

T echniques for the Abstraction of System Call T races to Facilitate

the Understanding of the Behavioural Aspects of the L inux K ernel

Waseem Fadel

A Thesis

In

The Department

Of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science at

Concordia University

Montreal, Quebec, Canada

November 2010

© Waseem Fadel, 2010
!
!
!

C O N C O RDI A UNI V E RSI T Y

School of G raduate Studies
!

!
!
!
This is to certify that the thesis prepared

By: Waseem Fadel

Entitled: Techniques for the Abstraction of System Call Traces to Facilitate the
 Understanding of the Behavioural Aspects of the Linux Kernel

and submitted in partial fulfillment of the requirements for the degree of
!

Master of Applied Science (E lectrical Engineering and Computer
Science) at Concordia University

Complies with the regulations of the University and meets the accepted standards with
respect to originality and quality.
!
Signed by the final examining committee:

 Dr. Dongyu Qiu
___Chair

 Dr. Nawwaf Kharma
___Examiner

 Dr. Peter Grogono
___Examiner

 Dr. Abdelwahab Hamou-Lhadj
___Supervisor

Approved by:

__

 Chair of Department or Graduate Program
Director

______20__ __

 Dean of Faculty

iii

A BST R A C T

T echniques for the Abstraction of System Call T races to Facilitate the

Understanding of the Behavioural Aspects of the L inux K ernel

Waseem Fadel

!

Understanding the dynamic aspects of the Linux kernel can help in a number of

software engineering activities including maintenance and program comprehension,

performance analysis, and most recently security.

Dynamic analysis of the Linux kernel is accomplished by instrumenting the kernel

and studying the generated traces. However, the major concerns that developers face

when using dynamic analysis tools are the large size of the generated traces, and the

low-level nature of their events.

In this thesis, we apply pattern detection and utility removal techniques on low-level

system call traces generated from the Linux kernel. As a result, we obtain high-level

abstracted traces that are more compact and readable, while still preserving the system

main behaviour.

We apply our techniques to five different systems running on the Linux kernel and

assess the effectiveness of our approach in terms of quantity where we measure the

compression ratio and in terms of quality where we study how the high-level

abstractions can convey more meaningful information about the program being traced

than low-level system call traces.

iv

Acknowledgements

I would like to take the chance to thank my supervisor, Professor Abdelwahab

Hamou-Lhadj, not only for directing me through my work, but also for giving me his

precious advices which definitely helped me through my stay and study in Canada.

Special thanks to Mario Couture from DRDC (Defence R&D Canada), Dominique

Toupin from Ericsson Canada, and Dr. Michel Dagenais and his team (especially

Pierre-Marc Fournier and Mathieu Desnoyers) !"#$ &'École Polytechnique de

Montréal for their continuous support and feedback throughout this project.

I would also like to thank my friends at the lab with whom I had a lot of discussions

which broadened my mind and enriched my knowledge of the field of software

comprehension and maintenance.

Finally, I would like to thank my wife who without her I would not have been able to

go all the way through this, and my family in Syria who supported me in all the means

and encouraged me to do this important step of my life.

v

Table of Contents
!"#$ &' ()*+,# -- .""

!"#$ &' /"01r,# -- ."""

34)5$,r 6- 78$r&d1:$"&8 -- 6

6-6- ;r&*+,<)8d M&$".)$"&8# -- 6

6->- ?,#,)r:4 3&8$r"*1$"&8# --- >

6-@- (4,#"# A1$+"8, -- @

34)5$,r >- B):C0r&18d --- D

>-6- E,F1,8:, G,$,:$"&8 -- D

>->- (r):, E1<<)r"H)$"&8 (,:48"F1,# -- I

>-@- J"#1)+"H)$"&8 (,:48"F1,# --- 66

>-K- (r):, L8)+M#"# (&&+# -- 6>

>-K-6- !((80)8d !((J--- 6>

>-K->- 78$,+ J(18, --- 6@

>-K-@- EM#$,<()5 -- 6D

>-K-K- N"8d?".,r N&rC*,8:4 --- 6O

>-K-D- P,)+:&r, EM#$,< G,*100,r --- 6O

>-D- E1<<)rM --- 6Q

34)5$,r @- L*#$r):$"80 EM#$,< 3)++ (r):,# -- 6R

@-6- L55r&):4 --- 6R

@->- (4, !((80 78#$r1<,8$)$"&8 (&&+ -- >S

@-@- !"81T EM#$,< 3)++ M,:4)8"#< -- >@

@-K- ;)$$,r8 !"*r)rM '&r !"81T EM#$,< 3)++# --- >K

@-K-6- /"+, M)8)0,<,8$;)$$,r8# --- >D

@-K->- E&:C,$ M)8)0,<,8$;)$$,r8# -- @>

@-K-@- ;r&:,## M)8)0,<,8$;)$$,r8# --- @R

@-K-K- U&"#, ;)$$,r8# -- KI

@-D- (r):, L*#$r):$"&8 ;r&:,## --- KR

vi

@-O- E1<<)rM --- DK

34)5$,r K- L55+":)$"&8 --- DQ

K-6- EM#$,< 3)++ L*#$r):$"&8 (&&+ --- DQ

K->- ()r0,$ EM#$,<# -- OR

K-@- V,8,r)$"80 (r):,# --- QS

K-K- L55+M"80 EM#$,< 3)++ L*#$r):$"&8 (,:48"F1,# --- Q>

K-D- ?,#1+$# --- QK

K-D-6- W1)8$"$)$"., L8)+M#"# --- QK

K-D->- W1)+"$)$"., L8)+M#"# -- QD

34)5$,r D- 3&8:+1#"&8# --- QI

D-6- ?,#,)r:4 3&8$r"*1$"&8# --- QI

D->- /1$1r, G"r,:$"&8# --- QR

B"*+"&0r)54M --- I6

vii

L ist of Tables

()*+, 6- (r):, L*#$r):$"&8 (,:48"F1,# ... 66

()*+, >- (r):, L*#$r):$"&8 (&&+# ... 6I

()*+, @- !"#$ &' <&#$ "<5&r$)8$ #M#$,<# :)++# "8 &1r #$1dM .. DD

()*+, K- ;)$$,r8 ,+,<,8$)$$r"*1$,# .. OQ

()*+, D- X.,8$,+,<,8$)$$r"*1$,# ... OQ

Table '. Target systems’ main scenarios .. QS

()*+, Q- (r):,)*#$r):$"&8 r,#1+$# ... QD

viii

L ist of F igures

/"01r, 6- L #,F1,8:, r,5+):,d Y"$4) 8&d, :&8$)"8"80 $4, 81<*,r &' &::1rr,8:,# O
/"01r, >- G,$,:$"80 #"<5+,)8d 8&8Z&.,r+)55"80 3&8$"01&1# E,F1,8:,# .. O
/"01r, @- (4, $r):,)'$,r d,$,:$"80 8&8Z:&8$"01&1# #,F1,8:,# ... Q
/"01r, K- !((J M)"8 N"8d&Y .. 6@
/"01r, D- 78$,+ J(18, ;,r'&r<)8:, L8)+MH,r ['r&< \KO]^ ... 6K
/"01r, O- N"8d?".,r N&rC*,8:4 ['r&< \KS]^ .. 6O
/"01r, Q- P,):+&r, EM#$,< G,*100,r ['r&< \@D]^ .. 6Q
/"01r, I- L*#$r):$"80 #M#$,< :)++ $r):,# 1#"80 C8&Y+,d0,Z*)#,d)55r&):4 .. 6R
/"01r, R- !((80 3&8$r&+ N"8d&Y ... >S
/"01r, 6S- (4, !"81T EM#$,< ['r&< \KQ]^ ... >K
/"01r, 66- /"+, A5,8 5)$$,r8 .. >D
/"01r, 6>- /"+, ?,)d 5)$$,r8 .. >O
/"01r, 6@- /"+, Nr"$, 5)$$,r8 ... >O
/"01r, 6K- /"+, E,,C 5)$$,r8 ... >Q
/"01r, 6D- /"+, 3+&#, 5)$$,r8 .. >Q
/"01r, 6O- /"+, L::,## 5)$$,r8 .. >I
/"01r, 6Q- /"+, 3&8$r&+ 5)$$,r8 .. >I
/"01r, 6I- ?,)d !"8C 5)$$,r8 ... >R
/"01r, 6R- /"+, E$)$ 5)$$,r8 .. >R
/"01r, >S- /"+, G15+":)$, ;)$$,r8 ... @S
/"01r, >6- /"+, (r18:)$, ;)$$,r8 .. @S
/"01r, >>- /"+, 3&8$r&+ ;)$$,r8 .. @6
/"01r, >@- ;&++ ;)$$,r8 ... @6
/"01r, >K- /"+, M)8)0,<,8$)00r,0)$, 5)$$,r8 ... @>
/"01r, >D- E&:C,$ 3r,)$, 5)$$,r8 ... @@
/"01r, >O- E&:C,$ B"8d 5)$$,r8 .. @@
/"01r, >Q- E&:C,$ 3&88,:$ 5)$$,r8 .. @K
/"01r, >I- E&:C,$!"#$,8 5)$$,r8 .. @K
/"01r, >R- E&:C,$ L::,5$ 5)$$,r8 .. @D
/"01r, @S- E&:C,$ E,8d 5)$$,r8 ... @O
/"01r, @6- (3; E&:C,$# 5)$$,r8 .. @Q
/"01r, @>- _G; E&:C,$# 5)$$,r8 ... @I
/"01r, @@- ;r&:,## 3+&8, 5)$$,r8 ... KS
/"01r, @K- ;r&:,## XT,:1$, 5)$$,r8 ... KS
/"01r, @D- V,$?,#&1r:, !"<"$ 5)$$,r8 .. K6
/"01r, @O- V,$ ("<, &' G)M 5)$$,r8 ... K6
/"01r, @Q- ;r&:,## XT"$ 5)$$,r8 .. K>
/"01r, @I- V,$ _#,r 7G ;)$$,r8 .. K>
/"01r, @R- V,$ Vr&15 7G ;)$$,r8 .. K@
/"01r, KS- V,$;r&:,## 7G ;)$$,r8 .. K@
/"01r, K6- V,$;)r,8$;r&:,## 7G ;)$$,r8 .. KK
/"01r, K>- E,$ E:4,d1+"80 ;)r)<,$,r# ;)$$,r8 ... KK
/"01r, K@- V,$ E:4,d1+"80 ;)r)<,$,r# ;)$$,r8 ... KD
/"01r, KK- V,$ M)T"<1< E:4,d1+"80 L+0&r"$4< ;r"&r"$M ;)$$,r8 .. KD
/"01r, KD- V,$ M"8"<1< E:4,d1+"80 L+0&r"$4< ;r"&r"$M ;)$$,r8 ... KO
/"01r, KO- E,$ E:4,d1+"80 ;&+":M)8d ;)r)<,$,r# ;)$$,r8 .. KO
/"01r, KQ- _8+"8C ;)$$,r8 ... KQ
/"01r, KI- XT,:1$"&8 &') 5r&:,## Y"$4"8 $4, !"81T #4,++ .. KQ
/"01r, KR- M,<&rM M)8)0,<,8$ 5)$$,r8# ... KI
/"01r, DS- ;)0, /)1+$ 5)$$,r8 .. KR
/"01r, D6- `&r"H&8$)+ ;)r$"$"&8"80 ... DI
/"01r, D>- J,r$":)+ ;)r$"$"&8"80 .. OS

ix

/"01r, D@- 3+)## G")0r)< .. O6
/"01r, DK- (4, $&5 5)r$.. Q@
/"01r, DD- (4, <"dd+, 5)r$.. Q@
/"01r, DO- (4, *&$$&< 5)r$... QK
/"01r, DQ- L*#$r):$,d (r):, ... QO
/"01r, DI- 3&rr,#5&8d"80 3 L55+":)$"&8 .. QO

1

Chapter 1. Introduction

!"!" #r%&'e)*and*M%/01a/0%n2*

Dynamic analysis is widely used by software engineers and developers to study

system behaviour for many purposes like detecting bugs, understanding how a certain

feature is implemented, reasoning about performance, or monitoring the system

during its execution for detecting anomalies [1, 2, 3, 5, 6, 12, 16, 17, 18, 19, 33, 34].

Dynamic analysis is performed by executing a system and generating execution traces

for the system under study through a process called instrumentation [19].

Instrumentation can be applied to the system by using probes (e.g. print statements) or

through the control of a debugger. It may take place at different levels of abstraction:

the source code, the binary code, the virtual machine, or the operating system. It could

also be applied to generate information from the user space where routine calls are

traced, or from the kernel space where lower-level system calls are traced [19].

