NonBlockingSend

Semantics

203

This class represents non-blocking send operations. A process that makes a non-blocking

send call proceeds right after the send call has been made.

Attributes

No additional attributes.

Associations

– WaitOperation [0..1]: an object of a non-blocking send operation may be referenced

by one WaitOperation object.

– TestOperation [0..*]: an object of a non-blocking send operation may be referenced

by zero or more TestOperation objects.

23) Receive

Semantics

This class represents the message passing Receive operation. It is a direct child of the

PointToPointOperation class. Matching the Send and Receive operations is done by

comparing the values to the instances of the Messsage class.

Attributes

– RcvDataAddress: address of the received message buffer at the receiver.

– RcvDataSize: number of elements received at the Receive address.

– Tag: an integer value that should be matched with the coming process unless if

specified as MPI_ANY_TAG.

Associations

– Send [0..1]: a message passing receive may reference (match) zero or one message

passing send operations.

– Process [0..1]: represents the sender of the message. A receive operation may

specify MPI_ANY_SOURCE, in this case the Source process can not be

determined as part of the trace for the receive operation. The source will be

determined once the message is received at the receiver.

Constraints

No additional constraints.

24) NonBlockingReceive

Semantics

204

This class represents a trace of a non-blocking message passing Receive operation. It

provides a handle to an object that will be used to check for the completion of the receive

operation. A process that uses a non-blocking receive will proceed after calling the receive

operation.

Attributes

No additional attributes.

Associations

– WaitOperation [0..1]: an object of a non-blocking receive class may be referenced

by one WaitOperation objects.

– TestOperation [0..*]: an object of a non-blocking receive class may be referenced

by zero or more TestOperation objects.

25) WaitOperation

Semantics

This class represents the different types of Wait operations provided by MPI which can be

used to wait and check for the completion of non-blocking message passing operations.

Attributes

No additional attributes.

Associations

– NonBlockingSend [1]: a wait statement references the non-blocking send object

that it is performing the wait operation for.

– NonBlockingReceive [1]: a wait statement references the non-blocking receive

object that it is performing the wait operation for.

Constraints

[1] The StartTime of an MPI_Wait statement cannot occur before the StartTime of the

corresponding Send or Receive operations.

26) TestOperation

Semantics

This class represents traces of the different Test operations provided by MPI. An MPI Test

is similar to MPI Wait except that the process does not wait for the completion of the non-

blocking operation.

205

Attributes

– Flag: this flag returns true if the non-blocking operation has completed successfully,

false otherwise.

Associations

– NonBlockingSend [0..*]: a test statement references the non-blocking send class

that it is performing the test operation for.

– NonBlockingReceive [0..*]: a test statement references the non-blocking receive

class that it is performing the test operation for.

Constraints

[1] The StartTime of an MPI_Test statement cannot occur before the StartTime of the

corresponding Send or Receive operations.

27) ProbeOperation

Semantics

An MPI probe operation is used to check whether there is an incoming message that

matches the Source, Tag, and Communicator except for MPI_ANY_SOURCE and

MPI_ANY_TAG.

Attributes

– Tag: this is an integer value that is sent with the message.

– Flag: indicates whether the incoming message matches the expected one.

Associations

– Process [0..1]: specifies the source process (sending process).

Constraints

– If MPI_ANY_SOURCE is indicated, ProbeOperation will not have a reference to

the Sending process.

28) CollectiveOperation

Semantics

This abstract class is the parent class of all the collective operations in the message passing

environment. Collective operations involve all the processes in a communicator.

206

Associations

– CollectiveData [0..1]: Collective operations other than Barrier will reference one

object of the CollectiveData.

– Process [0..1]: represents the root process in the collective operation.

Constraints

[1] A collective operation should match the same type of collective operation in all

other processes. Therefore, the maximum number of matched operations may not

exceed the number of processes in a communicator.

29) CollectiveData

Semantics

This class describes the data being exchanged in a collective operation as well as the

address of the exchanged data for each process. The Barrier operation does not involve any

data exchange. Therefore, the MPI_Barrier operation does not instantiate a CollectiveData

association.

Attritbues

– SendSize: the size of sent data.

– RcvSize: the size of received data.

