
 i 

SALMAN HOSEINI 

 

 

  

Software Feature Location in Practice: Debugging 

Aircraft Simulation Systems  
 

 

 

 

A Thesis 

 

In The Department Of 

 

Electrical and Computer Engineering 

 

 

 

 

 

 

Presented in Partial Fulfillment of the Requirements 

For the Degree of Master of Applied Science in Electrical and Computer 

Engineering at 

Concordia University 

Montreal, Quebec, Canada 

 

 

 

 

 

December 2013 

 

 

 

 

 

© Salman Hoseini, 2013 
 
 
 
 
 
 
 
 



 ii 

 

CONCORDIA UNIVERSITY 

 

School of Graduate Studies 
 

This is to certify that the thesis prepared 

 

By:                            Salman Hoseini 

 

Entitled:                    Software Feature Location in Practice: Debugging Aircraft 

Simulation Systems  

  

and submitted in partial fulfillment of the requirements for the degree of 
 

Master of Applied Science in Electrical and Computer Engineering  
complies with the regulations of the University and meets the accepted standards with 

respect to originality and quality. 
 

 

Signed by the final examining committee: 

 

 

                       Dr. M. Zahangir Kabir ___________________________Chair 

                        

 

                       Dr. Luis Rodriguez ______________________________Examiner 

   

              

                       Dr. Nizar Bouguila ______________________________Examiner 

   

 

                        

 

                       Dr. Abdelwahab Hamou-Lhadj _____________________Supervisor 

                        

 

 

Approved by:  Chair of Department or Graduate Program Director 

 

 

 

January 2014            Faculty of Engineering and Computer Science  

                                                    

 

 

 



 iii 

 

 

ABSTRACT 

 
 

 

 In this thesis, we report on a study that we have conducted at CAE, one of the largest 

civil aircraft simulation companies in the world, in which we have developed a feature 

location approach to help software engineers debug simulation scenarios. A simulation 

scenario consists of a set of software components, configured in a certain way. A 

simulation fails when it does not behave as intended. This is typically a sign of a 

configuration problem. To detect configuration errors, we propose FELODE (Feature 

Location for Debugging), an approach that uses a single trace combined with user 

queries. When applied to CAE systems, FELODE achieves in average a precision of 50% 

and a recall of up to 100%.  
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Chapter 1 Introduction 

  

1.1.  Introduction to CAE’s Simulation System  

Simulators play a critical role in the aircraft industry. They are used for many purposes 

including pilot training, aircraft design, and quality assurance. To simulate various 

features of an airplane, CAE, the company in which this study was conducted, is heavily 

invested in the development of aircraft simulation software systems. These systems are 

modular and component-based by design. They are composed of several software 

subsystems (that we refer to as modules throughout this thesis)–each responsible for a 

particular simulation function. Almost every function of an airplane is simulated through 

a software module. 

Modules are combined to simulate complex scenarios. An example of a simulation 

scenario is depicted in Figure 1, where an aircraft is descending at high speed while 

flying at low altitude. To avoid a crash, a successful simulation is the one in which the 

system generates proper warnings and alarms to inform the pilot. A simulation is saved in 

a configuration file, which contains mainly the modules and the connections among 

modules. 
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Figure 1. Taws Mode1 Envelope 

At CAE, it is the responsibility of integration specialists with the help of multi-

disciplinary teams (that we refer to collectively as configuration designers) to design and 

execute simulation scenarios. Configuration designers are software engineers, but not 

necessarily the ones involved in the development of the modules. In fact, they do not 

have to know much about the modules except their functionality, as well as what they 

take as input and provide as output. 

The only way for modules to communicate with each other is through exchange of data 

stored in a common database. The motivation behind this design is to enforce the low 

coupling, high cohesion principle, hence enabling reuse of modules for the generation of 
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other simulation scenarios. It also makes communication among modules transparent. 

This is particularly important in the context of CAE so as to meet the applicable 

regulations on flight simulators. Through this thesis we refer to the data stored in the 

common database as labels. One can think of labels as messages exchanged among 

processes in a distributed architecture. 

The generalized system architecture of CAE’s simulation system is shown in Figure 2. 

 

Figure 2. Generalized System Architecture 

The role of the scheduler is to invoke the modules in a certain order depending on the 

objective of the simulation. Each module has an entry point that is used by the scheduler. 

The scheduler uses proprietary algorithms to synchronize the modules to meet the 

requirements of a given scenario. These algorithms are out of the scope of this thesis. 
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1.2.  Problem and Motivation 

 

At CAE, during the testing process when the simulation does not behave as intended 

(e.g., wrong or no warnings are output when needed), it is an indication of the presence of 

bugs in the software modules, or configuration errors. In this thesis, we focus on 

configuration errors only. Configurations problems are costly for CAE as they are found 

late in the integration process. Having new methods to better find the root causes helps 

reduce costs. 

At the present time, the common approach for uncovering causes of invalid behaviour at 

the configuration level is by browsing configuration files searching for clues that could 

point out defects such as improper connection among modules. Given the large number 

of modules involved in a typical simulation scenario, this process is time-consuming, 

error-prone, and requires heavy involvement of domain experts. 

In the following Section we present a sample simulation scenario and will explain the 

problem through exercising the scenario. 

1.2.1 Simulation Scenarios 

In designing a simulation scenario, the main steps are (1) determine the list of required 

modules, (2) enable communication among modules, and (3) execute and test the 

simulation. 

Examples of modules involved in the scenario of Figure 1 include TAWS (Terrain 

Awareness and Warning System) and NAV (Navigation System). TAWS is a subsystem 

of a larger (and perhaps most important) system, called FSS (Flight Surveillance System). 
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TAWS generates alarms and warnings to inform the pilot of the terrain conditions (e.g., 

an audio sound when the terrain is too low). NAV is responsible for keeping track of the 

aircraft’s positions using latitude, longitude, altitude, and angle in horizon. 

Once the design of the simulation scenario is completed, the execution starts. For this, a 

different set of tools is used, among which the one related to this study is the monitor. 

The monitor is used by configuration designers to test the simulation. It exhibits the 

status of each module during execution of the scenario. It also displays notification 

messages such as warnings and alarms. For example, monitoring the behaviour of the 

system under the condition shown in the dark gray area in Figure 1 will trigger the 

monitor to output an alarm indicating that the plane is flying at high speed and low 

altitude, meaning that there is a risk of a crash. 

Simulation errors occur when the monitor omits to display important warnings or 

displays the wrong information. Many of these failures are due to configuration errors 

such as assigning labels to the wrong variables or even the wrong modules. One of the 

main reasons behind these failures is due to the way modules are connected. To debug 

these errors, configuration designers need to find places in the configuration files where 

the connections are improperly set. 

Typical simulations contain hundreds if not thousands of labels; not all of them are, 

however, relevant to the observed failure. A technique that can automatically point out 

these connections will save time and effort spent on debugging complex simulations. 

