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Montréal, Québec, Canada

June 2022

© Sauradip Ghosh, 2022



CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Sauradip Ghosh

Entitled: System and Application Performance Analysis Patterns Using Software

Tracing

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Software Engineering)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Nematollaah Shiri

Examiner
Dr. Nematollaah Shiri

Examiner
Dr. Juergen Rilling

Supervisor
Dr. Abdelwahab Hamou-Lhadj

Co-supervisor
Dr. Naser Ezzati-Jivan

Approved by

2022
Dr. Mourad Debbabi, Interim Dean
Gina Cody School of Engineering & Computer Science



Abstract

System and Application Performance Analysis Patterns Using Software Tracing

Sauradip Ghosh

Software systems have become increasingly complex, which makes it difficult to detect the

root causes of performance degradation. Software tracing has been used extensively to analyze the

system at run-time to detect performance issues and uncover the causes. There exist several studies

that use tracing and other dynamic analysis techniques for performance analysis. These studies

focus on specific system characteristics such as latency, performance bugs, etc. In this thesis, we

review the literature to build a catalogue of performance analysis patterns that can be detected using

trace data. The goal is to help developers debug run-time and performance issues more efficiently.

The patterns are formalized and implemented so that they can be readily referred to by developers

while analyzing large execution traces. The thesis focuses on the traces of system calls generated by

the Linux kernel. This is because no application is an island and that we cannot ignore the complex

interactions that an application has with the operating system kernel if we are to detect potential

performance issues.
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Chapter 1

Introduction & Motivation

1.1 Introduction

Marc Andreessen wrote in an article in The Wall Street Journal that ”software is eating the

world”1. What he implied by this statement was that software technologies are disruptive technolo-

gies, transforming the economy and existing industries. This rapid transformation was possible due

to many factors including breakthroughs in hardware capability such as multi-core processors [2]

and the adoption of the World Wide Web among consumers, thus setting the ground up for software

to direct and control end-to-end supply chains. Industries that were relying less on technology had

to harness the power of software to stay profitable and relevant2.

This dramatic shift meant that many critical systems have to depend on software to function,

which raises expectations when it comes to software performance and correctness [3]. There are

many real life examples on how software bugs and crashes can harm the economy. Take for example,

Facebook’s massive outage in October 20213, which witnessed all Facebook owned apps crashing

and not letting users log-in to access services. This downtime lasted for seven to eight hours.

Users who rely on Facebook and its family of apps could not conduct business and had to look for

alternatives. Facebook blamed it on a series of faulty configuration changes in the router4.
1https://www.wsj.com/articles/SB10001424053111903480904576512250915629460
2https://techcrunch.com/2013/12/14/as-software-eats-the-world-non-tech-corporations-are-eating-startups/
3https://www.nytimes.com/2021/10/04/technology/facebook-down.html
4https://www.facebook.com/business/news/update-about-the-october-4th-outage
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As time goes by, customer requirements from a software usually change which might lead to

developers adding features on top of existing codebase without taking the time to sufficiently refac-

tor or redesign so that the complexity remains manageable. This may lead to technical debt [4].

Unlike physical systems, software - which is essentially text in the form of logical instructions -

is unbounded, on which multiple authors can work on for years and therefore it keeps changing,

mutating and increasingly becoming too gargantuan to even comprehend; let alone maintain. This

is in accordance with Lehman’s second law which states that as projects grow, they tend to increase

in complexity [5]. Several empirical studies have been done on the relationship between software

complexity and maintainability [6]. The introduction of multi-core systems and the various parallel

programming paradigms [7] make performance problems challenging to debug and fix as designing,

writing, testing, analyzing, and optimizing multithreaded code can be a very challenging task [8].

Software tracing is one way to achieve visibility in code which can become extremely abstract

and difficult to analyze over the years [9]. Tracing can be used to track the flow of program data and

execution in real-time. Trace files show an execution snapshot of the application. Tracing is a dy-

namic analysis technique, which applies to the execution of a program. This is contrasted with static

analysis techniques that work on the source code without executing it [10][11]. Tracing can provide

programmers with a wealth of execution data which can be analyzed and processed via a suite of

tools and techniques suited for the purpose [12]. The advantage of dynamic analysis is that the

data collected pertains to real-life execution conditions which helps developers understand system

behaviour either online or offline and detect unforeseen problems caused by complex interactions

between applications and their run-time environments.

Software tracing techniques can be divided into two categories: static and dynamic tracing.

Static tracing depends on tracepoints [13] compiled into the code. Tracepoints in code are locations

which act as hooks to which a function or a probe (e.g., a print out statement) can be attached.

Dynamic tracing, on the other hand, injects probe points into the system during run-time which act

as break-point instructions [14] [15].

At any given time, millions of events can occur inside a system: including system calls, I/O

processing, memory allocation or block device operations. Therefore, software traces can contain

a large amount of information which makes processing and parsing traces a complex task [16] [17]
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[18]. However, considering how useful tracing is and the industry support tracing infrastructure

receives, trace analysis can be an important (and sometimes the only) tool to detect all kinds of

performance problems.

1.2 Problem Statement & Motivation

The crux of the problem can be stated as thus: How can we extract actionable performance

patterns from trace files so that programmers can quickly detect resource bottlenecks, latencies and

avenues for further optimization? We were inspired by our study of code smells where the presence

of bad smells could indicate deeper problems in the codebase. In the same way, we asked ourselves

if we could, similarly, extract dynamic performance related smells from trace files which underline

deeper problems in application performance.

In this thesis, we shall detect, categorize and formalize several performance patterns in order of

their complexity. We call these patterns Performance Analysis Patterns. These point to performance

problems such as synchronization issues, latency inducing block device operations and memory-

related performance issues.

There is a wealth of research regarding performance analysis using tracing. Côté et al. [19]

have worked on analyzing execution traces in real-time systems by defining an execution model

of real-time tasks, running a pattern detection (MANEPI) algorithm and then executing complex

analyses on only selected parts of the trace instead of the whole trace. They also used critical path

analysis coupled with scheduling information to quickly detect scheduling issues. Giraldeau et al.

[16] recover insightful system metrics such as CPU, block device and network usage from Linux

kernel traces. They use LTTng [20] to generate traces based on static tracepoints compiled into

the kernel. Daoud et al. [21] recover advanced block device level metrics from tracing events by

developing efficient data structures and algorithms using a state-based approach. They have also de-

veloped a visualization model based on state history trees so that latencies in I/O request life-cycle

can be visualized. Temporal languages such as LTL-FO+ have also been used to verify security

related properties such as Integer overflow detection and call sequence profiling from assembly

traces by Khoury et al [22]. Francois Doray and Michel Dagenais [23] introduce TraceCompare

3



in where they detect performance variations by comparing multi-level execution traces using cus-

tom data-structures and a comparison algorithm. The goal was to highlight differences in execution

by comparing traces generated by two execution instances while performing the same task. LTTV

Delay Analyzer [24] analyzes blocking events and helps developers understand blocking depen-

dencies in the form of dividing process waiting time into its constituting components. The authors

develop an algorithm to unpack the blocking dependencies from traces generated by existing ker-

nel instrumentation. DepGraph [25] uses tracing to create dependency graphs of threads to detect

bottlenecks. These graphs are constructed by building a state database and extracting dependen-

cies such as blocking states. Then, multiple graphs arising from different executions are combined

and clustered using the k-means algorithm to identify performance outliers. LaRosa et al. [26]

employ data mining techniques such as frequent pattern mining to detect excessive inter-process

communication. We will review these works in detail in the next chapter.

Additionally, Dmitry Vostokov has presented a catalogue of crash and dump analysis patterns

in his book, Encyclopedia of Crash Dump Analysis Patterns [27]. This category mostly consists of

performance patterns detected in Windows memory and crash dumps with a few from Linux and

Mac OS as well. Most of these patterns are from WinDbg logs and memory dumps. However, these

performance patterns are identified through manual dump inspection, mostly on a case by case

basis with no attempt to formalize them or automatically extract them. However, our work goes

much farther in detecting and formalizing these performance patterns from trace files as we attempt

to extract these patterns using scripting, run-time monitoring and formalize them using temporal

languages. His work on trace and log analysis delves into identifying and detecting patterns in trace

files itself such as Corrupt Messages, Circular Traces and Discontinuity [28].

Our approach relies on an extensive review of the literature related to system performance to

determine performance patterns and use tracing to detect them. We have also formalized these

patterns and detected them using scripting and run-time monitoring techniques. Our approach leads

to more patterns being detected to help developers quickly find out performance bottlenecks using

our tools. To our knowledge, no work has attempted to come up with a categorization, formalization,

and implementation of performance analysis patterns on the basis of trace files. Vostokov’s work

[27] comes somewhat close. However, most of his patterns are based on crash and dump analysis

4



and there is no attempt to automatically detect and formalize them.

1.3 Contributions of the Thesis

Our thesis contributions are as follows:

• We have developed a catalogue of performance analysis patterns for the Linux operating sys-

tem, which cover a wide range of performance issues varying from memory management to

network latency. To our knowledge, this is the first time that such a comprehensive catalogue

is presented.

• We use a formal language to represent the patterns. This allows analyst to use formal method

tools to detect performance issues in traces.

• We have developed several scripts to support performance analysis patterns described in this

thesis. The scripts are available as an an open source and can readily be embedded in trace

analysis tools.

1.4 Organization of the Thesis

This thesis is organized into five chapters. Chapter 1 provides an introduction and a brief dis-

cussion of related work. Chapter 2 introduces some relevant technical background, an extensive

literature review and a brief discussion. Chapter 3 features the catalogue of performance analysis

patterns and a summary. Chapter 4 features an evaluation along with the implementation details of

selected patterns. Chapter 5 ends with a conclusion and future work.
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Chapter 2

Background & Literature Review

2.1 Background

In this section, we present background concepts needed to understand the content of the thesis.

We begin with a general introduction to patterns in software engineering and their utility. We then

move on to software tracing in general and how it can be employed to achieve performance gains

and detect difficult-to-detect bugs. A thorough review of the Linux tracing infrastructure follows in-

cluding the tools we use in this thesis. Further, we introduce temporal logic and run-time verification

techniques we use for the formalization and detection of these performance analysis patterns.

2.1.1 Patterns in Software Engineering

Christopher Alexander, an architect by profession, started working on patterns by developing a

pattern language to design town layouts [29]. He realized that by doing so, he and his peers could

detect, identify and document common problems and best solutions into patterns that can be reused

by other practitioners. He proposed to catalogue the patterns in the form of best practices in order

to build a database of dos-and-donts. In software engineering, a pattern can be defined as a gen-

eral, reusable solution to a design problem that manifests repeatedly across multiple projects [30].

An example of patterns would be design patterns, which are reusable solutions to common soft-

ware design problems [31]. The patterns can be described using formal languages and documented

accordingly so that they can be consulted in the future.
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Design patterns became popular after the publication of Design Patterns: Elements of Reusable

Object Oriented Software by the ”Gang of Four” - Erich Gamma, Richard Helm, Ralph Johnson

and John Vlissides [32] in 1985. The book was a compilation of 23 software design patterns to

address common design problems in object-oriented programming. The patterns were classified

into categories such as creational, structural and behavioral. Creational patterns are about object

creation in place of direct instantiation. Some examples are Abstract Factory (grouping object

factories together on the basis of commonality) and Singleton (which ensures that only a single

instance is created for a class). Structural patterns are those that are concerned with class and

object composition such as a Facade (which offers a simple interface to complex codebases) and

Flyweight (which makes it easier to manipulate a large number of objects). Behavioral patterns are

about object communication such as Chain of Responsibility and Observer (which allows certain

objects to listen to an event).

There are performance patterns in software engineering as well, which assist in building scalable

and responsive software. Examples of performance patterns including the Coupling pattern -using

coarse grained objects to limit excessive interactions and aggregation of data which is frequently

accessed, and the First Things First pattern, which ensures that tasks are prioritized using centering

principle to ensure maximal scalability1.

In this thesis, we present performance analysis patterns to capture good practices for analyzing

execution traces with the objective of detecting performance issues. The patterns presented in this

thesis should not be confused with performance code smells, which are places in the code that may

indicate performance issues. Our patterns emphasize best practices for the ’analysis’ of execution

traces with the objective of detecting performance problems that may (or may not) be caused by

code smells.

2.1.2 Software Tracing

Software tracing provides a deep insight into program execution [33]. As modern software

systems become larger, more complex and distributed, tracing provides system administrators and

programmers observability in order to diagnose performance issues and bugs [34]. In order for
1https://research.cs.queensu.ca/home/elgazzar/soft437/lecture-notes/Chapter10.pdf
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tracing to make sense, instrumentation, data collection, visualization and analysis tools are crucial.

They must also be effectively leveraged across different software layers for developers to be able

to track the entire life-cycle of a process or a request. The amount of information in trace files

can be considerably high [33][35]. They can contain information about system calls, routine calls,

interrupts, memory allocation events, etc. In this thesis, we leverage the Linux tracing architecture

in order to trace and profile applications with the intent of detecting performance patterns in traces.

2.1.3 Linux Kernel Tracing

The Linux Kernel Tracing framework sources are as follows:

• Tracepoints: Tracepoints2 are essentially hooks that are placed in the code that a function

probe can attach to during run-time. Tracepoints can be turned on or off. A tracepoint which

has been turned off has a very low overhead. A tracepoint being ’on’ essentially means that a

probe has been attached to it. When a tracepoint is reached, the probe is called in the execution

context of the caller. When the probe has finished execution, control returns to the caller.

Adding a probe to the tracepoint is done via register trace subsys eventname(). Tracepoints

can be placed in important Linux subsystems to fetch valuable run-time information. They

can also pass parameters. In order to insert a tracepoint, a tracepoint definition must be placed

in a header file and the tracepoint statement itself must be present in the C code. An example

of a tracepoint would be the mm page alloc extfrag which provides information regarding

how fragmented the memory has become under current operating conditions. This tracepoint

is placed in the memory management subsystem of Linux.

• Kprobes: Kprobes3 allow one to dynamically trace any Linux kernel routine in order to

collect run-time information in a non-invasive manner. They are not as stable as tracepoints. If

the name of the routine changes with subsequent kernel versions, then the kprobe would also

not work. However, kprobes offer a much deeper instrumentation than tracepoints as almost

any routine in the Linux kernel can be traced and investigated. When the probe is hit, a handler

routine is invoked. There are two types of probes - kprobes and kretprobes. A kretprobe is hit
2https://www.kernel.org/doc/html/latest/trace/tracepoints.html
3https://www.kernel.org/doc/html/latest/trace/kprobes.html
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when the handler routine returns. Kprobe based instrumentation comes in the form of a kernel

module which ’registers’ the probes and the return probe ’unregisters’ them. When a kprobe

is registered, a copy of the probed instruction is made and a break-point instruction is inserted

into the first byte of the instruction. When the break-point instruction is reached by the CPU,

a trap occurs and control passes to the kprobe. The pre handler is executed, the copy of the

probed instruction is single-stepped and then the post handler is executed. Kprobes perform

a variety of safety checks such as making sure the function doesn’t contain an indirect jump

or an exception causing instruction. There are some functions that kprobes cannot probe as

they would cause a recursive trap. The list of these functions is called a kprobe blacklist.

An example of a kprobe would be vfs:read which instruments the read function in the virtual

file-system.

• Uprobes: Uprobes [36] allows one to to trace user-level functions in the form of user-level

dynamic tracing. For example, tracing the return values of a user-level function from running

bash shells. Even library functions can be traced.

There are tracers that help collect tracing data from the sources discussed above. There are two

such tracers built in the kernel itself - perf-tools and ftrace. Other tracers include sysdig, SystemTap

and LTTng. Other tools such as eBPF and LTTng can also be used to trace and profile the kernel,

however they are not built into the kernel. In this thesis, we use LTTng and perf-tools.

• ftrace: ftrace4 is an in-built kernel tracer used by developers in order to analyze latency. It

was developed and is maintained by Steven Rostedt and was merged into the mainline in ker-

nel version 2.6.27. It is essentially a function tracer but can also be considered a framework

of tracing tools. ftrace can be used to perform tracing operations like fetching information

from tracepoints, detecting interrupt latency, attaching kprobes, recording function calls, gen-

erating call graphs, stack reports and many more.

• perf-tools: perf5 was originally referred to as Performance Counters for Linux. It is a per-

formance analysis tool integrated into the Linux kernel version 2.6.31 in 2009. It has its own
4https://www.kernel.org/doc/Documentation/trace/ftrace.txt
5https://github.com/brendangregg/perf-tools
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command line and can perform statistical profiling of both kernel and user-space. It can work

with hardware performance counters, static tracepoints and kprobes. perf-tools are useful

because engineers can quickly get a system snapshot when investigating faults or latency.

Unlike other tracers such as LTTng, perf does not require daemons. It relies on a system call

function. perf is one of the most used profiling tools and is integrated in many popular Linux

distributions. It has several sub-commands such as stat, top, record, report and annotate which

can be used to extract useful system metrics such as event counts and top functions, record

and report sampled data in the form of graphs and trace scheduler events.

There are also front-end and visualization tools which helps configure tracing sessions, make

sense of trace data and to come up with useful analyses and visualization aids. Front end tools are

also used to configure tracers. However, they are add-ons and not built in the kernel. For example,

trace-cmd6, kernelshark7, Trace Compass8 and Flame Graph9.

In this thesis, we work with LTTng and eBPF as tracing tools while using Trace Compass and

Trace Compass EASE scripting as a trace analysis tool. We shall also be using temporal logic

and run-time verification in order to formalize and detect some of these performance patterns. The

following subsections will elaborate on these technologies.

Linux Trace Toolkit Next Generation (LTTng)

The Linux Trace Toolkit Next Generation is a low overhead, fully re-entrant and extremely

scalable tracer for the Linux kernel as well as the user space. LTTng can be used to collect crucial

run-time information in order to analyze the performance of large complex software systems. Hav-

ing a low overhead would ensure that the studied system is not effected by the tracing infrastructure

itself. The tracer has an easy to use interface and is memory efficient. It is architecture-independent

and can generate traces across different architectures with precise timestamps across multiple pro-

cessors.

LTTng has a command-line interface which operates on the user space (lttctl), a user-space
6https://linux.die.net/man/1/trace-cmd
7https://kernelshark.org/
8https://www.eclipse.org/tracecompass/
9https://www.brendangregg.com/flamegraphs.html
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daemon (lttd) that writes trace data to disk and a kernel component which carries out kernel tracing.

The user can control the tracing via lttctl which in turn starts lttd. ltt-core controls helper modules

such as ltt-heartbeat (which detects cycle counter overflows), ltt-facilities (which lists the event

types) and ltt-statedump (which describes the kernel state during tracing). ltt-base facilitates data

transfer into circular buffers and once the sub-buffers are full, the disk writer daemon is called (lttd).