Kernel space is the memory area where the kernel code is loaded and executed, and it

is usually protected from any unauthorized access [7]. User space, on the other hand,

is the memory area where user processes are loaded and executed [7]. User processes

usually access kernel code by requesting services through calls to special functions

known as system calls which provide "interfaces between User Mode processes and

hardware devices" [8]. When tracing user space, we obtain the list of processes being

executed and their internal routine calls. However, it is important to know how these

processes interact with the operating system and what system calls they are

2

requesting. This can be accomplished by tracing the kernel space, where the resulting

traces take usually the form of system calls and other low-level events.

Analyzing execution traces, however, can be a tedious task due to the large amount of

data generated during run-time [1, 2, 3, 4, 5, 6, 16, 17, 18, 19]. The size problem

becomes worse in the case of kernel space tracing due to the low-level events that

appear in the trace such as memory management events, hardware interrupts, software

traps, page faults, etc.

The objective of this thesis is to facilitate the analysis of large kernel space traces by

developing techniques to reduce the size of traces. Our techniques are based on

extracting higher-level information from low-level system call events. For instance, a

sequential file reading operation may be the abstract representation of numerous,

possibly out of order, disk block reads. We present a new trace abstraction algorithm

based on pattern detection techniques. We also show the effectiveness of our

approach by applying to traces generated from different systems.

!"3" 4e2ear56*7%n/r0&8/0%n2*

The main contributions of this research are summarized in what follows:

! A pattern library for Linux kernel system calls which models the most

common operations of the Linux kernel. These operations include: File

Management (Open, Read, Write, Close. Access, Stat), Socket Management

for TCP and UDP (Create, Bind, Connect, Listen, Accept, Send, Receive,

Close), Process Management (Clone, Execute, Exit), Memory Management

and Page Faults.

3

! A trace abstraction algorithm that takes system-call traces as input and uses

the pattern library to detect different patterns in the trace and replace them

with higher level constructs that make the trace easier to understand.

! A utility pattern library that models noise in system-call traces such as

memory management operations and page faults events.

! An experimental study that shows the effectiveness of the abstraction

algorithm developed in this thesis.

! A tool that supports the abstraction process presented in this thesis.

!"9" T6e202*;8/'0ne*

The rest of this thesis is organized as follows:

! In Chapter 2, we present the background and related topics needed to

understand the concept presented in this thesis. We present the most common

abstraction techniques found in the literature to abstract and summarize

execution traces.

! In Chapter 3, we introduce our approach to abstract out system call traces.

First, we explain the system calls mechanism. Then, we present the patterns

library that we have developed to characterize the Linux kernel operations.

After that, the abstraction process is explained. Finally, we discuss the

applicability of our approach to different kinds of processes.

4

! In Chapter 4, we evaluate our approach by applying it to four target systems.

The results are discussed both from the quantitative and qualitative

perspectives.

! We conclude our work in Chapter 5, and provide a summary of the main

contributions and future directions.

5

Chapter 2. Background

There exist several studies that focus on reducing the size of large traces to facilitate

their analysis. These techniques, however, have long focused on user space traces

such as routine call traces [39]. These techniques vary in their design and can be

grouped into three main categories: Sequence detection, summarization, and

visualization. It should be mentioned that some techniques may belong to more than

one category. For example, some trace visualization tools implement a number of

sequence detection and summarization methods.

3"!" <e=8en5e*>e/e5/0%n*

The sequence detection techniques are used to reduce trace size without losing

information. This is possible due to the fact that many events are repeated in the trace

as recurrent patterns or as a result of executing a loop or a recursive function. The

techniques reviewed under this category follow similar strategies that focus on

detecting such sequences and patterns and referring to them only once, while

preserving the number of times and the order through which they appear in the trace.

Hamou-Lhadj and Lethbridge in [17] classified sequences with respect to their

complexity level into three types: simple sequences, non-overlapping contiguous

sequences, and overlapping non-contiguous sequences. Figure 1 shows how a

contiguous repetition of the node B is replaced with the node SEQ (4) showing that B

is repeated 4 times.

6

F igure 1. A sequence replaced with a node containing the number of occurrences

With simple sequences, events appear in the trace as repeated contiguous calls which

might result from the execution of a loop or a recursive routine. Hamou-Lhadj and

Lethbridge [17] proposed to remove repetitions due to loops and recursions in traces

of routine calls and replace them with simple nodes. Figure 2 shows how a large trace

can be turned into a more compact trace if this simple repetition removal technique is

used.

F igure 2. Detecting simple and non-overlapping Contiguous Sequences

7

In [17], the same authors propose a better trace reduction mechanism by detecting and

representing only once sequences of events that are repeated multiple times but in

different places. For example, we can see in Figure 2 that the sequence ()*+, -.

repeated multiple times in a non-contiguous manner. This sequence is detected using

the concept of the common subexpression problem [17, 21] which consists of

detecting similar subexpression in a tree structure. This is achieved by transforming a

tree into an ordered directed acyclic graph (DAG). For example, in Figure 2 the trace

is transformed into the graph of Figure 3. We can see that there is a gain in terms of

size obtained through this transformation.

F igure 3. The trace after detecting non-contiguous sequences

The transformation of a tree into a graph can only result in high compression if some

sort of matching criteria are used during the matching of the subtrees. For example

two sequences ABBBCD and ABCD should be considered similar if we ignore the

number of repetitions of B. This will further reduce the size of the resulting DAG.

Hamou-Lhadj [19] introduced some matching criteria to generalize the algorithm in

order to obtain better compression ratios.

8

3"3" Tra5e*<8))ar0?a/0%n*Te56n0=8e2*

Summarization techniques are used to extract high-level summaries from large traces.

This allows software engineers to understand the big picture first before they decide

to dive into the details. Many studies [1, 2, 18, 20, 23, 24] have been conducted to

develop such techniques, relying on the fact that not all the information included in

the trace are of the same importance to the developer, and that filtering the trace by

removing low-level details would help generalizing it, and hence making the analysis

process much easier.

Hamou-Lhadj and Lethbridge proposed an approach for extracting summaries from

large trace that rely on the removal of implementation details [18]. They define an

implementation detail as: (any element of a program whose presence could be

suppressed without reducing the overall comprehensibility of the design of a

particular feature, component or /&0#"-12$, [18]. Based on this definition, they

proposed that several routines such as constructors, setting and accessing methods,

private and protected methods and some user defined methods can be recognized as

implementation details that could be detected and removed. They have also developed

an approach for removing other utility components that cannot be grouped into these

categories by studying their behaviour in the program [18, 20]. For example, a method

with a high fan-in, i.e. being called in many different places in the program, is more

likely to be a utility method [18] than a method with a low fan-in but a high fan-out,

which must be doing something important since it generates several other calls. The

authors have developed a utilityhood metric to measure the extent to which a method

could be considered as a utility. Their summarization process uses this utilityhood

metric to rank routines invoked in a trace and only keep the ones that are deemed non-

9

utilities. Several thresholds have been used. The results of their experiments are very

promising.

Another interesting approach for trace summarization is the one proposed by Kuhn

and Greevy in [2]. The authors introduced a technique by making an analogy between

traces and signals. This analogy is 3/.45 #6 124 !/71 12/1 / 1"/74 (-. 7#$8#.45 #!

$#6#1#64 .93.4:94674. .48/"/145 3; 8#-61<-.4 5-.7#61-69-1-4., =>?@ A24"4!#"4B

starting from the first event, a group is built by adding events with the same or with

higher nesting level. However, when facing a decrease greater than a certain threshold

known as gap size, a new group is created [2]. As a result, they were able to obtain a

summarized trace which is only 10% of the size of the original trace.

Sampling [1] is another technique used to extract summaries from traces. It consists of

selecting a sampled set of events from the trace. According to Chan et al., these events

are selected in two ways: by considering each Nth event, or each Nth timestamp [1].

Depending on which variation to use, N could be defined as the set of the numbers of

events to be selected, and could be computed as the following: N=S/M, where S is the

total trace size and M is the maximum output size which is usually defined by the user

[22]. On the other hand, N could be defined as the moments in time in which the

events are selected [1].

Cornelissen et al. used a stack-based abstraction technique that summarizes the trace

by removing certain events from the routine call stack [23]. They defined two

variations of their approach. The first is the maximum stack depth, where events with

nesting levels higher than a defined threshold are omitted, causing the removal of

low-level detailed messages [23]. The second is the minimum stack depth, where

10

events with nesting levels lower than a defined threshold are omitted, removing high-

level control messages that start up a certain scenario [23].

Nevill-Mannin and Witten developed an algorithm that generates a context free

0"/$$/" !"#$ (/ .4:94674 #! 5-.7"414 .;$3#&. 3; "48&/7-60 "484/145 82"/.4. <ith a

0"/$$/1-7/& "9&4 12/1 0464"/14. 124 82"/.4B /65 7#61-69-60 12-. 8"#74.. "479".-C4&;,

[24]. They applied their algorithm to compress million-symbol sequences representing

biological objects, multi-megabyte DNA sequences, and identifying the structure of a

database and compressing it [24]. The algorithm works by first replacing a sequence

with a non terminal, and then it proceeds with reading the sequence to detect repeated

phrases. When this happens, it generates a new rule with the repeated phrase on the

right hand side and a new non-terminal on the left hand side, and then it replaces

every occurrence of that phrase with the new non-terminal.

Later on, Larus improved this algorithm to compress execution traces during his work

on defining and generating whole program paths that helps capturing program

dynamic control flow [4]. The compression ratio is defined by the fact that (Log N)

number of rules in the grammar can generate a number of N occurrences of a

subsequence [4]. Unfortunately, this technique has two main drawbacks. The first is

that it does not preserve the order of the events of a trace. The second drawback is that

it does not preserve the number of occurrences of each of these events. However, it is

useful in terms of extracting the hierarchical structure of the trace, and providing the

developer with a summary of that trace.

11

3"9" @028a'0?a/0%n*Te56n0=8e2*

Visualization techniques have been helpful in reducing the trace size by allowing

users to navigate through traces in an efficient manner. Through their work in [25],

Bennett et al. grouped the features implemented in several visualization tools into two

groups: Presentation features and interaction features. They defined the former as the

set of features affecting the layout of the diagram, such as showing multiple views,

hiding information and using animation.

Interaction features, on the other hand, are those implemented to enable users to

interact with the tool by navigating, querying, and manipulating [25]. Example of

such features include selecting trace content, providing the ability to navigate between

components and instances, providing techniques such as: collapsing, partitioning,

showing related messages to selected objects only, and single-step animation,

zooming and Scrolling, etc. The following table summarizes trace abstraction

techniques.

Table 1. T race Abstraction Techniques

Approach Techniques used

Sequence Detection ! Simple sequences

! Non-overlapping contiguous sequences

! Overlapping non-contiguous sequences

T race Summarization ! Removal of implementation details

! Grouping

! Sampling

! Stack depth limitation

! Context free grammar

Visualization ! Multiple linked views

! Hiding information

! Zooming

! Scrolling

! Filtering

! Single-step animation

! Selecting content

! Navigating

12

3"A" Tra5e*Bna'C202*T%%'2*

In this section, we survey existing trace analysis tools. These tools have been

developed to help analysts accomplish this process by providing a collection of trace

abstraction techniques in a graphical user interface mode and providing a set of

features that visualizes the traces and enables interactions with them.

3"A"!" DTTnE*and*DTT@*

Desnoyers and Dagenais introduced LTTng (Linux Trace Toolkit Next Generation) as

a tracer to extract information from the Linux kernel, user space libraries and from

programs by running a recompiled instrumented version of the kernel [10]. It is

possible to study the generated trace by using LTTV (Linux Trace Toolkit Viewer),

which visualizes the trace and provides a number of views that help developers

analyzing the trace [10].

LTTng along with LTTV can be used to reverse engineer programs, libraries, drivers,

and even the operating system. It is also useful when used to reason about multi-

threaded and multi-process systems running on single or multi-core processors [10].

Figure 4 shows the LTTV main window which is displayed when starting the

application [11]. Three main views appear in this window [11]: The Statistic View, to

the top, displays statistics about the trace (like the total number of events and overall

+DE 1-$4FB 124 4C461.' 1;84.B 124 8"#74..4.B /65 124 +DE G124 1#1/& 69$34" #! 4C461.

executed in each CPU, and the total amount of time consumed at each CPU). The

Control Flow View, in the middle, provides an overall view of the trace, which helps

developers to detect patterns that are recognized as lines with similar lengths and

colors. When detecting a pattern, the user can zoom in to dig deeper into the sequence

13

of events participating in this pattern. The Detailed Event List View, at the bottom,

which displays the list of events related to each process, like entry or exit events.

