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Abstract. The rapid growth of the Internet has resulted in increased attention to 
security to protect users from being victims of security threats. In this paper, we 
focus on security mechanisms that are based on Proof-Carrying Code (PCC) 
techniques. In a PCC system, a code producer sends a code along with its safety 
proof to the consumer. The consumer executes the code only if the proof is 
valid. Although PCC has been shown to be a useful security framework, it suf-
fers from the sheer size of typical proofs -proofs of even small programs can be 
considerably large. In this paper, we propose an extended PCC framework 
(EPCC) in which, instead of the proof, a proof generator for the program in 
question is transmitted. This framework enables the execution of the proof gen-
erator and the recovery of the proof on the consumer’s side in a secure manner 
using a newly created virtual machine called the VEP (Virtual Machine for  
Extended PCC).  

Keywords: Software Security, Proof-Carrying Code, Virtual Machine. 

1   Introduction 

Modern computer systems have become so complex that traditional security mecha-
nisms built around anti-viruses and intrusion detection mechanisms can no longer 
sustain the severity of today’s ever-increasing security threats. One can claim that, 
except perhaps for security experts and professionals, it is too big a burden, or even 
unrealistic, for users to bear sole responsibility for adequate security and protection of 
their computing systems. Proof-Carrying Code (PCC) techniques have been intro-
duced to reduce the impact of this problem by allowing a consumer of a computer 
program to verify a proof of its general safety properties, sent by the code producer, 
before executing it [8]. 

In a PCC system, there are typically two main parties, (1) a code producer, who 
builds machine code along with its safety proof (expressed typically in a formal 
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logic), and (2) a code consumer, who wishes to run the compiled code as long as it 
satisfies predetermined safety policies.  

A typical interaction between the producer and consumer encompasses several 
steps. In the first step, the producer sends the consumer a program, which consists of 
the code and additional annotations such as loop invariants and function pre- and 
post-conditions. The consumer provides the received code to the Verification Condi-
tion Generator (VCGen), which generates a verification condition based on a set of 
safety policies that need to be satisfied. A verification condition is a logical formula 
that, if satisfied, implies that the code satisfies the safety policies.  

The consumer, then, sends the generated verification condition to the producer. 
The producer runs a theorem prover (in many cases along with necessary human in-
tervention) to obtain a proof that corresponds to the received verification condition. 
Next, the producer submits the proof to the consumer. The consumer uses a proof 
checker to verify that the received proof is indeed a proof of the verification condition 
that was initially generated. If the check succeeds the code is considered trustworthy 
and can be executed.  

It should be noted that it is very common to have a copy of the VCGen on the pro-
ducer’s side to simplify the interaction between the code producer and the code con-
sumer. In this way, the code consumer receives the annotated code as well as the 
safety proof during the first step of the interaction. Fig. 1 shows by the components 
according to the order by which they are executed in the PCC process. The steps in-
volved in a typical interaction between producer and consumer as discussed above. 
The ovals are the artifacts that are generated/sent, the arrows represent the flow of the 
artifacts, and the rectangles show the components that perform computations. The 
starting point of the interaction is represented by a closed circle (•). At the end of the ). At the end of the 
interaction, a switch (symbolically shown as a triangular tri-state buffer) checks the 
result of the proof checking; if the proof checking succeeds the code is considered 
trustworthy and can be executed (on the CPU shown as a rhomboid) if not the switch 
remains off and the code will not be executed.  

One of the key properties of a PCC framework is that the Trusted Computing Base 
(TCB) (specified by the orange curved rectangle in Fig. 1) contains relatively small 
and simple components such as VCGen and a proof checker while the theorem prover 
is on the producer’s side and therefore out of the consumer’s TCB. The reason for that 
is twofold: performance and security. That is, in general, proving the verification 
condition is a resource consuming task which can result in low performance. Fur-
thermore, considering that the theorem prover is a large and complex program, it 
could not be placed on the consumer’s side as it could hardly be trusted. Another 
important property of the PCC framework is that PCC programs are tamper-proof. An 
intruder cannot modify the code or the proof in a way that results in execution of a 
malicious code on the consumer’s side. Any attempt to tamper with either the code or 
the proof results in a validation error during the proof checking process.  

Despite the fact that PCC can be a powerful security mechanism, it is still not 
widely accepted in practice due to two keys issues. First, it is usually difficult to write 
proofs for large programs. Although with the recent advances in Certifying compila-
tion [3, 28] some safety properties of programs can automatically be proved as certifi-
cates, this is limited to basic safety properties and only possible for a restricted class 
of programs. For example, it may not be possible to prove automatically safety prop-
erties if the software system is complex or the policies are sophisticated [29]. The  
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Fig. 1. Conventional PCC framework: typical steps and involved components 

second limitation, which is the topic of this paper, is concerned with the difficulty in 
communicating and storing the proofs which are inherently large [11]. It is common 
to have proofs that are 1000 times larger than the associated code, which renders  
the use of PCC impractical for all but the tiniest examples [11]. This is further com-
plicated when dealing with systems with limited storage and processing resources 
such as mobile and handheld devices, and networks with low survivability and scarce 
resources.  

Clearly, there is a need for efficient techniques to reduce the size of proofs. The 
approaches proposed to alleviate this issue which include the use of data compression 
techniques [8, 10, 11, 25] suffer from drawbacks of their own, among which the most 
important one is the enlargement of the TCB, A large TCB increases the chance of 
defects which may cause an unsafe program to be accepted. 

In this paper, we propose a novel approach to solving the proof size problem while 
avoiding to increase significantly the TCB. Our approach is based on the innovative 
idea of sending a program that generates the proof instead of the proof itself. This is 
inspired by the concept of Kolmogorov complexity [16], where the complexity of a 
string x is the shortest computer program that produces x on a so-called universal 
computer, i.e., a machine that computes the string, prints it, and then halts. One im-
portant observation is that the ideal compressed form for a given proof is the shortest 
program that outputs that proof.  