LTTng uses an XML event description that processes user-space and kernel level instrumen-

tation to automatically generate trace headers and metadata in the traces. When control reaches

the instrumentation site, these headers activate the functions that collect the relevant tracing infor-

mation. ltt-facilities has information registered into by the information traced. The tracer uses a

lockless re-entrancy mechanism and can handle non-maskable interrupts (NMI) handlers. A call

site is the location in the original code where the tracing function is called whereas the instrumen-

tation site is the site of the tracing function [20].

LTTng can interact with a variety of Linux kernels and user applications via instrumentation.

Each LTTng session records all the instrumentation events and stores the information in circular

buffers. It has a set of modules which does the work of kernel instrumentation as well. It can trace

kernel tracepoints, system calls, kprobes and user-space probes and can create rules which are set

into motion when certain specified tracepoints and/or system calls are encountered. It can also trace

user applications provided a tracepoint header file is created. Triggers can also be created which

executes a set of actions if a particular condition is satisfied such as when the buffer space consumed

during a session becomes greater than a threshold.

LTTng records its data into ring buffers. A channel object oversees a set of such buffers. Each

buffer has a number of sub-buffers where data is recorded when an event rule is matched. Channels

can be created in order to dictate the size of ring buffers, set the number of sub-buffers under each

ring buffer, define a set of tasks when there is no buffer space and so on.

As the name suggests, LTTng is a toolkit that contains a set of LTTng-tools, a user-space tracing

library (liblttng-ust) and LTTng-modules that instrument and trace a kernel. It is open source,

powerful, is able to produce correlated trace data including both kernel traces and user-space traces

and is capable of handling multi-gigabyte sized trace data. For more, the reader can refer to the
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official documentation10.

BPF

Berkeley Packet Filter [37] (BPF) was initially a technology developed to improve the per-

formance of packet capture tools. It was then completely re-written by Alexei Starovoitov which

transformed it into an execution engine which can be safely run inside the Linux kernel [36]. BPF is

tremendously powerful and consists of its own helper functions, instruction sets and variables. The

BPF runtime executes these instructions and they are subsequently turned into native instruction by

the JIT compiler and an interpreter. There is also a verifier that ensures that the code doesn’t crash

the kernel. Hence, BPF is safe and will not crash the system.

BCC and bpftrace are high level front ends that abstract the process of writing BPF code which,

otherwise, can be very difficult.

BCC(BPF Compiler Collection) is a high level tracing framework which provides an environ-

ment where a user can code in languages such as C and Python. The BCC repository on GitHub

has more than 70 performance measuring tools which are ready to use11. It can make good use of a

number of kernel features such as supporting kernel level dynamic and static instrumentation, Per-

formance Monitoring Counter (PMC) events [38], filtering, stack-traces and the ability to overwrite

ring buffers.

bpftrace on the other hand is a newer, high level language to develop BPF tools. We have used

a few bpftrace scripts in this work in order to trace the system running some application. It allows

full visibility to the entire software stack which includes all the major subsystems such as memory,

block I/O, VFS and so on. bpftrace one-liners are powerful lines of code using which the user can

trace executing events, fetch arguments from method calls, generate a stack trace, show latency

distributions, access PMCs and so on. bpftrace scripts can be written to carry out more complex

tasks such as calculating the latency between a kprobe and its kretprobe and displaying them in the

form of a histogram using in-built variables and arrays.
10https://lttng.org/docs/v2.13/
11https://github.com/iovisor/bcc
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2.1.4 Trace Analysis Tools

TraceCompass

TraceCompass12 is a powerful trace analysis and visualization tool with the primary goal of

extracting useful information from large trace files in the form of graphs, statistics, and views. It

allows support many useful features including parsing large trace files, time correlation of multiple

trace files, zooming into trace events at nanosecond level and inserting bookmarks in traces. Add to

this, TraceCompass works with both system and application traces. It allows multiple trace formats

and fast filtering and searching for trace events. TraceCompass can also be extended by adding

support to new trace types.

TraceCompass has four main views: Project Explorer, Events, Statistics and Histogram. Trace-

Compass supports LTTng integration and useful plug-ins for viewing control flows, Resources, CPU

usage, and so on.

Scripting plugins can be installed in TraceCompass to manipulate trace information. The plu-

gins make use of Eclipse EASE Project which supports Javascript, Python, Ruby and many more

languages. The EASE framework supports several scripting engines such as Nashorn for Javascript,

Jython for Python and so on whereas providing an API for various TraceCompass modules such as

Analysis, View, DataProvider and Filters. EASE scripting is extremely powerful as it can manipu-

late trace attributes and extract actionable metrics from traces13.

2.1.5 Run-time Verification Tools

RTLola - a stream based specification language

Stream based monitoring consists of input streams being analyzed run-time and their data (such

as readings from sensors) converted into statistics such as a running average, counters and integrals.

Then, triggers can be set up to raise an alarm or carry out a predetermined task if a condition

becomes true.

Stream based languages such as LOLA [39] are used to process synchronous, real-time traces
12https://www.eclipse.org/tracecompass/
13https://archive.eclipse.org/tracecompass.incubator/doc/org.eclipse.tracecompass.incubator.scripting.doc.user
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whereas RTLola [40][41] - an extension, can be used to process variable-rate input streams and

aggregate data over sliding windows. RTLola specifications can be determined via static analysis if

it can be executed on a system with limited memory. For example, in order to calculate summations,

the values can be pre-aggregated according to time intervals defined by the rate of output streams.

StreamLab is the monitoring framework for RTLola [40]. Stream based monitoring languages

are much more expressive than temporal logic [40]. Lookup expressions in RTLola are used to

compute the value of output streams by taking into account previous stream values. There are no

assumptions made on the frequency of input streams. RTLola categorizes streams into Event-based

- computed whenever new values arrive, and Periodic-based which are evaluated based on a time

window - independent of arriving input values. RTLola is a strongly typed language where each

expression has a value type (Boolean, String, Integer, Float) and a stream type (Event-based, Peri-

odic). Techniques such as the ones presented by Meertens [42] and Li et al. [43] are used to ensure

bounded memory consumption to compute sliding windows. StreamLab supports several predefined

aggregation functions such as count, integration, summation, product, etc. The processing engine

comprises of the Event Manager(EM) which reads inputs such as CSV files and translates into an

internal representation and then mapped into corresponding input stream. The EM pushes the event

on a working queue. After that, the Time Manager(TM) is responsible for the scheduling of the

periodic streams - grouping them by their deadlines. An approaching deadline means the pushing

of the streams into the working queues using the same channels as that of the EM. The third com-

ponent of engine is the Evaluator(Eval) which evaluates the streams and store the computed values.

Evaluated items are then popped off the working queue[40]. StreamLab uses Rust 14 to implement

the monitor [44]. The monitor assesses the specifications against the system performance. Once the

specifications are translated to Rust, it can be guaranteed that the monitor will not crash, provide the

correct output - assuring that the platform satisfies the requirements. RTLola has the ability to type

check streams and validate its correctness. It also performs static checks by generating a depen-

dency graph where each stream is a node and each stream access is an edge. This is used to analyze

memory and run-times. The memory consumption can be evaluated using a formula. However, the

running time cannot be determined via specification alone. Hence, preliminary analysis provided
14https://www.rust-lang.org/
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which calculates the complexity of each evaluation cycle in a certain point in time and how paral-

lellized the specification is. The advantages of Rust are that it is LLVM backed, they are compatible

with multiple platforms, enforces static checks and allows memory management. Rust compiler for

LOLA injects verification annotations into the code which allows the static verifier Viper to prove

functional correctness. StreamLab detects inconsistencies in the specification such as type errors

(lossy conversion of floats to integers) and timing errors. It has two modes - interpreter and FPGA

compilation. The interpreter mode allows the specifier to validate their specification which requires

a trace. It checks if the trace complies with the specification. For more details the reader can refer

to [45].

BeepBeep

BeepBeep [46][47] is a run-time monitor for AJAX web applications and JAVA programs. It

routinely checks in real-time if events sent or received by an application satisfy a predetermined

specification. These specifications can dictate the message ordering or the parameters inside mes-

sages in order to make sure that the application does not send incorrect messages or perform im-

proper method calls, thus saving bandwidth and server processing time. BeepBeep comprises of a

JavaScript file and a .jar applet file. BeepBeep supports linear temporal logic.

BeepBeep can only perform run-time verification and is restricted to trace files in the XML

format. BeepBeep 3, the successor of BeepBeep, is a complete redesign. It does not mandate users

to use any query language. Instead, the tool encourages them to build their own custom processor

objects. It is customizable, modular and versatile.

2.1.6 An Introduction to Temporal Logic

Linear Temporal Logic (LTL)

Temporal logic deals with truth values that evolve over time. Amir Pnueli [48] introduced it

to computer science and can be used to reason about reactive systems and is the basis of model

checking. It uses modal logic such as ⋄ or F (for possibility) and □ or G (for necessity).These two

operators are duals. Temporal logic has derived from Modal logic where ⋄Φ means that Φ will hold
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to be true eventually at some point in time whereas □Φ implies that Φ will always hold true at any

time. F and G are written as Eventually in the Future and Always in the Future respectively15. Other

temporal operators are ⃝ϕ or X which implies that ϕ is true in the next moment in time and ϕUψ

which implies that ϕ will hold until ψ does.

The temporal operators can also be re-written using U and X operators. One can combine atomic

propositions with Boolean operators (∧,∨,¬,→) with the aforementioned temporal operators to

design specifications which may evaluate to T (True) F (False) or ?. The specification will evaluate

to T when every possible continuation of the trace will respect the property. It will evaluate to F

when every possible continuation will violate the property and will result in ? when the property

might be violated / matched later in the future.

LTL is used in model checking in order to verify safety, liveness and fairness properties16. For

example, let us take into consideration a property where every request will eventually guarantee a

response. Hence, this can be formalized in LTL as:

G(request → F(response))

We shall be using BeepBeep, a lightweight monitor to check whether the traces that we obtain

satisfy a given specification. Our specifications will be in the form of execution trace patterns.

LTL-FO+

LTL-FO+ [1][47] is the Fully First Order Quantification of LTL which is appropriate to model

”data-aware” properties. Along with atomic propositions, Boolean operators and temporal opera-

tors, LTL-FO+ adds quantifiers that work with trace parameters. These quantifiers are ∃ and ∀. The

semantics are shown in Figure 2.1

m̄ represents the execution trace and m̄0, m̄1 represent the first and second elements of the trace.
15Nicolas Markey. Temporal logics. 2015. ffhal-01194612
16https://web.iitd.ac.in/ sumeet/slide3.pdf
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Figure 2.1: Semantics of LTL-FO+ [1]

LTL - Tally Keeping

Tally Keeping-LTL (TK-LTL) is a novel extension of First Order LTL (LTL-FO) proposed in

order to go beyond the reductionist 3-valued judgement that temporal languages evaluating specifi-

cations come up with. For instance, consider the property where every open file must be eventually

closed. It would be useful to count the number of execution steps that occur between the opening

and closing of the file. TK-LTL allows users to craft formulae that evaluate numeric properties

found in traces and come up with a quantitative answer instead of the usual True, False or ?. It can

be used to count the number of specific formal patterns in a trace or to find out the duration between

each such pattern. Other questions such as the longest, shortest and average time from open to close

can also be accurately answered. The authors were motivated to work on this extension from the

limitation of formal logic in specifying properties in the software industry. A quantitative verdict

instead of the standard Boolean would provide better feedback to the developers. TK-LTL extends

LTL-FO by introducing three sets of semantic structures. They are counters, quantifiers and filters.

Counters count the number of prefixes in a sequence that evaluates to a given truth value or the trace

index at which the condition holds. For example, Cνϕ where ϕ is an LTL formula and ν ranges over

truth values T,F or ?, returns the number of prefixes in the input trace where ϕ evaluates to ν. The

syntax of TK-LTL also contains counters Dν
ϕ and Lνϕ where Dν

ϕ returns the first prefix of the trace

where ϕ evaluates to ν and Lνϕ returns the last instance. The quantifier K can reason over param-

eterized events and filters which are functions that can be applied on maps to extract relevant data.
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Some useful filters could be max(), average(). For definitions, semantics and proofs, the reader can

refer to [49].

2.2 A Review of Existing Trace Analysis Studies

We present a review of related work covering trace analysis techniques that extract useful perfor-

mance metrics from software executions, patterns in the system traces themselves and performance

analysis of software using tracing.

2.2.1 Detecting patterns in system traces

Vostokov’s work features a categorization patterns divided into software trace analysis patterns

and memory dump analysis patterns [28][50]. The former entails detecting and classifying patterns

in the trace content itself whereas for the latter the objective is to analyze memory dumps and crashes

to uncover performance problems. Most of these patterns apply to traces of the Windows system,

with a few for MacOS and Linux. Vostokov uses concepts of Narratology [51] to approach the topic

where he views software traces as narratives which can be classified into patterns and adapted for

other systems as well.

Vostokov states that patterns can be either domain-dependent - such as patterns detected in

Windows logs and network traces, as well as domain independent where analyses are independent

of the hardware or the software running it. He then classifies these patterns into categories such as

Vocabulary Patterns (deals with descriptions), Error Patterns, Trace as a whole, Activity Patterns,

etc [52].

His work on crash dump analysis patterns deals with abnormal software behavior reflected in

memory. Most of the patterns are detected in Windows using WinDbg. There are more than 200

patterns currently and more are being added and catalogued in the Encyclopedia of Crash Dump

Analysis Patterns[27]. Some of these patterns include critical section deadlocks (threads in a crit-

ical section mutually waiting for each other and obstructing progress), unloaded modules (access

violations at addresses belonging to unloaded modules), accidental locks (appearing in crash dumps)

and wait chains (causal waiting relations between tasks and resources). He classifies these patterns
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into categories such as contention patterns, deadlock and livelock patterns, memory consumption

patterns, process patterns, and so on.

Some of the performance patterns included in the memory dump analysis anthology [50] also

feature in this thesis. For example memory leaks, thread starvation, critical section contention, and

swarm of shared locks. We have included these performance patterns in the sections on Memory

Leaks, Thread Swamping, Critical Section Bottleneck and Over-synchronization, respectively. We

have also used the concept of an affine thread or thread affinity in one of our implementations.

Although the performance patterns may be similar, but our method of detecting, extracting and

formalizing these performance patterns is totally different from Vostokov’s dump analyses. Our

sources are also different. We extract these patterns from traces whereas Vostokov manually detects

them from crash and memory dumps.

LaRosa et al. [26] designed a framework that applied data mining techniques to kernel traces.

They successfully identified inter-process patterns in noisy trace files. In order to achieve this,

they transformed the problem of kernel trace data mining to maximal frequency itemset mining.

Window folding and window slicing were employed to aggregate trace events using their respective

timestamps. Appropriate pre-processing techniques such as bit-packing and data filtering were also

developed. Kernel trace data can be set to have interesting temporal characteristics as the scheduler

can re-order the partially ordered execution. Therefore, the concept of frequent itemset mining

comes handy. Window folding helped generate a series of parallel events by easing up the ordering

requirement of events to include events at a certain temporal radius. The ordering requirement could

not be too strict as the scheduler itself did not guarantee process order. Once a set of parallel events

was obtained, window slicing was used to find out frequent parallel episodes which were temporally

close. It converted a long sequence into a database. Events grouped together in a window formed

a single sequence record in the event database. The authors employed fold and slice techniques

in tandem to get an unordered database of parallel events which ultimately became a frequency

itemset mining problem. Then, they looked out for maximal frequent itemsets so that the output

was human-readable. These techniques were then used in a real-life scenario where the authors

traced a GNOME stock ticker app with a known issue of generating expensive X programming

system calls.
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Côté et al. [19] applied a pattern discovery algorithm alongside creating an execution model on

RT-Linux to detect scheduling problems. They used critical path analysis and scheduling informa-

tion to achieve this. They also developed plug-in views for TraceCompass to support their analyses.

The authors first let the user provide a list of ordered tracing events and selected a pattern which was

used by the algorithm to find the jobs to be analyzed. The authors chose the MANEPI algorithm that

extracted patterns which were more frequent than a given support threshold. This threshold could be

selected by the user. A high threshold meant that the algorithm was faster as it skipped a majority of

the detected episodes. The user could also mention the number of basic elements (an episode of one

event type where an episode is a group of event definitions). An interface was provided to design or

edit the pattern. This pattern was then loaded onto the execution model. Once the traces were loaded

in they were displayed in specially designed views such as Comparison View (to compare different

executions of the same job to spot irregularities), Time Perspective View (which showed the job

durations as a function of their starting time so that the time distribution could be studied), Critical

Path Complement View (to uncover significant thread dependencies) and the Extended Time View.

Khoury et al. [22] analyzed assembly traces using LTL-FO+, which is a first order extension

of Linear Temporal Logic (LTL). The reason for choosing assembly traces was that it provided a

detailed view into the applications functioning which higher level traces fail to provide. The authors

verified security properties in assembly traces via run-time monitoring with BeepBeep being the

monitor used. This technique was used to detect call sequence profiling, error conditions and ma-

licious activity. LTL-FO+ had been shown to be appropriate for data aware properties. In addition

to Boolean operators, temporal operators, LTL-FO+ added quantifiers such as EXISTS which can

be used to access parameters inside events.The authors detected five properties in assembly trace to

demonstrate the possibilities of temporal logic verification in assembly traces. The properties were

Integer Overflow Detection, Call Sequence Profiling (used in Software comprehension and main-

tenance), Return address protection, Pointer subterfuge detection and Malicious pattern detection.

The traces were converted to XML with a pre-processing script and then processed using BeepBeep.

Idris et al. [53] used Trace Correlation to achieve software comprehension and compare soft-

ware versions. This helped developers to differentiate different software versions and implemented

features as well as to estimate resources and requirements needed for future versions. The approach
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consisted of two steps. The first step was generating traces of the target features in the system in

order to identify implementation differences via trace correlation. The second stage was source

code (static) analysis to understand the changes. The authors introduced two novel trace correlation

techniques. Before correlation, the traces which were generated from different versions of the same

system were pre-processed to eliminate noise such as repetitions owing to loops and recursions and

accessor methods. After that, similar patterns in the traces were extracted for comparison. These

extracted patterns would determine if the traces exhibit similar behaviour. A threshold was set such

that similarity can be established if the threshold is crossed. The result ranged from 0-1 with 0

indicating complete dissimilarity and vice-versa. The two metrics were the non-weighted trace cor-

relation metric and the weighted trace correlation metric. The former compared two traces based

on the proportion of similar extracted patterns that they share and the latter modified this metric by

taking into account the frequency of these patterns. Choosing which metric to use depended upon

the task at hand as these metrics resulted in different similarity scores.

