
Session T1A 

978-1-4244-1970-8/08/$25.00 ©2008 IEEE  October 22 – 25, 2008, Saratoga Springs, NY 

 38
th
 ASEE/IEEE Frontiers in Education Conference 

 T1A-1 

Learning Software Engineering Principles 

Using Open Source Software 
 

Jagadeesh Nandigam, Venkat N Gudivada, and Abdelwahab Hamou-Lhadj 
nandigaj@gvsu.edu, gudivada@marshall.edu, abdelw@ece.concordia.ca 

 
 

Abstract - Traditional lectures espousing software 

engineering principles hardly engage students' attention 

due to the fact that students often view software 

engineering principles as mere academic concepts 

without a clear understanding of how they can be used in 

practice. Some of the issues that contribute to this 

perception include lack of experience in writing and 

understanding large programs, and lack of opportunities 

for inspecting and maintaining code written by others. 

To address these issues, we have worked on a project 

whose overarching goal is to teach students a subset of 

basic software engineering principles using source code 

exploration as the primary mechanism. We attempted to 

espouse the following software engineering principles 

and concepts: role of coding conventions and coding 

style, programming by intention to develop readable and 

maintainable code, assessing code quality using software 

metrics, refactoring, and reverse engineering to recover 

design elements. Student teams have examined the 

following open source Java code bases: ImageJ, Apache 

Derby, Apache Lucene, Hibernate, and JUnit. We have 

used Eclipse IDE and relevant plug-ins in this project. 

 

Index Terms – Eclipse, Open source software, Source code 

exploration, Software engineering education. 

INTRODUCTION 

Teaching software engineering (SE) principles and concepts 

in a one-semester undergraduate software engineering 

course is a challenging task. Students often view software 

engineering principles as mere academic concepts with less 

practical value. We believe that this perception is a result of 

the various projects they were involved with in the previous 

computer science courses such as computer science I, 

computer science II, data structures and algorithm analysis, 

where the focus was on mere programming tasks rather than 

analysis, design, implementation, and maintenance of 

software systems. As a result, the largest programs that they 

have written did not exceed few hundred lines of Java code 

with at most eight to ten classes. Though, they have a 

conceptual understanding of how to structure a system into 

subsystems using constructs such as Java packages, they 

have not applied these concepts due to the trivial nature of 

the programming problems that they have worked on thus 

far. In addition, their exposure to Integrated Development 

Environments (IDE) is limited to the simpler ones such as 

DrJava and BlueJ, and in some cases it is just a simple editor 

such as TextPad. They also typically do not get opportunities 

to examine others’ code which prevents them from 

understanding the challenges of writing code that others can 

easily comprehend and maintain. Just as reading good 

writing is used as a basis to teach students to write well, we 

believe that examining the code written by software 

professionals entails several benefits for aspiring software 

engineers. 

Therefore, the overarching goal of this project is to 

teach students a subset of basic software engineering 

principles by focusing on the practical aspect of software 

engineering. For this purpose, we selected a subset of 

activities that we believe can enrich significantly the 

students experience when dealing with software. These tasks 

include browsing and exploring an open source code base, 

assessing the quality of the design based on computed 

software metrics, applying reverse engineering techniques to 

synthesize higher abstractions, and performing refactoring 

and assessing the impact of proposed changes to the code 

base.  

The software engineering course where this project is 

incorporated into the syllabus is offered as a junior/senior 

undergraduate level course. It should be noted that the intent 

of our approach is not to provide any quantitative metrics on 

the tasks that the students were engaged in, but rather to 

qualitatively assess the effect that the approach had on 

students’ understanding of basic software engineering 

concepts and principles at both conceptual and pragmatics 

levels. 

The remainder of the paper is organized as follows. In 

the next section, we describe the SE principles taught to our 

students. The open source software (OSS) and Eclipse plug-

ins that were used in our project are discussed next. 

Following this, the details of the procedure used in this 

project are provided. Related work in using open source 

software in software engineering and computer science 

education is described next. The last section concludes the 

paper. 

SOFTWARE ENGINEERING PRINCIPLES 

We used source code exploration of open source software 

applications as the primary means to expose students to 

various software engineering concepts. The SE concepts we 

focused on in this paper include:  

• Familiarizing students with the contents of an open 

source software applications at various levels of detail 

using Eclipse IDE perspectives and views. 