To allow the proof generator program to execute on the consumer’s side, we have 
developed a virtual machine that we call VEP (the Virtual Machine for Extended 
PCC). VEP is written in C and has less than 300 lines of code, which is an acceptable 
addition to the consumer’s TCB. The design of VEP is relatively simple to be able to 
easily verify that is safe. It has also been developed with security in mind so as the 
running programs do not access unauthorized resources. Using the VEP, we believe 
that proofs, which are represented as programs, can be executed safely on the con-
sumer’s side while keeping the consumer’s TCB reasonably small.  
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Organization of the paper: In the next section, we provide background information 
about PCC, and discuss studies related to our work. In Section 3, we present the ex-
tended PCC framework, followed by the VEP and its components. We show the ef-
fectiveness of our approach by applying it to several benchmark proofs in Section 4. 
We conclude the paper and discuss future directions in Section 5.  

2   Background and Related Work 

It is desirable that proofs be represented in a compact format. One way to reach this 
goal is through proof optimization in which the proofs are rewritten in a more com-
pact form which preserves the meaning of the original form of the proof [13, 2]. This 
could be done by replacing all the occurrences of a given term t with a smaller 
equivalent term s in the proof (e.g., in the arithmetic system, there could be a rule x * 
1 → x which always reduces the size of a term). Necula et al. experimented with 
proof optimization in an approach called lemma extraction and were able to obtain a 
minor reduction gain of 15% in the size of the proofs [2].  

Another way of compacting the proofs is through data compression. Data compres-
sion techniques compress data by searching for more efficient encodings that take 
advantage of repetition in the data. These techniques are not well exploited in PCC 
framework due to the following reasons. The consumer of compressed data must first 
decompress it, which requires a safe decompressor on the consumer’s side. Generat-
ing the proof of safety for a normal decompressor (a relatively large program with 
about 7000 lines of code) can be a difficult task not worth performing because one 
would only obtain a specific decompressor that cannot work with a proof compressed 
by an appropriate but different compressor. In other words, each time a new decom-
pressor is used, a proof of its safety is required. The objective of the VEP is to tackle 
this problem by tailoring it to the needs of executing proof generators that could be, as 
shown in our case study, a compressed file along with a decompression tool. 

Necula et al. proposed a new strategy called Oracle-based Proof-Carrying Code 
(OPCC) [11]. In OPCC, the handling of the proofs on the consumer’s side is changed. 
As shown in Fig. 2, this change in strategy, led to a change in the framework, namely, 
they assumed that the consumer uses a non-deterministic proof checker. 

The untrusted theorem prover on the producer’s side records a sequence of bits that 
shows which sub-goals failed and needed backtracking. Then, the producer sends to 
the consumer this bit-stream that serves as a proof witness. On the consumer’s side, 
the received bit stream works as an “oracle” which can guide the trusted non-
deterministic proof checker to avoid back-tracking. Every time the checker must 
make a choice between the possible ways to proceed, it consults some bits from the 
oracle. In this approach, the trusted non-deterministic proof checker is, in fact, a non-
deterministic theorem prover having the task of proving the verification condition. 
The oracle is used to drive the theorem prover to a final proof without search. 

Experimental evidence shows that oracle strings, as suggested by Necula et al., can 
be about 1/8 of the code size and about 30 times smaller than proofs in traditional 
PCC [11]. However, Wu et al. [14] suggested that the code size relation might be 
deceptive as the size Java class files, that are necessary to be sent along with the proof 
witness in a SpecialJ proof-carrying Java system, is not included in calculation.  
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Fig. 2. OPCC framework: typical steps and involved components 

 

Fig. 3. FPCC framework: typical steps and involved components 

One of the most important downsides of the OPCC is that it involves complex 
trusted components, such as a non-deterministic proof checker plus the usual PCC 
components. The TCB in OPCC is about 26000 lines of C code which is larger than 
the TCB size in traditional PCC (15000-20000 LOC). Any flaw in the implementation 
of these components can compromise safety of the system. As a matter of fact, the 
Special-J system [3], used in Necula et al.’s approach, showed a critical leak in its 
type axioms found by League [5].  

Although the above approach has resulted in proofs which were smaller than the 
original proofs, they had to significantly enlarge the TCB. In fact, Appel points out 
that the VCGen (and consequently the TCB size) even in traditional PCC is too large 
[27] and it needs to be verified. As shown on Fig. 3, Foundational Proof-Carrying 
(FPCC) [27] Code aims to further reduce the TCB size by removing the VCGen from 
the consumer’s side. 
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FPCC uses a foundational mathematical logic for defining the semantics of the ma-
chine instructions and the proof rules. In this way, Appel et al. avoid using the 
VCGen by defining the operational semantics of machine instructions and the safety 
policies in a higher-order logic. This is done by modeling the machine instruction 
with a transition from one machine state (set of memory and registers) to another 
machine state and defining the safety policy accordingly. Similar to the PCC, a theo-
rem prover should produce a proof of safety to be accompanied by the code. The 
proof checker verifies the safety proof before the program is executed. FPCC is con-
cerned with minimizing the TCB of the system, by not including the VCGen as shown 
in Fig. 3.  

While the original FPCC uses deductive reasoning to encode proof rules, some 
variants of FPCC use computational reflection to replace deduction by computation 
[31].  FPCC is likely to be more secure than traditional PCC because it has a smaller 
TCB. However, the proofs in FPCC, in comparison with traditional PCC, are more 
complex to produce and, as stated by Appel et al., can explode exponentially [27]. 
According to Necula, the proof size in FPCC is 20% bigger than the proof size in 
traditional PCC [11]. Therefore, even though in FPCC, it is only necessary to send a 
proof generator, the complexity of producing the proofs, in the first place, renders 
FPCC hard to use in practice.  

Wu et al. [14] proposed submitting annotated programs that can be checked for 
safety by a verified logic program. The program logic clauses are derived as lemmas 
from the (trusted) axioms about safe execution of the machine. This way, it is not 
necessary to build and check a large proof at the code consumer’s side. However, 
according to [32], there exist issues about scalability of the results, as reported by Wu 
et al. [14], and effective engineering of their verifiers. 

While we are not in favor of possible compromises to the security of the system 
due to a large TCB expansion (as we have in OPCC), we also like to overcome the 
difficulty in communicating and storing the proofs which are inherently large (as we 
have in traditional PCC and more severely in conventional FPCC) in a practical way. 