Matni et al. [54] used an automata based approach to detect problematic behaviour via traces

generated from the system kernel. They used state machine language to achieve the same alongside

LTT (Linux Tracing Toolkit) to generate the kernel traces. A variety of problems such as excessive

thread migration, disk swapping, locking problems and security issues could be detected using this

approach. The overhead was minimal as well. The three classes of problematic behavior were

security threats, software testing and performance debugging. The patterns were described via state

machine (SM) language which is simple, expressive and domain independent. The state transition

approach allowed easy generation of synthetic events. The state machine language lets one declare a

state and all the transitions which emerge from it. These transitions have a name, a destination state,

transition action and an optional argument list. If an expression evaluates to true then the transition

is triggered and the transition action follows suit. The destination state can be defined in another

state machine for simplicity. When it came to implementation, the authors designed automatons to

detect chroot jail escapes, validate locking and check real-time constraints.

Tate et al. [55] presented a survey of data mining algorithms used for extracting patterns from

a database. The authors performed a comparative study of algorithms like Apriori, Tree-Projection,

FP-Growth, RARM, ASPMS and Eclat. The modes of comparison were storage structure, search
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technique, database scan times, advantages, drawbacks and execution time. The authors found FP-

Growth to be the best algorithm to detect patterns based on execution time, advantages and draw-

backs. It uses a FP-tree as a storage structure and uses divide and conquer as the search technique.

The authors then used LTTng to generate traces, converted them into human readable format using

Babeltrace and ran the FP algorithm on the trace file. The authors then used the algorithm to show

uneven workload distribution across CPU cores.

Giraldeau et al. [16] extracted meaningful performance metrics from Linux kernel traces such

as CPU, disk and network usage using the LTTng kernel tracer. They defined a trace as a series of

ordered events with each event comprising of a timestamp, event type and event payload. The pay-

load was an ordered set of event fields. Metrics could be recovered from trace metadata (which was

used to declare event types) and system state dump (a description of system state at the beginning of

the trace which can contain static and variable events with the former remaining unchanged during

the trace duration such as system call tables and the latter being subject to change such as number of

active processes). Scheduling events could be used to recover CPU usage metrics. If no process ran

on a CPU, then the kernel made the swapper process run on the CPU and the CPU was considered

to be idle. Total CPU time could be calculated as the time when the CPU was not idle. Tracepoints

related to memory usage could be used to derive memory usage metrics. vm state.vm map, for

instance stores the system memory usage at the beginning of the trace. page alloc and page free

indicates allocation activity. Similarly, file manipulation activity could be monitored via open, read,

write and close system calls. Network usage metrics could be derived from network event payloads

and individual packets could be traced. Block I/O scheduling could be observed via block level tra-

cepoints. Request additions, merging and completion times indicated block I/O activity. High disk

offset could affect performance and could be calculated via fs issue rq event. Individual requests

could also be mapped to the inode via bio remap event.

Daoud et al. [21] carried out a stateful analysis of block device performance by introducing a

framework to compute meaningful storage performance metrics from low level kernel trace events.

The trace events were fed into a model generator which then computed the necessary metrics and

fed them into a visualization system. They introduced an LTTng module based on Kprobes and

introduced three static tracepoints into the kernel. All the required computations were done when
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the trace was read for the first time. A state history database stored the metrics and then generated

the statistics for an arbitrary period in the trace. An attribute tree and a state history tree wer used

as data structures to store attributes such as process name, PID, CPU etc. They also developed two

views for TraceCompass - latency distribution view and latency scatter chart. The requests view

showed the contents of the waiting queue as well as the dispatch queue. The metrics computed were

disk utilization, latency (time required by the disk to process an I/O request), seek time (time taken

by the mechanical head to reach a sector) and queue length. Disk utilization is the amount of time

the disk is busy where business refers to at least one I/O request being processed.

Francisco de Melo jr. et al. [56] introduced an automatic solution to group metrics using a

call context tree data structure and find performance issues. The first step was to trace the pro-

gram execution using LTTng including performance metrics such as cache-misses, page faults and

scheduling switches using perf counter tools in Linux. Then, the trace was divided into segments

containing different instances so that they could be compared. File openings could be delimited by

sys open and sys exit. Comparable information was stored in ECCTs (Enhanced Calling Context

Tree) where individual nodes represented a call and its related information was stored in the nodes.

This also enabled offline analysis. Existing Linux kernel events or LTTng UST probes included in

the code could be used to identify the start and endpoints of each execution. Then, the number of

groups of execution was measured using the elbow method which compared the sum of the squared

errors (SSEs). Heuristic evaluations could also compare different SSE values. Several runs of clas-

sifications wer made and the one with the least number of SSEs was extracted. Then association

rules wer run to find the root cause. The authors used this technique to optimize the cache in a server

application and to detect regressions in OpenCV.

Rezazdeh et al. [57] proposed a multi-level critical path analysis algorithm to capture thread

dependencies causing lock contention and present tools and visual analyses in order to visualize

lock contentions. They recorded traces from the kernel as well as the user-space in order to achieve

this as spin locks were implemented in the user space. The authors instrumented Pthread libraries

using the LD PRELOAD technique so that applications could be instrumented non-invasively. They

instrumented mutex lock requests, acquisitions alongside spin-lock and semaphores. Wrappers re-

placed the lock functions which contained the tracepoints and called the replaced functions. The
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authors developed a stateful model with the states being stored in the state database system. The

trace events wer converted into state values using the State Provider. The authors then extended the

critical path algorithm in Giraldeau et al. [58] to analyze user level events as well. Their modified

algorithm built an execution graph using locking data which was a two dimensional sparse matrix.

The horizontal edges showed the thread’s state changes whereas the vertical edges showed links

between threads and their blocking dependencies. The critical path was extracted recursively by

replacing the waiting edges of a thread with the edges of the waking thread. The authors developed

views like the wait-block analysis view which displayed locking dependencies and helped detect

bottlenecks. The critical flow view showed execution dependencies between participating tasks.

Using theses analyses, the authors evaluated contention in the Apache web server and zero in on

OPCache which caused contention in cache memory.

Doray et al. [23] introduced a framework called TraceCompare that automatically detected

execution differences between several executions of the same task at the user-space and kernel

levels. Their comparison algorithm took into account all factors that affected performance such as

on-CPU and off-CPU wait times and process interference. The problems detected were also mapped

to the source code. A data model was constructed which would summarize all the performance

characteristics of task executions alongside algorithms that built a database from the traces. The

authors introduced a data structure called enhanced calling context tree (ECCT) which represented

the performance characteristics. It represented all the latency that affected task duration as well as

the captured call stacks for each thread which connected the latency to the task. Existing Linux

events wer used as delimiters along with statically inserted LTTng-UST probes. TraceCompare

used a critical path algorithm developed by the authors themselves in order to find all the latency

dependencies of a task. Once the critical path had been computed, an ECCT was generated and

global execution metrics calculated. After that, the ECCT was stored in the database for comparison.

The metrics could be context specific like page faults or memory consumption. Once the execution

ECCT had been saved to a database, comparisons had to be made in order to determine problems.

Filters, flame graphs and execution lists were used for this purpose. Filters were used to compare

two groups of executions with reference to one or more metrics. Differential flame graphs were

generated from the ECCTs and showed call stacks of every thread in the chain of dependencies.

24



Call stacks were useful as it helped developers quickly find the area of the source code responsible

for the latency. The authors used TraceCompare to detect disk contention in a server application,

CPU contention in a real time application (by comparing slower executions with the normal ones)

and lock contention in MongoDB.

2.2.2 Performance Analysis using Tracing

Fournier et al. [24] introduced an approach for analyzing blocking in multi core applications

using LTTV Delay Analyzer in order to see how the time elapsed could be divided into its constituent

waiting components. The authors instrumented scheduling changes (preemption, blocking), process

wake ups, IRQ entry/exit, softIRQ entry/exit and process forks. The architecture comprised of two

state machines - Control Flow State Stack and Working/Interrupted/Blocked State. The former is

a stack of execution states that the control flow passes through such as running in user-space, in

another interrupt or in a system call. The stack helped deduce the control flow states while reading

the trace. The WIB State is a higher level abstraction that can take values like Working (when

the task is executing), Interrupted (if an IRQ interrupts the task) or Blocked. The framework also

required a state hold-back mechanism as the information associated with some events came after

the event had taken place. The LTTV Delay Analyzer produced reports based on the state machine

which helped developers analyze latency.

Ezzati-Jivan et al. [25] used system level tracing to extract a dependency graph of a task in

its critical path to show its breakdown among all interleaving threads and resources. The trace

files were processed to construct a state database and then a novel algorithm was used to construct

the dependency graph from the state database. Finally, multiple dependency graphs belonging to

different executions were analyzed, grouped and merged to find out the root cause of the latency.

The authors used LTTng to collect the traces. The state database comprised of states like running,

runnable, preempted and blocked. When it comes to waiting dependency, there can be two types

of dependencies : direct and indirect. Direct dependency is when a thread explicitly waits for

another thread to wake up the former. Indirect dependency is when threads compete with each

other for accessing a resource without any direct causal relationship between them. When multiple

depGraphs wer generated corresponding to the execution traces, they wer grouped according to
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certain parameters such as number of page faults, number of disk accesses, etc. The authors used

k-means clustering to group these graphs so that the outliers could be studied. The root causes

could be found out by comparing graphs from different clusters such as normal executions versus

abnormal ones. Bold lines and dashed lines were used to visualize similar calls and dissimilar calls

respectively.The authors used this approach to detect lock contention in an Apache server and CPU

contention in a real time task.

Nair et al. [59] introduced GAPP, which is a tool that identifies serialization bottlenecks in

parallel Linux applications from execution traces. It makes use of the eBPF framework as it utilizes

its probes to trace context switching events. Serialization bottlenecks wer detected using the thread

criticality metric. A thread with a high criticality metric suggested serialization which could be

a cause of bottleneck. The criticality metric was calculated by weighing every running thread’s

execution time by the number of active threads. This metric was calculated at the end of every

execution timeslice. The criticality metric was the sum of contributions from every interval that took

place during the timeslice. The authors used eBPF framework to keep track of all active threads.

Whenever the parallelism for a given timeslice went below a certain threshold, the tool recorded the

stack trace so that developers could exactly pinpoint the bottleneck in the source code. Lyons et al.

extended GAPP by augmenting the stack traces generated by the tool and classifying the type of

bottleneck detected. They also tracked kernel level synchronization calls (futexes) to analyze locks

which were critical. This extension then provided a summary of the most critical individual file and

synchronizations. All this was done without needing source code instrumentation17.

Dean et al. [60] introduced PerfCompass, which is an online anomaly fault localization tool

designed to categorize global faults and local faults in IaaS (Infrastructure as a Service) clouds.

Faults having a global impact can affect almost all the threads of an application when it surfaces

whereas faults with local impact will only affect a subset of the threads. The tool uses lightweight

system call tracing to continuously record system calls. Fault localization was performed using four

main steps. Initially, the trace was segmented into groups of closely related system calls called

execution units. These units were then processed to extract a set of fine-grained fault features (for
17https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/1819-ug-

projects/Davies-LyonsA-IO-bottleneck-detection-in-the-Linux-kernel.pdf
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example, threads that were affected by the fault and how quickly the fault propagated). After that,

these features were used to categorize local and global faults and the root cause was determined to be

either an external environment issue or an internal software bug. PerfCompass also detects the top

affected system calls and ranks them. The tool has four components: execution unit extraction, fault

onset time identification, fault differentiation and affected system call ranking. The fault is initially

quantified as global or local. Then, PerCompass suggests if the root cause is external or internal and

ultimately provides a ranked system call analysis for developers and system administrators. Suitable

metrics are calculated to answer questions such as the threads affected by the fault and how quickly

they are affected. The metrics are fault onset time and fault impact factor. The former answers how

quickly a thread is affected by a fault and the latter computes the percentage of threads affected by

the fault. Another metric, fault onset time dispersion metric, quantifies the differences among the

fault onset time values. Some of the external faults detected were CPU cap problem, memory cap

problem and packet loss whereas some of the internal faults detected were deadlocks, infinite wait

bug and data flushing bug.

Alam et al. [61] categorized, detected and diagnosed synchronization issues using SyncPerf. It

processes information based on call-sites, lock variables and thread types to identify problems. It

also provides a secondary analysis tool that collects information from critical sections to perform

root cause analysis. The paper divided synchronization issues into 5 categories: improper primi-

tives, improper granularity, over-synchronization, asymmetric contention and load imbalance. The

study found out that multiple root causes could cause a single symptom. Two of the synchronization

issues in this paper (Asymmetric Contention and Excessive synchronization) feature in our thesis.

However our detection method differs from those of the authors. The authors showed that perfor-

mance problems could also occur in locks that were not excessively acquired or highly contented.

The length of a critical section could slow down execution even if the lock guarding it was not ex-

cessively acquired. Locks which were excessively acquired could cause overhead even though they

were not be highly contended. SyncPerf provides two tools: a detection tool and a diagnostic tool.

The detection tool uses lightweight profiling to detect issues and diagnose root cause for asymmet-

ric contention, try lock failures and load imbalance problems. The diagnosis tool checks memory

accesses in critical sections using binary instrumentation. This analysis is somewhat heavy-weight
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and is used only when the detection tool cannot diagnose problems easily. Data collection is per-

formed by instrumenting pthread synchronization primitives. It uses indirection to avoid lookup

overhead and a per thread data structure to avoid cache-coherence traffic as using a global hash

table would induce significant overhead. It also collects call-site information for synchronization

operations for developers to localize the issue in the source code. After the analysis is completed,

SyncPerf generates a report in two steps. The first step is to combine all thread-wise data of a syn-

chronization operation together and check for lock contentions, acquisitions, and try lock failures

and report potential problems. The second step is to check call-sites with similar lock behaviour.

Orero et al. [62] designed a PoC (Proof of Concept) in order to remedy writeback cache latency

and lockups. Linux uses a writeback mechanism in order to commit to disk all the dirty pages at once

instead of writing files to disk every time a change is made. The changes are, meanwhile, stored in

the cache which is located in the main memory. This writeback mechanism caused cache flushes

which were responsible for considerable latency and lags in the presence of processes that wrote

to the cache heavily. Writing a lot of data to cache forced it to ’evict’ pages which have not been

used in a while and thus initiate writeback. In order to ensure that the cache doesn’t fill up quickly,

the kernel ’throttles’ the task. However, the authors found out that this throttling was indiscriminate

and many tasks which were not write-heavy ended up being throttled as well. In order to study this

phenomena, the authors decided to interface with the kernel tracer, simulate heavy write behaviour

and analyze the results. They used the global dirty state tracepoint to get a snapshot of the cache

state. Then, they wrote a tool using NodeJS which would plot all the important variables in real-time

such as number of dirty pages, global dirty states and thresholds. Then, the authors setup a variety

of loads including offending (write heavy) and innocent processes. After the experiments were run,

the data was analyzed using a Jupyter, NumPy and MatPlotLib setup. The authors realized that the

long pauses could be mitigated by some extent by simply using the BFQ scheduler. The PoC was

designed by creating a daemon which would monitor the tasks in the system, identify the offending

processes based on a criteria and lower their I/O priority so that they do not affect other tasks.

Matias et al. [63] have used the Linux kernel instrumentation to study software aging. Soft-

ware aging occurs in continuously running software systems which may lead to failures owing to

aging related reasons. These problems could be data inconsistency, numerical errors and saturation
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of resources. The authors performed two types of experiments in order to demonstrate how kernel

instrumentation could be leveraged to measure aging related effects. The first one involved mem-

ory leaks and the second experiment involved memory fragmentation. In order to detect memory

leaks, the authors wrote a SystemTap script to count the number of times the Socket Buffer (SKB)

allocation and free functions were called and displayed the information every second. If the differ-

ence between allocations and frees was more than zero then it suggested a memory leak. In case

of memory fragmentation, the authors used the mm page alloc extfrag tracepoint in order to deter-

mine the degree of fragmentation. They used a SystemTap script to determine if the allocation order

was greater than the fallback order. The authors then devised several workloads and monitored the

fragmentation tracepoint. Some of these workloads belonged to a set of scripts called the Linux Test

Project (LTP). Based on their experiments the authors found out that memory allocation operations

and filesystems showed the most fragmentation.

2.3 Discussion

The literature review delves deep into the different trace analysis approaches taken in previous

work. As per our knowledge, no comprehensive study exists on detecting, extracting, catalogu-

ing and formalizing performance analysis patterns from trace files. Vostokov’s work comes close,

however, his collection of trace analysis patterns deal with patterns present in the traces themselves

alongside memory and crash dump analysis. The patterns that we present here represent various

performance issues and avenues of optimization in the Linux operating system. We also use tem-

poral logic, run-time monitoring and EASE scripting to detect these patterns which has not been

attempted before. We also leverage the power of eBPF tools and bpftrace scripting to generate

traces which are in turn fed to run-time monitoring frameworks to detect performance anomalies.

We hope that more patterns will be added to this catalog as sophisticated tracing frameworks are

developed along with stream processing tools.
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Chapter 3

A Catalogue of Performance Analysis

Patterns

3.1 Introduction

In this chapter, we present the catalogue of performance analysis patterns which can be clas-

sified into two types (Figure 3.1). The first type of classification is contingent upon the scope at

which these patterns occur generally. The scope may be an entire Linux subsystem, the hardware

level or the application level. The second type of classification is based on the complexity of the pat-

terns themselves. Some patterns such as memory fragmentation and TCP packet drops are simple

enough to be detected and formalized by temporal language and run-time monitoring. Other pat-

terns are more complex and needs scripting using a trace analysis framework or stream processing

frameworks.

The categorization of performance analysis patterns is as follows:

• Patterns falling under the scope of an individual Linux Subsystem (Figure 3.2)

◦ Memory Management

◦ Thread Scheduling

◦ Disk Scheduling (I/O)

◦ Network Stack
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• Patterns falling under the scope of a context (Figure 3.3)

◦ Synchronization Context (Regulating resource access in multi-threaded applications)

◦ Application Context

◦ Hardware Context (Hardware Performance Counters)

Figure 3.1: A broad classification of Performance Analysis Patterns

Figure 3.2: Patterns under the Linux subsystem

The individual patterns are described in the following template: a brief summary which de-

scribes the objective of the pattern, how it is situated in its subsystem or context scope, how it can

be detected, its formalization (if applicable) and the data source such as tracepoints or kprobes that

can be used to detect the pattern.
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Figure 3.3: Patterns under a context scope

3.2 Memory Management

3.2.1 Memory Fragmentation

Summary

Memory fragmentation is a phenomenon that affects dynamic memory allocators in operating

systems and leads to loss of efficient memory utilization. Fragmentation can be of two types: inter-

nal and external. Internal fragmentation can be said to occur when a larger-than-required free block

is allocated by the allocator instead of allocating the exact requested block size. Linux makes use of

the slab allocator in order to tackle this feature [64]. External memory fragmentation occurs when

a high order memory allocation request fails owing to the fragmentation of memory into smaller

blocks even though there is enough free memory in totality [65].

Once reason why memory fragmentation and memory leaks (featured in the next section) must

be understood and dealt with accordingly is because these memory related defects contribute to

software aging [66]. Software aging is a phenomenon where long running software systems witness

gradual performance degradation [67]. Aging software may not be able to keep up with client

requirements and their performance may dip considerably causing the software system to respond

slowly, crash or fail altogether.