– SendAddress: the address of sent data.

– RcvAddress: the address of received data.

– SendDataType: the data type of sent data.

– RcvDataType: the data type of received data.

Associations

– CollectiveOperation [1]: an instance of CollectiveData may belong to one

CollectiveOperation object.

– MsgTrace [1]: CollectiveData instance belongs to one instance of MsgTrace only.

Constraints

[1] An object of type Barrier cannot reference an object of type CollectiveData.

30) Barrier

Semantics

207

This class represents the message barrier operation (MPI_Barrier) in a message passing

environment. It inherits directly from the CollectiveOperation class.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

[1] The end-time for a Barrier object of one process cannot be before the start-time for

any of the matched Barrier objects of the other processes.

[2] A Barrier object cannot have an associated instance of class CollectiveData.

31) Broadcast

Semantics

This class represents the broadcast operation (MPI_Bcast) in the message passing

environment. It inherits directly from the CollectiveOperation class.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

[1] The type signature (SendSize, SendDataType) for MPI_Bcast at the root process

must be equal to the type signature of the matching MPI_Bcast on all processes

(receiving processes) in the communicator.

[2] The root process must belong to the communicator group.

32) Gather

Semantics

This class represents the gather operation (MPI_GATHER and MPI_GATHERV) in a

message passing environment. It inherits directly from the CollectiveOperation class. In

208

MPI_Gather, the root process receives the messages and stores them in rank order. The

receiving buffer (RcvAddress) for non-root processes is ignored for this operation.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

[1] The type signature (SendSize, SendDataType) for MPI_Gather at the root must be

equal to the type signature of the matching MPI_Gather on all processes (sending

processes) in the communicator.

[2] The gathered (received) message should be sorted based on the process rank in the

communicator.

[3] The root process must belong to the communicator.

[4] The receiving buffer for non-root process should be equal to null.

33) Scatter

Semantics

This class represents the scatter operation (MPI_Scatter and MPI_Scatterv) in a message

passing environment. It inherits directly from the CollectiveOperation class. The send

buffer is ignored for all non-root processes.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

[1] The type signature (SendSize, SendDataType) for MPI_Scatter at the root must be

equal to the type signature of the matching MPI_Scatter on all processes (receiving

processes) in the communicator.

34) Reduce

Semantics

209

This class represents the Reduce operation (MPI_Reduce) in a message passing

environment. Every process will send a value to the root process.

Attributes

– OpType: the type of the executed operation on the received data at the root process.

Associations

No additional associations.

Constraints

[1] All processes provide input buffers and output buffers of the same length, with

elements of the same type.

35) Allgather

Semantics

Traces from MPI_ALLGATHER and MPI_ALLGATHERV are captured using the

Allgather class. This class is a direct subclass of the CollectiveOperation class.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

[1] Instances of AllGather do not reference a root process.

36) AllToAll

Semantics

Traces from MPI_ALLTOALL and MPI_ ALLTOALLV are captured using the AllToAll

class.

Attributes

No additional attributes.

210

Associations

No additional associations.

Constraints

[1] Instances of AllGather do not reference a root process.

37) ReduceScatter

Semantics

Traces from MPI_REDUCE_SCATTER are captured using the ReduceScatter class.

Attributes

– OpType: the type of the executed operation on the received data at the root process.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

No additional constraints.

38) Scan

Semantics

Traces from MPI_Scan operation are captured using the Scan class. The Scan class is a

subclass of CollectiveOperation class. A Scan operation is used to perform a prefix

reduction on data exchanged across the group. For a process with rank i, the scan operation

returns, in the receive buffer, the reduction of the values in the send buffers of processes

with ranks 0,...,i (inclusive).

Attributes

– OpType: the type of the executed operation on the received data at the root process.

211

Associations

No additional associations.

Constraints

No additional constraints.

212

Appendix B – SMG2000 Communication Patterns

In the following, we present the point-to-point communication patterns that were detected

in SMG2000 in Chapter 5. A process p is represented in the 3D grid shown in Figure 5.3

as follows. Pi,j,k where i is the x-position and j is the y-position and k is the z-position in the

grid. For example, process P1 is represented as P1,1,1 and process P2 is represented as P2,1,1

and process P7 is represented as P3,2,1 and P10 is represented as P2,3,1 and P27 is represented

as P3,3,2. A process does not communicate with itself.