3   The Extended Proof-Carrying Code Framework (EPCC) 

3.1   Overview 

Fig. 4 describes the steps involved in the proposed Extended Proof-Carrying Code 
(EPCC) framework [17]. In an EPCC system, there are two main parties, a code  
producer, on the left-hand side, who sends a code along with its safety proof generator 
program1, and a consumer, on the right-hand side, who wishes to run the code  
provided that it is proven safe by the system. 

The interaction between these two parties consists of the following steps. In the 
first step, the producer runs a theorem prover to obtain a safety proof of the code he 
intends to send. Similar to what is done in FPCC [27], the producer is not constrained 
to generate the safety proof in the logic that the consumer imposes. The producer can  
 

                                                           
1 A proof generator is a program whose sole function is to output the proof. This program aims 

to be a more compact representation of its resulting proof and does not necessarily rediscover 
the proof. 
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Fig. 4. EPCC framework: typical steps and involved components 

use this opportunity to build the proof in a logic (e.g., a higher-order logic) that results 
in a smaller proof. In other words, the producer has the possibility of reducing the size 
of the safety proof by using a custom logic which can be later converted (translated) 
to the logic set by the consumer. In the second step, the producer writes a proof gen-
erator program, which outputs the safety proof in the format which is acceptable by 
the consumer.  

Next, the producer submits the code accompanied by its safety proof generator pro-
gram to the consumer. At this point, the proof generator program is yet another pro-
gram that the producer sends to the consumer. It is as untrustworthy as the payload 
code itself. So it seems we are in a kind of chicken-and-egg situation: before running 
the untrustworthy payload code, the consumer needs to verify its attached proof, 
which requires execution of the proof generator program, which is also untrustworthy. 
One possible way to overcome this issue is to simply verify the safety of the proof 
generator program using traditional PCC. This solution has the obvious drawback of 
necessitating a proof for each proof generator program, which could hinder the practi-
cal aspect of our approach due to the complexity of writing proofs. We propose, in-
stead, to run the proof generator in a tightly sandboxed environment: our carefully 
designed virtual machine, the VEP (the Virtual machine for Extended Proof-carrying 
code). The design of the VEP is discussed in more details in Section 4. 

Upon receiving the code and the corresponding proof generator program, the con-
sumer runs the proof generator (only for a single time) on the VEP and obtains the 
safety proof. The next steps are similar to the traditional PCC: The consumer runs the 
proof checker; after the proof check succeeds the consumer can safely execute the 
code. As one can easily observe, the EPCC framework is tamper proof, just like PCC.  

The EPCC framework not only makes PCC more scalable and practical by reduc-
ing the proof size but also provides the code consumer with the possibility to use a 
safe environment in which a large class of proof generators that can be executed in a 
secure manner, regardless of the original logic in which the proofs were represented. 
In this way, EPCC leaves the easiest tasks to the consumer and gives adequate means 
to the producer to do the hard tasks. This major flexibility for the consumer and  
producer is gained through the VEP, a minor TCB extension, which can be verified 
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easily. Technically, except for the VEP, the security of EPCC is as strong as the tradi-
tional PCC. Currently, a verified VEP is being developed (using conventional PCC). 
A verified VEP would potentially make EPCC exactly as secure as PCC.  

4   Virtual Machine for Extended Proof-Carrying Code (The VEP) 

The VEP [12] is intended to be a sandbox interpreter for the proof generator pro-
grams. Any defect in the VEP might give an opportunity to an attacker to write a 
malicious proof generator such that its execution on the VEP turns the VEP into an 
attacker against the consumer. Therefore, the safe execution of the proof generator 
depends greatly on the safety of the VEP and the way it imposes the security require-
ments. In this section, we present the design of the VEP starting from the general 
requirements that the VEP needs to satisfy to be deemed secure.  

4.1   Requirements 

The virtual machine design process starts by capturing the requirements. In the case 
of the VEP, we dealt with the following requirements. 

1. The VEP should run as a virtual machine, deployed on different platforms to 
allow portability of proofs. This is similar in principle to the concept of univer-
sal computing proposed by Kolmogorov when describing the characteristics of 
the ideal decompressor [16]. 

2. It should enable the execution of the proof generator at the consumer’s side in 
a secure manner. It should provide a tightly controlled set of resources for 
proof generation. Network access, the ability to inspect the host system, or 
read from input devices and write into file streams should be disallowed. 
Moreover, the VEP should be able to perform some sort of execution monitor-
ing to verify that these constraints are maintained. 

3. As indicated in EPCC framework, the VEP is a part of the TCB of the con-
sumer. Knowing that any bug in TCB can compromise the security of the 
whole system, we need the VEP to be small and simple such that it is relatively 
easy to check for its safety. This would give the VEP the potential to be proved 
safe by the PCC itself. 

4. The proof generators are sent in the VEP language. Consequently, this lan-
guage should be flexible enough so that it allows compact proof generators to 
be written.  

5. The VEP should be designed with performance in mind since it adds an over-
head to the processing of proofs on the consumer’s side. 

6. The design of the VEP should be based on proven practices and common tech-
nologies to facilitate its adoption.  

It should be noted that the above requirements are not equally important. The three 
first requirements are the most important ones in case trade-offs need to be made. For 
example, the low complexity and small code size both depend on the number of in-
structions in the VEP instruction set. On one hand, having a small set of instructions 
results in a virtual machine with low complexity, on the other hand, a large list of 
instructions makes the code smaller. Although these two factors are contradictory, 
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there can be a good balance between them. Therefore, finding good trade-off has been 
one of the guiding principles in designing the VEP.  

4.2   Machine Type 

Conventionally, a virtual machine (VM) can either be stack-based or register-based. 
Implementing a universal computer can be achieved with a stack machine which  
has more than one stack or has one stack with random access. Nevertheless, register 
machines can be universal computers; therefore, both approaches can satisfy  
Requirement 1. 

The most popular virtual machines, however, such as the Java Virtual Machine [6] 
and the Common Language Runtime [7], use a stack machine type rather than the 
register-oriented architectures due to the simplicity of their implementation. Hence, a 
stack-based machine helps us to better fulfill Requirement 3 (simplicity of the de-
sign). The simple stack operations can be used to implement the evaluation of any 
arithmetic or logical expression and any program written in any programming lan-
guage (for execution on register machines) can be translated into an equivalent stack 
machine program. Moreover, the stack machines are easier to compile to, which could 
potentially help the adoption of the VEP (Requirement 6). 