Since Linux uses virtual memory [68], fragmentation can be difficult to observe as non con-

tiguous memory blocks can be arranged via page tables in the form of virtually contiguous blocks.
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However, the problem starts when physically contiguous memory blocks are required. Memory

fragmentation can occur both in user-space and in the kernel-space. Memory fragmentation in user-

space affects only the user applications, however kernel level fragmentation can affect the whole

system [69], [66]. Processes need memory allocators to handle dynamic memory allocation re-

quests using functions such as malloc(), realloc() and free(). These functions belong to a standard

library which is linked to applications. When a memory request exceeds the available memory in

the heap (the part of the main memory pre-reserved for the process which can dynamically grow

and shrink as per program requirements) the allocator asks for more memory from the OS [70]. The

allocator uses the system call sbrk() to provide new arenas (sub-heaps) for the caller process [71].

We can use LTTng to trace these system calls and check the amount of memory that the process has

asked for. If the available heap memory is greater than the amount of memory requested, then we

can be sure that fragmentation has occurred in the heap.

Detection

Some services and I/O devices require contiguous memory blocks [72]. If the device does not

have IOMMU (which allocates contiguous buffers to non contiguous physical memory blocks) then

fragmentation can be a real concern. In this case, we make use of the mm page alloc extfrag trace-

point to detect fragmentation status. The number of times this event occurs shows how severe the

fragmentation is. We have access to two variables in this tracepoint: alloc order and fallback order.

If the latter is lesser than the former then fragmentation has reached unhealthy levels and further

higher order allocations would not be possible. Matias et al. [63] have also performed similar

experiments on fragmentation as a yardstick of software aging using this tracepoint.

3.2.2 Memory Leaks

Summary

Memory leaks occur when allocated memory is not freed after usage. It can also happen when

the allocation pointer is deleted which renders the corresponding block of memory unusable. Mem-

ory leaks can cause many performance problems as they lead to spikes in paging activities, thrashing
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and an eventual memory shortage. Leaks are especially prone to occur in C/C++ programs since

programmers can allocate/de-allocate memory dynamically [73].

Detection

There are several tracing based tools to detect memory leaks such as Valgrind’s memcheck1.

It basically keeps track of all calls to memory allocating functions like malloc() and reports in-

stances where memory is not freed after usage and classifies them into leak categories such as ”Still

reachable”, ”Definitely lost”, ”Indirectly lost” and ”Possibly lost”. However, the use of Valgrind’s

memcheck can slow the application.

Memory allocator functions such as malloc(), calloc(), realloc() can also be traced directly using

eBPF and/or perf and their stack traces studied for leak code paths. However, this might have a high

overhead as these functions can be called many thousands of times per second [74]. A BCC tool

memleak2 also exists which checks for allocations that have not been freed in a given time interval.

It hooks on to memory sub-system tracepoints such as kmalloc and kfree. It also attaches probes to

allocator functions.

Memory leaks can be very common in applications and are easy to replicate. Tracing allocator

functions is one way to detect these leaks. Memory leaks can be formalized as a specification using

LTL-TK. A memory leak occurs when allocated memory blocks are not freed. Therefore, every

allocated memory block should have a corresponding event where the block is freed. We use this

specification written in LTL-TK:

(∃>0(C⊤
ϕ − C⊤

ψ )) → Flog

where ϕ denotes a malloc() operation and ψ denotes a free() operation. We use the existential

quantifier ∃ to count the number of times malloc() operations exceed free() operations and log it

when the count is greater than 0. However, this can only be an indication of a leak. It is not

abnormal for memory allocations to not have a corresponding de-allocation. Hence, this is an

undecidable pattern where a complete and correct solution is not possible. Advanced tools can
1https://valgrind.org/docs/manual/mc-manual.html
2https://github.com/iovisor/bcc/blob/master/tools/memleak.py
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present call stacks where allocated memory has not been freed and the rest is up to the user to

determine if memory has leaked.

Therefore, detecting memory leaks is not a trivial task. It can slow down applications as memory

allocations and de-allocations occur many times per second. Once memory which has not been freed

after allocation is found, a call stack analysis is conducted to find out the code-path where the leaked

pages originated from.

3.2.3 Tracing Processes Affected by the OOM Killer

Summary

Every process has its own address space containing all the addresses that the process may legally

use. Sometimes, processes do not require all the addresses included in their address space and it

is possible that some addresses may never be used. In order to utilize free memory efficiently, the

Linux kernel employs a dynamic memory allocation technique called demand paging where page

frame allocation is deferred till the last moment when the process actually ’touches’ or utilizes the

memory it has been allocated. If the process tries to access an address that is not present in the

RAM, a page fault exception occurs and then the page frame is allocated [70]. Since, the Linux

virtual memory can be much larger than the actual physical memory [75], it may lead to a situation

where the kernel commits memory greater than the actual physical memory of the system.

The kernel over-committing memory does not generally cause system slowdowns. However, if

more and more processes actually start using the memory allocated to them then the system will

find itself in a critical situation where it will be rapidly running out of free memory as the processes

would need more memory than the available physical memory. The kernel is now unable to free

memory as the disk caches are already depleted and swap memory is full. This could freeze the

entire system and needs to be resolved as soon as possible. When the kernel Page Frame Reclaiming

Algorithm (PFRA) is unable to allocate free page frames, it calls the out of memory() function

which in turn, selects a sacrificial process amongst the other running processes which must be

killed off in order to reclaim free memory critical for the system to function [70]. Before that,

the out of memory() function performs a series of checks to validate if the system has indeed run

35



out of memory such as checking for available swap space, the number of process failures in the

last 5 seconds and so on [68]. Once all these checks are passed, the oom kill() is called. This

function has two tasks - to select a process which must be killed off to reclaim memory and to call

the oom kill task process a.k.a the Linux OOM(Out of Memory) Killer which kills off the chosen

sacrificial task.

Selecting the sacrificial process is carried out via select bad process which assigns a badness

score to each process [70]. The higher the badness score, the greater the chance to be killed off by

the OOM killer. This score is dependent upon certain factors such as short-lived processes hogging

a large amount of memory and making sure that the minimum number of processes are killed. This

situation is, obviously, not ideal. However, it is a sacrifice that must be made for the sake of overall

system stability. Considering all factors, the OOM killer sets an OOM score for every task. This

score can be manipulated to ensure that certain tasks are not killed off under any circumstances or

vice-versa - where a certain task is chosen to be killed off first whenever free memory is critically

low. The OOM score of any process can be easily found out via the /proc interface using the task’s

process ID. The OOM killer can itself be disabled. However, it must be done with caution. It can

also be explicitly called by the user.

The OOM killer checks the adjusted OOM score of every process before going ahead with

killing the process. The oom adj score is scaled from -17 to 15 with the positive scores implying

greater liability to be killed off by the OOM killer [76]. Hence, if the oom adj score is -17, it implies

that the task will never be killed off by the OOM killer as it will have a score outside the acceptable

range. In order to check why a particular task has been killed by the killer, the user can refer to

system logs.

Detection

The OOM killer function can be traced using the EBPF infrastructure in the Linux kernel with

the help of BCC/bpftrace tools and scripts. Tools based off dynamic EBPF tracing to detect OOM

killings are also available in the market such as Instana’s Crash Detector 3. Brendan Gregg has also

created a bpftrace tool - killsnoop [36] for the same purpose which can be found in the bpftools suite
3https://www.instana.com/blog/solving-the-out-of-memory-killer-puzzle/
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which can be installed in the system. Using bpftrace scripting, kprobes can be used in order to trace

out-of-memory process killings. In this case, the kprobe will trace the oom kill process function,

and with the help of powerful bpftrace builtin variables, a wealth of information can be obtained

in real-time such as the sacrificial process as well as the process that initiated the OOM killing.

A bpftrace script can be written which hooks into the oom kill process function and a real-time

trace can be generated as well which can be fed into run-time verification tools using specification

languages. The details of the sacrificial process would be found in the struct oom control which

forms an argument to the oom kill process function. The process that triggers the OOM killing can

be fetched via built-in bpftrace variables which would be able to access the said details from the

kprobe itself.

3.2.4 Memory Compaction Overhead

Summary

As Linux supports virtual memory, the translation of virtual memory address to its correspond-

ing physical memory address can be sped up by using the Translation Lookaside Buffer [77]. This

ensures that the master tables in the main memory do not have to be referred which can save a

considerable number of CPU cycles. If the master table has to be referred, then a TLB miss occurs

which may have as significant an impact as CPU cache misses [78]. In order to increase the rate of

TLB hits, modern processors support large page sizes which can be as large as a gigabyte. However,

the problem is that it would require the physical memory for the page entry to be contiguous. This is

where memory compaction comes into the picture. Memory compaction is a process which ensures

the presence of fewer, but larger contiguous, free memory blocks [79].

With time, memory tends to fragment as the OS allocates blocks of memory to many different

tasks and large contiguous blocks get split into smaller and smaller blocks of memory. If the system

is using hugepages then the problem is compounded as hugepages need large contiguous blocks of

memories. Gorman et al. [79] show how previous techniques used (such as memory reclaim) to

curb fragmentation nullify the advantages of using huge pages and introduce a memory compaction

algorithm which would ensure that contiguous memory allocations are possible.
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The compaction algorithm features two scanners. The free page scanner moves from right to

left looking for MOVABLE pages and storing the free pages in a private list. The migration scanner

moves from left to right and looks for the least recently used (LRU) pages which have a higher

chance of being migratable. Compaction ends as the two scanners encounter each other. After that,

the free pages are moved to the left whereas the allocated pages are coalesced together to the right to

allow for the creation of a contiguous chunk of free pages. This process can be triggered manually

via the /proc/sys/vm/compact memory command.

In kernel versions 5 and above, proactive compaction is introduced which performs memory

compaction in the background. The problem with on-demand compaction is that it compacts only

the required memory so that a single page is available of the required size. This can hurt applications

that need a large number of huge pages in a small amount of time [80]. Sometimes, the compaction

process loops several times in order to achieve a suitable compaction degree and can cause high

CPU utilization and CPU spikes. The latency can also be compounded if the system is trying to

directly reclaim memory at the same time.

Detection

There are several kernel tracepoints which can be hooked into in order to provide compaction

statistics and thus determine if compaction is responsible for slow workloads. There is also a BCC

tool compactsnoop [36] that provides compaction statistics. For tracing compaction latency we

wrote a simple bpftrace script that traces the compaction time and outputs a histogram according ac-

cording to the latency. The tracepoints that we used are tracepoint:compaction:mm compaction begin

and tracepoint:compaction:mm compaction end.
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3.3 Thread Scheduling

3.3.1 Thread Swamping

Summary

Computing involves a great deal of resource management. Resources can be shared in time and

space. This act of sharing is known as multiplexing. A system having a single CPU running multiple

programs must ensure that each program gets to run on the CPU for a certain time period. The CPU

scheduler is responsible for determining how CPU time is shared. When a CPU is running a task,

it might need to process tasks of higher priority such as hardware interrupts. Instead of stopping

the execution of the task, multitasking ensures that the state of the program is saved so that it can

resume processing later. This process is known as a context switch and it requires registers and

memory maps to be loaded, various tables and lists and the memory cache to be updated [81]. If a

program needs to access a peripheral, or to wait for a request to be completed, it can relinquish CPU

access so that the CPU can switch to another task instead of waiting for the program to resume. For

optimal performance, CPU timeslice management between multiple programs must be efficient.

In this performance pattern we shall be examining a specific case where application performance

suffers because its thread spends a lot of time waiting for CPU time slices. This is because another

application, that is running concurrently is swamping the CPU with too many threads. This can be

categorized as an external fault because it stems from interference from other co-located applica-

tions. A more complex case is investigated in 3.3.4 where we witness threads of a single application

swamping each other; holding up progress.

Detection

We shall be using two metrics - TD and TCD, in order to analyze this pattern.

Thread duration [TD]: The total duration of the thread in the trace

Thread On CPU duration [TCD]: The total duration of time the thread gets to run on CPU

(Ignoring periods when the thread voluntarily yields to the scheduler)
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Execution Ratio:
TCD

TD

A higher Execution Ratio implies a lesser degree of thread swamping.

A sched switch is a Linux kernel event that is triggered when a new process executes on the

CPU. It represents a context switch. The contents are as follows: prev comm=Thread1,prev tid=57062,prev prio=20,prev state=TASK RUNNING,

next comm=stress, next tid=57079,next prio=20

We can get the thread name and ID of the thread that is being stopped and the next thread

that will run on the CPU. We also get the priority of the thread. In this particular case, Thread1

is our Java application thread which is being blocked so that the stress thread can be executed on

the CPU. It is also important to note the prev state parameter which tells us the state of the thread

when it was interrupted such as TASK RUNNING, TASK INTERRUPTED and TASK WAKING.

In this scenario we are only interested in the state TASK RUNNING because this suggests that the

thread was blocked while doing useful work. Not all preemptions are forced. Sometimes threads

are blocked when they are waiting for I/O or data as well and they yield to the scheduler so that

another thread can run in its stead.

3.3.2 Unfair Scheduling

Summary

Linux is a multitasking operating system. This means that several processes can run on a single

processor which has finite processor time. The process scheduler is responsible for ensuring that

multitasking is possible by governing which process can run on the CPU and for how long. The

scheduler must ensure that as long as there are runnable processes, a process must be running

on the CPU. When a process runs on the CPU, several processes would be waiting to run next.

The scheduler decides which processor would be allotted the next CPU timeslice. Most modern

operating systems implement preemptive multitasking where the scheduler has the power to preempt

(involuntary suspension) a running process as well. In order to maintain system responsiveness and

throughput, scheduler behaviour can be dictated via policies. A process is scheduled to be executed

based on its priority and nice value. Thread priority is simply how important the thread is. The
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nice value, on the other hand, is the degree of accommodation that a thread is willing to grant other

threads. These values can be changed by the scheduler anytime to account for changes in execution

conditions. [82].

Modern multiprocessor systems can have multiple workloads running in parallel - many times

in conflict (considering limited system resources) and often supervised by different users. This can

create complications for the scheduler when it comes to fairness. The idea of fairness when it comes

to process scheduling implies that all runnable threads in parallel are allocated a fair share of the

system resources. However, this can be difficult to achieve in practice.

In order to achieve a degree of fairness in task scheduling, the scheduler takes in to account

several load metrics. One such example would be per-entity load tracking (PELT) where individ-

ual scheduling entities such as a process or a process control group is tracked instead of tracking

individual per-cpu run queues [83], [84].

The scheduler has a load balancing algorithm that is tasked with placing tasks on CPUs in such

a way that the overall throughput of the system is stable and none of the CPU cores are overloaded.

It monitors the system periodically in order to determine which tasks have to be migrated in order

to ensure fair distribution of system resources. However, this can be difficult to achieve as the

algorithm has to take into account asymmetrical CPU topologies and outdated load metrics which

need to be updated [85].

Biased statistics can show a current group as overloaded when in reality it is not and the sched-

uler initiates a migration as a result. This would result in a task placement that is not optimal and

affect system performance. This could lead to situations where certain CPU cores are overloaded

despite the presence of one or two idle cores. The presence of out-of-date heuristics can also mud-

dle up the process. An example would be the removal of the runnable load avg signal in favor of

runnable avg by Vincent Guittot (whose session at the 2020 Power Management and Scheduling in

the Linux Kernel Summit (OSPM) inspired this performance pattern 4) to address a problem seen in

capacity tracking during task migration. Another scenario where scheduling can be unfair would be

a workload profile that inherently cannot be balanced. For example a 9 threads running on an 8 core

system, or 3 tasks running on 2 CPUs which would be a mismatch between load granularity and
4http://retis.sssup.it/ospm-summit/
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CPU topology. Sometimes the load balancing results in a single task being unfairly singled out for

migration which would result in the task getting less CPU time and conversely, other tasks getting

more than their fair share of allotted CPU time-slices. This ’unfair’ task choice occurs because of

a synchronization between the scheduling period and the load-balancer which results in the same

task waiting to run. This imbalance can be fixed by tweaking the load-balancing intervals. Active

load-balancing should also be reduced as they invariably end up migrating tasks that should not be

removed after failed attempts at load-balancing [86].

Detection

Scheduling problems can be detected using tracing. There are several tracepoints in the Linux

kernel related to scheduling which can be activated such as sched migrate task and the run-time

execution traced. Trace Compass has several views such as the Resource view which can help

developers identify tasks that were repeatedly and/or unfairly migrated. On CPU time can also be

calculated using an EASE script.

3.3.3 Priority Inversion

Summary

Multi-threaded applications are often synchronized to ensure proper access to shared resources

[87]. In such a scenario it is critical to ensure that the threads are sequenced in the order of their

individual priorities. This is known as priority scheduling [88]. Individual threads have priorities

assigned to them based on their importance. The idea is to make sure that higher priority threads get

more CPU time slices to run. A good example of priority assignment heuristic would be to assign

high priorities to threads that need to respond in a short time. Therefore, priority scheduling ensures

that the system executes the task with the highest priority first.

However, this does not always happen. Circumstances leading to the violation of priority

scheduling - such that a thread with a high priority is blocked from accessing a shared resource

by a thread of lower priority, are referred to as priority inversion events[89]. This happens when

tasks of different priorities contend for shared resources. Although it is not possible to completely
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eliminate priority inversion, it is important to make sure that the correctness of the application is not

affected.

Priority inversion can be either Bounded or Unbounded [90]. A bounded priority inversion is a

scenario where a higher priority thread is blocked by a lower priority thread for a bounded time after

which access to the resource is guaranteed. An unbounded priority scenario, however, is when the

high priority thread is blocked indefinitely by a lower priority thread which can lead to deadlock and

subsequent system unresponsiveness. Priority inversion cannot be completely eliminated, however

it can be minimized. There are several well documented strategies to avoid priority inversion such

as Priority Inheritance Protocol and disabling interrupts [91].

Detection

Priority inversion can be detected from application traces loaded onto Trace Compass. Having

said that, programmers do not usually go looking for instances of priority inversion unless there is

a good reason to do so. A common symptom of unbounded priority inversion is threads slowing

down or being preempted for abnormally long times. Trace Compass has a critical path view which

can be used to isolate the said thread and find out whether it has been blocked by a thread of a lower

priority. One can also find the precise time during which the thread was blocked.

The sched switch event stores the priorities for the previous and next events in the fields prev prio

and next prio. This priority information is crucial to understanding instances of priority inversion.

Using this information in the context of an isolated thread in the Critical Path View will help pro-

grammers quickly understand the root cause of performance issues as they realize that a priority

inversion scenario has occurred and they can deploy strategies to fix it.

3.3.4 Sub-Optimal Threading

Summary

Thread level parallelism is often used to take advantage of modern multi-core processors in

order to eke out a greater performance boost such as improved responsiveness and better throughput.