Configuration designers can then focus on simulating new and interesting scenarios 

instead of fixing existing ones. 
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To address this issue, we propose FELODE (Feature Location for Debugging), a semi-

automated approach that combines a single trace and user feedback to locate the 

connections among modules that are most relevant to the observed failure. 

1.3.  Research Contribution 

The main contributions of this thesis are as follows: 

 Application of feature location to an industrial system. To our knowledge, this is 

the first time that feature location is applied to the flight simulation domain. Also, 

through our review of the literature, we have not encountered studies that involve 

industrial systems. Existing techniques have been mainly applied to open source.  

 The FELODE approach itself which relies on a two-phase process that detects 

only the components that caused the invalid behaviour. Existing feature location 

approaches are designed to identify all the components that are relevant to the 

traced feature no matter if they are related to the failure or not. We believe that 

these techniques are most suitable to feature enhancement tasks and general 

understanding of the feature implementation. FELODE, on the other hand, is 

more focused on debugging tasks.  

 By locating features in configurations files, we demonstrate the applicability of 

feature location principles to other software engineering artefacts rather than the 

source code. 
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1.4.  Thesis Outline 

The rest of the thesis is structured as follows: 

 In Chapter 2, we present the categories of feature location techniques (based on 

the terminology used in [Dit13]). We go through previous work in the area of 

feature location and discuss the techniques used to perform feature location. We 

discuss the limitations and challenges of each approach.   

 In Chapter 3, we introduce our approach for locating simulation scenarios in 

configuration files. We first present a general overview of the approach and then 

discuss its components. We also discuss the challenges we faced during our 

analysis process. 

 We show the evaluation of our approach on CAE’s simulation system in Chapter 

4. In Chapter 4, we apply the approach to several simulation scenarios. We 

introduce the scenarios we used and discuss how data in configuration files affects 

the scenario execution.   

 In Chapter 5, we conclude the thesis with a summary of the main contributions 

and the future directions.   
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Chapter 2 Background 

 

2.1.  Feature and Feature Location 

In a software system, a feature corresponds to a system functionality as defined during 

software specification [Dit13]. As an example, in a drawing application, drawing a 

rectangle or saving the content of a palette are both features of the application We can 

consider a software system as a collection of features which are accessible by users 

[Dit13]. Although in the software specification all functionalities are defined in some 

specific order, this is not necessarily the case in the implementation process. Many 

features spread all around the source code. A feature may be implemented as a simple 

function or as a collection of functions working together to implement the functionality. 

In most cases, a feature is not just a block of statements, but a group of related program 

elements consisting of classes, methods and variables. These program elements may not 

be in the same package (or namespace) or not even in the same project. As a result 

identifying features in a software system requires thorough investigation of the code 

either using static or dynamic analysis techniques [Dit13]. 

Feature location research consists of a set of techniques to identify the software elements 

that are most relevant to the implementation of a specific feature. The ideal feature 

location technique would be the one that detects all software components and only these 

components that are most relevant to the implementation of the feature. Thus, when a 

change in a feature is required, the developers will know that they need to modify only 

the detected components. 
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2.2.  The Role of Feature Location in Software Maintenance  

Software maintenance tasks fall into two main categories: “adding new functionality to 

the system (perfective maintenance) or removing unwanted functionality (corrective 

maintenance)” [Dit13]. As a result, performing maintenance tasks requires that the source 

code components related to the requested change first be located. The idea situation 

would be to use system documentation to identify these components. Unfortunately, it 

has been shown in practice that keeping good documentation is impractical. Most 

existing systems are poorly documented if documented at all.  

One common activity to obtain adequate understanding of the task is to detect 

automatically the functionality implementations in the source code [Dit13]. This is 

known as locating features in the source code. 

Feature location can significantly reduce the cost of program comprehension process 

because it provides a starting point for users who are assigned to perform the 

maintenance task. In other words, it gives the user the option of investigating only a small 

subset of the software instead of going through the overall system [Rohatgi08]. 

For example if a user is assigned to fix a bug in the system, he would have difficult time 

to first find out where to begin. This is because he does not know what parts in the source 

code are responsible for producing the bug. To perform the task he would have several 

options available; he can debug the application, but for multi-threaded applications it can 

be a frustrating task. The other option is to do a manual investigation through source code 

to find where the bug occurs, but this one is also a time consuming and error prone 

approach. He would have other options like asking more experienced developers but that 
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may not work in cases in which others are busy with their own tasks. There is clearly a 

need for automatically identifying these components, which is the objective of feature 

location techniques.  

2.3.  Feature Location Techniques 

There are several feature location techniques (see [Dit13] for a survey). These techniques 

use different sources of information. Some consider only the source code of the system 

and by analyzing the dependencies between different parts of the source code they detect 

the source code components that are most relevant to the implementation of the feature 

under study (e.g., [Chen00, Robillard02, Robillard05a]). The second category of 

techniques combines the source code with documentation (e.g., [Petrenko08, Marcus04, 

Poshyvanyk07b]). The other set of techniques focus solely on dynamic analysis (i.e., the 

use of run-time information) ([Wilde92, Wong99, Eisenbrath01b]).  

2.3.1. Static Analysis Techniques 

Static analysis techniques focus on analyzing the source code such as control flow 

dependencies and data dependencies. The common approach can be described as follows: 

Having an element or a set of elements which are related to the feature (initial elements), 

the additional related elements will be detected by following the dependency flow of the 

initial elements. The initial elements are specified by the user either based on his/her 

prior knowledge or by assumptions [Chen00, Robillard05a, Saul07]. Static analysis 

techniques attempt to discover more elements in the source code using the information 

found in the structure of the source code such as program dependency graphs [Chen00, 

Rohatgi08, Rohatgi09]. 



 11 

Chen et al. proposed an approach where they used the static dependencies between 

program elements to obtain the feature-relevant elements [Chen00]. They introduced the 

concept of Abstract System Dependency Graph (ASDG) which is composed of methods 

and global variables of the source code. The approach starts with a node, known to be 

relevant to the feature. This node is either selected by the user or chosen randomly. The 

next node in the graph is then presented to the user. The user decides whether the visited 

node is relevant to the feature or not. At the end of this graph traversal, the collected path 

contains the program components that are most relevant to the feature. Unfortunately, this 

process can be quite time consuming for large systems.  

Robillard and Murphy [Robillard02] proposed an approach which uses the structural 

dependencies between program elements. The authors argued that attempting to find 

elements implementing the feature at the code level may cause ambiguity. Instead, they 

suggested using an abstract representation of the code. They introduced a middle 

presentation, called the Concern Graph. A concern is a feature under study, and a 

concern graph is composed of elements implementing the concern including the relations 

between them.  

Robillard et al. [Robillard05a] proposed a static feature location technique by analyzing 

the topology of structural dependencies with the objective of producing a suggestion set 

for the user to analyze the feature. The input of their approach is a set of program 

elements which consists of methods and fields which are likely to be related to the feature 

under study. This set is proposed by the user based on domain knowledge. The approach 

compares the elements of this set to the rest of the program to find more elements which 

are relevant to the concept. This is done by assigning two metrics to the elements that do 
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not belong to this set. The two metrics are Specificity and Reinforcement. Specificity 

measures how specific an element is to the set. Reinforcement measures how strongly an 

element is related to others elements in this set. Robillard’s approach has the advantage 

of less involvement of the developer, but it is highly sensitive to the first input.  