Finally, we chose the stack machine type over the register one because a compiled 
code for a stack machine has more density than the one for the register machine. In an 
experiment, Davis et al. [4] showed that the corresponding register format code after 
eliminating unnecessary instructions was around 45% larger than the stack code 
needed to perform the same computation. This can especially affect the size of the 
proof generator written for the VEP as mentioned earlier. 

4.3   Instruction Set Architecture 

The Instruction Set Architecture (ISA) of a virtual machine is the VM interface to the 
programmer. In the case of the VEP, available data types and the set of memory 
spaces are defined by ISA. The ISA definition also includes the specification of the 
set of opcodes (machine language) and the VEP’s instruction set. Next, we discuss 
each of these parts and their design choices. 

Data Types 
On the VEP, we have two distinct types of values: numbers and pairs. Considering 
that the VEP is implemented using 32-bits machine words, the least significant bit of 
the word shows the data type of the stored value. This bit is not visible to the pro-
grammer while the remaining 31 bits are visible. If we have a word that references a 
pair, the content of the word represents the address of a pair in memory. For a word 
with its type number, the content of the word is a signed integer. 

Memory 
The VEP uses three blocks of memory: a code space (an array whose elements are 
bytes), a heap (an array whose elements are pairs, see below), and a stack (an array 
whose elements are bytes). 
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A pair is an ordered sequence of two values; the representation includes two 
words, for both values, and a third word which stores the reference counter for the 
simple garbage collection system of the VEP. 

The stack grows towards the high addresses (the first item pushed on the stack is 
stored at address zero) and the stack pointer points at the topmost element. The heap 
provides the programmers with additional flexibility by supplying the VEP with 
memory for objects of arbitrary lifespan. 

Fig. 5 shows the schemata of the stack and the heap in the VEP. For each of these 
two schemata, sample binary contents are shown on the right-hand side and the hu-
man readable format of the same content on the left-hand side. The second stack ele-
ment from the top has the type pair (the type bit is one) and rest of the bits show the 
address of the pair in the heap which is 1 (1p in human-readable format). The pair 1p 
in the heap is a pair of the two values 34 and 0p which are respectively the car and the 
cdr2 of 1p, where car returns the first item of the pair and cdr returns the second one. 
It should be mentioned that the values in the pairs follow the same typing convention 
as we have in the stack. 
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Fig. 5. Schemata of the stack and the heap 

Memory Management 
The VEP provides automatic memory management of the heap, thus there can be no 
dangling reference or memory leak due to manual memory management errors and 
the programmer can put more time on productivity instead of managing low-level 
memory operations.  

The VEP relies on the reference counting [23] to automatically detect unused ob-
jects and collect them from memory. A major drawback of reference counting is its 
failure in reclaiming cyclic garbage data structures. We took the care of designing the 
VEP so that it does not have the ability to perform destructive updates on the pairs. 
Every value in the VEP is built up out of existing values; hence, it is impossible to 
create a cycle of references, resulting in a reference graph (a graph which has edges 
from objects to the objects they reference) that is a directed acyclic graph. This way, 

                                                           
2 Analogous to the LISP operations on binary tree structures, where cdr returns a list consisting 

of all but the first element of its argument and car returns the first element. 
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the weakness of the reference counting garbage collector is avoided due to the lack of 
circular structures in the VEP heap. 

Instruction Set 
The design of the instruction set is one of the most interesting and important aspects 
of the VEP design. The code space, being made of bytes, naturally leads to an instruc-
tion set of 256 instructions. The VEP has a RISC-like instruction set which provides 
random access to stack, many arithmetic, logical, comparison, data transfer, and con-
trol instructions and restricted access to the pair-based heap. 

This gives application developers a good flexibility in implementing their ideas 
and innovations when developing VEP-enabled proof generators. It also guarantees an 
acceptable execution performance (that is in line with Requirement 5). We provide 
the VEP with a rich set of data transfer instructions which might help to execute the 
proof generators on the VEP more efficiently. The distribution of the instructions is 
based on an interpretation of the work of Hennessy et al [18] where they found the 10 
simple instructions that account for 96% of the instructions executed for a collection 
of integer programs running on the popular Intel 80x86. We used Table 1 as a reason-
able guide for determining an appropriate distribution of instructions (in line with 
requirement 6). 

Table 1. Distribution of instructions interpreted from [18]  

Rank 80x86 instructions % Execution 
1 Data transfer instructions 38.00% 
2 Control instructions 22.00% 
3 Comparison instructions 16.00% 
4 Arithmetical instructions 13.00% 
5 Logical instructions 6.00% 
 Total 96.00% 

 
The VEP instructions can be classified into the following categories. 

 Data transfer instructions (POP, PEEK, POKE, LOAD1, LOAD2, LOAD3, 
LOAD4, PEEKI n, POKEI n, LOADI n, PUSH-PC, READC): These in-
structions move data from one location in memory to another. These instruc-
tions come in a variety of ranges and density of operations, for instance, 
PEEKI n, POKEI n have shorter range (i.e., they can perform their opera-
tions only on the top eight elements of the stack), while PEEK and POKE have 
broader range (they can perform their operations only on all elements of the 
stack) and less density of operations (e.g. a LOAD1 -1 followed by a PEEK, 
is equivalent to PEEKI -1 ). 

 Control instructions (HALT, NOP, JUMP, JMPR, JMPRF, JMPRT): Machines 
and processors, by default, process instructions sequentially. Redirection from 
this sequence is possible through control instructions. The most basic and 
common kinds of program control are the unconditional jump and the condi-
tional jumps (branches). Control instructions also include instructions which 
directly affect the entire machine such as HALT or no operation (NOP). 
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 Comparison instructions (EQU, LEQ, LTH, NEQ): These instructions compare 
values by using a specific comparison operation. Typical comparison instruc-
tions include “equal” and “not equal”. 

 Arithmetic instructions (ADD, SUB, MUL, DIV, MOD): The basic four integer 
arithmetic operations are addition, subtraction, multiplication, and division. 