Processes can spawn multiple threads that divide tasks among themselves in order to achieve a high
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degree of parallelism [78].

It is important for applications to strike a right balance when it comes to the number of threads

being used. If an application uses a single thread, then it cannot take advantage of multi-core

processors, thus leaving processor cores unutilized. However, using too many threads can produce

its own set of unique challenges. Researchers [92], [93] have shown that using an excessive number

of threads can make the application run slower owing to contention of shared resources. Multi-

threading can also be very difficult to debug and is prone to race conditions [94]. Too many worker

threads can swamp other application threads as well. Threads have their own stacks [95]. Therefore

lots of threads can, in theory, consume a lot of memory. Threads can even exhaust the system’s

virtual memory if they are improperly used. Schedulers allocate CPU time slices for individual

threads. A sub-optimal number of threads may start competing with each other against limited CPU

time. Improper lock granularity can cause numerous threads to wait for one lock to be accessible.

Tools such as Thread Tailor [96] have been proposed to dynamically adjusts the number of threads in

an application to achieve optimal efficiency. The experiments carried on the fluidanimate benchmark

carried out by the authors demonstrate that the application performs best with 4 threads - 12% better

than 8 threads and a whopping 75% better than 2.

Thus, using too few threads - which leads to unutilized CPU cores- and using too many threads -

which can quickly overwhelm limited system resources - is a performance pattern that we can term

as Sub-optimal Threading.

Detection

Application tracing is a dynamic snapshot of the run-time environment of an application. sched

tracepoints such as sched switch, sched waking, sched wakeup, sched process fork can be used to

delineate thread related events. The trace can then be loaded onto Trace Compass and individual

threads can be studied. Views can also help in analyzing thread resource usage. Based off this

information, developers can decide if threading has been optimally used or not. Context switching

overhead can also be individually calculated using appropriate scripts.
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3.3.5 Thread Scheduler Latency

Summary

CPU scheduler latency can be an indicator of CPU saturation [36]. If there are more tasks than

the total number of cores then tasks can witness a long waiting period till they get a chance to run on

the CPU. If CPU utilization is low, then tasks are quickly serviced with low wait periods. Otherwise,

there can be considerable latency up to millisecond level. This can happen in scenarios where the

number of parallel tasks is greater than the number of CPU cores.

Detection

Scheduler latency can be determined by tracing the moment when a thread is waken up till it

gets a chance to run on a CPU core. This can be done by instrumenting scheduler wakeup events

and scheduler switch events.

3.4 Disk Scheduling (I/O)

3.4.1 I/O Scheduler Overhead

Summary

The I/O (Input-Output) process encapsulates data transfer between memory and peripheral de-

vices such as secondary storage and I/O devices such as a mouse and a keyboard, printers, etc. Disk

I/O - which refers to input/output operations performed on a physical hard disk drive, can often

bottleneck performance owing to the considerably slower rate of data transfer compared to that of a

standard CPU. If I/O transactions are not efficiently managed, then these waiting times can snowball

into major performance hits [97].

Thus, the I/O scheduler is employed to streamline this process. Its main object is to minimize

I/O request latency and ensure that the I/O requests are fairly and quickly met, thus increasing disk

throughput. Schedulers have the ability to store and reorder events to improve performance. They

use techniques such as merging adjacent requests to reduce seeking and expanding I/O system call
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sizes, ordering requests on the basis of physical location and prioritizing requests. There is no

one-size-fits-all scheduler that can be used regardless of the load profile and/or the hardware[98].

Schedulers could be chosen according to specific system performance goals. Embedded sys-

tems, for example, require low input latency. An absence of any kind of I/O scheduler would result

in every I/O request interrupting the kernel so that the request could be fulfilled. This would slow

down the system. Using the (Budget Fair Queuing) BFQ scheduler (which has considerable over-

head owing to its complexity) for fast multi-queue systems with SSDs can be counter-productive.

’NONE’ would be a better option to increase throughput. On the other hand, slower systems using

disks with mechanical rotating parts could do well with a scheduler that supports request merging

and enforcing request deadlines which ’NONE’ does not support. Deadline has queues for both read

and write requests and it enforces a ’deadline’ on those requests which, on reaching, would ensure

that the requests are completed. A comparative study on Linux I/O schedulers on SSDs has been

done by Yunus et al. [99].

Therefore, it is important to choose the correct scheduler based upon the load profile. A wrongly

chosen I/O scheduler could slow down performance. The simplest scheduler that can be employed

in order to compare performance with other complex schedulers would be the NOOP scheduler. It

has no ordered queues and requests are processed first in, first out(FIFO). Therefore, there is little to

no scheduler overhead. Although the scheduler does merge adjacent requests to reduce seek time.

This scheduler leaves the optimization to some other device. Therefore storage devices such as USB

sticks, flash drives and SSD disks could benefit from this scheduler [100].

Detection

Tracing can be used to detect I/O latency and measure throughput as well. There are sev-

eral static I/O tracepoints in the linux kernel such as block:block rq abort, block:block rq requeue,

block:block rq complete, etc where abort, requeue and complete indicates the requests aborted,

requeued and completed respectively [36]. Several LTTng analyses exist as well5. The I/O sched-

uler latency can be found out using the bpftrace tool iosched [36] which we implement in the next

chapter.
5https://github.com/LTTng/LTTng-analyses
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3.4.2 Improper I/O Workload

Summary

I/O workload profiles have a huge influence on system performance as disk I/O can cause appli-

cation latency. They affect multiple users and thus affect business. An improper workload profile

generally results from less-than-optimal I/O size (the size of the input or output request), IOPS

(Input/Output per second), Throughput, Response Time, Read/Write ratio and whether the I/O is

sequential or random. I/O operations can have significant overhead as they involve context switch-

ing, making system calls, address mapping and other such examples of ”initialization tax” [97].

Hence, it is critical that the data transfer in the process is as efficient as possible. For example,

a large I/O size has its own unique advantages but it cannot be used in smaller applications with

databases performing small reads. Hence, I/O workload profiles must be tailored according to the

evolving needs of the application.

The response time is the total time taken to process a request starting from its acknowledgement

till its dispatch. Read/Write ratio is self-explanatory and different workloads may have different

ratios. I/O writes are generally asynchronous while reads are synchronous. This is because an

application can block on a read request therefore read requests must have priority. Read requests

also have a shorter deadline. Write requests can be cached to be written to disk later [82]. The

Read/Write ratio is therefore an important metric that must be considered when designing the system

as write requests generally have greater overhead (as they need to be reordered and serialized for

efficiency) and slower response times.

Sequential I/O - as the name suggests - is when adjacent blocks of data are requested as opposed

to random I/O where requests do not follow any predictable pattern. Random I/O requests may spike

latency as hard disk drives with rotating media tend to witness extended seek times. Flash drives

and RAM tends to work better with random I/O patterns as there are no moving parts [101].

When it comes to performance, a large I/O size results in longer response times. Similarly,

writes too have additional overhead because of the nature of spinning disks as well as data protection

technologies such as RAID [102].

The system must also ensure that it is adequately prepared to tackle a high workload peak such
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as peak response time during busy sessions and peak throughput during heavy writeback activi-

ties. I/O solutions should ensure that these peaks can be sustained for a long time with guaranteed

performance stability.

Detection

Multiple I/O heavy applications running on a common database can introduce latency. Tracing

can help detect improper I/O workload parameters. System throughput and IOPS can also be easily

determined using tools such as Trace Compass and iostat [36]. Several tracepoints can be leveraged

in order to trace I/O performance. Most of these tracepoints furnish information regarding individual

block requests and how they’re generated, merged, queued, re-queued and dispatched. Several views

can be created once a state history tree is constructed from large trace files.

Specialized views such as latency distribution, disk utilization and throughput can be con-

structed from the metrics in the state database. These metrics can be calculated from tracepoint

events and mapped onto a graph. Several kprobes can also be tapped into in order to fetch real-time

information about I/O workload profiles. For example, the bpftrace tool biopattern can be used to

find out the degree of randomness of I/O. It traces the block rq complete tracepoint and compares

the previous disk address with the next address in order to determine if the profile is random or

sequential. Similarly, another BCC/bpftrace tool, Bitesize can determine the per-process I/O size

[36].

Applications with sequential workloads can afford large I/O sizes. However, they can occupy

sizeable cache space. On the other hand, small I/O sizes can have a considerable overhead.

Real life examples of latency and their cause can be detected and analyzed in this way. For

example, unexpectedly high response times for particular server requests.

I/O block tracepoints such as LTTng statedump block device, block rq insert, block rq merge,

block issue and block complete can be used to calculate aforementioned metrics.
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3.5 Network Stack

3.5.1 TCP Re-Transmits

Summary

Computer networking takes place via certain data transfer protocols. Transmission Control

Protocol (TCP) is one such example which establishes two endpoints in a network and allows two-

way data transmission. TCP is reliable as it has safeguards against data loss. However, it comes

at a certain cost in latency. TCP along with IP (Internet Protocol) - which are responsible for data

transfer based on IP addresses, form the TCP/IP protocol stack which powers much of the internet.

Data is transferred in the form of packets which contain several fields in their headers to store

connection metadata as well as the payload (the data itself). These packets are transferred from

the source to the destination once the TCP connection is established via a three-way SYN/ACK

handshake [103].

As TCP is a reliable protocol, it ensures that lost data packets are re-transmitted. There can be

several reasons for network packet losses such as network congestion or frame corruption. It is evi-

dent that packet loses can pose many problems as they indicate data loss and can slow applications

down. TCP will keep re-transmitting any lost packet that it detects until the destination acknowl-

edges. These acknowledgements are tracked via acknowledgement numbers in the packet headers

which serves as a proof of receipt. When the source sends a packet, there is a timeout window

within which it must receive a receipt of acknowledgement. Failure to do so would mean that the

source will re-transmit the packet. Packets are transmitted in series and selective acknowledgements

are used to indicate the packet numbers which are lost.

Tracing can help diagnosing network issues. Several TCP tracepoints have been added to the

kernel to enable tracing the network stack. Before tracepoints, kprobes were used. However, its

implementation would vary from one kernel version to another which would make matters difficult.

Tracepoints, on the other hand, provide a ”stable API” and make maintenance and testing easier.

There are tracepoints used to determine TCP session states such as sock:inet sock set state and

tracepoints available for tracing TCP congestion window such as tcp:tcp probe [36].

49



Detection

For TCP re-transmits, the tracepoint tcp:tcp retransmit skb can be hooked into via bpftrace

scripting. TCP re-transmit data may indicate network congestion and data packet loss. This tra-

cepoint has been used in utilities such as tcpretrans6. This tracepoint in particular traces the

tcp retransmit skb() kernel function with negligible overhead. It also does not trace every single

packet and traces the kernel re-transmit code path instead.

Re-transmissions in themselves are no cause for alarm as it only demonstrates how reliable the

TCP protocol is. But the rate of re-transmits going above a certain threshold can be. A high number

of re-transmits can merit further investigation and network optimization.

3.6 Synchronization Context

3.6.1 Excessive Busy-waiting

Summary

On systems with shared memory, processes use synchronization constructs along with atomic

operations in order to ensure data consistency. Synchronization constructs can be of two types:

blocking constructs that block waiting processes and busy-wait constructs where a process repeat-

edly tests a shared variable in order to determine when to proceed. Busy-waiting is an important

aspect of parallel programming and is preferred to blocking owing to its lower wake-up latency.

Blocked processes take considerably more time to wake-up and they have to be scheduled to access

the CPU as well. The spin-lock is a widely used implementation of busy-waiting. They are used

to protect small critical sections where the waiting period is low. However, busy-waiting can cause

performance bottlenecks in the form of memory and interconnection network contention [104].

They also can make debugging difficult and can cause race conditions known as synchronization

races [105]. Another drawback of busy-waiting can be unnecessary wastage of CPU cycles if the

waiting period turns out to be longer than expected. In this case, the process simply consumes CPU

cycles and does not do any useful work. This is why programmers should be careful when using
6https://github.com/brendangregg/perf-tools/blob/master/net/tcpretrans
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busy-waiting constructs.

Detection

Excessive busy-waiting can be detected by tracing. Once the trace is loaded onto Trace Com-

pass, the resources view can highlight if a particular thread is spinning on a CPU for a particularly

long time without doing any useful work.

3.6.2 Excessive synchronization

Summary

While synchronization is necessary in order to ensure that shared resources are used correctly,

sometimes developers may use excessive synchronization primitives. So much so that even non

conflicting processes end up being serialized. For synchronization to be efficient, it must be ensured

that only the critical sections of the thread are synchronized. There can be several cases where

excessive synchronization may harm performance. A lock can be unnecessary if the critical section

does not access shared data, or the instructions are already atomic. Sometimes programmers do not

realize that the computations are already protected by a lock and implement further unnecessary

synchronization. This may happen if there is not enough familiarity with the code base [61].

Detection

A good way to detect possible instances of excessive synchronization is to look for high rates

of lock acquisition with zero contention rates as detailed in [61] where a function uses a lock to

synchronize removal operations which were already atomic. Another scenario could be when a

single lock is used to guard several other locks. This may show very high rate of contention and

acquisition as we show in our implementation.

Once detected, these issues can be easily fixed by removing the unnecessary locks. Tracing

can help us identify potential cases of excessive synchronization. User space POSIX thread li-

braries can be instrumented alongside futex() system calls to analyze contention patterns related to
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excessive synchronization as discussed above. A manual inspection would be preferable as remov-

ing locks must be done after careful consideration so that the correctness of the application is not

compromised.

3.6.3 Critical Lock Bottleneck

Summary

Multi-threaded applications, which rely upon a shared memory architecture, involve synchro-

nization which regulates access to shared resources in order to prevent concurrent modification.

Critical sections are such protected resources [106]. They often feature serialized access and re-

duced parallelism as only one thread can access the critical section at a time. These can become

sites of bottlenecks. A critical path [107], on the other hand is the longest set of inter-dependent

events that span from the beginning of the process till the very end - taking the longest time to

complete and serves as a baseline for how fast the process would take to execute. If one is able to

optimize the critical path and reduce its duration by a certain degree, then that would be reflected

in the overall process completion time as well. The presence of critical sections in critical paths,

therefore, require to be optimized to achieve substantial speedups.

Critical lock analysis, as investigated in [108] is a method by which locks in the critical path are

detected and checked if they can be further optimized. This results in smarter optimizations. Many

a time, engineers simply rank locks by order of contention and try to optimize the locks which show

the most contention. However, their efforts will largely go to waste if the locks are not part of the

critical path. The authors term critical sections that directly affect the critical path length as hot

critical sections and the locks in these sections are called critical locks. Optimizing critical lock

durations can cause a ripple effect and shorten overall execution time by a considerable magnitude.

Critical sections that are off the critical path can execute in parallel. Hence, focusing optimization

efforts on such sections will not result in performance gains. When it comes to the multiple critical

locks on the critical path, the size of the hot critical section (the time spent executing) and the con-

tention probability of the critical lock can help determine which lock to target first. The contention

probability of the lock is the ratio of the number of contented invocations of the lock to the total
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number of lock invocations. A lock with a high probability of contention will witness many threads

blocking on it and a long critical section in the critical path will result in the section taking up a

sizeable portion of the path.

Detection

In order to detect critical locks in an application, the application must be traced accordingly.

Also, the trace data must be fed to the algorithm which identifies the critical locks appearing on

the critical path. Synchronization primitives can be traced using instrumentation modules which

override the thread library routines and insert additional code so that run-time synchronization in-

formation can be collected. Data regarding lock acquisitions, lock contentions and lock releases

must be collected along with their timestamps and stored as a trace for later processing. Once the

critical path has been established, one can look at the lock contention activity in the critical path

and determine if these locks can be better optimized. This trace pattern can help programmers know

about potential performance boosting lock optimizations in their code.

A Linux test application with a variety of critical and non-critical locks can be written with

varying idleness factors. Optimizing a non-critical lock with a high contention can be compared

with optimizing a critical lock with little to no idleness and the results can be compared. The

main objective being to demonstrate that developers should devote valuable time in identifying and

optimizing critical locks first before focusing on non-critical locks. The algorithm provided in [108]

can be used in tandem with EASE scripting to generate critical lock statistics. The locks with the

most contention probability ratio should be targets of optimization.

3.6.4 Asymmetric Contention

Summary

Multi-threaded applications need synchronization to ensure serialized access to shared resources.

Locking is one way to achieve that. A thread locks a particular shared resource to ensure atomic

operation [109]. However, if another thread or process tries to access the lock at the same time

then it would fail. This is called contention. The factors that affect contention are the frequency of
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lock requests and the duration of the lock acquirement. If a lock is highly contented then this will

cause scalability problems where an increase of physical CPU cores will not translate to a linear

performance boost. This is because lock contention affects parallelism [110].

Asymmetrical contention can be said to occur when locks protecting similar data show a skewed

contention ratio. In theory these locks should have more or less same contention but in real-life sce-

narios this cannot be guaranteed. A good example of asymmetric contention according to [61]

would be a situation where a hash table implementation of locks is used with locks for each bucket.

If the hash function is unable to distribute the locks equally then some locks will be accessed more

than the others which can lead to asymmetrical lock contention. The authors observed a 12% per-

formance boost after optimizing this contention.

Detection

Locks can be traced by instrumenting the threading libraries as well as non-invasively. EASE

scripting can be used to calculate lock statistics such as the number of lock requests, average wait-

ing time and average lock retention time. If certain locks from a data structure witness a skewed

contention ratio then it is clearly a case of asymmetric contention.

3.7 Hardware Context

3.7.1 TLB Performance

Summary

Operating systems such as Linux use virtual memory as compensation for limited RAM in

order to increase the effective usable memory. The Linux kernel swaps unused blocks to secondary

storage so that the main memory can be freed. When required, it can swap back those blocks onto

main memory. Virtual memory creates an impression of a large, contiguous memory space for the

running applications [68].

As a result of using virtual memory, addresses can be either physical or virtual. The virtual

address space can be divided into several small pages so that they can be swapped in and out of
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swap space. Page tables are data structures that map the relationship between virtual and physical

addresses. Virtual addresses need to be translated into physical addresses and this requires access to

physical memory to fetch the page table as well as data. The Translational Lookaside Buffer (TLB)

is high-speed cache for storing the most recently used page table entries so that page table entries

are not needed to be accessed from the comparatively slower main memory. When a virtual address

is to be mapped, the TLB checks if the page table entry is present. If it is, then it is a TLB hit.

Otherwise, a miss. Once the TLB is hit, the virtual address is translated to a physical address which

is then looked up in the cache. Like all fast memories, TLB size is limited and TLB misses can

impact performance as it increases physical memory access [111].

Modern CPUs have TLBs for each core and hardware performance counters [38] can be used to

determine iTLB (instruction) and dTLB (data) misses. TLB bottlenecks can be easily detected from

monitoring counters. TLB misses result in cache misses and generally occur when the application

working set is large. A working set is basically the memory range that an application is using [112].