Session T1A 

978-1-4244-1970-8/08/$25.00 ©2008 IEEE  October 22 – 25, 2008, Saratoga Springs, NY 

 38
th
 ASEE/IEEE Frontiers in Education Conference 

 T1A-2 

• Assessing conformance with established coding 

conventions and style. 

• Programming by intention as a way to develop simple, 

clear, readable, and maintainable code. 

• Understanding and appreciating the role of software 

metrics in assessing code quality. 

• Reverse engineering parts of the code to recover various 

design elements in the form of UML diagrams. 

• Understanding what and how of refactoring and 

applying some basic refactoring techniques to the target 

source code. 
 

I. Source Code Browsing 

Eclipse IDE with JDT (Java Development Tools) [1] and 

related plug-ins are used for the source code exploration 

activities of the open source software applications studied. 

JDT offer four perspectives to understand various parts of a 

project: Java, Java Browsing, Java Type Hierarchy, and 

Debug. A perspective in Eclipse workbench is a collection 

of editors and views. An editor allows you to read and/or 

write a particular file type. A view is a metadata presentation 

of information on the workbench. Some commonly used 

views in JDT include Package Explorer, Outline, and 

Hierarchy. Using these perspectives and views, one can gain 

good understanding of the various components that make up 

the source code of a software package. For most of our 

students, this is the first time that they have been exposed to 

software systems that are comprised of various packages and 

significant number of classes within packages. 

II. Coding Conventions and Style 

Coding conventions and style contribute to readability and 

maintainability of an application. In this project, we used 

coding conventions for the Java language developed by Sun 

Microsystems. While browsing the source code, students 

were asked to qualitatively assess the extent to which their 

code adheres to the Sun coding conventions and consistency 

in style through manual inspection and/or using a relevant 

Eclipse plug-in. The goal here is to impress upon the 

students that coding conventions and style are essential to 

any real-world software system which is typically developed 

by scores of software engineers. 

III. Programming by Intention 

Code readability is enhanced by making your intention clear 

when you write code – programming by intention [2]. The 

main idea of programming by intention is to make code as 

understandable and intent-revealing as possible by 

appropriately choosing the names of the identifiers used in a 

program such as classes, variables, methods, etc. Students 

recognize that producing quality software is a highly 

intellectual activity, and never a mechanical task. 

IV. Software Metrics 

Software metrics measure various aspects of a piece of 

software [5, 6]. They help characterize features of interest in 

software quantitatively so to enable classification, 

comparison, and analysis tasks. In addition, metrics provide 

support for planning, monitoring, controlling and evaluating 

the software process and/or product. In this paper, we focus 

mainly on software product metrics such as size metrics, 

logic complexity metrics, cohesion, coupling, and certain 

OO metrics. These metrics can be automatically computed 

using Eclipse plug-ins. The goal of this activity is to drive 

home the point that there are quantitative aspects to the 

software engineering activities. 

V. Reverse Engineering 

Reverse engineering is the process of analyzing a software 

system to create representations of the system at higher 

levels of abstraction [7]. The primary goal of reverse 

engineering is to help software engineers understand a 

poorly documented software system when solving 

maintenance tasks. Reverse engineering has many key 

objectives, but the ones that are directly relevant to our 

project consist of generating alternate views and 

synthesizing higher abstractions from the source code. These 

views are represented using UML. For this purpose, Eclipse 

UML plug-ins were used.  A secondary goal of this activity 

is to emphasize the importance of producing and preserving 

analysis and design artifacts and their role in comprehending 

large software systems. 

VI. Refactoring 

The goal of refactoring is to improve the design or internal 

structure, make it easier to understand and cheaper to modify 

[2, 3]. Refactoring is an on-going activity during 

development and should be done when new functionality is 

added, defects are fixed, code is reviewed, and bad code 

smells are detected [3]. Major IDEs available in the market 

today provide some degree of support for performing 

refactoring activities on source code. Our project uses 

Eclipse IDE which provides good support for refactoring. 

Students recognize that just as any good piece of writing 

requires a few iterations and revisions, producing quality 

software requires continuous improvements throughout the 

development life cycle. 

OPEN SOURCE SOFTWARE USED 

We have used the following open source software packages 

in the source code exploration project: 

• ImageJ – an image processing and analysis system 

(http://rsb.info.nih.gov/ij/) from the National Institutes 

of Health (NIH). 