 Logical instructions (BSHIFT, BAND, BNOT, BOR): These instructions usually 
work on a bit by bit basis. Typical logical operations include “logical nega-
tion” or “logical complement”, “logical and”, “logical or”. 

 Heap related instructions (CONS, CAR, CDR, ISPAIR): These instructions 
whether perform their action on a pair (CAR and CDR, respectively return the 
first and the second item of a pair), constructs a pair (CONS), or verify if a 
value is a pair (ISPAIR). 

 Input/Output instructions (OUTPUT): The VEP provides a tightly-controlled 
set of resources for proof generators to run in. In order to be able to output the 
resulting proof, a proof generator is allowed to print characters onto the stan-
dard output. This is the sole way provided by the VEP for a proof generator to 
communicate with the outside world. Other than that, network access, the abil-
ity to inspect the host system, or reading from input devices and writing into 
file streams are disallowed.  

Almost all of the instructions take their arguments from the stack and have no (imme-
diate) operands. In particular, PEEK, POKE, and jump instructions are intended to be 
used along with “LOAD* val;” instruction3. This keeps almost all of the instructions 
to a single variant (no need to handle various addressing modes). Prevalence of 
LOAD* explains the existence of the 1-byte instruction LOADI for constants close to 
zero. These choices achieve simplicity of the VEP and compactness of the byte-code. 
The only instructions with immediate operands (other than LOAD*) are POKEI and 
PEEKI, which are extremely frequent as they are the typical means to implement the 
write/read of the local variables on the stack. 

A note-worthy point about the VEP instructions set is the absence of instructions 
which operate on network or gives the ability to inspect the host system. Furthermore, 
there are no instructions which can read from input devices and write into file 
streams. These are to enable the execution of the proof generator at the consumer side 
in a secure manner. That is, we tried to enforce security policies such as no access to 
files or no access to the network on instruction set design level. Thus, the selected 
instructions provide the VEP with a tightly-controlled environment for proof genera-
tor to run in. 

4.4   Security Enforcement by the VEP 

We designed the VEP such that it guarantees a certain number of fundamental  
safety properties in order to execute the untrusted code in a secure manner. Memory 
safety is one of these properties which prevents reading and writing to illegal  
memory locations. The code space is read-only and the legal code space locations are  
 

                                                           
3 LOAD* val pushes the numeric value encoded by the next * byte(s) in the code space onto 

the stack. 
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Fig. 6. The flowchart of Security Enforcement of the VEP 

0, . . . , Nc − 1, where Nc is the code size. Even the instruction loading must be per-
formed as legal reads from the code space. 

In the case of the stack, reads and writes are permitted. Any read or write to the 
stack is preceded by a memory check which ensures that the read and write are going 
to be performed on valid stack locations as their destination. What is a valid destina-
tion varies from instruction to instruction. Generally, the valid read and write destina-
tions are stack locations ranging from the bottom to the top of the stack. 

In the case of the heap, reads and writes are very restricted. Since the construction 
of the pairs is governed by the VEP, the programmer has no means to modify the type 
bit to forge a new pair and he has no means to read and write in the heap other than to 
use CONS, CAR, CDR. Furthermore, memory safety in the VEP asserts that each 
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jumps outside of the code space, and resource bound check enforces limitations on 
the size of the code space, the size of the stack, the size of the heap, and the number 
of instructions the VEP may execute. There are other security requirements such as 
type safety and numeric safety which will be explained in following subsections.  

The security enforcement by the VEP is simple and straightforward. The VEP  
enforces these security requirements at different levels. Categorizing the security 
checks according to their enforcement level shows better how easy the VEP security 
enforcement is to perform and understand. Fig. 6 shows a complete schema of the 
security enforcement mechanism and its different levels. 

Initial Security Enforcement 
A proof generator makes requests for resources. These requests are made using a 
declaration in the header of the proof generator. Each time, the VEP verifies whether 
the requested amount of resources is no greater than the maximum value settled in an 
agreement between the producer and the consumer. The requested code size and stack 
size are, respectively, denoted by Nc and Ns. The amount of needed heap size of the 
proof generator is represented in number of pairs Nh. 

 Code size: If the VEP refuses or fails to allocate the requested block of mem-
ory, the VEP refuses the proof generator. Otherwise, the VEP allocates a block 
of Nc bytes of memory as the code space and inserts the code into the code 
space. 

 Stack size: If the VEP refuses or fails to allocate the requested block of mem-
ory above agreed-upon limit, the VEP refuses the proof generator. Otherwise, 
the VEP allocates a block of Ns words of memory as the stack memory. 

 Heap size: If the VEP refuses or fails to allocate the requested block of mem-
ory, the VEP refuses the proof generator. Otherwise, the VEP allocates a block 
of 3*Nh words of memory as the heap memory. 

 Length of Execution: The proof generator should finish its task within a defi-
nite number of operations No. In the case where the No is more than the limit 
the VEP refuses the proof generator. 

When the proof generator is not refused during the initial security enforcement, it is 
ready to be executed by the VEP. 

Global Security Enforcement 
Throughout the execution, the VEP enforces two security checks globally, which are 
independent of the next instruction that is about to be executed. The global security 
enforcement consists of checking the following aspects: 

 Length of execution: Before fetching the next instruction, the VEP makes sure 
that the elapsed time of the execution of the proof generator (measured as the 
number of executed operations) has not exceeded the number of operations 
(i.e., No). If the number of executed operations is less than the approved num-
ber, then the check is passed, otherwise the code is refused for having run for 
too long. 

 Program counter: The VEP should check if the program counter points inside 
the code space (i.e., non-negative and less than the code size). 
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Instruction-Wise Security Enforcement 
The third level of security enforcement by the VEP is the fine-grained level and is 
done per instruction. This level of security prevents the proof generator from perform-
ing any unsafe operation. 

Generally, after fetching each instruction and before the execution of the instruc-
tion, the VEP performs a combination of the following checks. 

 Number of operands: The number of operands of an instruction can vary from 
zero to two implicit operands on the stack, depending on the instruction. For an 
instruction that requires one or more operands on the stack, the existence of a 
sufficient number of operands must be checked before execution of the instruc-
tion. If insufficient operands lie on the stack, the execution is discontinued and 
the proof generator is not considered safe. 