If an application has a huge working set and on the other hand the page size is that of the default

4kB, then it results into a large TLB miss to LLC miss ratio.

In order to redress this, the page size can be increased. Linux supports Transparent Huge Pages

(THP) as large as 1GB [79]. Large pages ensure that the TLB can map more pages and thus results

in lower TLB hits.

Detection

TLB performance as well as THP performance can be detected using performance monitoring

counters such as dTLB-loads, dTLB-loads-misses, iTLB-load, iTLB-load-misses. Important metrics

such as CPU cycles spent in page table walking and number of highly expensive main memory reads

owing to TLB misses can also be ascertained using -e cache-misses

It is important to balance TLB performance with that of using large pages. Using large pages can

reduce CPU cycles wasted on page walks and the number of RAM reads. Even a tiny reduction in

the TLB miss rate can provide a considerable performance boost. On the other hand, tracing kernel

functions alloc pages slowpath and khugepaged scan mm slot - which looks for huge pages to

collapse, can help control memory fragmentation that comes about as a result of using large pages.
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3.7.2 Cache Performance

Summary

Modern CPUs use caches to ensure that the disparity between slow main memory access (which

takes several hundred CPU cycles) and increasingly high CPU speeds is reduced. CPU caches are

very fast memory units requiring access latency of only a few CPU cycles. Caches use the property

of temporal and spatial locality. Temporal locality means that the information required in the future

is already in use. For example, in program loops where variables and instructions are reused. Spatial

locality, on the other hand implies related data items and instructions are usually stored and executed

sequentially. When the CPU tries to read or write to main memory, it checks if the data is already

in the cache. If the data is found to be present in the cache, then valuable CPU cycles are saved as

the CPU does not have to look for the data in the considerably slower main memory. This is called

a cache hit. Caches are generally multi-layered with the L1 cache being the smallest, yet the fastest

following the L2 and L3 cache which increasingly grow in size but slower in operation. If the data

or instruction is not found in the L1 cache then the CPU will look for them in the L2 cache and then

the L3 ache. The CPU being unable to fetch data from the cache is called a cache miss [113].

Cache misses are expensive and exact a toll on overall performance. A cache miss on every

level (L1, L2 and L3) implies that data has to be fetched from the RAM (which can take several

thousand cycles) or worse, the secondary storage which can take millions of CPU cycles.

The cache stores data in the form of blocks of fixed size called cache lines. When a cache miss

occurs, the cache copies the requested data from the main memory and then the request is fulfilled.

Because caches have low memory capacities on account of their fast retrievals, room must be made

to include the new entries. Therefore, existing data on the cache must be replaced. This is called

cache replacement.

It is important to streamline application cache performance. The cache misses to instructions

ratio is a good metric to evaluate cache performance with even a tiny improvement in the ratio

resulting in significant performance boosts.
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Detection

Hardware Performance Monitoring Units (PMUs) [38] can be used to gauge cache performance.

These can be traced using profilers such as perf and tracers such as LTTng. A BCC tool, cachestat

also exists which shows page cache hits and miss statistics. It does so by using kprobes to trace the

mark page, mark buffer dirty, add to page cache lru and account page dirtied kernel func-

tions [36]. The event cache-misses records the total number of cache misses that occurred during a

particular window of the application. A high cache-miss to instruction ratio should indicate to the

user that cache friendly optimizations could be considered in order to improve performance.

3.7.3 Branch Performance

Summary

Instructional pipelining is an important aspect of RISC architectures where instructions are pre-

fetched and parallelized in order to increase the efficiency of processing. Pipelining sees instructions

flow in stages which lets the CPU process an instruction per clock cycle which results in a higher

throughput [114].

However, if a particular instruction is a conditional branch then two paths open up. In this case,

the processor tries to predict the path that would be taken so that stalls can be avoided. Prediction is

crucial because the processor cannot wait till the execution unit computes the path to be followed.

Owing to the speculative nature of the whole undertaking, it is wholly possible for the branch

predictor circuit to guess wrongly the path that would be taken. If the CPU prediction is correct then

the execution continues unabated. If not, then the processor has to flush the instructions originating

from the wrong path, go back, and execute on the right path. This is a very expensive operation and

is termed as a branch path miss [115].

Branch path prediction is contingent upon program behaviour. It has become increasingly crit-

ical as conditional branches have greatly increased in codebases. The prediction is based on the

history of the particular branch. If a particular branch takes a certain path then it will, more likely

than not, take the same path the next time around. Correct branch predictions will result in perfor-

mance gains whereas branch-misses can slow down an application. Therefore, branches should be
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designed to be consistently predictable by reducing dependency chains and minimizing conditional

statements.

In such a scenario, tracing the application using performance monitoring counters would provide

a good indication of branch performance.

Detection

LTTng allows contexts to be added to events and channels. Contexts are additional nuggets of

information that can be attached to channels such as Process ID and Thread ID. Performance Mon-

itoring Counters (PMU) [38] can also be added using the perf kernel API. There are performance

counters that detail the number of instructions processed per cycle, CPUs utilized, page faults, cache

misses and branch misses. Analyzing this pattern would require the use of the branch misses perfor-

mance counter. An abnormally high count would indicate poor branch prediction. Once detected,

this can be mitigated by several approaches. Fixing the bottleneck can result in an increase in

instruction per cycles as the number of stalls will be dramatically reduced.

We used a C++ code that manipulates an array twice:once on an unsorted array and once on

a sorted one7. We notice that the code manipulating the sorted array takes 5 seconds as opposed

to a whopping 17 seconds when the array is unsorted. This is a clear example of how branch

mispredictions can slow down code-paths and tank performance. While the program was running we

recorded branch statistics using perf and found that the code run with the unsorted array accounted

for a whooping 15.45% of all branch misses. Once the array was sorted,the branch miss percentage

dropped down to 0.13% as shown in the Figure 3.4.
7https://stackoverflow.com/questions/11227809/why-is-processing-a-sorted-array-faster-than-processing-an-

unsorted-array
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Figure 3.4: Branch statistics via perf

3.8 Application Context

3.8.1 Page Writeback Latency

Summary

Owing to the tremendous difference (literally orders of magnitude) in access speeds between

physical memory and storage disks along with the principle of temporal locality - which stipulates

that data once accessed will be, in all probability, accessed again, Linux maintains a page cache in

order to reduce disk I/O. Instead of writing files to the disk every time, the changes are committed to

the cache located in the main memory with the intent of writing back to the disk. This propagation

of changes in the page cache back to the disk is called page writeback. The cache itself consists of

RAM pages and can grow and shrink according to memory pressure. A cache hit occurs when the

kernel finds the relevant data in the cache and does not need to access disk blocks and a cache miss

occurs when the kernel has to access the disk in the form of block I/O in order to fetch the data. A

cache miss results in the the data being loaded onto the page cache for subsequent accesses [82].

When the Linux kernel has to perform write operation, it does so on the cache data instead on

the disk blocks. The updated pages are termed as dirty - meaning that the changes committed on
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these pages need to be written back to the disk in order to maintain data coherency [116]. The

writeback operation can be scheduled accordingly so that a bulk of dirty pages are written back to

the disk at some point in the future. After writeback, the pages are marked clean. Essentially, this

is a synchronization process which can be complex, but efficient considering how disk writeback

activities can be coalesced and performed in batches instead of writing to disk every single time

there is a kernel write activity. These batches can also take advantage of different I/O scheduler

algorithms to maintain fast and efficient transfers. When the pages are in the process of being

copied to the disk, they are said to be in ”writeback” state.

The cache content frequently changes, either to free more memory or to load other relevant data

which could be accessed short. When the cache has to ’evict’ data, it chooses only clean pages to do

so in order to make sure that the data is synchronized with the storage. If there are no clean pages

available, then it forces a writeback operation [82].

Sometimes, write heavy tasks fill up the cache quickly and thus, the kernel has to throttle those

tasks to avoid them from continuing to fill up the cache. However, as shown by [62], the throttling

can be unfair and many innocent tasks can also end up being throttled - tasks which do not fill

up the cache. The writeback cache and its throttling can lead to system unresponsiveness. This is

why, it could be useful to constantly monitor writeback activity during write heavy tasks in order to

anticipate any system slowdown. The author(s) found out that once the cache gets full, all writing

tasks are throttled equally which slows down the system. This is due to the fact that during writing,

the file system inodes are locked until they are written to disk. The author(s) used tracing to detect

throttling along with isolate the write heavy tasks so that their I/O priority could be reduced -

allowing innocent processes to complete their write activities first. They devised a real-time monitor

application and used the global dirty state tracepoint as it provides a snapshot of cache state such as

number of dirty pages and thresholds and realized that long, unwanted pauses are because of large

system caches which cause large amounts of data to be queued for writeback during cache flushes

and locked inodes during writeback.
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Detection

For this pattern, we concentrate on the writeback activity itself instead of kernel throttling.

Brendan Gregg wrote a bpftrace tool called writeback [36] which dynamically traces tracepoints

writeback start and writeback written which fetches real-time information on kernel writeback ac-

tivities. The information fetched includes block device name, number of pages written, timestamp,

latency and reason for writeback. The latency is found out by subtracting the timestamps in the

writeback written and writeback start tracepoints whereas the number of pages written is deter-

mined by the difference in count of the parameter nr pages which mandates the minimum amount

of pages that must be flushed to the disk [70].

3.8.2 Abnormally Long Application Sleep Duration

Summary

Multi-threaded programs involving concurrent threads are often designed such that threads

which do not require the processor or threads waiting for access to a particular resource (in the

case of locks) or signal are made to sleep [117]. This is to ensure that processor time-slices are not

wasted and other threads can access the CPU when needed. A sleeping thread implies that it will

stop execution for a certain period of time and will wake up whenever the sleep period is over or

when the scheduler wakes the thread up in case the kernel itself has induced the sleep.

Sometimes, programmers themselves add sleep durations in strategic code-paths while debug-

ging or recreating a conditions contingent to a long running process. However, unintended sleep

durations creeping in can cause latency which might be hard to debug. It is possible for program-

mers to have forgotten to remove the sleep period after maintenance activity is completed. It is

also possible that certain threads may sleep for abnormally long durations because of badly writ-

ten/unoptimized code or in some cases, execution can be suspended to facilitate polling. In either

case, abnormal sleep times must be investigated and one way to do it in run-time is to trace the Linux

syscalls:sys enter nanosleep tracepoint which instruments the Linux nanosleep() function [36].

The nanosleep() function puts the current thread to sleep until the specified duration in the

struct timespec *rqtp argument has elapsed or the invocation of a signal that terminates the process
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or invokes the handler in the calling thread8.

Detection

Since we have tracepoints already compiled into the kernel which instruments the nanosleep(3p)

function, all we need to do is write a simple bpftrace script in order to access the necessary informa-

tion that we would require for the trace in order to run it through a run-time verification/specification

language parser.

3.9 Overview & summary of discussed patterns

The following table consists of all the performance analysis patterns that we have discussed till

now along with a brief summary of the pattern. In the next chapter, we shall detect these patterns

and subsequently, evaluate them.

8https://man7.org/linux/man-pages/man3/nanosleep.3p.html
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Memory Management
Performance Analysis Pattern Brief Summary
Memory Fragmentation Failure of high order memory block allocation owing to a

lack of high order contiguous memory blocks.
Memory Leaks Failure to de-allocate memory blocks after use.
Tracing Processes affected by the
OOM killer

When a process of interest is killed off owing to Out Of
Memory (OOM) condition

Memory Compaction Overhead System latency induced by the memory compaction pro-
cess.
Thread Scheduling

Performance Analysis Pattern Brief Summary
Thread Swamping Threads of target application getting less On CPU time due

to interference by other processes.
Unfair Scheduling Thread being repeatedly migrated or unfairly scheduled.
Priority Inversion A high priority thread waiting indirectly for a lower priority

thread when a medium priority thread preempts the low pri-
ority thread.

Sub-optimal Threading An application having too many or too little threads to make
optimal use of multi-core processors.

Thread Scheduler Latency The latency between a thread being woken up and scheduled
on a CPU by the scheduler
Disk Scheduling (I/O)

Performance Analysis Pattern Brief Summary
I/O Scheduler Overhead Latency introduced by the I/O Scheduler
Improper I/O Workload Latency introduced by the nature of the I/O workload

Network Stack
Performance Analysis Pattern Brief Summary
TCP Re-transmits Rate of TCP packet drops

Synchronization Context
Performance Analysis Pattern Brief Summary
Excessive Busywaiting Detection of excessively long spin-locks which waste CPU

cycles.
Excessive-synchronization Too many synchronization primitives leading to perfor-

mance hits.
Critical Lock Bottleneck Optimizing critical locks for performance gains
Asymmetrical Contention Uneven spread of synchronization primitives.

Table 3.1: A brief summary and overview of Performance Analysis Patterns
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Hardware Context
Performance Analysis Pattern Brief Summary
TLB Performance TLB hits and misses. CPU cycles wasted.
Cache Performance Cache hits and misses.
Branch Performance Degree of instruction pipelining and predicting code

branches.
Application Context

Performance Analysis Pattern Brief Summary
Page Writeback Latency Tracing significant cache writeback activity to disk by ap-

plications.
Abnormally Long Sleep Duration Applications sleeping for abnormally long durations.

Table 3.2: A brief summary and overview of Performance Analysis Patterns (contd.)
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Chapter 4

Evaluation

4.1 Implementation of pattern detection methods

In this chapter, we evaluate the different proposed techniques of detecting the performance

analysis patterns. We ask ourselves if there would be a way to formalize these patterns using some

kind of specification or temporal language. Some of the patterns that we found were too complex

to formalize. In that case, we used trace analysis tools such as Trace Compass EASE scripting to

detect and identify and evaluate those patterns.

To briefly summarize, we used Linear Temporal Language (LTL) and its extensions TK-LTL

and LTL-FO+, an extension of a stream based specification language RT-LOLA, bpftrace scripting

and tools along with EASE 1 scripting in order to generate and analyze the trace files with the

purpose of detecting the patterns.

4.2 Evaluation Protocol

The evaluation protocol shall consist of the following headers:

• Data Source: How we obtained the trace data

• Detection Method: The technique(s) we employed to detect and identify the performance

analysis pattern
1https://bit.ly/3KlxjrU
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• Evaluation Metrics: The metrics used during pattern analysis

• Results: Our overall findings

Our goal in this section is to evaluate the usefulness of the proposed methods to detect the

performance analysis patterns as well as to demonstrate their correctness. We also provide imple-

mentation details regarding how we conducted our experiments and how we evaluated the results.

For certain patterns, we employ more than one detection method as well.

4.3 Evaluation Setup

Our system specifications are as follows:

• Host operating system: Windows 10 version 20H2

• Guest operating system: Ubuntu 20.04.2

• VM: Oracle VM VirtualBox 6.1.16

• VM Memory: 2048 Mb

• Host CPU: quad-core Intel Core i7-7700HQ CPU @ 2.80GHz (guest allocated two of four)

• Guest hard drive: 500 Gb Virtual Disk Image file stored on 1 Tb external hard drive

• LTTng version: 2.12.3

• TraceCompass version: 6.2.1

• Java version: openjdk 11.0.13

4.4 Memory Management

In the following section, we evaluate performance analysis patterns related to the Linux memory

management system and find out if performance hits are because of memory issues.
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4.4.1 Memory Fragmentation

Data Source

We generated a system trace using LTTng after having loaded and unloaded a memory fragmen-

tation module 2. This module creates fragmentation in kernel memory. This code basically allocates

100k blocks of memory of size 16,384 bytes using kzalloc()3 and the GFP KERNEL flag (which

provides the caller full freedom in the allocation process). After that, every alternate block is freed

as the module is unloaded. This causes significant memory fragmentation and higher order alloca-

tions will not be possible after some time. We use /proc/buddyinfo to check the number of available

higher order blocks and find that the number of lower order blocks has significantly increased after

the module was loaded. This indicates that free memory is available, but it is fragmented and cannot

accommodate high order allocations. In the meantime, we trace the system using LTTng and acti-

vate the kmem mm page alloc extfrag trace point as it indicates memory fragmentation. We could

have activated other tracepoints as well but it only adds to the size of the trace file.

Figure 4.1: Loading the fragmentation trace onto Trace Compass

Detection Method I

We use a specification written in LTL-FO+ to detect fragmentation. The specification is run

once the LTTng trace is pre-processed. We use the BeepBeep monitor to evaluate the specification
2https://www.uninformativ.de/blog/postings/2017-12-23/0/POSTING-en.html
3https://www.kernel.org/doc/htmldocs/kernel-api/API-kzalloc.html
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against the trace.

Once we load the trace onto Trace Compass (Figure 4.1) we can see that the fallback order is

initially high at 10. Memory blocks are requested and serviced in multiples of powers of 2 [68]. An

allocation order 0 means that a single contiguous page has been requested. Similarly, an allocation

order 2 means 4 contiguous pages have been requested. The fallback order is the allocation order

which the allocator falls back to if there are no blocks present to allocate for a particular order. The

fallback order keeps changing with respect to memory fragmentation levels. Let’s say, an allocation

of order 5 (25 = 32 pages or 128KB) fails, then the buddy allocator [68] will fetch a block of order

10 (a block of order 10 would be equal to 210 pages of 4kb each), split it into two buddy blocks

of order 5 and complete the allocation. A non-fragmented memory implies the existence of higher-

order blocks such as 8, 9 and 10 and subsequently, a higher fallback order. As external memory

fragments, the fallback order starts dipping as the allocator is unable to find higher order blocks to

split. We observe in our trace that the order starts with 10 and goes down to as low as 2.

Physical memory is divided into zones which are in turn divided into pageblocks. X-86 archi-

tecture features a 2MB (order 9) pageblock [118]. Pageblocks can be of migratetype. Free lists

containing pages of each migratetype are present. An allocation can declare the migratetype us-

ing GFP (Get Free Pages) flag. If the allocation cannot be satisfied, it falls back to other types and

’steals’ free pages from the other migratetype. Generally the largest free page is stolen from the other

migratetype. If the fallback order becomes lesser than the pageblock order, it means that allocation

cannot fallback to higher order blocks as there are none. This indicates memory fragmentation.

We process this trace to include only the fallback order and the constant pageblock order and

then convert it to XML as shown in Fig 4.2

In order to detect fragmentation, we write a specification using LTL-FO+ and run it against the

trace once it has been pre-processed. The specification is as follows:

F(∃a ∈ /message/FallbackOrder :

F(∃b ∈ /message/PageblockOrder : ((¬(a = b)) ∧ (¬(a > b))))))

The specification translates to: Eventually, there exists variable a in FallbackOrder such that
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Figure 4.2: Trace in XML format

eventually there exists variable b in PageblockOrder such that a< b. The BeepBeep monitor version

we used does not support the < sign, hence we used a simple walk-around.

If this specification, using the parameters from the trace, is evaluated as True, then we can say

that Fragmentation has occurred. We use the BeepBeep monitor to implement our specification.