• Apache Derby – an open source relational database 

implemented entirely in Java 

(http://db.apache.org/derby/). This system has a small 

footprint that enables it to be embedded into real-time 

applications. 

• Hibernate – an easy to use framework for mapping an 

object-oriented domain model to a traditional relational 

database (http://www.hibernate.org/). 



Session T1A 

978-1-4244-1970-8/08/$25.00 ©2008 IEEE  October 22 – 25, 2008, Saratoga Springs, NY 

 38
th
 ASEE/IEEE Frontiers in Education Conference 

 T1A-3 

• Apache Lucene – is a high-performance, full-featured 

text search engine library written entirely in Java. It is 

suitable for nearly any application that requires full-text 

search (http://lucene.apache.org/java/docs/index.html). 

• JUnit – a unit testing framework for the Java 

programming language (http://www.junit.org/). 

 

The students were also required to download and install 

the following Eclipse IDE and related plug-ins. Eclipse 

Plugin Central (http://www.eclipseplugincentral.com) is a 

central resource that offers the Eclipse community a 

convenient portal to find useful open source and commercial 

plug-ins for the entire software development life cycle.  

 

• Eclipse IDE for Java Developers 

(http://www.eclipse.org/downloads/). This IDE is used 

for Java development and is crucial for exploring and 

browsing large source code bases. 

• Checkstyle plug-in for Eclipse (http://eclipse-

cs.sourceforge.net/). It is a configurable development 

tool that verifies whether certain Java code adheres to a 

coding standard. It comes with a default configuration 

file that supports Sun Java code conventions 

(http://java.sun.com/docs/codeconv/). Students can 

define their own coding standards by changing the 

configuration file. 

• Eclipse Metrics 3.3.1 plug-in (http://eclipse-

metrics.sourceforge.net/). This tool calculates various 

metrics such as lines of code, McCabe’s cyclomatic 

complexity, coupling, cohesion, and OO metrics. 

• Metrics 1.3.6 plug-in (http://metrics.sourceforge.net/). 

This tool also calculates various size and logic 

complexity metrics, cohesion and coupling OO metrics 

based on the metrics proposed in [8, 9]. 

• EclipseUML plug-in by Omondo 

(http://www.eclipseuml.com/), a powerful Java reverse 

engineering tool that allows visualization of design 

elements of Java source code. This plug-in is used for 

reverse engineering activities for the project. 

• Refactroing functionality supported within Eclipse IDE. 

PROJECT PROCEDURE 

The SE project that students worked on used the procedure 

described in this section. Students worked in teams. Each 

team is limited to two to three students. Each team is 

assigned an open source software package from the list – 

ImageJ, Apache Derby, Hibernate, Apache Lucene, and 

JUnit. Students were required to complete the following 

tasks: 

• Download and install the latest Java Development Kit 

(JDK) from Sun. 

• Download and install Eclipse IDE for Java Developers. 

• Download and install the plug-ins: Checkstyle, Eclipse 

Metrics 3.3.1 and/or Metrics 1.3.6, and EclipseUML. 

• Obtain the source code of the assigned open source 

software, create a project in Eclipse, and import the 

source code. 

• Each student team uses the IDE and the plug-ins to 

prepare responses to a generic questionnaire provided to 

them. Teams submit their project results in the form of a 

report. 

• Each student team is also required to present their 

project findings at the end of the semester. 
 

Student teams pursue the project with the intent to 

provide answers to six broad source code exploration 

activities specified earlier in the Section on Software 

Engineering Principles. The aim is to provide hands-on 

learning of basic software engineering concepts. Details of 

these six activities are briefly discussed in the rest of this 

section. 

I.  Source Code Browsing 

Teams use Eclipse IDE and its perspectives (Java, Java 

Browsing, and Java Type Hierarchy) and views (Package 

Explorer, Outline, and Hierarchy) to obtain answers to the 

following questions: 

• How many packages does your application contain? 

What are their names? 

• Browse the classes within a package using the Package 

Explorer. Based on the class names and the 

documentation in the source code, can you tell what the 

overall purpose of the package is? 

• Select any package and one of its classes. Using the 

Hierarchy View, list all the ancestral classes of the 

class. Likewise, list all classes that are derived from 

your chosen class. 