To deal with large execution traces, LTTV implements optimized algorithms that

enable random access to large traces [12]. It also provides a number of visualization

techniques like scrolling, zooming, and filtering using logical expressions.

F igure 4. L T T V M ain Window

3"A"3" Fn/e'*@T8ne*

Intel VTune Performance Analyzer is used to profile applications running on Intel-

based systems to help analyzing software performance bottlenecks within the Eclipse

framework1.

Using VTune, traces can be generated in two ways: Sampling and profiling¹.

Sampling is accomplished by interrupting the processor at regular intervals and

1 http://lttng.org/tracingwiki/index.php/Intel_VTune

http://lttng.org/tracingwiki/index.php/Intel_VTune

14

collecting samples of instruction addresses1. While profiling is accomplished by

instrumenting the binary code, and is used to show the program flow and the critical

path, which is the most time consuming call sequence¹. This is accomplished by using

the call graph to count the number of calls and the amount of time spent in each

function¹.

VTune provides a number of views like process view, thread view, and function

view¹. The process view provides the ability to select a process of the current

processes within the system2. The thread view shows the execution of the current

threads and what the threads are doing3. The Function View shows the call graph with

performance details related to each function².

F igure 5. Intel V Tune Performance Analyzer (from [46])

1 http://lttng.org/tracingwiki/index.php/Intel_VTune
2 http://software.intel.com/en-us/articles/optimizing-for-hyper-threading-technology-using-the-intel-
vtunet-performance-analyzer/
3 http://software.intel.com/en-us/intel-vtune/

http://lttng.org/tracingwiki/index.php/Intel_VTune
http://software.intel.com/en-us/articles/optimizing-for-hyper-threading-technology-using-the-intel-vtunet-performance-analyzer/
http://software.intel.com/en-us/articles/optimizing-for-hyper-threading-technology-using-the-intel-vtunet-performance-analyzer/
http://software.intel.com/en-us/intel-vtune/

15

To deal with size explosion problem, VTune implements both time-based sampling

and event-based sampling techniques (see Section 2.2.)1. It also provides a number of

visualization techniques like scrolling, zooming, highlighting, and user-guided

filtering by process id., CPU number, etc.

3"A"9" <C2/e)TaG*

SystemTap is a Linux debugger that provides a command line interface and a

scripting language to dynamically instrument the Linux kernel and user space

programs to analyze the resulting traces2.

Events are traced by writing a simple SystemTap script with some print statements

[32]. For example, the following script is used to trace the open system-call [32]:

cat strace-open.stp

probe syscall.open

{

 printf ("%s(%d) open (%s)\n", execname(), pid(), argstr)

}

A sample output line would be:

 vmware-guestd(2206) open ("/etc/redhat-release", O_RDO)

To deal with size explosion problem, SystemTap allows collected data to be filtered,

aggregated, transformed, and summarized [32]. This is accomplished through a set of

constructs such as if statements, while and for loops, Boolean and mathematical

operations, variables, arrays, and functions [32].

1 http://lttng.org/tracingwiki/index.php/Intel_VTune
2 http://sourceware.org/systemtap/

http://lttng.org/tracingwiki/index.php/Intel_VTune
http://sourceware.org/systemtap/

16

3"A"A" H0nd401er*H%rk&en56*

WindRiver Linux is a Linux kernel tracer that uses the LTTng framework as a data

provider [33]. It provides a set of tools and views for software development and

debugging [33] such as the system viewer (used to display the trace in different

ways), the event graph (used to display the thread events), the event table (used to

display events as rows of information ordered by their timestamps), and the memory

usage graph for displaying memory allocation and deallocation operations. In addition

to these views, the tool provides custom filtering, highlighting and selection, and

multiple linked views to deal with size explosion problem.

F igure 6. WindRiver Workbench (from [40])

3"A"J" Kea'5%re*<C2/e)*>e&8EEer*

Zealcore System Debugger is a debugging software tool used to visualize the logged

information through a number of browsers [34].

! The Timeline Browser: It is used to display time distance between events.

17

! The Gantt Chart: It is used to display the scheduling of threads.

! The Sequence Diagram: It shows processes or objects and messages passed

between them.

! The State Diagram: It shows for a given actor the model of its recorded

behaviour.

! The Plot View: It is used to draw results of searches as charts.

F igure 7. Zeaclore System Debugger (from [35])

To deal with size explosion problem, Zeaclore provides a number of techniques such

as searching and filtering, highlighting and selection, zooming and scrolling, and

multiple linked views [34].

3"J" <8))arC*

Within this chapter, we showed that many abstraction techniques have been

introduced to help developers analyze execution traces. This is because traces tend to

18

be difficult to work with due to their extraordinary size. This is even more

complicated in the case of system call trace due to the presence of sequences resulting

from the low-level nature of system calls and the large number of low-level events

such as memory management events and hardware/software interrupts.

Though the techniques presented in this chapter aim to reduce a trace size by

detecting repeated sequences, removing low-level implementation details, or

visualizing the trace, they either operate on routine call traces or depend greatly on

specific visualization schemes. None of them focuses on extracting high-level

representation from system call traces, which is the objective of this thesis.

Table 2 below summarizes trace abstraction tools and the techniques used by each of

them.

Table 2. T race Abstraction Tools

Abstraction Tool M ultiple L inked V iews Implemented Techniques

LTTng and LTTV YES Scrolling, zooming, and filtering

Intel VTune YES Scrolling, zooming, highlighting, and

filtering

SystemTap NO Filtering, aggregating, Transforming, and

summarizing

WindRiver Workbench YES Filtering, highlighting and selection

Zealcore System

Debugger

YES Searching and filtering, highlighting and

selection, zooming and scrolling

19

Chapter 3. Abstracting System Call Traces

9"!" BGGr%a56*

As shown in Figure 8, our approach takes a system call trace and applies to it the

abstraction process to generate an abstracted version. The abstraction process relies on

the Linux pattern library that we have developed to characterize the main operations

of the Linux kernel.

To build the pattern library, we have studied the Linux kernel and its system calls

mechanism. We also executed a number of applications with different operations and

examined the generated traces to understand how the kernel functions. The tracer used

in this thesis is LTTng (Linux Tracing Toolkit H new generation) [10]. In the

subsequent sections, we elaborate on each step of the abstraction process in more

detail.

F igure 8. Abstracting system call traces using knowledge-based approach

20

9"3" T6e*DTTnE*Fn2/r8)en/a/0%n*T%%'**

LTTng is a tracer developed to extract information from the Linux kernel, user space

libraries and from programs by running recompiled instrumented version of the kernel

[10].

In our research, we installed LTTng 2.6 on Ubuntu 10 operating system with the

kernel version being 2.6.34. It should be mentioned that traces can be generated by

directly running LTTng through command line, or by using LTTV through its GUI.

We used LTTV approach due to the simplicity offered by the GUI.

LTTV is started by executing 124 !#&&#<-60 7#$$/65 -6 124 .;.14$'. .24&&I

 ! sudo lttv*gui

When the command is executed, the LTTV window appears, from which we choose

the LTTng control option to get the following window:

F igure 9. L T Tng Control Window

21

The window provides a number of options that help controlling the tracer behaviour,

such as: starting or stopping the tracer, enabling or disabling the probes in the kernel,

setting the trace directory and name, and other helpful options.

Once everything is set properly, we can start the tracer, execute our systems, and stop

the tracer to get the traces, which are converted into text format through the following

command:

lttv *m text0ump *t pat3*to*tra5e*dire5tor6 *o

pat3*to*output*text*7ile

An LTTng trace contains information related to the process being executed such as

trace file, event name, time in seconds, time in nano seconds, trace file path, process

ID, process name, parent ID, process group ID, execution mode, and other parameters

related to the event being executed. However this information could vary depending

on the selected trace points, hence, they might differ from one version to another and

from one testing platform to another. In our research we generate traces with the

following format:

8ra5e9ile.;vent 8ime=s>.8ime=ns> =Pat3@8o@8ra5e@9ile>A

PB0A PCB0A Pro5essDameA PPB0A MF0; GPHIHMSK

An example of a trace using the above format would be:

Lernel.s6s5all@entr6: NNOPQO.NRSRNOTUT

=VtmpVtra5ePUVLernel@P>A OONRWA OONRWA .V9ilesA A

OQPWNA UxUA SXSYHZZ G ip [Ux\]7a5NRUA s6s5all@id [S

^s6s@open_UxUVUxNU` K

22

7s.open: NNOPQO.NRSRNWOQQ =VtmpVtra5ePUV7s@P>A OONRWA

OONRWA .V9ilesA A OQPWNA UxUA SXSYHZZ G 7d [RA

7ilename ["output.txt" K

Lernel.s6s5all@exit: NNOPQO.NRSRNWNU]

=VtmpVtra5ePUVLernel@P>A OONRWA OONRWA .V9ilesA A

OQPWNA UxUA bS;I@MF0; G ret [R K

Lernel.s6s5all@entr6: NNOPQO.NRSRSUQWS

=VtmpVtra5ePUVLernel@P>A OONRWA OONRWA .V9ilesA A

OQPWNA UxUA SXSYHZZ G ip [Ux\]7a5NRUA s6s5all@id [N

^s6s@crite_UxUVUx5U` K

7s.crite: NNOPQO.NRSRSPRU] =VtmpVtra5ePUV7s@P>A OONRWA

OONRWA .V9ilesA A OQPWNA UxUA SXSYHZZ G 5ount []OA 7d

[R K

Lernel.s6s5all@exit: NNOPQO.NRSRSPNPS

=VtmpVtra5ePUVLernel@P>A OONRWA OONRWA .V9ilesA A

OQPWNA UxUA bS;I@MF0; G ret []O K

Lernel.s6s5all@entr6: NNOPQO.NRSRSPSOO

=VtmpVtra5ePUVLernel@P>A OONRWA OONRWA .V9ilesA A

OQPWNA UxUA SXSYHZZ G ip [Ux\]7a5NRUA s6s5all@id [T

^s6s@5lose_UxUVUxPUU` K

7s.5lose: NNOPQO.NRSRSPTOQ =VtmpVtra5ePUV7s@P>A OONRWA

OONRWA .V9ilesA A OQPWNA UxUA SXSYHZZ G 7d [R K

Lernel.s6s5all@exit: NNOPQO.NRSRSPWNN

=VtmpVtra5ePUVLernel@P>A OONRWA OONRWA .V9ilesA A

OQPWNA UxUA bS;I@MF0; G ret [U K

23

This trace represents the system calls executed when a file is opened, data written to

it, and then the file is closed.

It is important to note that the number attached to the trace file indicates the CPU that

executes the process, which is CPU 1 in this example, and this is especially useful in

the case of multi-core systems, since we want to be able to identify which core

executes a particular statement.

9"9" D0n8L*<C2/e)*7a''*Me56an02)*

The Linux Kernel acts as an intermediary layer that stands between the software

system and the hardware, and it controls the interaction between them [47]. It is

designed as a monolithic kernel where all of its functionality, including file

management, memory management, device drivers, etc., is implemented in the kernel

space [47]. The monolithic design is followed due to the huge gain in performance,

<246 7#$8/"45 1# #124" J4"64&'. /"72-147tures such as the microkernel design.

Having the kernel standing as an intermediary layer between the software system and

the hardware has the advantage of making it easier for developers to write codes that

are free from complicated low-level hardware interaction events which also increase

software portability [8]. In addition to that, it makes the system more secure as

requests can be checked by the kernel before really executing them [8].

Since a process interacts with the hardware only through the kernel, there had to be

some technique that allows such an interaction, and this is where the system call

mechanism becomes handy. The mechanism refers to the set of functions that is

provided by the kernel through which a process can send a request to the hardware by

invoking the appropriate system call as any normal function [47].

24

As a result, the Linux system can be seen as system divided into a number of layers

that are separated by well defined interfaces as shown in Figure 10.

F igure 10. The L inux System (from [47])

9"A" #a//ern*D0&rarC*M%r*D0n8L*<C2/e)*7a''2*

Our main contribution in this thesis is centered around detecting and categorizing

patterns of events into a library that can be used to abstract the kernel-space traces and

turn them into a more compacted and readable form while preserving their main

information.

In Linux, (everything is a file" [27], and this is where we started our work: Detecting

patterns for file management operations. Also, as Linux is widely used in networking,

we studied socket management patterns. However, files and sockets are both managed

through processes, and this is why we also focused on process management patterns.

In order to remove noise, we had to work on some memory management, page-faults,

and other noise patterns.

In our work, patterns are described as state machines [13, 41] composed of lists of

events (transitions) and system modes (states). Events conform to the system calls and

25

other events that appear in the trace, while states conform to the modes of execution

in the trace (USER_MODE_X, SYSCALL_X, etc. where X corresponds to a certain

event).