Our specification was evaluated to be True as shown in Figure 4.3 , as there was a point in the trace

where FallbackOrder was less than PageblockOrder.

Detection Method II

Another way of detecting memory fragmentation is to simply track the number of times the

mm page alloc extfrag event takes place in a given duration. A high number of these events can

indicate possible memory fragmentation and incoming memory reclaims and/or compaction events.

The timestamp can be extracted from the trace along with the trace-event itself and with the use of

RTLola aggregate count function, the number of events in a sliding window of say, 2 seconds, can

be counted. If the number of such events is greater than a given threshold Th, then a trigger can

be generated. The computation frequency itself can be adjusted as per requirement. For example:

output extFragCount @0.5Hz := extFrag.aggregate(over 1s, using: count) trigger extFragCount >
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Th

This specification would calculate once every two seconds the number of extFrag events in

a sliding window of 1sec and alert if the number of extFrag events become greater than a given

threshold Th. In order to use RTLola specification on the trace, the trace would have to be converted

to CSV format.

Figure 4.3: Verifying LTL-FO+ specification using the BeepBeep monitor

Detection Metrics

As seen in Fig 4.1, the tracepoint kmem mm page alloc extfrag has several parameters out of

which we are interested only in the fallback order and the pageblock order (which is equal to 9 in

X-86 architectures [118]. We appended the pageblock order to the trace and converted the whole

trace to XML format. To detect memory fragmentation we look for instances where the fallback

order is < than pageblock order.

Another metric is the frequency of the tracepoint itself in a given interval. If the frequency of the

event becomes higher than a given threshold Th, then we can say that the memory is fragmented.

Results

We were successful in fragmenting kernel memory in our VM using the kernel module. After

that, we were also able to detect fragmentation in the trace files using an LTL-FO+ and RTLola

specification. Detecting memory fragmentation can be helpful in investigating system stalls and

unresponsiveness.
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4.4.2 Tracing Processes Affected by the OOM Killer

Data Source

oomkill [36] is a bpftrace tool created by Brendan Gregg which traces the kprobe oom kill process.

Data fetched from this kprobe will provide us the details of the application killed off by the OOM

killer, the process that initiated the kill as well as other useful details. This output is converted into

an XML file as shown in Figure 4.4. We modified the code slightly to include the timestamps in

nanoseconds and fixed an error in the code which was present in the book. We can also include a

cat command to display the oom adj score [76] of the sacrificial process so that users can know the

OOM score of the process which was killed off.

Detection Method

This performance analysis pattern can be detected using a specification written in Linear Tem-

poral Language. If we are to ensure that any process of PID = x of our choosing must be safe from

being killed off by the OOM Killer, we must use the following specification:-

G¬(SACRIFICIALPID = x)

which translates to: it is always the case that the sacrificial process ID is NOT x or it is never

the case that the process X is the sacrificial process.

The XML file is fed to the BeepBeep LTL monitor which checks our specification against the

trace and outputs a value. It can be True, False or ? (Undetermined). If the evaluation is True, then

our process hasn’t been killed.

When it comes to a process that the user is willing to allow to be killed off in case of an out-of-

memory situation, they can set a very high adjusted OOM score, such as 15, which will ensure that

the process is killed off first. In our experiment, we assigned the maximum possible OOM score of

15 to a P2P client and once we triggered the OOM Killer using the sysreq-trigger, we observed that

the client was killed off first. (Figure 4.5)
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Detection Metrics

We know that a particular process has been killed in real-time from the arguments of the

oom kill process kprobe. The argument is a struct of type oom control [36]. This struct contains

the PID and process name of the chosen sacrificial process. The process which triggers the OOM

kill can also be traced using the bpftrace built-in variables. If we are to ensure that our process

hasn’t been killed off, we must make sure that the process PID is never equal to the sacrificial PID.

Result

We assigned a very high OOM score to a process (15) and manually triggered the OOM killer

to see if the process is killed off. As per our expectations, the OOM Killer killed off the process

immediately and our specification was evaluated to False. In order to prevent a process from being

killed off, one could assign a very low OOM score to the process. However, it is not advisable as

poorly optimized code can eat up system resources and the OOM killer would not terminate the

process which can lead to system hangups.

Figure 4.4: Trace from the bpftrace tool oomkill.bt is converted to XML

Figure 4.5: Setting a high OOM score of 15 ensures that the process is killed off in case of low
memory
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4.4.3 Memory Compaction Latency

Figure 4.6: Memory Compaction Latency Histogram

Data Source

In order to calculate the amount of time it takes for one compaction process to complete, we

need to hook into two tracepoints. mm compaction begin and mm compaction end. We do this

using a custom bpftrace script. (Fig 4.7)

Detection Method

In the bpftrace script, we make use of an array @start which stores the starting timestamp

when compaction begins and then subtract it from the ending timestamp which we obtain in the

compaction end tracepoint for every TID. After that, we display the histogram of the compaction

durations. The durations are in microseconds.(Figure 4.6). Higher compaction latency may be the

cause for slow system response, CPU usage spikes and high CPU utilization.

We can formalize this pattern as a LTL-TK specification. We use the structural semantic counter

ϕD⊤
ψ which identifies the first position in a trace where the condition ψ holds true ⊤ from the posi-

tion where ϕ is satisfied. In this case, we denote ϕ as the tracepoint compaction:mm compaction begin
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Figure 4.7: bpftrace script to display memory compaction histogram

for a given thread tid and ψ as the tracepoint compaction:mm compaction end for the same thread

tid. Therefore, the compaction latency can be denoted as ϕD⊤
ψ which states how long after the initial

compaction begin tracepoint do we hit compaction end tracepoint. This period is the compaction

latency.

Detection Metrics

A histogram of compaction latency in the form of intervals can be seen after the execution of

the script. The hist function comes built-in with bpftrace and it indicates the number of times a

compaction process occurred and its corresponding latency. The latency brackets are displayed in

multiples of 8. Given that it is a rough approximation, it is a good visual indicator of compaction

times.
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Result

We can detect abnormal compaction latency using a bpftrace script which hooks into com-

paction begin and compaction end tracepoints and displays a latency histogram.

4.5 Thread Scheduling

In the following section, we evaluate several performance analysis patterns which relate to

thread scheduling. Improper scheduling of threads may lead to thread starvation and priority in-

version which can introduce latency and system hangups.

4.5.1 Thread Swamping

Data Source

We conducted several experiments where a single-threaded Java application runs alongside sev-

eral stress worker threads. The Java application uses a thread to print a message on loop to the

console. We used a tool called stress4 which would generate the required workload. Our Java appli-

cation has a thread named ”Thread 1” whereas the stress threads are named as ”stress”. These are

essentially worker threads which spin on the sqrt() function. After running both the Java application

and the worker threads in parallel, we wanted to quantify the effect of the worker threads on our

application thread. The trace file was recorded using LTTng which was then analyzed to detect the

degree of swamping that our Java application thread witnessed owing to the stress threads.

Detection Method

We used a custom EASE script to calculate the execution ratio of Thread 1 with respect to a

variable number of stress threads. We begin the experiment by simply running the Java program

without the stress threads and as expected, we get a high execution ratio. The ratio starts decreasing

as we increase the number of stress threads. The EASE script was run on the trace file after it was

loaded onto Trace Compass.
4https://linux.die.net/man/1/stress
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Detection Metrics

A thread can be inactive if it is blocked from running or if it is waiting for CPU. (Figure 4.8)

We use the information available from the sched switch tracepoint in order to calculate the amount

of time a thread spends executing on a CPU. We make sure that we calculate the timestamps only

when the thread was blocked while it was doing useful work. We define 2 metrics in this section:

TCD and TD. These metrics would determine the amount of swamping.

Figure 4.8: Colour coded segments showing various thread states on the Trace Compass UI

Figure 4.9: Yellow indicates a blocked thread

Let A, B, C and D be the timestamps at each context switch respectively. We define thread

execution time by summing up the thread execution time (in green) and system calls made by the

thread (in blue). Therefore, the Thread On CPU duration [TCD] would be:

(B −A) + (D − C)
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The Thread duration [TD] can simply be calculated by subtracting the timestamp of the last

event of the trace with the first event of the same trace. (Figure 4.10)

Figure 4.10: Defining TCD and TD using timestamps A,B,C & D

Result

At the beginning of the experiment, the thread timeline is filled with greens and blues- implying

that the thread runs uninterrupted in a single CPU in the absence of any stress threads. On running

the script with the TID of Thread1, we get a 96.3% execution ratio. (Figure 4.11 and Figure 4.12)

Figure 4.11: A timeline of a thread which isn’t swamped by stress threads

The hit on the execution ratio is evident when we generate a very high number of stress threads.

40 in this case. As we see the thread timeline we see a large number of orange and yellow patches

which indicate a high level of blocking. (Figure 4.13)

Figure 4.12: A high execution ratio in the absence of stress threads

We see the execution ratio go down to 56.44%, which implies that the thread waits nearly half

its time waiting for CPU. (Figure 4.14)
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Figure 4.13: Timeline of the thread when it is swamped by 40 stress tests

Figure 4.14: A low execution ratio which means that our application has been swamped

4.5.2 Unfair Scheduling

Data Source

In our experiment, we have simulated a situation where a thread is repeatedly migrated by the

scheduler from one CPU to another. This may not happen in production environment but we wanted

to demonstrate how tracing can lead us to discover repeated thread migrations by the scheduler. The

idea was to execute a Java application which would spin endlessly in a method and to write a shell

script which would use the taskset command in order to manually change CPU affinity of the thread

spawned by the application. This would lead the thread to be migrated repeatedly from one CPU to

another by the scheduler and highlight the problem of unfair scheduling. The application was traced

using LTTng and further analysis was carried out via EASE scripting.

Detection Method I

We activated tracepoints sched switch, sched migrate, and sched migrate task. An EASE script

was written to sort the system threads in descending order based on the number of times the thread

was migrated. This was done using the tracepoint sched migrate task which has parameters like

origin CPU and destination CPU. The data was mapped on a graph which clearly shows the thread

being repeatedly migrated from one CPU to another. As we can see in the Figure 4.16 Thread 3483

is repeatedly migrated from one CPU to another with red denoting CPU 1 and blue denoting CPU
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Figure 4.15: A visual graph showing all the thread migrations

Figure 4.16: Highlighting how a single thread gets migrated repeatedly between CPUs
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2.

Detection Method II

We use the semantic structures provided to us by LTL-TK such as the existential quantifier and

the counter in order to design a specification to detect this pattern. Assuming a threshold Th beyond

which a thread should not be migrated by the scheduler, we write the following specification in

LTL-TK:

∃>ThC⊤
ϕ → Flog

where ϕ denotes the condition sched migrate task.tid = tid where tid is the thread ID of the

thread we are analyzing. The existential quantifier determines if the count of every instant in the

trace where ϕ evaluates to ⊤ is greater than the threshold Th. If the count is greater than Th, it is

logged.

Detection Method III

We tried to formalize this pattern using LTL in the following manner:

G¬(GF(sched migrate task.tid = tid))

which can be translated as it should never be the case that a given thread tid will always eventu-

ally be migrated to another another CPU. However, implementing this specification would result in

the verdict ? (indeterminable) as GF(sched migrate task.tid = tid) would imply that there will al-

ways be a migration of thread tid at an undisclosed time in the future. Hence, this specification will

not result in a definitive Truth or Falsity. Hence, we will stick to EASE scripting as it shows us ex-

actly how many times individual threads get migrated by the scheduler and sorts them in descending

order.
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Detection Metrics

For this pattern, the number of CPU migrations per thread was calculated from the data fur-

nished by tracepoint sched migrate task. If the number of such migrations for a particular thread is

abnormally higher than all other threads, then we will have detected this pattern. Our code displays

migration information in descending order with the thread with the most migrations appearing first.

Result

We showed how we can detect unfair thread migrations using tracing and then processing the

trace file using EASE scripting. Our code migrates the thread repeatedly by design and real life pro-

duction instances will not see such extreme to-and-fro migration. However, our script demonstrates

the ability to detect abnormal migrations in case they ever occur.

4.5.3 Priority Inversion

Data Source

We simulated an instance of priority inversion by tracing a custom Java program where we

created three threads of high, medium and low priority respectively. We used the Java Virtual

Machine to set the priority of these threads. The high, medium and low priority threads are named

High Priority P, Sorter and Low Priority Pr respectively. JVM provides a TID of 13 to High Priority

P and 15 to Low Priority Pr. We traced this application from the kernel space as well as the user-

space.

Figure 4.17: The higher priority thread requesting a lock already held by a lower priority thread
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Detection Method I

We use Trace Compass to manually detect priority inversion. Instrumenting the code in the user-

space allows us to determine exactly when the high priority thread requests a lock already held by

the lower priority thread as shown in Fig 4.17. We can see that the higher priority thread (TID=13)

requests the lock at 18.57.59.019 approximately but the lower priority thread (TID=15) releases the

lock much later, at around 18.58.01.646.

Figure 4.18: Trace Compass timeline showing the relationship between the three threads

Let’s look at the resource timeline on Trace Compass. (Figure 4.18) If we observe the timeline

at approximately 18.57.59.620 (bookmarked by the red vertical line), we shall see that the low

priority thread is blocked (a state transition from green to orange) and the middle priority thread is

scheduled on the CPU. By the time the low priority thread gets CPU time, thread Sorter has been

scheduled on CPU at least thrice. One can recall from the user-space trace that the high priority

thread is still waiting to acquire the lock which is acquired presently by the lower priority thread.

This is an instance of priority inversion where a thread with higher priority is essentially waiting to

access a resource currently being accessed by a thread of lower priority. In the Figure 4.19 we shall

see that the high priority thread gets CPU access after Low Priority Pr relinquishes the lock.

In Figure 4.19 , we can see that High Priority P finally gets scheduled on CPU (state change

from yellow to green) when it acquires the lock at 18.58.01.649
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Figure 4.19: High Priority thread getting CPU access after the Low Priority thread relinquishes lock

Detection Method II

We wrote an EASE script to try to detect priority inversion. It worked by looking at the

sched switch tracepoint to see which threads occupied the CPU, what state the threads were in

when they were taken off the CPU, and what priority the threads were when they were placed on

the CPU. If the thread was in the state TASK INTERRUPTIBLE or TASK UNINTERRUPTIBLE,

then we assigned the thread state as blocked and put them into a list. Every time another thread was

scheduled on to the CPU with a lower priority than a thread in the blocked list, we flagged the thread

as priority inverted. We kept track of the number of times each thread was priority inverted. The

problem with this implementation was two-fold. First, threads can be indirectly blocked for many

reasons. Some examples include waiting for user input, disk I/O, and network. We could have used

the futex system call instead. This would show periods of time where threads are indirectly blocked

by resources implemented with a futex. However, this leads to the second problem. Thread A,

blocked by resource R, can only be priority inverted if Thread B, holding resource R, is preempted

by Thread C, which has a lower priority than Thread A. Our script did not check for this require-

ment because we could not tell which thread was the one holding the resource blocking the blocked

thread. Even with the futex system call, we would not be able discover this. Futexes work by only

entering kernel mode (emitting a futex system call for us to trace) when there is lock contention on

the futex. There is no way to tell which thread is holding the lock because futex system calls are

not emitted when a futex is acquired. The system call is only emitted when the futex is requested
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or released and there is contention. As such, given these tracepoints, priority inversion cannot be

detected.

Detection Metrics

In our experiment using Method I, we had to manually detect priority inversion by checking if a

thread of higher priority is indirectly waiting to access a resource which is currently being accessed

by a thread of lower priority. We find out the instance when the lower priority thread is preempted

by another higher (in this case, a middle priority thread) priority thread which leads to the inversion.

Result

We use tracing and the Trace Compass UI after loading both user-space and kernel-space trace

files in order to manually detect priority inversion.

4.5.4 Sub-Optimal Threading

Data Source

In our experiment, we designed two Java applications with 25 threads and 4 threads respectively

and then traced their executions. Both applications do identical tasks - increase a counter until it

reaches a large number. The threads in the application try to increase the integer which is common

to all threads and belongs to a synchronized class so that only one thread can access the integer at a

time. This creates a lot of contention between the threads as seen in the application with 25 threads.

In contrast, the application with 4 threads does not see any contention. Tracepoints sched switch,

sched process exit, sched process fork were activated during the tracing session.

Detection Method I

We used an EASE script to compute the statistics which was applied to the trace after being

loaded onto Trace Compass. For the application with 25 threads we see a majority percentage of

threads wait for CPU for at least 65% of their lifetime. The other application sees no such thread.

Thus, dynamic tracing can help us detect at least one type of sub-optimal threading. Similarly,
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a situation where an application using fewer threads than what is optimal could be identified by

looking for free CPU cores. Performance monitoring counters can also be employed to check cache

statistics such as hits and misses for an overall greater picture of resource usage.

Detection Method II

We can use LTL to formalize this performance analysis pattern with the help of EASE scripting.

For a given process PID, let the total number of threads spawned by that process be Nth and the

number of threads waiting for CPU time for more than or equal to about 65% of its lifespan be

Nwait(65%). The ideal threshold for the number of threads that can run optimally on a system is

equal to the number of CPU cores/hardware threads present. So taking that as the threshold Th we

come up with the formalization

G¬((Nth>Th) ∧ (Nwait(65%)/Nth > 50%)

which can be summarized as :- it should never be the case that the number of threads spawned by

a program exceeds the number of CPU hardware threads and where at least half of those threads are

waiting for CPU for 65% or more of their lifetime. The percentage ratios can, of course be modified

as per requirement. The percentage of lifetime waiting for CPU was chosen to be aggressive at 65.

Detection Metrics

We use the metric Nwait(65%) to denote the number of threads which are waiting for CPU

for 65% of their lifetime. This is an aggressive percentage which can be tweaked with as per

requirement. Figure 4.20 shows how 23 threads wait for CPU for 65% of their lifetime and are

hence considerably swamped. Figure 4.21 which has only 4 threads (the number of threads showing

is more as there are other system and helper threads too) sees no such swamped thread.

Result

We use tracing to determine the optimal number of threads that an application should have in

order to leverage multitasking on multi-core CPUs. Using tracing data we can detect threads that
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Figure 4.20: The application with 25 threads sees a large number of threads being swamped.

Figure 4.21: The application with 4 threads sees no swamped threads
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are frequently blocked so that we can reduce the number of threads. Similarly, if we find multiple

idle CPU-cores, more threads can be added to the application to boost performance.

4.5.5 Thread Scheduler Latency

Data Source

Brendan Gregg’s bpftrace tool runqlat [36] can be used to determine thread scheduler latency.

This tool hooks into sched:sched wakeup, sched:sched wakeup new and sched:sched switch in or-

der to calculate the duration between thread wakeup and thread running.

Detection Method

We use the tool to obtain two latency histograms (in microseconds) which show the average

wait time taken for a thread to get CPU access. The first histogram was generated when the system

was relatively idle (a few open Chrome tabs) (Figure 4.22) whereas the second histogram was after

having spawned 40 worker threads using the application stress. (Figure 4.23).