 Type of operands: The VEP checks if the type of the operands conforms to the 
operation. As mentioned earlier, the values in the VEP can be numbers or 
pairs. The VEP can distinguish the type of an operand according to its type bit. 
Depending on the instruction and the operand, the latter may have to be a 
number, it may have to be a pair, or it may be free to be of either types. Check-
ing the type of operands ensures that a code is free of type-mismatches accord-
ing to the VEP’s type system.  

 Legal range of operands: The arithmetic instructions should have legal  
arguments. The VEP checks the operand legality to prevent potential errors of 
using partial operators with arguments outside their defined domain (e.g., divi-
sion by zero). 

 Legal code destination: Before changing the program counter to the jump desti-
nation, the VEP checks if the destination is within the code space. It should be 
mentioned that the VEP does not enforce the concept of instruction boundaries. 

 Legal stack destination: For any instruction which results in a read or a write 
to the stack, the VEP ensures that the reads and writes have legal stack loca-
tions as their destination. 

 Stack overflow: The VEP verifies whether there is enough stack space to per-
form an instruction which works with stack memory. 

 Heap overflow: The VEP verifies whether there is enough free space on the 
heap to perform an instruction which works with the heap memory. 
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As shown in Fig. 7, the complete set of instructions4 with their safety checks can  
be simply put into a table. In this way it would be an easy task to verify the safety of 
the VEP. 

4.5   The VEP versus Other VMs 

There are many systems that execute untrusted codes in virtual machines to limit their 
access to system resources. Therefore, a question one could ask is “why not use  
another existing virtual machine instead of the VEP?” Here, we highlight the main 
reasons of choosing the VEP over two popular virtual machines, which are the Java 
virtual machine (JVM) [6] and the .NET platform (CLR) [7].  

Any virtual machine that we choose would be a part of the TCB in EPCC frame-
work. Knowing that any bug in the TCB can compromise the security of the whole 
system, we should choose a virtual machine which increases the size of the TCB the 
least. Using either JVM or .NET results in a large TCB (these large TCBs were the 
motivations for introducing the PCC approach in the first place). Appel et al. [1] 
measured the TCBs of various Java virtual machines at between 50,000 and 200,000 
lines of code. The TCB size in these VMs is even larger than the TCB size of  
the traditional PCC. Therefore, using these virtual machines to extend the PCC  
framework would result in an undesirably large TCB and hence an ineffective PCC 
framework. 

For EPCC, we need a virtual machine so simple that, it is feasible for a human to 
inspect and verify it. None of the mentioned virtual machines or any other ones that 
we are aware of has been developed with this goal in mind. JVM, .NET, and other 
well-known virtual machines focus essentially on performance, portability, etc. Simi-
lar to other components of the TCB in traditional PCC and OPCC, the VEP is imple-
mented in C language. However, unlike the OPCC that extends the TCB for about 
9000 lines of C code, the implementation of the VEP is less than 300 lines of code 
which makes it possible to be easily verifiable by humans and gives it the potential of 
being proven safe in the future. Therefore, we have shown that the VEP is orders of 
magnitude smaller and it is simpler than popular virtual machines.  

5   Application of EPCC 

The proofs in PCC are commonly represented in the Twelf format [26] (an implemen-
tation of the Edinburgh Logical Framework (LF) [36]). We applied our approach to 
six proofs (see Table 2) produced by a solver made available by Aaron Stump5. The 
solver accepts quantified Boolean formulas benchmarks in the standard QDIMACS 
format, and emits proof terms showing whether the formula evaluates to true or to 
false. These proofs are the same as the ones considered in Stump’s work [15], where 
easy benchmark formulas from [21] different domains (formal verification, planning, 
etc)6 were solved to generate the proof terms. All proofs use a form of implicit LF [9] 

                                                           
4 All 256 available opcodes are assigned to these 36 instructions; few instructions with imme-

diate argument cover more than one opcode as the argument is encoded in the opcode itself.  
5 http://www.cs.uiowa.edu/~astump/software.html 
6 Interested readers can see [30] for a complete description of the domains and families of the 

proved formulae. 
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and can be as large as 7.4 megabytes. Although these proofs were not specifically 
designed for PCC, we believe that they can be fair representatives of large proofs, and 
be used in the absence of large PCC proofs due to the complexity of building them.  

5.1   Building a Proof Generator 

We created a proof generator for each of Stump’s proofs. Our proof generator consists 
of a package that comprises a compressed version of the proof and a VEP machine 
executable decompressor. That is, we built a self-decompressing executable program 
which will generate the original proof as a result of being executed on the VEP. For 
this purpose, we reused an existing off the shelf compression tool, Gzip [22], which 
we modified to make it VEP-enabled. We could have also created our own program 
that generates the proof by looking at patterns in the proofs and creating programs 
that would explore these patterns forming a compact representation of a proof as a 
running program. We deliberately chose not to proceed this way to show that our 
framework can be equally used with existing programs, relieving the users of our 
framework from creating proof generators from scratch. However, we recognize that 
one of the main drawbacks of our approach lies in the need to adapt any program  
used to represent a proof to the VEP, a task that may turn to be difficult and time 
consuming. There is definitely a need to further investigate this issue as a key future 
direction. 

Fig. 8 shows the steps involved in EPCC. The first and second steps are similar to 
traditional FCC. Given a proof, in the 3rd step a component called “proof generator 
builder” indicated by as a box with upward diagonal pattern in is responsible for 
building a proof generator. As shown in Fig. 8, the proofs are compressed using Gzip. 
To decompress the proofs on the consumer’s side, we needed to send the decompres-
sion tool that can run on the VEP along the compressed proofs. For this purpose, we 
modified Gzip component that performs the decompression task (called gunzip). This 
involved using static allocation, removing all preprocessor commands and function 
prototypes, in-lining functions, etc. In order to in-line the functions without causing 
an increase in the code size, we used the computed goto construct [24], which is a 
goto statement for which the address of the target is computed by an expression of 
type void*.  

The modified decompressor fetches its input (compressed data) from a literal string 
(array of compressed data) and outputs the decompressed data on the standard output. 
For the decompressor to fetch its input from a literal string, and to print a character, 
respectively, readcmp and putchar were developed as two special functions. 