1. Pattern 1: Each process Pi,j,k will send to and receive from processes Pi,j,k±1, Pi,j±1,k±1,

Pi±1,j,k±1, and Pi±1,j±1,k±1. For example, Process 7 will send and receive from processes 2,

3, 4, 6, 8, 10, 11, 12, 18, 19, 20, 21, 22, 23, 24, 26, 27, and 28.

2. Pattern 2: Each process Pi,j,k will send to and receive from processes Pi,j,k±1, Pi,j±1,k±1,

Pi±1,j,k±1, Pi±1,j±1,k±1, and Pi±1,j±2,k±1. For example, Process 7 will send and receive from

processes 2, 3, 4, 6, 8, 10, 11, 12, 14, 15, 16, 18, 19, 20, 22, 23, 24, 26, 27, 28, 30, 31,

32 whereas Process 1 communicates with 2, 3, 5, 6, 7, 9, 10, 11, 17, 18, 19, 21, 22, 23,

25, 26, and 27.

3. Pattern 3: Each process Pi,j,k will send to and receive from processes Pi,j,k±1, Pi,j±1,k±1,

Pi,j±2,k±1, Pi±1,j,k±1, Pi±1,j±1,k±1, Pi±,j±2,k±1, Pi±2,j,k±1, Pi±1,j±2,k±1, and Pi±2,j±2,k±1. For example,

Process 7 will send and receive from processes 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18, 19, 20, 21 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 whereas Process 1

communicates with 2, 3, 5, 6, 7, 9, 10, 11, 17, 18, 19, 21, 22, 23, 25, 26, and 27.

4. Pattern 4: Each process Pi,j,k will send to and receive from processes Pi,j,k±1, Pi,j±1,k±1,

Pi±2,j,k±1 and Pi±2,j±1,k±1. For example, Process 7 will send and receive from processes 1,

213

3, 5, 9, 11, 21, 23, 25, and 27 whereas Process 1 communicates with 3, 5, 7, 17, 19, 21,

and 23.

5. Pattern 5: Each process Pi,j,k will send to and receive from processes Pi,j±1,k. For

example, Process 7 will send and receive from processes 3 and 11 whereas Process 1

communicates with process 5 only.

6. Pattern 6: Each process Pi,j,k will send to and receive from processes Pi,j±2,k. For

example, process 7 will send to and receive from 5 whereas process 1 will send to and

receive from process 3.

7. Pattern 7: Each process Pi,j,k will send to Pi,j-1,k and receive from process Pi,j+1,k. For

example, process 7 will send to 3 and receive from 11 whereas process 1 will receive

from 5.

8. Pattern 8: Each process Pi,j,k will send to Pi-1,j,k and receive from process Pi+1,j,k. For

example, process 27 will send to 26 and receive from 28.

9. Process 9: Each process Pi,j,k will receive from Pi-1,j,k and send to process Pi+1,j,k. For

example, process 27 will send to 28 and receive from 26.

10. Process 10: Processes P2,j,1 and P2,j,2 will send to P4,j,1 and P4,j,2 respectively and

processes P3,j,1 and P3,j,2 will send to P1,j,1 and P1,j,2 respectively. Therefore, processes

(2, 6, 10, 14, 18, 22, 26, and 30) will send to the second direct neighbor to the West on

the same grid and processes (3, 7, 11, 15, 19, 23, 27, and 31) will send to the second

direct neighbor to the East on the same grid.

11. Process 11: Processes P2,j,1 and P2,j,2 will receive from P4,j,1 and P4,j,2 respectively and

processes P3,j,1 and P3,j,2 will receive from P1,j,1 and P1,j,2 respectively. Therefore,

processes (2, 6, 10, 14, 18, 22, 26, and 30) will receive from the second direct neighbor

214

to the West on the same grid and processes (3, 7, 11, 15, 19, 23, 27, and 31) will receive

from the second direct neighbor to the East on the same grid.

12. Pattern 12: Each process Pi,j,k will send to Pi-1,j,k and Pi+1,j,k. For example, process 27

will send to 26 and 28.