• In the Outline View, examine a non-trivial method of a 

class. Is the code self-describing? Can you explain the 

purpose of the method without too much difficulty? If 

not, what factors contributed to un-readability of the 

code? Are the provided comments useful and seem 

adequate? 

II. Coding Conventions and Style 

This activity focuses on coding conventions and coding 

style. For this purpose, coding conventions for the Java 

language developed by Sun Microsystems are used. Student 

teams skim through these coding conventions to answer the 

following questions: 

• Consider the coding conventions for line length in the 

Sun document. Browse your application source code 

and determine if this coding convention has been 

consistently followed. 

• Consider the coding conventions for line wrapping in 

the Sun document. Browse your application source code 

and determine if this coding convention has been 

consistently followed. 

• Consider the coding conventions for various types of 

comments – block, single line, trailing, end-of-line, and 

documentation – in the Sun document. Browse your 



Session T1A 

978-1-4244-1970-8/08/$25.00 ©2008 IEEE  October 22 – 25, 2008, Saratoga Springs, NY 

 38
th
 ASEE/IEEE Frontiers in Education Conference 

 T1A-4 

application source code and determine if this coding 

convention has been consistently followed. 

• Consider the coding conventions for declarations – 

number per line, placement, and initialization – in the 

Sun document. Browse your application source code 

and determine if this coding convention has been 

consistently followed. 

• Consider the coding conventions for statements – while, 

switch, and try-catch – in the Sun document. Browse 

your application source code and determine if this 

coding convention has been consistently followed. 

• After answering the above questions qualitatively, the 

project teams ran Checkstyle plug-in on their source 

code base. Next, they carefully interpreted the results 

produced by the plug-in with their qualitative 

assessment of the source code base by visual 

examination. 

III. Programming by Intention 

The goal of programming by intention is to develop 

programs that are clear and readable by choosing names 

(identifiers) that are semantically transparent. Suggested 

patterns by Astels [2] for choosing names are - using nouns 

or noun phrases for class names; using either adjectives or 

generic nouns and noun phrases for interfaces; using verbs 

and verb phrases for method names; using accepted 

conventions for accessors and mutators; and using nouns and 

noun phrases for variable names. Another suggested pattern 

by Fowler [3] is not to use comments as “deodorant” and use 

them for valid and necessary reasons. 

To complete this activity, student teams browse at least 

about 10% of the source code. They browse in a way to 

cover code across different packages and classes. Teams 

answer the following questions, and justify their answer by 

documenting the parts of code visited and the observations 

made. 

• Browse your application source code and determine if 

class names subscribe to programming by intention 

principles. 

• Browse your application source code and determine if 

interface names subscribe to programming by intention 

principles. 

• Browse your application source code and determine if 

method names subscribe to programming by intention 

principles. 

• Browse your application source code and determine if 

accessor and mutator names subscribe to programming 

by intention principles. 

• Browse your application source code and determine if 

variable names subscribe to programming by intention 

principles. 
 

IV. Software Metrics 

Using either the Eclipse Metrics 3.3.1 or Metrics 1.3.6 plug-

in, student teams compute a set of software metrics for the 

assigned open source software code base. They comment on 

the metric values obtained – is metric value within desired 

range or outside the desired range. If the metric is outside 

the desired range, suggest what actions (possible refactoring 

actions) need to be taken. A sample listing of metrics 

computed using the chosen metrics plug-in is shown below: 

• McCabe's Cyclomatic Complexity 

• Efferent Coupling 

• Afferent Coupling 

• Lack of Cohesion in Methods 

• Total Lines of Code 

• Number of Fields 

• Number of Levels 

• Number of Parameters 

• Number of Statements in Method 

• Weighted Methods per Class 

• Number of Methods 

• Number of Static Methods 

• Number of Classes 

• Number of Children 

• Number of Interfaces 

• Depth of Inheritance Tree 

• Number of Overridden Methods 

• Specialization Index 

• Instability 

• Abstractness 
 

V. Reverse Engineering 

Students conduct reverse engineering activities on the 

chosen code base using the EclipseUML plug-in. Students 

are advised to start with a small scope (e.g., a package) to 

understand how EclipseUML works and then increase the 

scope to multiple packages or even the entire application. 