The modified gunzip C code (which now contains about 2000 LOC) is re-compiled 
to generate the assembly code of the gunzip (see Fig. 8). For this, we developed our 
own C compiler that supports a subset of C constructs that map to the VEP instruction 
set. The C compiler is based on the C89 open source complier [20]. Since the com-
puted goto is not supported by the ANSI C89 grammar, we added it to the C89 
grammar.  

The assembly code generated by the compiler is then given to the assembler as  
input which results in having the VEP-executable gunzip machine code as its output 
(see Fig. 8). Our assembler implemented in C, permits assembly-time arithmetic  
operations to take place in order to compute constants to include in the assembled 
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program. Thus, the expressions are evaluated during the assembly and the results 
become permanent parts of the code. 

Gunzip machine code and the compressed proof are packaged to form a proof gen-
erator sent to the consumer. This packaging is performed manually by allocating the 
compressed stream statically in the code space. This saves us a lot on stack space in 
comparison with the case we dynamically allocation the compressed data in a global 
variable. The compressed stream is then read by the decompressor using the auxiliary 
function readcmp. This is the only function that we add to the existing decompres-
sor code so that it can read the compressed data from within the decompression code. 

Before sending the proof generator, the producer needs to add the request in code 
size, heap size, stack size, and execution time to the proof generator program header. 
For this, he has the option of running the proof generator on a copy of the VEP in-
stalled on his side. The VEP contains a feature that can add automatically the actual 
amount of the consumed resources to the proof generator program header. 

 
Fig. 8. Detailed diagram of our sample implementation of EPCC 

5.2   Results of Applying the Approach  

Table 2 shows the results of applying our approach to the proofs selected for this 
study. For each proof, the original proof size (N) and the size of the proof generator 
(NPG) are represented.  

The size of the proof generator excluding a compressed proof is about 15KB 
(which is the size of gunzip machine code and is constant for all of our proof genera-
tors). The proof generators average 2.9% the original proofs which is about 34 times 
smaller than before, which constitutes a significant gain in size reduction. The proof 
generator reduction in size relative to the original size of the proof is represented as 
the percentage of space savings (SS): 
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Space Savings = 1 - (NPG / N) 
 
The space saving ratio of proof generators to the size of the original proofs ranges 
from 87.19% up to 96.77%. The table also shows the elapsed times of the execution 
of proof generators on the VEP. All times are reported in seconds on an Intel Core 
Duo CPU 2.00GHz, 2MB cache, 1GB main memory, running Windows XP. We can 
see that the VEP performed in less than a second for processing the proof generators.  

Table 2. The size effect of representing proofs as programs 

Experiment N NPG SS % Elapsed time Domain 
cnt01e 164 KB 21 KB 87.19 < 1s Formal verification 
tree-exa2-10 337 KB 25 KB 92.58 < 1s Pattern matching  
toilet 02 01.2 917 KB 45 KB 95.09 < 1s Planning  
1qbf-160cl.0 1407 KB 59 KB 95.80 < 1s Formal verification 
tree-exa2-15 3847 KB 115 KB 97.01 < 1s Pattern matching 
toilet 02 01.3 7377 KB 238 KB 96.77 < 1s Planning  

6   Conclusion and Future Work 

In this paper, we presented an extension to a traditional proof-carrying code frame-
work in which proofs tend to be considerably large to transmit. Our extended frame-
work is based on the idea of representing proofs and programs that are sent to the 
consumer. As such, the consumer runs the program and generates the original proof. 
The proof generator program should be the shortest possible to maximize the size 
reduction gain.  

We developed a virtual machine called the VEP that runs on the consumer’s side 
and which is responsible of running the proof generator program. The implementation 
of the VEP contains less than 300 lines of code which is a minor extension to the 
consumer’s TCB.  

The VEP enables the proposed extended PCC framework to make the PCC idea 
more scalable and practical by providing the code consumer with the possibility of 
using a safe environment in which a large class of proof generators can be executed in 
a secure manner, regardless of the original logic in which the proofs were represented.  

In the future, a first practical step will be to obtain a VEP that has been proven safe 
using the conventional PCC framework. In this way, the VEP would not increase the 
size of the TCB at all. Writing an oracle-based proof generator could be another pos-
sible direction to explore. This proof generator could be one which uses the proof 
witness in order to rebuild the original proof. Therefore, there would be no need to 
use any non-deterministic proof checker on the consumer side and the verification 
could be done with the original PCC proof checker. In this way, we would not force 
the consumer to change the PCC structure to gain the benefit of small proofs in OPCC 
and there will be no need for compromises in the size of the TCB. When both the 
proof generator and the proof checker can work incrementally, the whole proof need 
not be rebuilt at any one time on the consumer side. Instead, the output of the proof 
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generator can be piped into the input of the proof checker, which consumes (and veri-
fies) parts of the proof as soon as they are output.  

In addition, we intend to continue experimenting with the proposed approach using 
larger proofs. This can be hard to achieve due to the unavailability of proofs for large 
systems.  

Finally, we intend to compare the results of our approach with existing approaches 
such as the oracle PCC [11], although the size reduction gain should not be the only 
criterion that needs to be used in the comparison since, again, any approach that in-
creases considerably the TCB poses risks to security no matter the size compression 
ratio achieved.  