9"A"!"*N0'e*ManaEe)en/*#a//ern2*

In our research, we focused on the most recurrent file management operations

including: Open, Read, Write, Seek, Close, Access, File Control, Read Link, Stat, File

Duplicate, File Truncate, Device Control, and Poll. Each of these operations and the

corresponding state machine that we have developed to characterize how this

operation is executed by the Linux kernel is described in what follows:

F ile Open: It is the action of opening a file from the file system [9], and it is

accomplished by entering the sys_open system call, executing the open function in the

file system with the appropriate parameters to open the file, and finally exiting the

sys_open system call. Figure 11 shows the state machine that models the File Open

pattern.

F igure 11. F ile Open pattern

26

F ile Read: It is the action of reading a number of bytes from an opened file [9], and it

is accomplished by entering the sys_read system call, executing the read function with

the appropriate parameters to read data from the opened file, and finally exiting the

sys_read system call. Figure 12 models the File Read pattern.

F igure 12. F ile Read pattern

F ile W rite: It is the action of writing data to an opened file [9], and it is accomplished

by entering the sys_write system call, executing the write function with the

appropriate parameters to write data to the opened file, and finally exiting the

sys_write system call. Figure 13 summarizes the File Write pattern.

F igure 13. F ile W rite pattern

27

F ile Seek : It is the action of changing the position of the file pointer of an opened file

[9], and it is accomplished by entering the sys_lseek or sys_llseek system call,

executing the lseek or llseek function with the appropriate parameters to change the

position of the pointer within the opened file, and finally exiting the system call.

Figure 14 summarizes the File Seek pattern.

F igure 14. F ile Seek pattern

F ile C lose: It is the action of closing an opened file [9], and it is accomplished by

entering the sys_close system call, executing the close function with the appropriate

parameters to close the file, and finally exiting the sys_close system call. Figure 15

summarizes the File Close pattern.

F igure 15. F ile C lose pattern

28

F ile Access: It is the action of checking access permissions of a file [9], and it is

accomplished by entering the sys_access system call, and exiting the sys_access

system call. Figure 16 summarizes the File Access pattern.

F igure 16. F ile Access pattern

F ile Control: It is the action of controlling an opened file descriptor by performing

one of the following operations [8]: duplicating file descriptor, handling record locks,

notification change for file and directory [26], and many others. It is accomplished by

entering the sys_fcntl or sys_fcntl64 system call, and exiting the system call. Figure

17 summarizes the File Control pattern.

F igure 17. F ile Control pattern

29

Read L ink : It is the action of reading the contents of a symbolic link [9], and it is

accomplished by entering the sys_readlink system call, and exiting the system call.

Figure 18 summarizes the Read Link pattern.

F igure 18. Read L ink pattern

F ile Stat: It is the action of requiring information of a file such as user ID, group ID,

total size, etc [9], and it is accomplished by entering any of the stat system calls

family like sys_fstat64, sys_fstat, sys_lstat, and sys_stat, and exiting the entered

system call. Figure 19 summarizes the File Stat pattern.

F igure 19. F ile Stat pattern

30

F ile Duplicate: It is the action of duplicating a file descriptor [9], and it is

accomplished by entering any of the dup system calls family like sys_dup and

sys_dup2, and exiting the entered system call. Figure 20 summarizes the File

Duplicate pattern.

F igure 20. F ile Duplicate Pattern

F ile T runcate: It is the action of setting the file size to a specific size [9], and it is

accomplished by entering sys_ftruncate system call and exiting it. Figure 21

summarizes the File Truncate pattern.

F igure 21. F ile T runcate Pattern

Device Control: It is the action of controlling devices [9], and it is accomplished by

entering sys_ioctl system call, executing ioctl and exiting the entered system call.

Figure 22 summarizes the File Control pattern.

31

F igure 22. F ile Control Pattern

Poll: It is the action of waiting on a file descriptor to perform some I/O operation [9],

and it is accomplished by entering sys_poll system call, executing pollfd and exiting

the entered system call. Figure 23 summarizes the Poll pattern.

F igure 23. Poll Pattern

We can put the operations that operate on an opened file descriptor into a higher level

of abstraction by saying that a file management process is basically a collection of

these patterns starting from the File Open pattern, performing any number of readings,

writings, etc. Figure 24 summarizes File Management aggregate pattern.

32

F igure 24. F ile Management aggregate pattern

9"A"3" <%5ke/*ManaEe)en/*#a//ern2*

Networking in Linux is accomplished through the concept of a socket [15], which has

the following operations: Create, Bind, Connect, Listen, Accept, Send, Receive, and

Close.

It is important to note that there are many types of sockets, but we only cover two of

them in our work, TCP and UDP sockets [15]. However, the basic operations are the

same for both types, except that when using an UDP connection, sockets do not need

to connect, listen, or accept connections.

The operations Socket Create, Socket Bind, Socket Connect, Socket Listen, and

Socket Accept have similar patterns where each of them is accomplished by entering

the sys_socketcall system call [9], executing socket_call with the call type set to 1, 2,

3, 4, or 5, then executing socket_x (where x could be create [8], bind [8], connect [8],

33

listen [8], and accept [8]) with the appropriate parameters, and finally exiting the

sys_socketcall system call. These patterns are shown in Figures 25 through 29.

F igure 25. Socket C reate pattern

F igure 26. Socket Bind pattern

34

F igure 27. Socket Connect pattern

F igure 28. Socket L isten pattern

35

F igure 29. Socket Accept pattern

Socket Send and Socket Receive have similar patterns that present the action of

sending or receiving data through opened sockets. This is accomplished by entering

the sys_socketcall system call [8], executing socket_call with the call type set to 9

(send [8]), 11 (send to [8], which is used in UDP sockets), 10 (receive [8]), or 12

(receive from [8], which is used in UDP sockets), then executing a number of low-

level operations, before finally exiting the sys_socketcall system call. Figure 30

summarizes the Socket Send pattern.

Socket Close pattern is identical to the File Close pattern.

36

F igure 30. Socket Send pattern

Using these patterns we were able to detect higher-level abstractions that correspond

to Linux networking using TCP or UDP sockets. Networking with TCP sockets [15],

for example, involves two different processes: The server process and the client

process. The server process requires creating a socket, binding it to some port,

listening to that port, accepting a connection from a client socket, sending and

receiving data, and finally closing the socket [15], while client process requires

creating a socket, connecting to a server socket, sending and receiving data, and

closing the socket [15]. Figure 31 summarizes the TCP Sockets pattern.

37

F igure 31. T CP Sockets pattern

With UDP, the server process is run by creating a socket, binding it to a certain

address and port, sending and receiving data, and closing the socket [15]. While a

client process is similar to the server except that it is not necessary to bind the client

process [15]. Figure 32 summarizes UDP Sockets pattern.

38

F igure 32. UDP Sockets pattern

39

9"A"9" #r%5e22*ManaEe)en/*#a//ern2*

In Linux, 124 (init, process is the parent of all other processes, and it is responsible

for managing these processes [8, 14]. This leads to the fact that any operation is

executed within a process. As a result, the patterns described in the previous sections

appear during process execution, hence it is important to study process management

and extract different patterns of process execution. Among many process management

patterns, the following patterns are perhaps of most important: Clone, Execute, Get

Resource Limit, Get Time of Day, Exit, Get User ID, Get Group ID, Get Process ID,

Get Parent Process ID, Set Scheduling Parameters, Get Scheduling Parameters, Get

Maximum Scheduling Algorithm Priority, Get Minimum Scheduling Algorithm

Priority, Set Scheduling Policy and Parameters, and Unlink.

Process C lone: It is the action of creating a child process with the ability of sharing

parts of the execution context with the parent process [9], and it is accomplished by

entering the ptregs_clone system call, executing sched_migrate_task, then

process_fork, followed by sched_wakeup_new_task, and exiting the entered system

call. It is important to note that the clone process is followed by a schedule process in

the resulting child process. Figure 33 summarizes the Process Clone pattern.

Process Execute: It is the action of executing a program [9], and is accomplished by

entering the ptregs_execve system call, executing sched_try_wakeup, followed by

sched_schedule, and finally exiting the entered system call. Figure 34 summarizes the

Process Execute pattern.

40

F igure 33. Process C lone pattern

F igure 34. Process Execute pattern

41

Get Resource L imit: It is the action of getting the soft and hard limit of a resource [9,

26], and is accomplished by entering the sys_getrlimit system call, then exiting that

system call. Figure 35 summarizes Get Resources Limit pattern.

F igure 35. Get Resource L imit pattern

Get T ime of Day: It is the action of retrieving the time [9], and is accomplished by

entering the sys_gettimeofday system call, then exiting that system call. Figure 36

summarizes Get Time of Day pattern.

F igure 36. Get T ime of Day pattern

42

Process Exit: It is the action of exiting a process [9] and is accomplished by entering

the sys_exit_group system call, executing process_exit, followed by send_signal, and

finally sched_try_wakeup. Figure 37 summarizes the Process Exit pattern.

F igure 37. Process Exit pattern

Get User ID: It is the action of getting the user ID of a process [9] and is

accomplished by entering the sys_getuid system call, and exiting it. Figure 38

summarizes the Get User ID pattern.

F igure 38. Get User ID Pattern

43

Get G roup ID: It is the action of getting the group ID of a process [9] and is

accomplished by entering the sys_getgid system call, and exiting it. Figure 39

summarizes the Get Group ID pattern.

F igure 39. Get G roup ID Pattern

Get Process ID: It is the action of getting the process ID [9] and is accomplished by

entering the sys_getpid system call, and exiting it. Figure 40 summarizes the Get

Process ID pattern.

F igure 40. Get Process ID Pattern

Get Parent Process ID : It is the action of getting the parent process ID [9] and is

accomplished by entering the sys_getppid system call, and exiting it. Figure 41

summarizes the Get Parent Process ID pattern.

44

F igure 41. Get Parent Process ID Pattern

Set Scheduling Parameters: It is the action of setting the scheduling parameters for a

process [8] and is accomplished by entering the sys_sched_setparam system call, and

exiting it. Figure 42 summarizes the Set Scheduling Parameters pattern.

F igure 42. Set Scheduling Parameters Pattern

Get Scheduling Parameters: It is the action of getting the scheduling parameters for

a process [8] and is accomplished by entering the sys_sched_getparam system call,

and exiting it. Figure 43 summarizes the Get Scheduling Parameters pattern.

45

F igure 43. Get Scheduling Parameters Pattern

Get Maximum Scheduling A lgorithm Priority: It is the action of getting the

maximum scheduling algorithm priority for a process [8] and is accomplished by

entering the sys_sched_get_priority_max system call, and exiting it. Figure 44

summarizes the Get Maximum Scheduling Algorithm Priority pattern.

F igure 44. Get M aximum Scheduling A lgorithm Priority Pattern

Get Minimum Scheduling A lgorithm Priority: It is the action of getting the

minimum scheduling algorithm priority for a process [8] and is accomplished by

entering the sys_sched_get_priority_min system call, and exiting it. Figure 45

summarizes the Get Minimum Scheduling Algorithm Priority pattern.

46

F igure 45. Get M inimum Scheduling A lgorithm Priority Pattern

Set Scheduling Policy and Parameters: It is the action of setting the scheduling

policy and parameters for a process [8] and is accomplished by entering the

sys_sched_setshceduler system call, and exiting it. Figure 46 summarizes the Set

Scheduling Policy and Parameters pattern.

F igure 46. Set Scheduling Policy and Parameters Pattern

Unlink : It is the action of deleting a name from the file system, and the file that is

referred by this link if it was the last link [9, 26] and is accomplished by entering the

sys_unlink system call, and exiting it. Figure 47 summarizes the Unlink pattern.

47

F igure 47. Unlink Pattern

When a process is started within a Linux shell, the following operations are executed

in the parent process (which is the shell process itself): Clone and Wait, to create a

child process. Then, the Execute operation is executed in the resulting child process.

After that, other operations could be executed in the child process depending on the

corresponding program, such as: Sockets, Files, Memory Management and Exit.

When the parent process is scheduled again, it will be able to execute other

operations. Figure 48 summarizes a sample execution of a process within the Linux

shell.

F igure 48. Execution of a process within the L inux shell

48

9"A"A" *O%02e*#a//ern2*

It is important to note that the aforementioned patterns are usually polluted with what

we consider noise patterns, such as memory management patterns, page faults

patterns, hardware interrupts patterns, etc. These patterns can appear anywhere in the

trace in a non-predictable way, and they do not add valuable information to the

system behaviour.