13. Pattern 13: Each process Pi,j,k will send to Pi+1,j,k and receive from process Pi-1,j,k. For

example, process 7 will send to 8 and receive from 6.

14. Pattern 14: Each process Pi,j,k will send to Pi,j+1,k and receive from process Pi,j-1,k. For

example, process 7 will send to 11 and receive from 3.

15. Pattern 15: Each process Pi,j,k will send to and receive from Pi±1,j,k, Pi,j±1,k, Pi±1,j±1,k and

receive from process Pi,j-1,k. For example, process 10 will send to and receive from 5,

6, 7, 9, 11, 13, 14, and 15.

16. Pattern 16: Process Pi,j,k will send and receive from processes Pi,j,k±1, Pi±1,j,k±1, Pi±2,j,k±1,

Pi,j±2,k±1, Pi±1,j±2,k±1, Pi±2,j±2,k±1. For example, Process 7 will send and receive from

processes 5, 6, 8, 13, 14, 15, 16, 21, 22, 23, 24,29, 30, 31, and 32 whereas Process 1

communicates with 2, 3, 9, 10, 11, 17, 18, 19, 25, 26, and 27.

17. Pattern 17: Process Pi,j,k will send to and receive from processes Pi,j,k±1, Pi±2,j,k±1,

Pi±2,j±2,k±1, Pi,j±2,k±1. For example, process 5 will send to and receive from 7, 13, 15, 21,

23, 29, and 31.

18. Pattern 18: Process Pi,j,k will send to processes Pi,j-1,k, Pi±1,j-1,k and will receive from to

processes Pi,j+1,k, Pi±1,j+1,k. For example, process 7 will send to processes 2, 3, and 4 and

will receive from processes 10, 11, and 12.

215

19. Pattern 19: Processes Pi,2,1, Pi,4,1, Pi,2,2 and Pi,4,2 will send one message to Pi-1,2,1, Pi-1,4,1,

Pi-1,2,2 and Pi-1,4,2 respectively. Therefore, processes (5, 6, 7, 8, 13, 14, 15, 16, 21, 22,

23, 24, 29, 30, 31 and 32) will send to the direct North process on their same grid.

20. Pattern 20: Process Pi,j,k will send to processes Pi,j+1,k, Pi±1,j+1,k and will receive from to

processes Pi,j-1,k, Pi±1,j-1,k. For example, process 7 will send to processes 10, 11, and 12

and will receive from processes 2, 3, and 4.

21. Pattern 21: Processes Pi,2,1, Pi,4,1, Pi,2,2 and Pi,4,2 will send one message to Pi+1,2,1, Pi+1,4,1,

Pi+1,2,2 and Pi+1,4,2 respectively. Therefore, processes (5, 6, 7, 8, 13, 14, 15, 16, 21, 22,

23, 24, 29, 30, 31 and 32) will send to the direct South process on their same grid.

22. Pattern 22: Process Pi,j,k will receive from processes Pi,j-1,k±1, Pi±1,j-1,k±1,Pi,j+1,k±1, and

Pi±1,j+1,k±1. For example, process 8 will receive from 3, 4, 11, 12, 19, 20, 27 and 28.

23. Pattern 23: Process Pi,j,1 will receive from processes Pi,j,2. For example, process 6 will

receive from 22 whereas process 27 will send to process 11 (process 11 will receive

from process 27).

24. Pattern 24: Process Pi,j,k will send to and receive from processes Pi,j±1,k. For example,

process 7 will send to and receive from processes 11 and 3.

25. Pattern 25: Process Pi,j,k will send to and receive from processes Pi,j±1,k and Pi±1,j,k. For

example, process 6 will send to and receive from 10, 2, 5 and 7.

26. Pattern 26: Process Pi,j,k will send to and receive from processes Pi,j±1,k and Pi±1,j i±,k.

For example, process 7 will send to and receive from 11, 12, 10, 2, 3 and 4.

27. Pattern 27: Process Pi,j,k will send to and receive from Pi±1,j,k, Pi,j±1,k, Pi±1,j±1,k and receive

from process Pi,j-1,k (this is same as PT15 but the order of messages is random).