Saul et al. used structural information in the call graph to extract the feature related 

methods [Saul07]. In this study, the approach starts with one input that is a method called 

query chosen by the user as feature relevant. Their approach can be considered as an 

extension of the previous study by Robillard. The difference is that in Saul’s approach the 

provided input is a single method. Then the approach creates the dependency call graph 

of the neighbour methods of the query. For ranking the methods, the author applies the 

random walk algorithm to the call graph. To efficiently extract correct methods, the 

approach produces a sub-graph called base graph, which is comprised of the parents, 

siblings, spouses and children of the query.  Using the base graph, the search for related 

methods is narrowed down to elements in the base graph. In practice, the base graph can 

still be large and costly to investigate. Thus the next step in the approach is to rank the 

nodes to obtain more relevant results using random walk algorithm.  

2.3.2. Dynamic Analysis Techniques 

In dynamic analysis, the main source of information is the data collected during 

execution of the system. This data is typically represented as execution traces. An 

execution trace is the collection of events that are triggered during run time. Depending 

on what needs to be observed, a trace event could be a routine call, a statement, etc. The 

trace information is collected in a file which is called the trace file. To obtain an 

execution trace, the software under study needs to be instrumented. There are different 
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methods to instrument the system; inserting probes in the source code, binary file 

instrumentation, and profiling to name such techniques. 

When the user defines an execution scenario in which the desired feature is exercised, the 

resulted trace would contain the program elements corresponding to the feature. The 

choice of execution scenario affects significantly the quality of results. 

The important challenge of working with execution traces is the size of the trace files. 

Execution traces tend to be large. The execution of a scenario results in a trace that 

contains many program elements; not all of them are necessarily most relevant to the 

implementation of the desired feature. Examples include utilities [Rohatgi09]. 

Wilde et al. proposed an approach to locate feature specific program elements using 

execution information of the program [Wilde92]. Their approach, called Software 

Reconnaissance, uses two sets of traces. The first set is generated by exercising the 

feature of interest. The second set is generated by exercising different features. They 

compared the two set of traces and extracted the trace components that are most relevant 

to the feature of interest.  Their approach was evaluated on small applications and 

showed good results. 

Wong et al. proposed an approach to collect program elements at a finer level of 

granularity. In their study, they attempted to detect statements and basic blocks 

[Wong99]. The approach takes as input several test cases divided into two groups: Test 

cases that invoke the feature under study and the ones that do not. Similar to Wild et al. 

Wilde92, Their approach compares the traces generated from the two sets of test cases to 

detect the program elements that are most relevant to the features.  
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Eisenbarth et al. used concept analysis to detect feature relevant program elements 

[Eisenbarth01b]. The authors created a concept lattice by having the features of the 

system as attributes and the program components as concepts. While Eisenbarth’s 

approach is purely based on dynamic analysis, it suffers from the problem of carefully 

selected the execution scenarios. Their approach also requires heavy intervention from 

the user to navigate the concept lattice to detect manually the feature-relevant 

components.  

Bohnet et al. [Bohnet08b] proposed an approach with which the user can have different 

perspectives of the execution trace. In this study, the authors implemented a visualization 

tool which integrates multiple views of the system. Using this tool a developer can 

explore the obtained trace in different levels of detail. For example, the tool offers an 

overview of the execution trace for the developer to obtain an initial understanding of the 

stages of the execution (initialization, termination etc.). One of the main features of the 

tool is the synchronization between all the views. One can investigate the executed code 

by knowing where in the trace this code is executed or in which stage of the execution. 

The advantage of their proposed approach is that it can manage the complexity of the 

unfamiliar system and also the large amount of information in the execution trace. 

Hayashi et al. [Hayashi10a] used the combination of dynamic and static techniques. Their 

approach takes three inputs which are: a test case (in order to extract the execution 

information), the source code, and a user query. The approach starts with the user 

formulating a query. Then a score is assigned to each routine based on the similarity of 

terms in the query and terms in the routine, the user is asked to verify the highest ranked 

routines and using the static dependencies, the dependent routines will obtain higher 
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scores. The feedback process helps the user detect relevant routines which might have 

obtained a low score using the similarity measure. The idea of this iterative approach is 

that in the process of detecting the elements related to the feature under study, the user 

understands more about the feature implementation and can detect dependent elements. 

2.3.3.  Textual Techniques  

Textual feature location techniques do not require system execution. They also do not use 

any information regarding data or control flow dependencies. These techniques use words 

and text used in the body of the source code to obtain knowledge about the 

implementation of different features. There are several key techniques associated with 

textual analysis, like pattern matching, Information Retrieval (IR) and natural language 

processing (NLP). Pattern matching is basically a search for terms in a body of text. IR 

and NLP are more advanced techniques. 

The idea of textual analysis is that identifiers and comments used in the body of the 

source code embed the domain knowledge [Dit13]. Textual techniques extract the 

program elements using textual descriptions of the feature in the code. This is possible 

with the assumption that the feature is implemented using similar set of words used in the 

comments and identifiers [Dit13]. Textual analysis mostly use a query formulated by the 

user as input [Marcus04, Shepher'06]. A query is simply a string input by the user. It is 

composed of terms which describe  the exercised feature. Depending on the technique 

used in the analysis, the query and the knowledge source (i.e. the extracted words and 

text from source code) will be analyzed differently. The basic idea is to find similar 

expressions in source code and the query, and the result is a set of retrieved program 

elements which have similar words in their body with the terms in the query. 
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The most important aspect of using textual analysis techniques is to formulate a query 

which can lead to the detection of valid results. To do so, the user should be able to 

describe the feature under study using correct terms. The effectiveness of textual feature 

location techniques is heavily relied on the quality of naming in the source code. 

Petrenko et al. [Petrenko08] conducted a study in which they used textual information in 

the source code to find feature-relevant elements. In their study, they introduced the 

concept of ontology fragments which encapsulate the user’s partial understanding of the 

feature under study. The approach begins with the initial ontology fragment created by 

the user with his initial knowledge about the feature. Based on the ontology fragment, the 

user formulates a query. The user can enhance the query and improve the ontology 

fragment. Petrenko’s approach is a continuous approach, which in every step the 

ontology fragments becomes richer and thus gives the user more knowledge to produce 

better queries. 

Marcus et al. used a more advanced textual technique in their study [Marcus04]. They 

applied IR to textual descriptions in the source code to extract domain knowledge. Also, 

they used Latent Semantic Indexing (LSI) to find mapping between natural language 

description of the feature and the relevant parts in the source code. The approach starts by 

collecting all the identifiers and comments in the source code and creating a corpus. The 

corpus is a collection of documents which each document depending on the level of 

granularity can be a class or a method. The terms used in the body of the element are 

stored in a vector. The approach then continues with user generating a query describing 

the feature. The query itself is transformed into a vector. The suggested program 

elements are collected using the comparison between the query vector and vectors in 
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corpus. The result is a set of program elements which had more similarity with the query 

in terms of words used in their body.  