We cover four Memory Management patterns in this thesis, resulting from entering

one of the following four system calls: sys_mprotect [9], sys_mmap2 [9], sys_brk [9],

sys_set_thread_area [42], and sys_munmap [9] (which happens after sys_mmap2),

followed by a number of calls to classic_call_rcu [43] or page_free [44], and finally

existing the entered system call. Figure 49 summarizes Memory Management

patterns.

F igure 49. M emory Management patterns

Page Fault [8]: It is detected when executing a page_fault_entry, followed by 0 or

more page_alloc [44], and finally executing a page_fault_exit. Figure 50 summarizes

Page Fault pattern.

49

F igure 50. Page Fault pattern

9"J" Tra5e*B&2/ra5/0%n*#r%5e22*

Our trace abstraction algorithm is based on pattern detection and noise removal. The

algorithm takes an LTTng trace as an input, and returns an abstracted trace as an

output. It starts by parsing the trace from the first line, comparing each event with the

events patterns exist in our pattern library until a match is found. Once this happens,

the pattern containing the event is shifted from its old state to a newer state waiting

for the next event to be read. After that, a new line is read by the algorithm, and the

events are compared. When an event causes a pattern to be shifted to a final state, a

new high-level construct representing that pattern is created and pushed into a stack of

high-level constructs.

When the algorithm has finished processing the entire trace, the patterns of events will

be replaced with higher-level constructs ordered in a stack that reflects the system

behaviour in a more compact and readable format. Some high-level constructs are

marked as noise events. These constructs can be hidden when needed. Also, the

resulting constructs could be further abstracted to get a higher-level view of the

system. For example, File Open, File Read, File Close constructs could be replaced

with File Management construct.

50

The algorithm is summarized by the following pseudo code:

8oLenide t3e tra5e

9FI ever6 toLen cit3in t3e tra5e 0F

 9FI ever6 pattern in t3e li\rar6 0F

 B9 pattern 5an interpret toLen 8e;D

 SeB98 5urrent pattern state

 B9 tra5e is in 7inal state 8e;D

 Cenerate eBCe Z;f;Z YFDS8IbY8

 ;D0 B9

 \reaLg

 ;D0 B9

 ;D0 9FI

 B9 toLen not interpreted 8e;D

 generate bDhDFiD ;f;D8

 ;D0 B9

;D0 9FI

As an example, consider the following trace which consists of 10 events:

Lernel.s6s5all@entr6: NNOPQO.NRSRNOTUT =VtmpVtra5ePUVLernel@P>A OONRWA OONRWA

.V9ilesA A OQPWNA UxUA SXSYHZZ G ip [Ux\]7a5NRUA s6s5all@id [S

^s6s@open_UxUVUxNU` K

7s.open: NNOPQO.NRSRNWOQQ =VtmpVtra5ePUV7s@P>A OONRWA OONRWA .V9ilesA A OQPWNA

UxUA SXSYHZZ G 7d [RA 7ilename ["output.txt" K

Lernel.s6s5all@exit: NNOPQO.NRSRNWNU] =VtmpVtra5ePUVLernel@P>A OONRWA OONRWA

.V9ilesA A OQPWNA UxUA bS;I@MF0; G ret [R K

Lernel.s6s5all@entr6: NNOPQO.NRSRSUQWS =VtmpVtra5ePUVLernel@P>A OONRWA OONRWA

.V9ilesA A OQPWNA UxUA SXSYHZZ G ip [Ux\]7a5NRUA s6s5all@id [N

^s6s@crite_UxUVUx5U` K

51

mm.page@allo5: NNOPQO.NRSRSPUQO =VtmpVtra5ePUVmm@P>A OONRWA OONRWA .V9ilesA A

OQPWNA UxUA SXSYHZZ G p7n []QQSRA order [U K

7s.crite: NNOPQO.NRSRSPRU] =VtmpVtra5ePUV7s@P>A OONRWA OONRWA .V9ilesA A OQPWNA

UxUA SXSYHZZ G 5ount []OA 7d [R K

Lernel.s6s5all@exit: NNOPQO.NRSRSPNPS =VtmpVtra5ePUVLernel@P>A OONRWA OONRWA

.V9ilesA A OQPWNA UxUA bS;I@MF0; G ret []O K

Lernel.s6s5all@entr6: NNOPQO.NRSRSPSOO =VtmpVtra5ePUVLernel@P>A OONRWA OONRWA

.V9ilesA A OQPWNA UxUA SXSYHZZ G ip [Ux\]7a5NRUA s6s5all@id [T

^s6s@5lose_UxUVUxPUU` K

7s.5lose: NNOPQO.NRSRSPTOQ =VtmpVtra5ePUV7s@P>A OONRWA OONRWA .V9ilesA A OQPWNA

UxUA SXSYHZZ G 7d [R K

Lernel.s6s5all@exit: NNOPQO.NRSRSPWNN =VtmpVtra5ePUVLernel@P>A OONRWA OONRWA

.V9ilesA A OQPWNA UxUA bS;I@MF0; G ret [U K

The first step would be to tokenize the trace, and as a result we get the following sets

of tokens (some tokens have been omitted for the purpose of simplicity):

^s6s5all@entr6A VtmpVtra5ePUVLernel@PA .V9ilesA SXSYHZZA s6s@open_UxUVUxNU`

^openA VtmpVtra5ePUV7s@PA .V9ilesA SXSYHZZA 7d [RA 7ilename ["output.txt" `

^s6s5all@exitA VtmpVtra5ePUVLernel@PA .V9ilesA bS;IMF0;A ret[R`

^s6s5all@entr6A VtmpVtra5ePUVLernel@PA .V9ilesA SXSYHZZA s6s@crite_UxUVUx5U`

^page@allo5A VtmpVtra5ePUVmm@PA .V9ilesA SXSYHZZ`

^criteA VtmpVtra5ePUV7s@PA .V9ilesA SXSYHZZA 5ount []OA 7d [R`

^s6s5all@exitA VtmpVtra5ePUVLernel@PA .V9ilesA bS;I@MF0;A ret []O`

^s6s5all@entr6A NNOPQOVtmpVtra5ePUVLernel@PA .V9ilesA SXSYHZZA s6s@5lose_UxUVUxPUU`

^5loseA VtmpVtra5ePUV7s@PA SXSYHZZA 7d [R`

^s6s5all@exitA VtmpVtra5ePUVLernel@PA bS;I@MF0;`

52

In the second step, the first token is compared to every pattern in the library until

there is a match between the [event name, syscall name] of the token with the [event

name, syscall name] of the pattern which is in this case [syscall_entry, sys_open].

When a match happens, i.e. when the current pattern is File Open, the trace state is

shifted into SYSCALL_OPEN.

Next, the second set of tokens is read and compared to every pattern in the library,

until the algorithm hits a pattern with the current state SYSCALL_OPEN and the next

expected event being [open].

When that happens, the current pattern's state is shifted into

SYSCALL_FILE_OPENED.

Then, the third set of tokens is read and compared to every pattern in the library, until

the algorithm hits a pattern with the current state SYSCALL_FILE_OPENED and the

next expected event being [syscall_exit]. When this happens, a high level construct is

generated with the following information:

9ile Fpen: NNOPQO.NRSRNWOQQ =VtmpVtra5ePUV7s@P>A OONRWA OONRWA .V9ilesA A OQPWNA UxUA

SXSYHZZ G 7d [RA 7ilename ["output.txt" K

After that, the fourth set of tokens is read and compared to every pattern in the library,

until the algorithm finds a pattern with the expected event being [syscall_entry,

syscall_write]. When that happens, 124 79""461 8/114"6'. .1/14 -. .2-!145 1#

SYSCALL_WRITE.

Then, the fifth set of tokens is read and compared to every pattern in the library, until

the algorithm hits a pattern with the expected event being [page_alloc].

53

A Page Alloc event is generated and marked as a noise event that would not be

displayed in the output.

After that, the sixth set of tokens is read and compared to every pattern in the library,

until the algorithm hits a pattern with the current state SYSCALL_WRITE and the

next expected event being [write]. T24 79""461 8/114"6'. .1/14 -. .2-!145 1#

SYSCALL_DATA_WRITTEN.

Next, the seventh set of tokens is read and compared to every pattern in the library,

until the algorithm hits a pattern with the current state SYSCALL_DATA_WRITTEN

and the next expected event being [syscall_exit]. A high level construct is generated

with the following information:

9ile irite: 7d [R

After that, the eighth set of tokens is read and compared to every pattern in the library,

until the algorithm hits a pattern with the expected event being [syscall_entry,

syscall_close]. T24 79""461 8/114"6'. .1/14 -. .2-!145 1# KLK+)MMN+MOKP.

Then, the ninth set of tokens is read and compared to every pattern in the library, until

the algorithm hits a pattern with the current state SYSCALL_CLOSE and the next

expected event being [close]. T24 79""461 8/114"6'. .1/14 -. .2-!145 1# KLK+)MMN

CLOSED.

Finally, the tenth set of tokens is read and compared to every pattern in the library,

until the algorithm hits a pattern with the current state SYSCALL_CLOSED and the

next expected event being [syscall_exit]. A high level construct is generated with the

following information:

54

9ile or So5Let Ylose: NNOPQO.NRSRSPTOQ =VtmpVtra5ePUV7s@P>A OONRWA OONRWA .V9ilesA A

OQPWNA UxUA SXSYHZZ G 7d [R K

As a result the initial ten-event trace is replaced with the following three-event high

level trace.

9ile Fpen: NNOPQO.NRSRNWOQQ =VtmpVtra5ePUV7s@P>A OONRWA OONRWA .V9ilesA A OQPWNA UxUA

SXSYHZZ G 7d [RA 7ilename ["output.txt" K

9ile irite: G 7d [R K

9ile or So5Let Ylose: NNOPQO.NRSRSPTOQ =VtmpVtra5ePUV7s@P>A OONRWA OONRWA .V9ilesA A

OQPWNA UxUA SXSYHZZ G 7d [R K

9"P" <8))arC*

In this chapter, we introduced our approach to abstract system call traces generated

from the Linux kernel, which is a pattern-based approach where a pattern library for

the Linux system calls has been developed and used to abstract traces generated from

the kernel. This library includes patterns of the most recurrent operations within the

Linux system such as: File Management (Open, Read, Write, Seek, Access, Stat,

Control, Read Link, Close), Socket Management (Create, Bind, Connect, Listen,

Accept, Send, receive, Close), and Process Management (Execute, Clone, Get

Resource Limit, Get Time of Day, Exit), in addition to Noise patterns that can simply

be hidden. Finally, we designed an algorithm that abstracts a trace by comparing the

events to the patterns defined within the library, and making a decision about

replacing a number of events with a higher-level construct and hiding that construct if

it corresponds to a utility (noise) construct.

Table 3 shows a list of the system calls that have been studied and their descriptions.

55

Table 3. L ist of most important systems calls in our study

Category System Call Descr iption

File Management

sys_open Opening a file from the file system

sys_read Reading a number of bytes from an opened file

sys_write Writing data to an opened file

sys_lseek, sys_llseek Changing the position of the file pointer of an

opened file

sys_close Closing an opened file

sys_access Checking access permissions of a file

sys_fcntl, sys_fcnyl64 Controlling an opened file descriptor

sys_readlink Reading the contents of a symbolic link

sys_fstat64, sys_fstat, sys_lstat, sys_stat Requiring information of a file

sys_dup, sys_dup2 Duplicating a file descriptor

sys_ftruncate Setting the file size to a specific size

sys_ioctl Controlling devices

sys_poll Waiting on a file descriptor to perform some I/O

operation

Socket Management sys_socketcall This system call is entered when executing one of

the following operations on sockets: create, bind,

connect, listen, accept, send and receive

Process Management

ptregs_clone Creating a child process

ptregs_execve Executing a program

sys_getrlimit Getting the soft and hard limit of a resource

sys_gettimeofday Retrieving the time

56

sys_exit_group Exiting a process

sys_getuid Getting the user ID of a process

sys_getgid Getting the group ID of a process

sys_getpid Getting the process ID

sys_getppid Getting the parent process ID

sys_sched_setparam Setting the scheduling parameters for a process

sys_sched_getparam Getting the scheduling parameters for a process

sys_sched_get_priority_max Getting the maximum scheduling algorithm

priority for a process

sys_sched_get_priority_min Getting the minimum scheduling algorithm

priority for a process

sys_sched_setshceduler Setting the scheduling policy and parameters for a

process

sys_unlink Deleting a name from the file system, and the file

that is referred by this link if it was the last link

57

Chapter 4. Application

In this chapter we evaluate our approach by applying it to traces generated from five

different systems that were run on the Linux kernel, instrumented with LTTng.

The rest of this chapter is organized as follows: In Section 4.1, we introduce the

System Call Abstraction Tool that we have developed to implement our techniques. In

Section 4.2, we introduce the target systems and discuss their main attributes. In

Section 4.3, we describe the process of the generating traces from the target systems.