216

28. Pattern 28: Process Pi,j,k will send processes Pi,j±1,k. For example, process 14 will send

to 10 only whereas process 7 will send to 11 and 3.

29. Pattern 29: Process Pi,j,k will receive from processes Pi,j±1,k. For example, process 14

will receive from 10 only whereas process 7 will receive from 11 and 3.

30. Pattern 30: Process Pi,j,1 will send to process Pi,j,2. Therefore, each process on the first

grid (upper) will send to its direct neighbor on the adjacent grid.

31. Pattern 31: Process Pi,j,k will send and receive from processes Pi±1,j,k, Pi,j±2,k, Pi±1,j±2,k,

and Pi±2,j±2,k. For example, Process P7 sends to and receives from 2, 3, 4, 6, 8, 10, 11,

12, 14, 15, and16 whereas P1 sends to and receives from 2, 5, 6, 9, and 10.

32. Pattern 32: Process Pi,j,k will send and receive from processes Pi±1,j,k, Pi±2,j,k, Pi,j±2,k,

Pi±1,j±2,k, and Pi±2,j±2,k. For example, Process P7 sends to and receives from 1, 2, 3, 4, 5,

6, 8, 9, 10, 11, 12, 13, 14, 15, and16 whereas P1 sends to and receives from 2, 3 5, 6,

7, 9, 10 and 11.

33. Pattern 33: Process Pi,j,k will send and receive from processes Pi±1,j,k, Pi±2,j,k, and Pi,j±2,k,.

For example, Process P7 sends to and receives from 1, 3, 5, 9, 10, 1113, and 15 whereas

P1 sends to and receives from 1, 3 7, 9, and 11.

34. Pattern 34: Each process Pi,j,k will send to processes Pi,j,k±1, Pi,j±1,k±1, Pi±1,j,k±1, and

Pi±1,j±1,k±1 and will receive from Pi,j,k, Pi,j±1,k, Pi±1,j,k, and Pi±1,j±1,k.

35. Pattern 35: Each process Pi,j,k will send to and receive from processes Pi,j±1,k, Pi±1,j,k,

Pi±2,j,k, Pi±1,j±2,k, and Pi±2,j±2,k. For example, process 7 will send to and receive from 5, 6,

8 , 13, 14, 15, and 16.

36. Pattern 36: Each process Pi,j,k will send to and receive from processes Pi±2,j,k, Pi,j±2,k,

and Pi±2,j±2,k. For example, process 7 will send to and receive from 5, 13, and 15.

217

37. Pattern 37: Process Pi,j,k will receive from processes Pi,j+1,k, Pi±1,j+1,k, Pi,j-1,k, Pi±1,j-1,k. For

example, process 7 will receive from processes 10, 11, 12, 2, 3, and 4.

38. Pattern 38: Process Pi,j,1 will receive from processes Pi,j,2, Pi±1,j,2, Pi,j±1,2 and Pi±1,j±1,2.

For example, process 7 receives from processes 18, 19, 20, 22, 23, 24, 26, 27, and 28.

39. Pattern 39: Process Pi,j,1 will receive from processes Pi,j,2, Pi±1,j,2, Pi,j±1,2. For example,

process 7 receives from processes 19, 22, 23, 24, and 27.

40. Pattern 40: Process Pi,j,k will send to and receive from processes Pi,j±1,k, and Pi±1,j,k. For

example, process 7 will send and receive from 11, 8, and 3. This is similar to pattern

25 with the difference in the order of messages.

41. Pattern 41: Process Pi,j,1 will send to processes Pi,j,2, Pi±1,j,2, Pi,j±1,2. For example, process

7 receives from processes 19, 22, 23, 24, and 27.

42. Pattern 42: Process Pi,j,k will send to and receive from processes Pi,j,k±1.

43. Pattern 43: Process Pi,j,k will send to and receive from processes Pi,j,k±1, Pi,j±1,k and Pi±1,j,k.

44. Pattern 44: Process Pi,j,k will send to and receive from processes Pi,j±1,k, Pi±1,j,k, Pi,j,k±1,

Pi,j±1,k±1 and Pi±1,j,k±1.

218