The reverse engineering activities to generate higher 

abstractions (primarily in graphical representation) of the 

software system under exploration include: 

• Generate a package diagram 

• Generate class diagrams 

• Generate sequence or collaboration diagrams 
 

VI. Refactoring 

Fowler [3] recommends refactoring when bad smells are 

detected in code. Some example bad smells in code include 

– duplicated code, long method, large class, lazy class, long 

parameter list, data class, overuse of switch statements, 

inappropriate intimacy between classes, and unnecessary 

comments. Effective refactoring requires knowledge of the 

domain and application code. However, we selected a subset 

of refactoring techniques that can be performed without 

much domain knowledge since we do not expect students to 

be knowledgeable of the domain of the target system. 

Student teams are encouraged to perform at least the 

following refactorings without spending too much effort to 

understand the intimate details of the code base of the open 

source software package they are exploring.  



Session T1A 

978-1-4244-1970-8/08/$25.00 ©2008 IEEE  October 22 – 25, 2008, Saratoga Springs, NY 

 38
th
 ASEE/IEEE Frontiers in Education Conference 

 T1A-5 

• Rename Method – If the name of a method does not 

reveal its purpose, use this refactoring to change the 

name of the method. Similarly, one can rename classes 

and fields whose names are not semantically 

transparent. 

• Extract Method – Most of the problems come from 

methods that are too long. Short, well-named methods 

are preferred. Fine-grained methods increase likelihood 

of method reuse. It also allows the higher-level methods 

(that call the fine-grained methods) to read more like a 

series of comments. In long methods, there is the 

problem of semantic distance between the method name 

and the method body. 

• Introduce Explaining Variable – Expressions can 

become very complex and hard to understand. In such 

situations, temporary variables can be used to make 

break an expression into one ore more parts that more 

readable and manageable. 

• Remove Assignments to Parameters – In Java, 

parameters are passed by value. To avoid confusion and 

increase clarity, it is best not to assign to parameters. 

• Replace Magic Number with Symbolic Constant – using 

magic numbers (literals) are one of the poor practices in 

computing. Their usage creates code that is less 

readable and hard to maintain. Replace these magic 

numbers with symbolic constants. 
 

After these refactorings are performed, students are 

asked to analyze the impact of each change, and to verify 

that the change is propagated correctly (i.e., code compiles 

after each refactoring). Of course, this is only part of the 

verification process required in any refactoring – proper test 

cases have to be run before and after each refactoring to 

verify that observed behavior is still the same. 

RELATED WORK 

In recent years, there have been several attempts by 

educators in using open source software for software 

engineering and computer science education. Carrington and 

Kim [10] describe how open source software engineering 

tools are used in a software design course where student 

teams inspect, report and modify or extend OSS tools to 

perform reverse engineering, maintenance and refactoring 

activities. Raj and Kazemian [11] discuss the use of OSS in 

several advanced courses – database systems, programming 

language theory, and compilers. Student teams in these 

courses analyzed source code and made functional 

enhancements to OSS-based database engines, Scheme 

tools, and compilers. Pedroni et al. [12] describe how 

students in an advanced Java course were required to select 

an open source project, identify parts (bug fixes, extensions, 

and/or improvements) of the project to contribute code, 

make changes, and then report their experiences. Nelson and 

Ng [13] describe a computer networking course that made 

use of multiple open source packages. O’Hara and Kay [14] 

describe popular open source licenses and the use of OSS in 

computer science education and its potential to expose 

students to larger projects, group work, distributed teams, 

and peer-review practice. Finally, Jaccheri and Osterlie [15] 

describe how students can improve their programming and 

design skills by participating in open source projects. 

CONCLUSIONS 

Teaching software engineering principles and concepts in a 

one-semester undergraduate Software Engineering course is 

a challenging task. Students often view software engineering 

principles as mere academic concepts with no practical 

value. To address and overcome these perceptions and 

related issues, we used a project where we tried to expose 

students to some of the software engineering concepts in a 

hands-on manner using open source software in Java, 

Eclipse IDE and related plug-ins. Each student team is 

assigned an open source software package to investigate 

using source code exploration activities. 

Student teams pursued the assigned project with the 

intent to provide answers to six broad source code 

exploration activities – acquainting with an application, code 

conventions and style, programming by intention, software 

metrics, reverse engineering, and refactoring. The teams 

have documented their findings as responses to a generic 

questionnaire provided to them by the instructor. The teams 

have also presented their findings to the class.  