References 

1. Appel, W., Wang, D. C.: JVM TCB: Measurements of the trusted computing base of Java 
virtual machines, Tech. Rep. CS-TR-647-02, Princeton University (2002) 

2. Cheney, J. R.: First-order term compression: techniques and applications, Master’s thesis, 
Carnegie Mellon University (August 1998)  

3. Colby, C., Lee, P., Necula, G.C., Blau, F., Plesko, M., Cline, K.: A certifying compiler for 
Java. SIGPLAN Not. 35(5), 95–107 (2000) 

4. Davis, B., Beatty, A., Casey, K., Gregg, D., Waldron, J.: The case for virtual register ma-
chines. In: Proceedings of the 2003 Workshop on interpreters, Virtual Machines and Emu-
lators, IVME 2003. San Diego, California, June 12 - 12, pp. 41–49. ACM, New York 
(2003) 

5. League, C., Shao, Z., Trifonov, V.: Precision in practice: a type-preserving java compiler. 
In: Hedin, G. (ed.) Proceedings of the 12th International Conference on Compiler Con-
struction, Warsaw, Poland, April 07-11. Lecture Notes In Computer Science, pp. 106–120. 
Springer, Heidelberg (2003) 

6. Lindholm, T., Yellin, F.: Java Virtual Machine Specification, 2nd edn. Addison-Wesley 
Longman Publishing Co., Inc. (1999) 

7. Meijer, E., Gough, J.: Technical Overview of the Common Language Runtime (2000) 
8. Necula, G.C.: Proof-carrying code. In: Proceedings of the 24th ACM SIGPLAN-SIGACT 

Symposium on Principles of Programming Languages, POPL 1997. Paris, France, January 
15-17, pp. 106–119. ACM, New York (1997) 

9. Necula, G.C.: A Scalable Architecture for Proof-Carrying Code. In: Kuchen, H., Ueda, K. 
(eds.) FLOPS 2001. LNCS, vol. 2024, pp. 21–39. Springer, Heidelberg (2001) 

10. Necula, G.C., Lee, P.: Safe kernel extensions without run-time checking. SIGOPS Oper. 
Syst. Rev. 30, 229–243 (1996) 

11. Necula, G.C., Rahul, S.P.: Oracle-based checking of untrusted software. In: Proceedings of 
the 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 
POPL 2001. London, United Kingdom, pp. 142–154. ACM, New York (2001) 

12. Pirzadeh, H., Dubé, D.: VEP: a virtual machine for extended proof-carrying code. In: Pro-
ceedings of the 1st ACM Workshop on Virtual Machine Security, VMSec 2008. Alexan-
dria, Virginia, USA, October 27-27, pp. 9–18. ACM, New York (2008) 

13. Rahul, S.P., Necula, G.C.: Proof Optimization Using Lemma Extraction. Technical Report. 
UMI Order Number: CSD-01-1143., University of California at Berkeley (2001) 

14. Wu, D., Appel, A.W., Stump, A.: Foundational proof checkers with small witnesses. In: 
Proceedings of the 5th ACM SIGPLAN International Conference on Principles and  
Practice of Declaritive Programming, PPDP 2003. Uppsala, Sweden, August 27-29, pp. 
264–274. ACM, New York (2003) 



 An Extended Proof-Carrying Code Framework for Security Enforcement 269 

15. Stump, A.: Proof Checking Technology for Satisfiability Modulo Theories. Electron. 
Notes Theor. Comput. Sci. 228, 121–133 (2009) 

16. Li, M., Vitnyi, P.: An Introduction to Kolmogorov Complexity and its Applications, vol. 3. 
Springer Publishing Company, Heidelberg (2008) (incorporated) 

17. Pirzadeh, H., Dubé, D.: Encoding the Program Correctness Proofs as Programs in PCC 
Technology. In: Proceedings of the 2008 Sixth Annual Conference on Privacy, Security 
and Trust, October 01-03, pp. 121–132. PST. IEEE Computer Society, Washington (2008) 

18. Hennessy, J.L., Patterson, D.A.: Computer Architecture: a Quantitative Approach, vol. 3. 
Morgan Kaufmann Publishers Inc., San Francisco (2003) 

19. Jansen, W., Karygiannis, T.: NIST special publication 800-19 – mobile agent security. 
Technical report, National Institute of Standards and Technology, Computer Security Divi-
sion, Gaithersburg, MD 20899. U.S. (2000)  

20. American National Standards Institute, “Programming Language C,” Document ANSI 
X3.159-1989 

21. Giunchiglia, E., Narizzano, M., Tacchella, A.: Quantified boolean formulas satisfiability 
library (qbflib) (2001), http://www.qbflib.org  

22. Deutsch, P.: GZIP File Format Specification Version 4.3. RFC. RFC Editor (1996)  
23. Christopher, T.W.: Reference count garbage collection. Software – Practice and Experi-

ence 14(6), 503–507 (1984) 
24. Griffith, A.: GCC: the complete reference. McGraw-Hill/Osborne (2002) 
25. Ireland, A.: On the Scalability of Proof Carrying Code for Software Certification. In: Proc. 

Workshop on Software Certificate Management, November 8, pp. 31–34 (2005) 
26. Pfenning, F., Schürmann, C.: System Description: Twelf - A Meta-Logical Framework for 

Deductive Systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 
202–206. Springer, Heidelberg (1999) 

27. Appel, A.W.: Foundational proof-carrying code. In: 16th Annual IEEE Symposium on 
Logic in Computer Science (LICS 2001), pp. 247–258 (2001) 

28. Necula, G.C., Lee, P.: The design and implementation of a certifying compiler. SIGPLAN 
Not. 33(5), 333–344 (1998) 

29. Mobius, Public, Deliverable D4. 1: Scenarios for Proof-Carrying Code, FP6-015905, In-
formation Society Technologies (2006) 

30. Narizzano, M., Pulina, L., Tacchella, A.: Report of the third QBF solvers evaluation, Jour-
nal of Satisfiability. Boolean Modeling and Computation 2, 145–164 (2006) 

31. Barthe, G., Crégut, P., Grégoire, B., Jensen, T., Pichardie, D.: The MOBIUS Proof Carry-
ing Code Infrastructure. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. 
(eds.) FMCO 2007. LNCS, vol. 5382, pp. 1–24. Springer, Heidelberg (2008) 

32. Chlipala, A.J.: Implementing Certified Programming Language Tools in Dependent Type 
Theory. Doctoral Thesis. UMI Order Number: AAI3311660, University of California at 
Berkeley (2007) 


	An Extended Proof-Carrying Code Framework for Security Enforcement
	Introduction
	Background and Related Work
	The Extended Proof-Carrying Code Framework (EPCC)
	Overview

	Virtual Machine for Extended Proof-Carrying Code (The VEP)
	Requirements
	Machine Type
	Instruction Set Architecture
	Security Enforcement by the VEP
	The VEP versus Other VMs

	Application of EPCC
	Building a Proof Generator
	Results of Applying the Approach

	Conclusion and Future Work
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