In Section 4.4, we describe the application of our abstraction techniques on the

generated traces. Quantitative and qualitative analysis for the results are presented in

Section 4.5.

A"!" <C2/e)*7a''*B&2/ra5/0%n*T%%'*

To test our approach, we had to design and implement a tool that takes as an input a

trace generated from LTTng tracer, then applies our algorithm on that trace, and

finally outputs the trace in its abstracted form.

The tool was designed following a number of software engineering design principles

and patterns. Its architecture was partitioned both horizontally and vertically. As a

result, we were able to design a tool that is easy to extend (to add new system calls

patterns or even patterns for different calls) and maintain (to modify existing patterns

or the design itself).

58

Horizontal Partitioning:

Horizontal partitioning is performed by defining the main domains of the system, and

as a result dividing it into a number of packages, as shown in Figure 51.

F igure 51. Horizontal Partitioning

As we can see from Figure 51, the system is divided into two main packages:

interpreters and constructs. The interpreters package provides interfaces and abstract

classes required to add new interpreters that correspond to new patterns. Inside this

package, we have the lttng package which is a sample implementation package that

provides concrete interpreters like FileInterpreter, SocketInterpreter, etc. Therefore, it

is possible to add patterns that are generated from other tools and correspond to

different types of calls by simply adding a new package with concrete classes that

implement the interfaces provided by the interpreters package. The noise package is a

sample implementation package that provides concrete noise interpreters.

The constructs package provides interfaces and abstract classes required to add new

high-level constructs that replace the patterns in the abstracted trace. Inside this

package the lttng package which is a sample implementation package that provides

concrete constructs like HighLevelNoiseConstruct,

HighLevelUnknownEventConstruct, etc. Inner packages such as files, networking,

59

and processes packages are sample implementation packages that provide concrete

constructs for file, socket, and process management respectively.

Vertical Partitioning:

Vertical partitioning is applied to divide the system into different layers and define the

interfaces between these layers, in such a way that makes it easier to design,

implement and maintain each layer independently from the others. Figure 52 shows

the vertical partitioning.

! The presentation layer holds the graphical user interface packages.

! The application layer holds the facades and factories required to create

appropriate interpreters and communicate with them.

! The business logic layer holds the system packages required to extract high-

level constructs using the predefined patterns library.

! The data storage layer is used to store trace files and is controlled by the

business logic layer.

The advantage gained from dividing the system into layers can be summarized as the

following:

! The dependency flow goes from higher layers to lower layers.

! Layers communicate through interfaces.

! Presentation layer can be developed without affecting any lower layer

(multiple GUIs can be provided for the same data).

! Lower layers can provide different implementations without affecting the

presentation layer.

Components from different layers can be designed, implemented and maintained

independently.

60

F igure 52. Vertical Partitioning

The UML class diagram [41] of our data model was designed following a number of

design patterns [48] such as: Composite pattern [45, 48], Strategy pattern [45, 48],

Factory Method Pattern [45, 48] and Façade pattern [45, 48], as shown in Figure 53.

61

F igure 53. C lass Diagram

To explain the class diagram we will focus on the key classes and the application of

the design patterns in this diagram. The interpreter design pattern is applied to

decouple the construction of the interpreters tree from the client objects. Main

components are:

! InterpreterIF: An interface that defines the required functionality for the

implementing classes such as: addInterpreter (add a child interpreter to the

62

tree), removeInterpreter (remove a child interpreter from the tree) and interpret

(interpret current token). This interface is equivalent to the ComponentIF in

the composite pattern.

! AbstractInterpreter: An abstract class that defines common behaviour and data

member for the implementing classes.

! SyntaxInterpreter: This is the composite class that is configured with other

interpreters and encapsulates the interpretation logic by insuring that the

current trace token (event) is properly interpreted by one of the interpreters.

! UserDefinedInterpreter: A leaf class that defines the required logic to interpret

tokens by using XML patterns.

! FileInterpreter, SocketInterpreter, ProcessInterpreter, etc.: Leaf classes that

provide the required logic to interpret the corresponding types of tokens

(events).

The strategy pattern is applied in two places to provide common interface for both the

high-level constructs that appear in the abstracted trace, and the filters that are used to

extract events from the original trace.

Main components for the high-level constructs:

! HighLevelConstructIF: An interface that defines the required functionality for

implementing classes such as: hide (hide the high-level construct) and show

(show the high-level construct). This interface is equivalent to the StrategyIF

in the strategy pattern.

! AbstractConstruct: An abstract class that defines common behaviour and data

members for the implementing classes.

63

! HighLevelCreate, HighLevelOpen, HighLevelClose, etc.: Concrete strategy

classes that provide the required logic to get the high-level construct

information.

Main components for the filters:

! ProcessFilterIF: An interface that defines the required functionality for the

implementing classes such as: extractProcess (extract the events for a given

process from the original trace) and extracLexicon (tokenize the trace). This

interface is equivalent to the StrategyIF in the strategy pattern.

! AbstractProcessFilter: An abstract class that defines common behaviour and

data members for the implementing classes.

! LTTngProcessFilter, DtraceProcessFilter, etc.: Concrete strategy classes that

provide the required logic to filter the original trace according to its given

type.

Factory method pattern is used to decouple the creation of process filter classes from

the requesting classes, and it is represented by the class ProcessFilterFactory. The

Façade pattern is applied to simplify access to the subsystems through the GUI

objects by hiding the communications between those subsystems, and it is presented

by the class TracerFacade.

This design leads to a number of advantages that could be summarized in what

follows:

! Adding patterns for traces generated from new tools can easily be done by

defining appropriate XML files and sub-classing AbstractProcessFilter class.

! Adding new patterns can be easily done by sub-classing AbstractInterpreter

class.

64

! Adding new constructs can easily be done by sub-classing

AbstractHighLevelConstruct class.

! Multiple implementations representing different trace formats can be applied

using the same interfaces.

! Noise interpreters are marked with the NoiseIF interface which makes it easy

to control the noise patterns.

! High-level constructs can be further abstracted (e.g. many open and read file

operations can be represented at a high-level as file operations).

! High-level constructs can be hidden or shown by marking/unmarking them for

hide.

It should also be mentioned that the tool was designed to accept patterns defined as

external XML files [49], which makes it even easier to add new patterns by just

defining them in a specific format that corresponds to a predefined XML pattern

template file. Also, the XML pattern library provides a total separation between the

patterns and the programming language used to abstract the trace, which makes it easy

to adopt those patterns to new technologies, frameworks, or languages. However,

using XML files affects the performance of the algorithm due to the increase in the

number of accesses to the hard disk. This drawback was handled by proposing an

optimized algorithm for accessing the files.

The following pseudo code summarizes the optimized algorithm:

 C;8 next event 7rom t3e toLens

 9FI ever6 pattern in sta5L 0F

 B9 pattern 5an interpret toLen 8e;D

 B9 pattern is in 7inal state 8e;D

 Cenerate eBCe Z;f;Z YFDS8IbY8

65

 PbZZ pattern 7rom sta5L

 ;D0 B9

 \reaLg

 ;D0 B9

 ;D0 9FI

 B9 toLen not interpreted 8e;D

 9FI ever6 pattern in t3e jMZ li\rar6 0F

 PHIS; pattern

 B9 pattern 5an interpret toLen 8e;D

 PbSe pattern 7ile into sta5L

 B9 pattern is in 7inal state 8e;D

 Cenerate eBCe Z;f;Z YFDS8IbY8

 PbZZ pattern 7ile 7rom sta5L

 ;D0 B9

 \reaLg

 ;D0 B9

 ;D0 9FI

;D0 B9

We explain the algorithm by giving the following example, while omitting the XML

format for simplicity:

Suppose that the pattern library consists of five patterns LIB={p1, p2, ..., p5}, where

each of these patterns consists of two events, as follows:

p1 = [p1_entry, p1_exit], p2 = [p2_entry, p2_exit], ..., p5 = [p5_entry, p5_exit].

Let T be a trace which has the following events:

T = [p2_entry, p2_exit, p4_entry, p4_exit]

66

Starting from the first event p2_entry, the stack is empty; the algorithm will search the

patterns by opening their files, reading the content and matching it to the current

event.

When there is a match, that is, the algorithm has reached the pattern p2, the matching

pattern is pushed into the stack (S = {p2})

After that, the second event (p2_exit) is read, the stack is not empty; so, instead of

reading the patterns from the files, the algorithm would search the stack for a pattern

with the expected event matching the current event. If this is the case then the

algorithm has reached the pattern p2, that pattern is pulled out of the stack, because

p2_exit is the last event, and a high level event is generated. Then, the third event

(p4_entry) is read, the stack is empty; the algorithm will search the patterns by

opening their files, reading the content and matching it to the current event. When

there is a match, that is, the algorithm has reached the pattern p4, the matching pattern

is pushed into the stack (S = {p4}). Finally, the fourth event (p4_exit) is read, the

stack is not empty; so, instead of reading the patterns from the files, the algorithm

would search the stack for a pattern with the expected event matching the current

event. The algorithm has reached the pattern p4, the pattern is pulled out of the stack,

because p4_exit is the last event, and a high level event is generated.

So, the basic idea is that when we have a trace event that matches a pattern event, it is

better we keep the pattern in memory, as the next trace event has the chance to match

the next pattern event. This would reduce the access to the hard disk and improve the

performance of the algorithm.

The XML pattern file has the following format, which is subject to further

modifications and improvements.

67

klxml version["P.U" en5oding["BSF*WWSQ*P"l!

kpattern name["Sample Pattern" t6pe["eig3ZevelSampleYonstr5ut" noise["7alse"!

 kevent name["s6s5all@entr6" s6s5all@name["s6s@samplegs6s@sampleP" order["P"
prev@state["BCDFI;" 5urrent@state["SXSYHZZ@SHMPZ;"!

 kVevent!

 kevent name["sample" order["O" prev@state["SXSYHZZ@SHMPZ;"
5urrent@state["SXSYHZZ@SHMPZ;0"!

 kVevent!

 kevent name["s6s5all@exit" order["ZHS8" prev@state["SXSYHZZ@SHMPZ;0"
5urrent@state["bS;I@MF0;@SHMPZ;0"!

 kVevent!

kVpattern!

The following tables explain each tag and its attributes.

Table 4. Pattern element attr ibutes

Element Type Descr iption Mandatory

pattern Tag element XML root element that surrounds all other elements YES

name Attribute The name that will appear in the high level construct YES

type Attribute The corresponding high level object NO

noise Attribute Indicates whether to display this construct in the output or not YES

Table 5. Event element attr ibutes

Element Type Descr iption Mandatory

event Tag element XML element that defines an event that corresponds to a
trace event

YES

name Attribute The name of the trace event YES

order Attribute The order of the event in its context. When set to LAST it
means that it is the last event in this pattern

YES

prev_state Attribute The state of the pattern before hitting this event YES

current_state Attribute The new state of the pattern after hitting this event YES

syscall_name Attribute The name of the system call. It is only provided when the
current event is a system call

NO

Using the flexible XML files, we were able to add a number of patterns, for test

purposes, by creating new XML files while the application was running, and then

68

executing the abstraction process to get abstracted traces that included the newly

added patterns.

The following example shows how to define the pattern Duplicate File Descriptor

which corresponds to the execution of sys_dup system call using the XML pattern

template that we have developed.

klxml version["P.U" en5oding["b89*W"l!

kpattern name["0upli5ate 9ile 0es5riptor" t6pe["eig3Zevel0upYonstr5ut" noise["7alse"!

 kevent name["s6s5all@entr6" s6s5all@name["s6s@dup" order["P" prev@state["BCDFI;"

5urrent@state["SXSYHZZ@0bP"!

 kVevent!

 kevent name["s6s5all@exit" order["ZHS8" prev@state["SXSYHZZ@0bP"

5urrent@state["bS;I@MF0;@0bP"!

 kVevent!

kVpattern!

From the example we can see that the pattern name is set to Duplicate File Descriptor,

and this is the name that will appear in the resulting high level construct, while this

pattern is not indicated as a noise pattern and will be displayed in the output.

Also, we can see that the first expected event (order is set to 1) in this pattern is a

syscall_entry event, with the system call name being sys_dup, and the current state

SYSCALL_DUP. The last event (order is set to LAST) in this pattern is syscall_exit,

where the current state is set to USER_MODE_DUP. In summary, it is possible to

say that we have a pattern that consists of two events that appear in a predefined

order, and that whenever this pattern appears in the original trace it will be replaced

69

with one event in the abstracted trace with its name being Duplicate File Descriptor

while preserving other information such as the event name and the system call name.