Poshyvanyk and Marcus in [Poshyvanyk07b] enhanced the approach introduced in 

[Marcus04] by adding the Formal Concept Analysis (FCA) to the process. In this 

approach the concept analysis matrix receives the input from LSI approach. The objects 

in the matrix are the program elements (methods) and the attributes are the terms used in 

the textual definition of the method. The approach searches for the top n ranked methods 

by LSI and then applies FCA on them.  

Single Trace and Information Retrieval (SITIR) [Liu07] use a single feature executing 

scenario and the textual information to detect the feature relevant elements. Using IR, a 

corpus of documents comprised of comments and identifiers in the source code is created. 

SITIR starts with one execution trace from one feature specific scenario and then applies 

IR on the program elements appeared in the trace. For this purpose, the user inserts a 

query and based on the similarity between the query and textual information of elements 

in the trace it ranks the results to extract most relevant elements of the feature.  

Revelle et al. [Revelle10] proposed an approach in which they used techniques for 

analyzing the structure of World Wide Web (WWW) to locate features in the source 

code. They used HITS [Kleinberg99] and PageRank [Brin98] as methods to filter out 

relevant results from the execution trace. Web analysis techniques can be used directly on 

the trace to locate feature relevant elements. For example, using HITS one can locate 

relevant methods which have many calls to other methods, making those methods 

relevant as well. Based on the calls of the methods to other relevant methods, HITS 
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provides a rank to each element in the trace. An extension to this approach is to apply the 

user query to the remaining methods in the trace.  

Shao and Smith [Shao09] propose a combined approach which they use LSI and call 

graph scores to locate feature relevant elements. The approach starts with LSI, creating a 

corpus and assigning a score based on the user query. Then, for each of the methods in 

the LSI list the call graph is created. In the created graph, only the direct neighbour are 

considered and if one of the direct neighbours is also appeared in the LSI list, then 

additional score is assigned to the elements. At the end a new ranked list is created which 

consists of combination score of LSI and call graph.  

Shepherd et al. [Shepherd07] used natural language processing and dependency graph to 

locate feature related elements. In their approach, they used the concept of verb and direct 

object as the abstract query. As in their previous study in [Shepherd06, the verb 

represents an action and the direct object is the object on which the action is performed. 

They proposed a tool called Find-Concept. The tool expands the abstract query using 

NLP to acquire a more complete set of results. Then using the action-oriented identifier 

graph model (AOIG), the tool searches for the nodes containing the terms in the query. 

The tool uses AOIG to detect the dependent elements to those containing the terms and 

then visualizes the results as a graph. 

2.4.  Discussion 

Feature location techniques aim to facilitate the process of identifying the components 

that are most relevant to the implementation of a specific feature. This way, software 
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maintainers do not need to search the entire source to make changes to only a subset of 

code elements, i.e., the ones relevant to the given feature.  

There have been many studies the area of feature location. Techniques vary depending 

whether they use dynamic analysis, static analysis, textual information, or a combination 

of these methods. 

Most existing techniques have been applied to open source systems. Also, these 

techniques are not tailored to a specific maintenance task (e.g., debugging, feature 

enhancement, etc.).  

In this thesis, we extend existing work in three ways. First, we propose a feature location 

approach that focuses on debugging tasks. Second, we apply our feature location to an 

industrial system in the domain of aircraft simulation. Finally, we show how feature 

location can be applied to locating configuration errors and not software bugs. To our 

knowledge, this is the first time that feature location is applied to an artefact rather than 

the source code (including the traces). 
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Chapter 3 Feature Location in Simulation Scenarios 

 

3.1. Overall Approach 

Figure 3 illustrates the general overview of our approach. First, we generate an execution 

trace by exercising the scenario of interest. We focus on traces of routine calls since 

labels are associated with specific routines of the modules. To obtain a correct trace of 

routine calls we first need to select a feature exercising the simulation scenario. 

 

Figure 3. Overall Approach 
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Detecting the right routines will ultimately lead to the most relevant labels. To this end, 

we turn to configuration designers who are the intended users of this approach for 

guidance. We ask them to formulate keywords in the form of a query that can help us 

detect the routines, most relevant to the observed failure. We rank the routines based on 

how similar their names are to terms in the query text. Once we identify the most relevant 

routines, we map their return values (if there are any) to the labels described in the 

configuration files. These labels are then added to the list of candidate labels. The last 

step is to present the list to configuration designers for validation. We elaborate on each 

of this step in more detail in the following subsections. 

3.2.  Scenario Selection and Trace Generation 

To be aligned with the literature on feature location, we can think of a feature, in the 

context of CAE, as an abstract simulation that defines a particular functionality of an 

aircraft, whereas a simulation scenario is an instance of a feature with specific input data. 

The inputs are data coming from other modules which is specified in the configuration 

files. In other words, the configuration file is an input to the modules, through which the 

modules get the data about communication with other modules. 

To exercise various simulation scenarios, we needed to work very closely with 

configuration designers at CAE. Many scenarios require special settings; most of them 

entail extensive knowledge of the aircraft simulation domain. We spent several months at 

CAE on a full-time basis interacting with configuration designers in order to understand 

the CAE software landscape and to become familiar with the aircraft simulation domain. 

This was a necessary task which helped us to analyze the simulation scenarios in detail. A 

simulation scenario can be exercised in two ways. The first method is to use the lunching 
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program, which consists of a graphical interface used by the trainers of the simulator 

device to create a simulated environment for the trainee. This program is mostly used for 

integration testing. The other way of generating simulation scenarios is to drive the 

desired inputs from the common database (i.e., labels) through a script file. The script 

defines the aircraft’s specification (flight phase, altitude, angle, speed, etc.) and then 

lunches the simulation scenario. In this study we used both approaches to create the 

desired simulation scenarios.  

There are various ways to collect trace information. Code instrumentation is perhaps the 

most popular approach. It consists of inserting probes into the source code and executing 

the recompiled version. The problem with this approach is that it requires modifying the 

source code. In the context of CAE, this turned out to be a challenging task to perform. 

First, we would need to have access to all the modules involved in a simulation. Many of 

these modules are developed by diverse development teams. In addition, the modules are 

written in different programming languages, which would necessitate the use of many 

instrumentation tools. Also, because this study targets configuration designers who do not 

necessarily have access to the source code, it is important to propose an instrumentation 

approach that is code-independent. To achieve this, we turn to binary instrumentation. 

This way, all what we need are executables. 

We generate traces of routine calls. By routine, we mean function, procedure, or method. 

We also keep track of the arguments and return variables of the routines (if there are 

any). These variables are needed to associate labels in the configuration file to the 

routines that handle them. 
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As we mentioned before, the modules are restricted to execute in a specific time frame. 