The project becomes a compelling exercise if we see its 

merit qualitatively rather than quantitatively. During the 

classroom presentations of the project, all student teams 

unequivocally asserted merit of the project as a means to 

quickly see the difference between writing a program and 

developing a software system. We suggest that this project 

be assigned during the first week of semester and be 

completed within three weeks. 

Overall, the teams have obtained an increased 

appreciation for software engineering principles and 

concepts in a very hands-on manner. More specifically, the 

project activities provided a solid backdrop for the SE 

course. Subsequent lecture and discussion on design metrics, 

code maintainability, documentation, keeping the design and 

code synchronized at all times became more meaningful to 

the students. For example, for the first time, students could 

articulate quite eloquently about depth of class hierarchies, 

and its practical ramifications. 

During the course of the project, students have also 

faced few frustrations that are common and expected when 

dealing with any real-world open source software. Importing 

a code base into Eclipse and compiling it was the first 

hurdle. It required students to discover code dependencies 

and download related software packages. Instructor’s active 

involvement in the form of scaffolding is quite essential for 

student success on this project. In summary, this project 

provided an effective backdrop and platform for students to 

learn and apply software engineering concepts and 

principles. 

REFERENCES 

[1] Valcarcel, C, Eclipse 3.0 Kick Start, Sams Publishing, 2005. 



Session T1A 

978-1-4244-1970-8/08/$25.00 ©2008 IEEE  October 22 – 25, 2008, Saratoga Springs, NY 

 38
th
 ASEE/IEEE Frontiers in Education Conference 

 T1A-6 

[2] Astels, D, Test-Driven Development – A Practical Guide, Prentice 

Hall, 2003. 

[3] Fowler, M, Refactoring – Improving The Design of Existing Code, 

Addison-Wesley, 2004. 

[4] Booch, G, Rumbaugh, J, and Jacobson, I, The Unified Modeling 
Language User Guide, Addison-Wesley, 1999. 

[5] Conte, S, D, Dunsmore, H, E, and Shen, V, Y, Software Engineering 

Metrics, Benjamin Cummings, 1986. 

[6] Fenton, N, E, Software Metrics: A Rigorous Approach, Chapman and 

Hall, 1991. 

[7] Chikofsky, E, J, and Cross, J, H, “Reverse Engineering and Design 
Recovery: A Taxonomy”, IEEE Software, January 1990, pp. 13-17. 

[8] Henderson-Sellers, B. Object-Oriented Metrics – Measures of 

Complexity”, Prentice Hall, 1996. 

[9] Martin, R, C, Agile Software Development – Principles, Patterns, and 

Practices, Prentice Hall, 2002. 

[10] Carrington, D, and Kim, Soon-Kyeong, “Teaching Software Design 
with Open Source Software,” 33rd ASEE/IEEE Frontiers in Education 

Conference, 2003. 

[11] Raj, R, K, and Kazemian, F, “Using Open Source Software in 
Computer Science Courses,” 36th ASEE/IEEE Frontiers in Education 

Conference, 2006. 

[12] Pedroni, M, Bay, T, Oriol, M, and Pedroni, A, “Open Source Projects 

in Programming Courses,” SIGCSE, March 2007. 

[13] Nelson, D, and Ng, Y, M, “Teaching Computer Networking using 

Open Source Software,” ITiCSE, 2000, pp. 13-16. 

[14] O’Hara, K, J, and Kay, J, S, “Open Source Software and Computer 
Science Education,” The Journal of Computing Sciences in Colleges, 

Vol. 18, No. 3, February 2003. 

[15] Jaccheri, L, and Osterlie, T, “Open Source Software: A Source of 
Possibilities for Software Engineering Education and Empirical 

Software Engineering,” First International Workshop on Emerging 

Trends in FLOSS Research and Development (FLOSS’07), 2007. 

AUTHOR INFORMATION 

Jagadeesh Nandigam, Associate Professor, Computing and 

Information Systems, Grand Valley State University, 

Allendale, MI 49401, nandigaj@gvsu.edu 

 

Venkat N Gudivada, Professor, Engineering and Computer 

Science, Marshall University, Huntington, WV 25755, 

gudivada@marshall.edu 

 

Abdelwahab Hamou-Lhadj, Assistant Professor, Electrical 

and Computer Engineering, Concordia University, Montreal, 

Quebec H3G1M8, Canada, abdelw@ece.concordia.ca 
 