Using XML files, it was also possible to test the tool against traces generated from

DTrace [29] running under FreeBSD operating system [30]. However, in this thesis

the main focus is on traces generated from the LTTng tracer running under the Ubuntu

operating system [28].

The tool was implemented using Java Standard Edition Development Kit version 6

[36], while the XML files where parsed using stax (Stream API for XML) library [31,

50], where the XML file is read, and the events are provided iteratively through an

iterator interface.

A"3" TarEe/*<C2/e)2*

We applied our approach to five large traces which were generated while running five

different processes. Each of these applications was executed while LTTng tracer was

running and generating the kernel traces. After that, we extracted the execution traces

corresponding to the application process and applied our algorithm and displayed the

results.

One process was the java virtual machine (JVM) [36] which was running a distributed

file server and a client, where the client requests a certain file from the server, and

then operates on that file, that is, reads, modifies and saves changes. Another process

was the Eclipse framework [37] through which a new project was created and a

number of classes were created, executed and deleted. The third process was Gedit

[38], which was used to edit files, that is, create, read, and save. The fourth process

70

was the GIMP image editor1, which was used to edit (create, modify, and save)

images. The final process was Firefox web browser2, which was used to surf the web

by connecting to certain web servers to fetch the requested pages through HTTP

requests which are built over TCP sockets. The description of the target systems and

the scenarios used to generate the traces are provided in Table 6.

Table 6!"#$%&'(")*)('+),"+$-.")/'.$%-0)

Target System Scenario

JVM ! Networking

! Read

! Write

! Execute

Eclipse ! Create new files

! Read

! Write

! Execute

Gedit ! Create new files

! Read

! Write

GIMP ! Create new files

! Read

! Write

Firefox ! Networking

A"9" Qenera/0nE*Tra5e2*

As mentioned in the previous section, each application was executed while running

LTTng. The resulting trace is usually large, as LTTng is actually tracing the Linux

kernel and not a certain process. However, we were still able to extract traces related

to our processes by only copying the LTTng event lines that have the same process

name as the traced processes.

1 http://www.gimp.org/
2 http://www.mozilla.com/en-US/firefox/personal.html

71

For each application we provide a sample trace that shows how low-level events are

structured within the trace following certain patterns.

A sample trace for JVM application:

Lernel.s6s5all@entr6: NNOPQO.TSOUTOQOO =VtmpVtra5ePOVLernel@P>A ORSTTA
ORSTTA VusrV\inVjavaA A ORSTSA UxUA SXSYHZZ G ip [Ux\]7]WNRUA s6s5all@id [
PUO ^s6s@so5Let5all_UxUVUxRUU` K

net.so5Let@5all: NNOPQO.TSOUTRUOQ =VtmpVtra5ePOVnet@P>A ORSTTA ORSTTA
VusrV\inVjavaA A ORSTSA UxUA SXSYHZZ G 5all [PA aU [P K

net.so5Let@5reate: NNOPQO.TSOUTRPR] =VtmpVtra5ePOVnet@P>A ORSTTA ORSTTA
VusrV\inVjavaA A ORSTSA UxUA SXSYHZZ G 7amil6 [PA t6pe [PA proto5ol [UA
so5L [UxdSTRdRNUA ret [R K

Lernel.s6s5all@exit: NNOPQO.TSOUTRONN =VtmpVtra5ePOVLernel@P>A ORSTTA ORSTTA

VusrV\inVjavaA A ORSTSA UxUA bS;I@MF0; G ret [R K

A sample trace for Eclipse application:

Lernel.s6s5all@entr6:PTUUO].NUTSOSOPT =VtmpVtra5ePUVLernel@P>A
PN]]RA PNTTPA VusrVli\Ve5lipseVe5lipseA A PN]]PA UxUA SXSYHZZ
G ip [Ux\]]TeNRUA s6s5all@id [S ^s6s@open_UxUVUxNU` K

7s.open: PTUUO].NUTSNOQNQ =VtmpVtra5ePUV7s@P>A PN]]RA PNTTPA
VusrVli\Ve5lipseVe5lipseA A PN]]PA UxUA SXSYHZZ G 7d [PUWA
7ilename [
"V3omeVadministratorVcorLspa5eVCbBVsr5VMainiindoc.java" K

Lernel.s6s5all@exit: PTUUO].NUTSNNNUN =VtmpVtra5ePUVLernel@P>A
PN]]RA PNTTPA VusrVli\Ve5lipseVe5lipseA A PN]]PA UxUA
bS;I@MF0; G ret [PUW K

A sample trace for Gedit application:

Lernel.s6s5all@entr6:PTOUON.SOWWU]ORP =VtmpVtra5ePOVLernel@U>A
PSOWTA PSOWTA VusrV\inVgeditA A PSO]UA UxUA SXSYHZZ G ip [
Ux\]WWSNRUA s6s5all@id [POU ^ptregs@5lone_UxUVUxNU` K

Lernel.s53ed@migrate@tasL: PTOUON.SOWWP]PQR
=VtmpVtra5ePOVLernel@U>A PSOWTA PSOWTA VusrV\inVgeditA A
PSO]UA UxUA SXSYHZZ G pid [PSOWTA state [OSTA dest@5pu [U K

Lernel.pro5ess@7orL: PTOUON.SOQPPWPTS =VtmpVtra5ePOVLernel@U>A
PSOWTA PSOWTA VusrV\inVgeditA A PSO]UA UxUA SXSYHZZ G
parent@pid [PSOWTA 53ild@pid [PSOW]A 53ild@tgid [PSOW] K

72

Lernel.s53ed@migrate@tasL:PTOUON.SOQPOUOWT
=VtmpVtra5ePOVLernel@U>A PSOWTA PSOWTA VusrV\inVgeditA A
PSO]UA UxUA SXSYHZZ G pid [PSOW]A state [OSTA dest@5pu [P K

Lernel.s53ed@caLeup@nec@tasL:PTOUON.SOQPOOPRO
=VtmpVtra5ePOVLernel@U>A PSOWTA PSOWTA VusrV\inVgeditA A
PSO]UA UxUA SXSYHZZ G pid [PSOW]A state [UA 5pu@id [P K

Lernel.s6s5all@exit: PTOUON.SOQPOOQOQ =VtmpVtra5ePOVLernel@U>A
PSOWTA PSOWTA VusrV\inVgeditA A PSO]UA UxUA bS;I@MF0; G ret [
PSOW] K

A sample trace for GIMP application:

Lernel.s6s5all@entr6:PTRTR].]SRNNR]]S =VtmpVtra5ePRVLernel@P>A
PS]SRA PS]SRA VusrV\inVgimpA A PSSROA UxUA SXSYHZZ G ip [
Ux\]]NONRUA s6s5all@id [R ^s6s@read_UxUVUx\U` K

7s.read: PTRTR].]SRNN]OWO =VtmpVtra5ePRV7s@P>A PS]SRA PS]SRA
VusrV\inVgimpA A PSSROA UxUA SXSYHZZ G 5ount [PUONA 7d [] K

Lernel.s6s5all@exit: PTRTR].]SRNN]S]Q =VtmpVtra5ePRVLernel@P>A
PS]SRA PS]SRA VusrV\inVgimpA A PSSROA UxUA bS;I@MF0; G ret [
RO K

H sample tra5e 7or 9ire7ox appli5ation:

Lernel.s6s5all@entr6: PSQUUW.URPNOQTNS =VtmpVtra5eQVLernel@U>A
PNSRPA PNSRPA VusrVli\V7ire7ox*R.T.RV7ire7ox*\inA A PNSO]A
UxUA SXSYHZZ G ip [Ux\]]QaNRUA s6s5all@id [S
^s6s@open_UxUVUxNU` K

7s.open: PSQUUW.URPNRT]QT =VtmpVtra5eQV7s@U>A PNSRPA PNSRPA
VusrVli\V7ire7ox*R.T.RV7ire7ox*\inA A PNSO]A UxUA SXSYHZZ G 7d
[NUA 7ilename ["VusrVli\V7ire7ox*addonsVsear53pluginsVen*
bSVgoogle.xml" K

Lernel.s6s5all@exit: PSQUUW.URPNR]QUP =VtmpVtra5eQVLernel@U>A
PNSRPA PNSRPA VusrVli\V7ire7ox*R.T.RV7ire7ox*\inA A PNSO]A
UxUA bS;I@MF0; G ret [NU K

A"A" BGG'C0nE*<C2/e)*7a''*B&2/ra5/0%n*Te56n0=8e2*

After generating the traces and saving them into a text file, we applied the abstraction

process to each of them by running our tool which consists of three main parts: The

top part, through which the developer can provide the tool with the required

information such as the trace source file, the destination file where the results are to

73

be stored, the process name, whether to show or hide noise (utility) events, and the

Patterns Library trace type, as shown in Figure 54.

F igure 54. The top part

The middle part, through which the trace resulting from the abstraction process is

displayed, with every high-level construct represented in one line, as shown in Figure

55.

F igure 55. The middle part

The bottom part, through which the information related to the original and abstracted

traces is displayed, as shown in Figure 56. In this figure, we can see that the number

of events in the original trace is 847575 and that after applying our algorithm and

removing noise events we obtain an abstracted trace with 243871 events, with a

compression ratio equals to (1 H 243871/847575 = 71%)

74

F igure 56. The bottom part

A"J" 4e28'/2*

We discuss the results obtained by applying our abstraction process through

quantitative and qualitative analysis. The objective is to answer the following

questions:

! How good the compression ratio is?

! How informative the resulting trace is?

A"J"!" R8an/0/a/01e*Bna'C202*

After generating the traces, and abstracting them, we did quantitative analysis by

studying the compression ratio to find out how good the algorithm is in terms of

compacting the trace. Our initial environment consisted of five traces (resulting from

the execution of the five aforementioned processes) with sizes 47271, 186167,

646710, 847575, and 1226985 lines. After abstracting the traces using our tool, we

had new traces with the following sizes: 3452, 100523, 309926, 243871, and 465886

lines respectively, which gave us the following compression ratios: 93%, 46%, 52%,

71%, and 62%. Where compression ratio is computed using the following formula: 1 -

(abstracted trace size / initial trace size). On the other hand, the number of noise

events in each of the traces was: 13444, 10830, 41631, 132343, and 94362

respectively.

When abstracting the trace, we applied noise removal and grouping continuous

sequences [19]. Table 7 summarizes the results.

75

Table 7. T race abstraction results

Process Initial Size Size After Abstraction Number of Noise
Events

Compression
Ratio

Eclipse 1226985 465886 94362 62%

GIMP 847575 243871 132343 71%

Firefox 646710 309926 41631 52%

Gedit 186167 100523 10830 46%

JVM 47271 3452 13444 93%

As a result the overall compression ratio was 64.8%, which shows that our approach

achieves a good trace compaction ratio.

A"J"3" R8a'0/a/01e*Bna'C202*

To analyze the quality of our work, we compared a sample abstracted trace for a trace

generated from a simple C application after removing noise events (Figure 57) with

the corresponding application (Figure 58).

From Figure 57 we can see that the first 10 lines include Process Execution, File

Access, File Open, File Stat, File Read, and File Close. All these operations are

executed to prepare resources for our process, and they do not correspond to any of

the source code lines.

76

F igure 57. Abstracted T race

F igure 58. Cor responding C Application

After that a File Open is executed with the file name parameter set to output.txt and

the file descriptor set to 3. If we take a look at our application we can see that this File

Open has occurred as a result to the first two lines within the main function. Next, a

File Stat is executed to get file information, followed by a File Write that corresponds

to fprintf in the source code. File Close is executed in both the source code and the

77

trace, then the same file is opened again, only that a File Read appears in the trace as a

result of executing fgetc, followed by a File Write with a file descriptor set to 1,

which means writing to the standard output in correspondence to printf in the source

code. Finally, the file is closed and the process is exited.

We also had similar results when analyzing the other applications, where we were

able to map the low-level system calls to the events that caused these calls to be

invoked. As a result, we can say that the abstracted trace provides a clear view of the

process execution that reflects the source code of the process in case it was available.

78

Chapter 5. Conclusions

In this thesis, we introduced techniques to abstract execution traces resulting from the

Linux kernel. Our main focus was on the idea of building a library of system calls

patterns, and using it to abstract low-level traces. We also provided a number of case

studies, and assessed our work in terms of quantity where we had an average

compression ratio of 64.8%, and in terms of quality where we had smaller abstracted

traces with lines corresponding to the execution of a process.

The following sections summarize our research contributions and the possible future

directions.