Thus, the tracing framework should have low overhead on the system so the execution 

time would not exceed the time frame. To achieve such performance, we spent several 

weeks analyzing the most suitable tracing frameworks and profiling tools. 

3.3.  Extracting Candidate Routines 

In this step, we search in the trace for the routines that are most relevant to the failure or 

the observed behaviour. To achieve this goal, we propose a two-phase process. First, we 

detect the routines that caused the monitor to issue the wrong warnings. We refer to these 

routines as seed routines, and will use them as a start point of the search process. The 

next phase is to detect the remaining routines that led to the failure. This process reflects 

the fact that a configuration error may appear way before the failure. It is therefore 

important to analyze all the interactions among dependent modules until the detection of 

the failure. 

3.3.1. Detection of Seed Routines 

To locate seed routines, we ask configuration designers for directions by asking them to 

formulate queries that can guide the search process. As we showed in the background 

Chapter, this is not the first time that queries are used in feature location research (see 

[Liu97, Marcus04] for examples). Other researchers used source code information (such 

as comments) combined with user input to obtain informative queries. We deliberately 

excluded the source code for the reasons we discussed in the trace generation subsection. 

With the user’s query we narrow down the search space only to a sub-set of routines 

which are likely to be relevant to the failure based on their similarity with the query. 
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To minimize user intervention, configuration designers at CAE suggested to use the 

warning messages output by the monitor to formulate queries, as they contain keywords 

that can help identify the corresponding routines. These warnings are triggered by 

specific routines in the corresponding modules. For example, in the case of the scenario 

described in the introduction Section (Figure 1, the dark grey area), TAWS outputs a 

warning that reads “TAWS Mode1 Warning Sound”, when we searched the trace, we 

found that the name of the corresponding routine, in the TAWS module, carries similar 

keywords. Thus, the query containing the terms “TAWS Mode1 Warning” is a qualified 

query which can detect the method triggering the warning output. 

The problem is that not all observed failures are described using textual messages. The 

monitor uses also sound effects, lights, and graphical illustrations, just like in a real 

airplane. For such cases, we rely on the user’s knowledge of the scenarios to formulate 

adequate queries. 

Once a query is formulated, we compare the query keywords with terms extracted from 

the names of the routines invoked in the trace. By routine name, we also include the name 

of the class where the routine is defined. 

CAE follows strict naming conventions. The camel case style is used for all identifiers, 

which facilitates term extraction from routines. It should be noted that by term we also 

include abbreviations. That is to say, we do not attempt to replace them with their 

original forms. This is because most abbreviations have specific meanings in the context 

of CAE that describe concepts in the aircraft simulation domain. We assume that 

configuration designers would use the same abbreviations when formulating queries. We 
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believe that this is a reasonable assumption given the involvement of configuration 

designers in the process of drafting queries. At any time, they can change the query to 

enter abbreviations or long forms, if needed. We suggest as a future direction to build a 

dictionary that maps abbreviations to their long form to further aid the term extraction 

process. 

To measure the similarity between the terms used in query and in routines, we had 

several options. There are measurements like; Boolean model [Lancaster73], cosine 

similarity [Singhal01], Jaccard [Jaccard12] and tf-idf [Hill07] (term frequency/inverse 

document frequency). 

In this thesis, we use tf-idf, a measure that reflects how important a word in a query is to 

a document in a corpus. For our purpose, we treat each distinct routine of the trace as a 

document. A corpus is then a set of distinct routines in the trace. The similarity between 

the query and each routine increases with the number of occurrences of the query terms 

within a routine. However, terms that are repeated frequently across the whole corpus 

(i.e., all the routines) are given less priority. For example, if there is a routine ri that 

contains many terms of the query and that these terms are not in other routines then ri 

should be given a higher rank because it is likely to be specific to the query. 

The use of tf-idf is particularly suitable when measuring the similarity between a query 

and routine names. For example, we may have the situation where a term in the query 

corresponds to a class name. In such a case, all the routines (invoked in the trace) of that 

class will be given the same importance when only counting this term. tf-idf offsets that 

by using the frequency of the term in the corpus (i.e., set of routines). This reflects the 
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fact that some terms (e.g., class names) are more common than others such as specific 

terms in routine names. 

To present the tf-idf more formally, we define the variables as follows. 

 tft,r: Document frequency of term t in the query in routine r. 

 idft - Inverse document frequency of term t in the corpus. N represents the number 

of distinct routines in the trace. And dft is the document frequency of term t. 

𝑖𝑑𝑓𝑡 =  log
𝑁

𝑑𝑓𝑡
  

 tf-idft,d is the combined weight for term t in routine r. 

𝑡𝑓𝑖𝑑𝑓𝑡,𝑟 =  𝑡𝑓𝑡,𝑟 ∗  𝑖𝑑𝑓𝑡 

The similarity between the query q and the routine r is measured by taking into account 

the frequency and inverse document frequency of all the query terms with respect to the 

routine r: 

𝑆𝑖𝑚(𝑞, 𝑟) =  ∑ 𝑡𝑓𝑡,𝑟 ∗  𝑖𝑑𝑓𝑡

𝑡∈𝑞

 

 

We need to select among the highly ranked routines the ones that are most relevant to the 

failure. One way to proceed is to define a threshold and take the routines with a rank 

higher than the threshold. The problem with this technique is that it is almost always 

challenging to find an adequate threshold that would apply to all scenarios. Besides, even 
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if we succeed to do this, it might not be the same threshold when applied to other 

systems. To address this, we simply present the ranked routines to the users and ask them 

to select the ones they think are most related to the query. A similar approach was used 

by Liu et al. in [Liu07]. 

3.3.2. Detection of Remaining Routines 

We use seed routines to find the remaining connections among modules that led to the 

failure. One intuitive way to achieve this is to collect the distinct routines that appear 

from the root of the trace all the way to the seed routines. In the general case, this would 

probably be the only way to proceed. However, in the CAE context, each component in 

the module has an update function that is called periodically by the scheduler to update 

the module’s data. A new execution cycle of the component starts by a call to its update 

function. For example, TAWS is a module in the simulation system, and Mode1 is a 

component of TAWS module. In order to receive the updated data from common 

database, scheduler calls the update function of Mode1 in a timely manner. 

We use the update routine to slice the trace by keeping only the routines that appear on 

the call path between the update routine and the seed routines. This way we eliminate 

routines that are not relevant to the observed behaviour. Because a seed function can 

appear multiple times in the trace, we need to examine each path from the update 

function to the seed function occurrence. The resulting routines form a set which is the 

union of the distinct routines that appear on each path. 
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3.4.  Extracting Labels from Configuration Files 

In this step, we search for labels in a configuration file that are connected to return 

variables of the routines from the previous step. But not all the routines in the call path 

have a representation in the configuration files. Some of these methods manipulate the 

local variables or call other functions based on condition statements. The routines which 

are receiving inputs from the configuration files are specified in the configuration files. 