Figure 4.22: Latency histogram of a relatively idle system

Detection Metrics

The detection metric used here is the average wait time for a thread from the moment it is

woken up (sched wakeup) till it is scheduled on a CPU (sched switch). As we see in Figure 4.22, a
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Figure 4.23: Latency histogram of a system under stress

relatively idle system sees a very short wait-period (0-1 microseconds) whereas a busy system can

see that time go up considerably. (Figure 4.23). Systems running at capacity can see latency at the

millisecond level as well.

Result

We use the bpftrace tool runqlat, in order to trace the average scheduler latency by dynamically

tracing the sched wakeup and sched switch tracepoints.

4.6 Disk Scheduling (I/O)

In this section, we shall evaluate a single performance analysis pattern that relates to the Linux

disk scheduler (I/O). We shall use bpftrace scripting in order to find individual I/O request latency in

the form of a histogram to determine if the application is witnessing any lags due to I/O scheduling

overhead.
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4.6.1 I/O Scheduler Overhead

Data Source

When it comes to the I/O schedulers themselves, their latency can be traced using a bpftrace

script. Brendan Gregg’s tool iosched [36] does precisely that. The script measures the time differ-

ence between adding a new request to the scheduler and the time when the request was issued.

Essentially, it traces the amount of time a request waits in the queue. The tool uses kprobes

elev add request, blk start request and blk mq start request to achieve that. However, as stated

earlier, kprobes are unstable and will not work if the function is changed, renamed or deleted in

subsequent kernel versions and that is what exactly happened. Refer to Fig 4.24 for the updated

iosched code.

Figure 4.24: Updated IOSCHED code
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Detection Method

Linux kernel 5.0 and onward removed all redundant elevator code and the kprobe elev add request

failed to attach considering the function itself was deleted from the code5. Similarly the probe for

blk start request could not be attached. Hence, the script had to be slightly modified for it to work.

Instead of the elev add request function, a probe was attached to elv rb add where I/O requests

are added in a red black tree. The probe to blk start request was removed and the script worked.

Detection Metrics

Heavy I/O activity was simulated on our system while the script was running which results in

higher latency (16 to 64 milliseconds) for several requests. Our modified script (Fig 4.25) shows a

histogram of queuing time durations for mq deadline (as it was the only I/O scheduler present in the

test system apart from none). This tool can be used as a complement to decide if the I/O scheduler

needs to be changed and/or tuned to ensure optimal I/O.

Figure 4.25: Latency Distribution of the mq-deadline I/O scheduler

Result

Using an updated version of Brendan Gregg’s tool iosched we were able to detect I/O scheduler

latency. The individual latency of I/O requests were displayed as a histogram.
5https://elixir.bootlin.com/linux/latest/source
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4.7 Network Stack

In this section we shall investigate a case of performance analysis pattern that relates to the

TCP/IP network stack and evaluate how it affects application performance.

4.7.1 TCP Re-Transmits

Data Source

A trace obtained from Gregg’s bpftrace tool tcpretrans [36] fetches TCP retransmit informa-

tion such as the timestamp, PID, local address(LADDR), local TCP port(LPORT), remote IP ad-

dress(RADDR) and remote TCP port(RPORT) along with the connection state. The tool uses the

tcp retransmit skb tracepoint in order to achieve this. The argument obtained by the script from the

probe is of type struct sock*6 which is the Linux network layer abstraction of sockets. Based on the

IPv4 address family, the script determines if the socket is communicating with a AF INET (IPv4) or

AF INET6 (IPv6) address and uses the inbuilt bpftrace function ntop to convert the IP address to text

for printing. Similarly, the connection state is fetched from the struct sock sk common.skc state

attribute. The states can be ESTABLISHED, SYN SENT, SYN RECV and so on. The states could

also provide clues regarding network issues. For example, a high rate of SYN SENT could indicate

a server which is unable to clear its SYN backlogs [36].

Detection Method

The rate of TCP re-transmits can be monitored via StreamLab. After making a few adjustments

in Gregg’s bpftrace script which included changing the time format to nanoseconds (Fig 4.26) and to

ensure that the output is written to a file in CSV (Comma-separated-value) format, the file is fed to

the monitor and the rate of retransmit events is counted over a period of time. The period can be set

by the user to be in seconds or minutes. A threshold can be fixed which, upon exceeding, can fire a

trigger leading to the following specification.

input PID: UInt64
6https://www.kernel.org/doc/htmldocs/networking/API-struct-socket.html
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Figure 4.26: An updated tcpretrans bpftrace script to show timestamps in nanoseconds

output retransEventCount @1Hz := PID.aggregate(over: 1.1s, using: count)

trigger count >Th ”TCP Retransmit count exceeded given threshold”.

Figure 4.27: Output of the RTLola specification for Th = 9

Detection Metrics

This specification in RTLola will trigger an alert every time the number of TCP Retransmit

events is greater than Th. The input stream is taken as the stream of PIDs that witnesses re-transmits

and a periodic output stream retranEventCount is initialized which would count the number of

retransmit events in a sliding window of 1.1sec, at a frequency of 1Hz. The frequency and the

duration of the sliding window can be changed as per requirement. In our experiment, we set the

threshold to be 9 (Fig 4.27) and RTLola triggers the alert.

Result

We used a slightly modified version of Gregg’s tool tcpretrans in order to generate a CSV file

on which we run a RTLola specification to determine the frequency of TCP re-transmit events.
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If the number of such events over a sliding period exceeds a given threshold then one can start

investigating network congestion.

4.8 Synchronization Context

In this section, we shall be evaluating performance analysis patterns related to synchroniza-

tion (usage of locks in order to control access to shared resources) in multi-threaded applications.

Writing efficient multi-threaded code can be difficult. Therefore, tracing can provide us visibility

into synchronized code and help detect performance patterns due to improper or badly optimized

synchronization.

4.8.1 Excessive Busywaiting

Data Source

Busy waiting can be brought about by the use of spin locks [104]. A spin lock is a type of

lock which makes a thread ’spin’, i.e. wait in a loop till the lock is available. While the thread

spins, it appears to the OS that it is doing busy work but in reality it is just wasting CPU cycles.

Spin locks are used to avoid the overhead of invoking function calls for mutex synchronization and

context switches in situations when it is known that the length of the critical section will be short.

Spin locks can be harmful too if it makes a thread busy-wait for long durations. Especially if the

OS interrupts the thread holding the lock, in which case the waiting threads will keep spinning

indefinitely. User-space spin locks are also prone to race conditions and long spin times [105].

We wrote a custom java code with two threads where the first thread (TID=5007) acquires a

spin lock and goes to sleep for 1 second.

Detection Method

In order to detect excessive busy-waiting in user-space applications, the user space must be

instrumented along with kernel space. In order to do that the Pthreads library can be instrumented

using the LD PRELOAD technique with a pthread spinlock wrapper class which traces spin lock re-

quest, acquisition and release.(Fig 4.28) We trace the spinning time of the second thread (TID=5008)
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Figure 4.28: User Space instrumentation helps trace spin lock requests, acquisitions and releases

as it tries to acquire the lock shortly after the first thread does the same. We generated a user-space

trace as well as a kernel trace in order to trace lock acquisition and the busy-waiting. We can see in

the resource view (Fig 4.29) that Thread 5008 spends a lot of time on CPU (horizontal green bar)

We also wrote an EASE script which shows the spinning time of both threads where we can see

how Thread 5008 spends 1 second spinning in Figure 4.30.

Detection Metrics

Figure 4.29: Trace Compass resource view shows Thread 5008 spending considerable time on CPU

The primary detection metric used here is the amount of time a thread spins, waiting to access

the spin lock held by another thread. We calculate this time by subtracting the time when the thread
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gives up the spin lock from the time when the thread acquires it.

Result

Figure 4.30: Our EASE script calculates spin-lock duration

Hence, we use Trace Compass and a complementary EASE script to detect busy waiting times.

If an application sees too many threads busy waiting then its performance can be improved upon by

modifying the locking design.

4.8.2 Asymmetrical Contention

Data Source

We wrote a custom Java application featuring a data structure containing ten lists of integers.

List 0 is for integers 0 - 9, List 1 is for integers 10 - 19, List 2 is for integers 20 - 29 and so on.

Each list has its own lock. The code creates 10 threads, named Thread 0 to Thread 9. The first five

threads put random integers between 0 and 99 into the data structure. The second five threads put

random integers between 0 and 9 into the data structure.

This results in a significantly higher contention rate for lock 0 as more threads are trying to

access list 0 concurrently. The other locks in comparison do not see much contention activity at all.

This is asymmetrical contention where locks synchronizing similar data see a skewed contention

ratio.
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Figure 4.31: Our EASE script showing lock contention statistics

Detection Method

Our application was instrumented using the Java logging API and LTTng user space tracing.

There are other techniques to instrument code in non-invasive ways as well but that is not the scope

of this work. After the user-space traces were collected, we wrote an EASE script which parses the

trace information to print lock contention statistics such as average wait times, average hold times

and number of lock acquisition requests. We see that lock 0 (Fig 4.31) is requested twelve times

more than all the other locks in the data structure. Naturally, the wait times were significantly higher

as well. LTTng user space tracing allows us a fine-grained view of the codebase. The method name

and class name of the locks feature in the trace information which makes it clear that the locks are

from the same data-structure.
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Detection Metrics

The detection metrics used here are average lock hold duration, average lock wait duration and

number of lock requests. These metrics are calculated from the trace file using EASE scripting. If

the number of lock requests for a particular lock is way higher than other locks, then asymmetrical

contention has been detected.

Result

We use LTTng user space tracing along with Java logging API to detect asymmetric contention.

We extract some useful synchronization metrics which would help us monitor lock requests, long

holds and average lock wait-times.

4.8.3 Excessive Synchronization

Data Source

We modified the Java application we wrote to demonstrate asymmetric contention by simply

adding another lock which protects the entire data structure. It would be helpful to recall that the

data structure is comprised of 10 lists with one lock per list and 5 threads are trying to insert numbers

into these lists. Each thread has to acquire, access and release the lock for every operation. When we

inserted another lock which regulated access to the entire data structure (let us call this lock Main),

we observed that lock X has a tremendously high rate of contention compared to the other locks

guarding the individual lists. This is an example of excessive synchronization where well meaning

synchronization primitives are used inefficiently which leads to performance hits.

Detection Method

We used the same EASE script that we wrote to generate lock statistics and as the Figure 4.32

shows, the lock Main witnesses an extremely high number of requests. Since the thread has to

acquire another lock in order to push a number in the list, the average waiting time for other threads

looking to acquire lock Main becomes very high as well.
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Figure 4.32: Our EASE script shows the number of requests each lock witnesses

Detection Metrics

The main detection metric used here is the number of lock requests for each lock. If an individual

lock shows a high number of requests compared to other locks in the same module then it could be

an instance of excessive synchronization and the lock can be potentially removed after manual

inspection.

Result

We show how redundant locks can affect performance using tracing. Therefore these locks must

be removed. It is necessary to maintain a fine balance during synchronization when it comes to lock

granularity.
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4.9 Application Context

In the following section we evaluate performance analysis patterns by tracing the application

context itself. We monitor the application performance with respect to its environment and detect

performance issues and avenues of optimization.

4.9.1 Page Writeback Latency

Data Source

Detecting abnormal write activities can involve keeping an eye on writeback latency and/or

number of pages written. Any abnormal spike can be monitored and their timestamps noted and

correlated with any application delays. The reason why the writeback occurred can also provide

a clue. Normally synchronous writeback operations induce latency because it could mean that the

dirty limit is surpassed which leads to all writeback operations surpassing the cache and becoming

synchronous [82][62].

Brendan Gregg’s bpftrace tool writeback’s output [36] can be modified to generate a trace which

can be fed to a run-time monitoring framework such as RTLola.

Figure 4.33: Our custom RTLola specification that triggers if a spike in writeback activity is ob-
served
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Detection Method

RTLola can read the trace as input streams and calculate a running average. The user can set

a trigger when the latency or the number of pages written suddenly spike up with respect to the

running average. These spikes can be immediately investigated. The RTLola specification is as

shown in Fig 4.33 where the input is a stream of integer numbers called PAGES which we extract

from the run-time trace of writeback activities. Variable count is used to count the number of non

zero entries in the stream and a running average is calculated by dividing the sum of the pages

with the count. Note the use of the offset function. It implies that any given entry in the stream is

mathematically computed with the previous stream entry. If the given entry is the first entry, then a

default value is chosen. For example, in the output stream count, the first non-zero entry is added

to default value 0. The subsequent entries are added to the previous entry. Thus, for every entry in

the PAGES stream, we have a running average as well as a stream variable thriceAvg which stores

a value thrice the running average. If any item PAGES exceeds thriceAvg, then we witness a spike

in the number of pages written with respect to concurrent page writing activities. This immediately

raises a trigger. The trigger threshold can be changed to any factor as per requirement.

Detection Metrics

A stream thriceAvg is initialized which checks if the current number of pages in writeback

exceeds thrice the running average. If that is the case, then a spike alert is triggered. The factor of 3

can be modified as per the user’s requirement.

Result

We use the bpftrace tool writeback in tandem with our RTLola specification in order to detect

sudden spikes in page writeback activity which might cause system freezes.
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4.9.2 Abnormally Long Application Sleep Duration

Data Source

The bpftrace tool naptime written by Brendan Gregg [36] can be used with some minor modifi-

cations to the output such as changing the timestamp format and parameter order. In this case, we

would need the name of the process (COMM), the process ID (PID), the parent process ID (PPID)

and the parent process name (PCOMM). The sleep duration can be obtained from the function ar-

gument which is a struct of type timespec 7. This struct has two variables tv sec which is the time

duration in seconds and tv nsec which is the duration in nanoseconds which can be printed by the

script along with the other relevant information listed above. If we are to use LTL with BeepBeep

monitor in order to detect abnormally long sleep duration then the trace must be converted to XML

[46]. If we use RTLola for detecting abnormal spikes in sleep durations then the trace must be in

CSV format8.

Detection Method I

We use LTL as the first detection method, where we specify that for a given process with ID =

x, no sleep duration must exceed a given upper time limit Y. The formalization is:

G¬(PID = x ∧ tv sec > Y )

Detection Method II

The second formalization can be done via RTLola using the same algorithm as discussed in

4.9.1 where we can simply replace the input stream with the sleep duration in seconds.

We can use RTLola to monitor the sleep durations in real-time and raise an alert whenever the al-

gorithm comes across a duration which is significantly greater than the average sleep times detected

by the bpftrace script. We can term these anomalous sleep durations as spikes. The quantification of

these spikes can be chosen by the user. For example, we can use RTLola to trigger sleep durations

which are thrice the average sleep duration times captured by the tracing infrastructure.
7https://en.cppreference.com/w/c/chrono/timespec
8https://www.react.uni-saarland.de/tools/rtlola/
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Detection Metrics

The bpftrace script fetches application sleep durations from the nanosleep system call9. The

sleep time can be in seconds of nanoseconds. We can trace application sleep times in order to check

for any anomalous entries.

Result

We trace the syscalls:sys enter nanosleep tracepoint to detect abnormally large application sleep

durations. We use an LTL specification as well as an RTLola specification to check for abnormal

sleep durations.

4.10 Discussion

In this chapter, we detected and extracted some of the performance analysis patterns that we

discussed in Chapter 3. We used different tools in order to achieve this, based on the complexity

of the pattern. Some patterns were simple and could be detected using a simple LTL specification.

Detecting other patterns were more complex- requiring sophisticated scripting on the trace files in

order to extract useful metrics which would characterize the pattern.

We can, therefore, classify these performance analysis patterns in order of their increasing com-

plexity as well.

• Patterns detected and formalized using Linear Temporal Language (LTL)

• Patterns detected and formalized using LTL-FO+ and LTL-TK

• Patterns detected and formalized using run-time monitoring (RTLola)

• Patterns detected using bpftrace scripting

• Patterns detected and analysed using Trace Compass & EASE scripting

Most of the traces that we worked with were generated by us, ensuring that the performance

pattern that we were trying to detect was present during the recording of the trace. This could be
9https://man7.org/linux/man-pages/man3/nanosleep.3p.html
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a limitation as we have not used traces from real-life open source applications. Using traces from

real-life applications would be a part of our future work.
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Chapter 5

Conclusion & Future Work

5.1 Conclusion

In this thesis, we detected, extracted, categorized and formalized several performance analysis

patterns from various Linux subsystems. In order to detect these patterns we first traced the system

using LTTng while making sure that the performance issue we were trying to detect occurred while

the tracing session was on. In some cases, we designed custom applications which would simulate

said performance issues while in other cases we traced Linux routines themselves such as oom kill().

Once we had the trace file we extracted the patterns using different techniques such as applying

temporal logic, run-time monitoring and scripting. In order to achieve this, we wrote custom speci-

fications in LTL, LTL-FO+, LTL-TK and RTLola and ran those specifications against the traces. We

had to pre-process the trace files so that it had only the necessary metadata in a given format. In case

of LTL, the format was XML whereas for RTLola it was CSV. We demonstrated that it was possible

to detect and formalize simpler patterns using temporal logic and run-time monitoring alone. For

more complex patterns, we used EASE scripting in order to leverage its state system properties to

extract and visualize the patterns. We also used bpftrace tools and custom bpftrace scripting in order

to detect some of the patterns involving scheduler and compaction latencies.

We categorized these patterns based on the Linux subsystems they primarily effect. We also

wrote about the detection and formalization of these patterns in the increasing order of complexity.

Some patterns such as memory fragmentation or abnormal application sleep durations can be easily
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detected using run-time monitoring and temporal logic. Other patterns such as excessive busy-

waiting and asynchronous contention requires advanced scripting and visualization graphs in order

to be detected. Also, they are too complex to be formalized into a specification. We would require

advanced stream processing logic and scripting for the same.

5.2 Future Work

This catalogue is by no means exhaustive. New patterns would be added to the existing cat-

alogue in the future as tracing systems become more robust and developers detect new bugs and

optimization tricks. Some of the possible directions that this project can take are as follows:

• Addition of new performance analysis patterns along with their formalizations.

• Exploring other temporal logic to express these patterns.

• Using the work done on detecting these patterns to build tools that can be integrated with

Trace Compass so that developers can use them in order to build better software.

• Using trace files from real-life open source projects in order to detect patterns.

• Using deep learning techniques to mine traces for performance issues.

• Generalizing our patterns so that they can be valid for other operating systems as well.

5.3 Concluding Remarks

Personally speaking, the COVID 19 pandemic made it difficult to conduct research. Classrooms

and seminars were replaced by Zoom meetings and break-out rooms. It made me realize how

important physical presence and personal interaction are when it comes to learning and research.

Nevertheless, this project gave me an invaluable opportunity to deep dive into operating systems

and system performance engineering. Prior to this, I had never worked with Linux. But now, I can

confidently say that I have a reasonable understanding of how Linux works and I look forward to

working on the biggest open source project there is.
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