J"!" 4e2ear56*7%n/r0&8/0%n2*

In this research we defined system call traces and introduced techniques to abstract

them. The main contributions of this research can be summarized through the

following points:

Our approach is based on building a pattern library that consists of patterns of the

most common operations in Linux. This library was built by studying the Linux

kernel system call mechanism and by generating system call traces using LTTng

tracer, and comparing these traces to the list of processes that were run to perform

specific tasks. We also defined noise (utility) patterns that result from memory

management operations and page faults.

79

Then, we introduced an algorithm to abstract the system call traces by using the

pattern library to detect different patterns in the trace and replace them with higher

level constructs that are easier to understand, while hiding utility patterns.

We have also developed a tool that support the trace abstraction process presented in

this thesis. Finally, we applied our techniques to traces generated from four different

processes that were run under the Linux operating system. We were able to reach a

65% compression ratio while preserving the internal state of the processes and

showing the main operations as high-level constructs that are easy to understand.

J"3"*N8/8re*>0re5/0%n2*

One direction for future work would be to study more patterns to fully document the

system calls patterns. Once completed, we can use this library to abstract any trace

generated from the Linux kernel.

Another direction would be to use the abstracted traces to monitor the system for the

purpose of detecting any malicious behaviour, bug, or performance bottlenecks. Also,

abstracted traces could be used to compare traces resulting from identical or different

scenarios, for any of the reasons mentioned above.

A third direction would be to abstract the resulting traces into a higher-level of

abstraction by following the same techniques, that is, implementing the higher-level

constructs, over the already defined constructs, as part of the class hierarchy, or

defining them in new XML files.

A fourth direction would be to detect non-contiguous repeated patterns in the

abstracted traces and find ways of representing them only once in the final trace.

80

Finally, it would be interesting to define a formal language that describes the traces,

and could be further used to formally describe scenarios and to parse traces according

to these scenarios.

*

81

S0&'0%EraG6C*

[1] Andrew Chan, Reid Holmes, Gail C. Murphy and Annie T.T. Ying. Scaling an

Object-oriented System Execution Visualizer through Sampling. In Proc. of the

QQ12 RPPP R614"6/1-#6/& S#"J.2#8 #6 D"#0"/$ +#$8"4246.-#6 GRSD+'TUFB

pages 237-244, 2003

[2] Adrian Kuhn and Orla Greevy. Exploiting the Analogy between Traces and

Signal Processing. In Proc. of IEEE International Conference on Software

Maintenance (ICSM 2006), pages 320-329. IEEE Computer Society Press: Los

Alamitos CA, 2006

[3] Wim De Pauw, David Lorenz, Erik Jensen, Nick Mitchell, Gary Sevitsky, John

Vlissides and Jeaha Yang. Visualizing the Execution of Java Programs. In Proc.

of the International Seminar on Software Visualization, pages 151-162,

Dagstuhl Castle, Wadern, 2002

[4] James R. Larus. Whole Program Paths. In Pro7@ #! 124 KRVDM)W XYY

Conference on Programming Languages Design and Implementation (PLDI 99),

May 1999, Atlanta Georgia

[5] Dean Jerding and Spencer Rugaber. Using Visualization for Architectural

Localization and Extraction. In Proc. of the 4th Working Conference on Reverse

Engineering, October 1997, the Netherlands, IEEE Computer Society, pp. 56-65

[6] Tarja Systä. Understanding the Behavior of Java Programs. In Proc. of the 7th

Working Conference on Reverse Engineering, Australia, Brisbane, 2000, pp.

214-223.

82

[7] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman, Linux Device

Drivers, Third Edition, O'Reilly, February 2005

[8] Daniel P. Bovet, Marco Cesati, Understanding the Linux Kernel, 2nd Edition,

O'Reilly, December 2002

[9] Jialong He . LINUX System Call Quick Reference, URL:

http://www.digilife.be/quickreferences/QRC/LINUX%20System%20Call%20Q

uick%20Reference.pdf. Last Accessed: September 2010

[10] Mathieu Desnoyers and Michel R. Dagenais. Tracing for Hardware, Driver, and

Binary Reverse Engineering in Linux. Code Breakers Journal Vol. 1, No. 2,

2006

[11] Mathieu Desnoyers. Linux Trace Toolkit Viewer User Guide. URL:

http://lttng.org/files/lttv-doc/user_guide/c42.html. Last Accessed: September

2010

[12] Mathieu Desnoyers and Michel R. Dagenais. The LTTng tracer : A Low Impact

Performance and Behavior Monitor for GNU/Linux. In Proc. of Ottawa Linux

Symposium 2006.

[13] Hassan Gomaa, Designing Concurrent, Distributed, and Real-Time Applications

with UML, Addison-Wesley, July, 2000

[14] Linux Init Process. URL:

 http://www.yolinux.com/TUTORIALS/LinuxTutorialInitProcess.html.

 Last Accessed: June 2010

[15] Sockets Tutorial. URL: http://www.linuxhowtos.org/C_C++/socket.htm. Last

Accessed: June 2010

http://www.digilife.be/quickreferences/QRC/LINUX%20System%20Call%20Quick%20Reference.pdf
http://www.digilife.be/quickreferences/QRC/LINUX%20System%20Call%20Quick%20Reference.pdf
http://lttng.org/files/lttv-doc/user_guide/c42.html
http://www.yolinux.com/TUTORIALS/LinuxTutorialInitProcess.html
http://www.linuxhowtos.org/C_C++/socket.htm

83

[16] A. Hamou-Lhadj and Timothy Lethbridge. Measuring Various Properties of

Execution Traces to Help Build Better Trace Analysis Tools. In Proc. of the

10th International Conference on Engineering of Complex Computer Systems,

IEEE Computer Society, pages 559H568, 2005

[17] A. Hamou-Lhadj and Timothy Lethbridge. Compression Techniques to Simplify

the Analysis of Large Execution Traces. In Proc. of the 10th International

Workshop on Program Comprehension (IWPC), pages 159-168, Paris, France,

2002

[18] A. Hamou-Lhadj and Timothy Lethbridge. Summarizing the Content of Large

Traces to Facilitate the Understanding of the Behaviour of a Software System.

In Proc. 14th Int. Conf. on Program Comprehension (ICPC), pages 181H190.

IEEE, 2006

[19] A. Hamou-Lhadj. Techniques to Simplify the Analysis of Execution Traces for

Program Comprehension. PhD Thesis, Ottawa-Carleton Institute for Computer

Science, School of Information Technology and Engineering, University of

Ottawa, Ottawa, Ontario, Canada, 2005

[20] A. Hamou-Lhadj and Timothy Lethbridge. Reasoning about the Concept of

Utilities. ECOOP PPPL, Oslo, Norway, June 14, 2004

[21] Valiente G. Simple and Efficient Tree Pattern Matching. Research Report E-

08034, Technical University of Catalonia, 2000

[22] Bas Cornelissen and Leon Moonen. On Large Execution Traces and Trace

Abstraction Techniques. Report TUD-SERG-2008-005. Delft University of

Technology, Software Engineering Research Group, Technical Report Series

84

[23] B. Cornelissen, A. van Deursen, L. Moonen, and A. Zaidman. Visualizing test

suites to aid in software understanding. In Proc. of the 11th European Conf. on

Software Maintenance and Reengineering (CSMR), pages 213H222. IEEE, 2007

[24] C. G. Nevill-Manning and I. H. Witten. Linear-time, incremental hierarchy

inference for compression. In Proc. of the Data Compression Conference (DCC

'YZF@ K6#<3-"5B EAI RPPP +#$8914" K#7-41;B QYYZ@

[25] C. Bennett, D. Myers, M. A. Storey, D.M. German, D. Ouellet, M. Salois, and

P. Charland. A Survey and Evaluation of Tool Features for Understanding

Reverse Engineered Sequence Diagrams. Journal of Software Maintenance and

Evolution: Research and Practice, March 2008

[26] Syscalls(2) H Linux Man Page. URL: http://linux.die.net/man/2/syscalls. Last

Accessed October 2010

[27] Binh Nguyen, Linux File System Hierarchy, 2003,

 http://www.tldp.org/LDP/Linux-Filesystem-Hierarchy/Linux-Filesystem-

Hierarchy.pdf

[28] Andrew Hudson, Paul Hudson, Ubuntu Unleashed, Sams, August 2006

[29] DTrace. URL: http://www.oracle.com/technetwork/systems/dtrace/dtrace/index-

jsp-137532.html. Last Accessed: October 2010

[30] Greg Lehey, The Complete FreeBSD: Documentation from the Source, 4th

edition, O'Reilly, April 2005

[31] Brett McLaughlin, Justin Edelson, Java and XML, Third Edition, O'Reilly,

December 2006

http://linux.die.net/man/2/syscalls.%20Last%20Accessed%20October%202010
http://linux.die.net/man/2/syscalls.%20Last%20Accessed%20October%202010
http://www.tldp.org/LDP/Linux-Filesystem-Hierarchy/Linux-Filesystem-%20Hierarchy.pdf
http://www.tldp.org/LDP/Linux-Filesystem-Hierarchy/Linux-Filesystem-%20Hierarchy.pdf
http://www.oracle.com/technetwork/systems/dtrace/dtrace/index-jsp-137532.html
http://www.oracle.com/technetwork/systems/dtrace/dtrace/index-jsp-137532.html

85

[32] Frank Ch. Eigler, Systemtap tutorial, March 24, 2010

http://sourceware.org/systemtap/tutorial.pdf

[33] WindRiver Workbench. URL:

http://lttng.org/tracingwiki/index.php/WindRiver_Workbench.

 Last Accessed: June 2010

[34] Zealcore System Debugger. URL:

http://lttng.org/tracingwiki/index.php/Zealcore_System_Debugger

 Last Accessed May 2010

[35] http://lttng.org/tracingwiki/index.php/File:Zealcore_img.png

[36] Java SE Downloads. URL:

http://www.oracle.com/technetwork/java/javase/downloads/index.html. Last

Accessed: October 2010

[37] Eclipse. URL: http://www.eclipse.org/. Last Accessed: September 2010

[38] Gedit Text Editr. URL: http://projects.gnome.org/gedit/. Last Accessed: October

2010

[39] Abdelwahab Hamou-Lhadj, Timothy C. Lethbrridge, A Survey of Trace

Exploration Tools and Techniques. In Proc. 2004 Conf. of the Centre for

Adv/6745 K195-4. #6 +#&&/3#"/1-C4 [4.4/"72 G+)K+OW' 04), pages 42H55,

2004.

[40] http://lttng.org/tracingwiki/index.php/File:Windriver_workbench_img.png

[41] Kim Hamilton, Russell Miles, Learning UML 2.0, O'Reilly, April 2006

http://sourceware.org/systemtap/tutorial.pdf
http://lttng.org/tracingwiki/index.php/WindRiver_Workbench
http://lttng.org/tracingwiki/index.php/Zealcore_System_Debugger
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/
http://projects.gnome.org/gedit/
http://lttng.org/tracingwiki/index.php/File:Windriver_workbench_img.png

86

[42] Linux Man Page. URL: http://linux.die.net/man/2/set_thread_area. Last

Accessed: July 2010

[43] What is RCU, Fundamentally?. URL: http://lwn.net/Articles/262464/. Last

Accessed: May 2010

[44] LTTng Trace Format. URL: http://benno.id.au/docs/lttng_data_format.pml. Last

Accessed: July 2010

[45] Mark Grand, Patterns in Java, Volume 1\A Catalog of Reusable Design

Patterns Illustrated with UML, Second Edition, Wiley Publishing, Inc., 2002

[46] http://lttng.org/tracingwiki/index.php/File:VTune_img.png

[47] Wolfgang Mauerer, Professional Linux® Kernel Architecture, Wiley Publishing,

Inc., 2008

[48] Erich Gamma, Richard Helm, Ralph Johnson, John M. Vlissides, Design

Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley

Professional, 1994

[49]]-172)$-/6#B +#6"/5 ^'+"9_B `/; P12-4"B /65]-72/4& ^@ Ahomas, XML

Problem H design H Solution, Wiley Publishing, Inc., 2006

[50] The Java EE 5Tutorial For Sun Java System Application Server 9.1, Oracle,

2010

http://linux.die.net/man/2/set_thread_area
http://lwn.net/Articles/262464/
http://benno.id.au/docs/lttng_data_format.pml
http://lttng.org/tracingwiki/index.php/File:VTune_img.png
http://www.amazon.com/Erich-Gamma/e/B000AQ3QWI/ref=ntt_athr_dp_pel_1
http://www.amazon.com/Richard-Helm/e/B000AQ1ZP8/ref=ntt_athr_dp_pel_2
http://www.amazon.com/Ralph-Johnson/e/B000AQ6RMY/ref=ntt_athr_dp_pel_3
http://www.amazon.com/s/ref=ntt_athr_dp_sr_4?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=John%20M.%20Vlissides