To get the mapped labels we simply needed to look for the returned variables name in the 

configuration files. Although not all the variables which are appeared in the configuration 

files are connected to labels. Some of the variables are mapped to other local variables in 

the module. Based on the structure of the configuration file we detect only those which 

are mapped to labels. This is done automatically by simply parsing the configuration file. 

The final list of labels is then constructed.  

3.5.  Validation 

We verify the accuracy of the detected labels with the configuration designers. If the 

labels are not correct then we examine the causes by further exploring the trace. 

Sometimes, the cause might be due to a poor query. If so, we ask configuration designers 

to reformulate another (and richer) query. In fact, the query generation is the most 

important part of this approach. It is because of its important role in detecting the seed 

method. With a poor query the starting point of the analysis would be from a wrong point 

in the trace. 

Another objective of this step is to learn about ways to improve the approach for future 

studies. 
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3.6.  Summary 

In this chapter, we presented our approach for detecting the parts in the system, including 

routines and configuration elements, relevant to a specific behavior of the simulation 

system. The intended result is the set of labels which are the scenario relevant inputs to 

the module under study.  

We proposed the FELODE approach which combines dynamic analysis and textual 

techniques to perform feature location. The simulation scenarios, exercising the desired 

functionality of the simulation system are selected with the help of configuration 

designers. Then the trace of the simulation scenario is collected. From the collected trace, 

we extract the most relevant routines by comparing a user-formulated query to the name 

of the methods. We used tf-idf to rank routines that are most similar to words in the 

query. Then the user is asked to select the routines he or she thinks are related to the 

scenario. We use this first set of routines (i.e., the ones detected by comparing the user 

query) to complete the set of relevant routines. The next step is to detect in the 

configuration files, the labels that correspond to the final set of relevant routines.     
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Chapter 4 Evaluation  

  

4.1. Target Module 

In this thesis, we decided to conduct our experiments using the Flight Surveillance 

System (FSS) module. FSS is an important module in the simulation system. Buggy 

simulation scenarios can lead to catastrophic results. 

FSS comprises three sub-systems: Terrain Awareness and Warning System (TAWS), 

Traffic and Collision Awareness System (TCAS), and Weather radar (WXR). TAWS 

informs the pilot about the terrain condition and generates warnings and alarms when 

there is a potential crash situation. TCAS is for detecting the traffic in the flight path and 

alerting the pilot when there is another aircraft in the way. TCAS’s behaviour is related to 

the specification of the intruder aircraft. WXR is for monitoring the weather condition 

and storm characteristics. 

The size of FSS subsystems are of the order of hundreds of thousands lines of code. It is 

worth mentioning that FSS relies on a framework that handles communications through 

the shared database. Understanding how FSS works necessitates also the understanding 

of the framework. 

To apply our technique, we selected the scenarios from TAWS and TCAS sub-systems. 

This was due to the fact that TAWS and TCAS handle conditions which are easy to 

understand while being important functionality of the full flight simulator. They 
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communicate with other interesting modules like the navigation module and the 

exchanging data between these modules is simple and not detailed avionics data.   

4.2. Applying FELODE 

4.2.1. Scenario Selection 

As we explained in the previous sections, we had two options to exercise the simulation 

scenarios; first using the lunch program and the second option is with script languages. 

We wanted to create simulation scenarios using both options. As a result, with the help of 

configuration designers, we created three scripts to define the specification of the aircraft 

and environment in different conditions. In these scripts, the starting point of the aircraft 

is defined and the process of its travel till the desired destination is modeled. 

We also used the lunch program for the other two scenarios. Using the lunch program, we 

were able to define the condition of the aircraft and environment through a graphical user 

interface. But we could not use the lunch program for all the scenario’s since we needed 

to have access to other modules which at the time of our research were not available to 

us. 

As a result, we defined five scenarios, three from TAWS and two from TCAS. Table 4.1 

describes the scenarios. While both TAWS and TCAS are FSS sub-systems, they both are 

accompanied by the dependent modules which are NAV and Terrain. Terrain is a module 

that has the information about the world map. 
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Table 4.1. Simulation Scenario Definitions 

Scenario # Sub-System Scenario 

S1 TAWS Mode1 Aircraft is descending at high speed while flying at low 

altitude.  

S2 TAWS Mode4a The aircraft is close to the ground and is prepared for 

landing, but the gears are still up.  

S3 TAWS Mode4b Aircraft is in landing mode but the flaps are in a flight 

position.  

S4 TCAS Simulate the presence of an intruder with the intention to 

locate its altitude.  

S5 TCAS Simulate the presence of an intruder with the intention to 

locate its speed.  

 

We explained TAWS Mode1 in the previous sections. For this scenario, we positioned 

the aircraft in 900 feet altitude with the vertical speed of -3000 feet/min. Thus, we created 

a situation where Mode1 would be activated. TAWS Mode4a’s envelope is shown in 

Figure 4. When the aircraft is in the grey area, this means that the aircraft is ready for 

landing, thus if the landing gears are not opened Mode4a must inform the pilot using 

appropriate alarms. In our simulation case, Mode4a generated the alarm while the user 

expected to have a safe flight. For this scenario, to activate Mode4a, we put the aircraft in 

400 feet above the ground with the airspeed of 50 knots and while the gears positions 

were up. 
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Figure 4. Taws Mode4a Envelope 

Similar to Mode4a, Mode4b is for the positioning of the flaps. In general, a simulation 

scenario can have two phases. The first one is “in landing” phase and the second one is 

“in flight” phase. Based on the flight phase, the flaps should be either in landing mode or 

in flight mode. We exercised Mode4b’s functionality when the aircraft is approaching the 

airport and is ready to land, but the flaps were in flight mode. Figure 5 shows the 

envelope of Mode4b. For this scenario, we put the aircraft in the altitude of 400 feet with 

airspeed of 50 knots and the flaps in flight position to activate Mode4b.  
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Figure 5. Taws Mode4b Envelope 

TCAS functionality is heavily related to the specification of the intruders. Based on 

different attributes of the intruder like speed, altitude or angle TCAS activates alarms and 

informs the pilot about any potential danger. In order to understand TCAS’s behaviour, 

we need to consider the intruder’s behaviour as well. In the first scenario, we exercised a 

scenario to examine the intruder’s behaviour by measuring its altitude. In this scenario, 

using the visual information of the radar, we spotted the intruder in self’s flight zone and 

the intention is to check whether it is in the danger zone or not. To create this scenario, 

using the lunching program, we located the intruder in front of our aircraft in a way that it 

would pass from beneath the aircraft. For the second TCAS scenario, we were interested 

in detecting the intruder by measuring its relative speed (speed as a function of the 
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aircraft’s speed). For this scenario, we again located the intruder in front of the aircraft in 

a way that it would pass from the right side of the  aircraft. Altitude and speed are both 

important measures to assess whether the presence of the intruder is considered 

dangerous.    

4.2.2.  Generation of Scenario Traces 

We spent several weeks investigating several tracing tools which would not affect the 

behaviour of the system. Many of the tools caused the scheduler to crash in process. This 

was due to the fact that the overhead of the selected tools was preventing the modules to 

communicate correctly. 

Finally, we decided to use the PIN framework [PIN], a platform independent tracing tool. 

PIN provides several useful APIs for different purposes. It allows the users to implement 

their own customized tracing tool. It has a very low impact on the system if it is 

implemented correctly using suitable APIs which makes it a good choice for our purpose. 

PIN supports both binary and code instrumentation. We favoured binary instrumentation 

in this case to avoid modifying the code. Table 4.2 shows the size of the generated traces. 

We saved each scenario in a configuration file. The number of labels for each scenario is 

also shown in Table 4.2. For example, for Scenario S1, there are 720 labels. We were told 

by configuration designers that complex scenarios may result in more labels, but running 

such scenarios would require advanced settings and access to lab facilities within CAE 

for which extensive training is needed. 
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Table 4.2. Trace Statistics 

Scenario File Size 
Number of Routine 

Calls 

Number of Labels in 

Configuration File 

S1 310 MB 7,734,123 720 

S2 359 MB 8,126,237 720 

S3 250 MB 4,533,630 720 

S4 267 MB 4,844,231 620 

S5 269 MB 4,879,325 620 

 

4.2.3.  Formulating the Query 

We asked one experienced configuration designers to help formulate queries for each 

scenario. He used the behaviour depicted in the monitor to guide the drafting of the 

query.  In what follows, we show the behaviour of each scenario. 

S1: After few seconds of execution, the monitor shows a flashing red light next to a 

message which says “TAWS Mode1 Warning Sound”. The experienced configuration 

designer proposed to use the term in the message as the basis for the query. 
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S2: The monitor reads the flight phase as “In Landing” and as time passes the altitude is 

reducing. After few seconds of execution, a blinking message appears next to the 

message “TAWS Mode4a” and the blinking message reads “Gears”. 

S3: The monitor reads the flight phase as “In Landing”. Similar to S2, after few seconds 

of execution, a blinking message appears next to message “TAWS Mode4b” and the 

blinking message reads “Flaps”. 

S4: For TCAS, the monitor does not give textual information. Instead it shows radar 

information like the ones available in real aircrafts. We observed a moving dot which got 

closer as time passed. At the end of the scenario it turned into a red dot and passed by the 

centre of the radar. During the scenario execution, a vocal message “Pull Up!” was 

triggered. 

S5: Similar to S4, The monitor showed the radar and the approaching dot, but in this 

scenario the dot was traveling in a high speed triggered the vocal message “Bear Left!” 

The formulated queries for our simulation scenarios are as follows: 

 S1: TAWS Mode1 Warning 

 S2: TAWS Mode4a Gears 

 S3: TAWS Mode4b Flaps 

 S4: TCAS Intruder Altitude 

 S5: TCAS Intruder Speed 
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4.2.4.  Ranking the Methods 

For each generated trace, we applied the ranking method to rank the methods using the 

user queries. 

For S1, Table 4.3 shows that “taws::TawsMode1::warningMessage” receives 

higher score since it has all three terms and the term “taws” is repeated twice. Routine 

“taws::AudioHandler::warningSets” receives a higher rank than 

“taws::TawsMode1::checkSound” since the term “warning” is more specific than 

“Mode1”.  

 

Table 4.3. Ranked routines for S1 

Routine Score 

taws::TawsMode1::warningMessage 3.10274 

taws::Malfunctions::mode1FalseWarning 2.20650 

taws::AudioHandler::warningSets 1.86448 

taws::Malfunctions::flightFalseWarning 1.86448 

taws::TawsMode1::checkSound 1.76520 

taws::TawsMode1::modeStatus 1.76520 

taws::TawsMode1::auralStatus 1.76520 

taws::TawsMode1::checkMode 1.76520 
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In Table 4.4, the routine “taws::TawsAircraft::gearsStatus” receives the 

highest rank, although it has only two of the terms in the query, but the term “gears” is 

more specific. 

Table 4.4. Ranked routines for S2 

Routine Score 

taws::TawsAircraft::gearsStatus 1.56395 

taws::TawsMode4a::mode4aCaution 1.38648 

taws::TawsMode4a::modeStatus 1.25924 

taws::TawsMode4a::auralStatus 1.25924 

taws::TawsMode4a::checStatus 1.25924 

taws::TawsMode4a::isFailed 1.25924 

taws::TawsMode4a::malfunctions 1.25924 

taws::TawsMode4a::checkEnv 1.21287 

 

Table 4.5. Ranked routines for S3 

Routine Score 

taws::TawsAircraft::flapsStatus 1.562546 

taws::TawsMode4b::mode4bCaution 1.40036 

taws::TawsMode4b::modeStatus 1.38234 

taws::TawsMode4b::auralStatus 1.38234 

taws::TawsMode4b::modeStatus 1.38234 

taws::TawsMode4b::isFailed 1.38234 
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taws::TawsMode4b::malfunctions 1.38234 

taws::TawsPriorityManager::set 0.32188 

 

Same as for S2, the routine “taws::TawsAncillaries::flapsStatus” receives 

the highest rank (shown in Table 4.5) since the term “flaps” is more specific. 

 

Table 4.6. Ranked routines for S4 

Routine Score 

tcas::Intruder::intruderRelativeAltitude 2.03595 

tcas::Intruder::intruderAltitude 2.03595 

tcas::Tcas2Track::altitudeCheck 1.36398 

tcas::TcasSim::altitudeSlew 1.36398 

tcas::TcasFlight::pressureAltitude 1.36398 

tcas::Tcas::agl 0.99386 

tcas::TcasIntruders::intruderGround 0.99386 

tcas::TcasIntruders::intruderItem 0.99386 

 

In scenario S4, as Table 4.6 shows, the weight of the term “altitude” is higher than 

“intruder” thus a higher score is assigned to the corresponding routines. For this scenario 

the two highest ranked results are 

“tcas::Intruder::intruderRelativeAltitude” and 

“tcas::Intruder::intruderAltitude” since they contain all three terms. 
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Table 4.7. Ranked routines for S5 

Routine Score 

tcas::Intruders::groundSpeed 2.19870 

tcas::Intruders::airSpeed 2.19870 

tcas::Intruders::horizontalSpeed 2.19870 

tcas::Intruders::verticalSpeed 2.19870 

tcas::Navigation::verticalSpeed 1.50264 

tcas::Navigation::airSpeed 1.50264 

tcas::Intruders::intruderIntention 1.01794 

tcas::Intruders::intruderItem 1.01794 

 

Four routines in the top of Table 4.7 receive the same score since they all contain the 

three terms in the query. 

4.2.4.  Selecting the Seed Methods 

For each scenario, we presented the ranked list of routines to the same configuration 

designer who helped us in formulating the query and asked for their feedback. 

Configuration designers selected the following seed routines. 

 S1: One method was selected. This method triggers the warning message. 

o  taws::TawsMode1::warningMessage  

 S2: Two methods were selected. The first method is responsible for reading the 

gears status (up or down) and the second method triggers the warning message. 

o taws::TawsAircraft::gearsStatus 
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o taws::TawsMode4a::mode4aCaution 

 S3: Similar to S2, two methods were selected. First one for reading the status of 

flaps (in flight position or in landing position) and the second one triggers the 

warning message. 

o taws::TawsAircraft::flapsStatus 

o taws::TawsMode4b::mode4bCaution 

 S4: Two methods were selected. Both methods are for measuring intruder’s 

altitude.  

o tcas::Intruders::intruderRelativeAltitude 

o tcas::Intruders::intruderAltitude 

 S5: Four methods were selected. All four methods are for measuring intruder’s 

speed in different criteria. 

o tcas::Intruders::groundSpeed 

o tcas::Intruders::airSpeed 

o tcas::Intruders::horizontalSpeed 

o tcas::Intruders::verticalSpeed 

 

4.2.5.  Trace Slicing and Extracting Call Paths 

For each scenario we slice the corresponding execution trace from the occurrence of the 

seed routine, moving backward till the first encountered update method.  
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Both update method and seed routines appear multiple times in the trace, therefore we 

extracted the distinct methods from each path between update method and seed routines. 

We also were careful that some seed routines may share the call path. In these cases we 

extracted only one call path for the seed routines. The following tables show the call path 

for each scenario and their seed routines. 

Routines presented in Table 4.8 are the methods executed before the seed routines. These 

methods produce results based on new values received from common database and based 

on those values cause the seed routine to get executed. Thus, the methods responsible for 

checking the values for altitude and descending rate (which are the key attributes for 

Mode1 feature) are likely to be in the call path. 

 

Table 4.8. S1: Call path 

Seed Routine: 

“taws::TawsMode1::warningMessage” 

taws::TawsMode1::doUpdate 

taws::TawsMode1::isFaild 

taws::TawsMode1::checkStatus 

taws::Navigation::glides 

taws::Navigation::vertcalSpeed 

taws::Input::aboveGroundLevel 

taws::Envelope::isInEnv 

taws::TawsMode1::auralStatus 



 44 

taws::TawsMode1::warningMessage 

 

Table 4.9. S2: Call Path 1 

Seed Routine: 

“taws::TawsAircraft::gearsStatus” 

taws::Input::update 

taws::Input::computeAltitude 

taws::Input::computeAboveSeaLevel 

taws::Navigation::aboveSeeLevelValid 

taws::Navigation::aboveSeaLevel 

taws::Input::computeAboveGroundLevel 

taws::Navigation::aboveGroundLevel 

taws::TawsAircraft::gearsStatus 

 

Table 4.10. S2: Call Path 2 

Seed Routine: 

“taws::TawsMode4a::mode4aCaution” 

taws::TawsMode4a::update 

taws::TawsMode4a::checkStatus 

taws::Navigation::runWayIndex 

taws::Navigation::airspeed 

taws::Input::aboveGroundLevel 
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taws::Input::flightPhase 

taws::Envelope::isInEnv 

taws::TawsMode4a::auralStatus 

taws::TawsMode4a::mode4aCaution 

 

For scenario S2, two call paths are extracted (Tables 4.9 and 4.10). In this scenario, we 

are looking for routines responsible for checking or receiving the values for altitude, air 

speed and the status of the gears. Mode4a functionality is closely related to the values for 

these attributes. 

 

Table 4.11. S3: Call Path 1 

Seed Routine: 

“taws::TawsAircraft::flapsStatus” 

taws::Input::update 

taws::Input::computeAltitude 

taws::Input::computeAboveSeaLevel 

taws::Navigation::aboveSeeLevelValid 

taws::Navigation::aboveSeaLevel 

taws::Input::computeAboveGroundLevel 

taws::Navigation::aboveGroundLevel 

taws::TawsAircraft::Shields 

taws::TawsAircraft::flapsStatus 
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Table 4.12. S3: Call Path 2 

Seed Routine: 

“taws::TawsMode4a::mode4aCaution” 

taws::TawsMode4a::update 

taws::TawsMode4a::checkStatus 

taws::Navigation::glides 

taws::Navigation::airspeed 

taws::Input::aboveGroundLevel 

taws::TawsMode4a::checkEnv 

taws::TawsMode4a::flightPhase 

taws::TawsMode4a::isInEnv 

taws::TawsMode4a::auralStatus 

taws::TawsMode4a::mode4aCaution 

 

For scenario S3, similar to scenario S2, two call paths are detected (Tables 4.11 and 

4.12). We are looking for the methods related to attributes: air speed, altitude and flaps 

positioning. Having the value of these attributes, we can pinpoint the causes of the 

aircraft’s behaviour. 
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Table 4.13. S4: Call Path 

Seed Routines: 

“tcas::Intruders::intruderAltitude” 

“tcas::Intruders::intruderRelativeAltitude” 

tcas::ApproachingIntruders::update 

tcas::Intruders::activeIntruder 

tcas::Intruders::heading 

tcas::ApproachingIntruders::topThreat  

tcas::ApproachingIntruders::topThreatID 

tcas::Intruders::isOnGround  

tcas::Intruders::groundSpeed  

tcas::Intruders::verticalSpeed 

tcas::Intruders::horizontalSpeed 

tcas::Intruders::intruderAltitude 

tcas::Intruders::airSpeed 

tcas::Intruders::intruderRelativeAltitude 

 

For scenario S4, seed routines share the same call path. As a result, we created a single 

call path for both shown in Table 4.13. In this call path, the data related to the 

approaching thread is processed. The input to TCAS is from another module which has 

the information about the traffic in the flight path. For this scenario, the important 

attribute is the relative latitude of the intruder from self-aircraft. The relative altitude is 

the function of self-altitude and the descending or ascending rate of the intruder. 
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Table 4.14. S5: Call Path 

Seed routines:         

“tcas::Intruders::groundSpeed” 

“tcas::Intruders::airSpeed” 

“tcas::Intruders::horizontalSpeed” 

“tcas::Intruders::verticalSpeed” 

tcas:: ApproachingIntruders::update 

tcas::Intruders::selectedIntruder 

tcas::Intruders::activeIntruder 

tcas:: ApproachingIntruders::outputs 

tcas::ApproachingIntruders::heading 

tcas::ApproachingIntruders::topThreat 

tcas::Intruders::isOnGround 

tcas::Intruders::groundSpeed 

tcas::Intruders::verticalSpeed 

tcas::Intruders::horizontalSpeed 

tcas::Intruders::intruderAltitude 

tcas::Intruders::airSpeed 

 

In this scenario, like S4 seed routines share same call path (shown in Table 4.14). While 

speed, like altitude is an attribute related to the approaching intruder the call path starts 

with update method of “ApproachingIntruders” class. Speed of an aircraft is 

measured from different points. For example, ground speed is the measured speed from a 

fixed point on the ground. 
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4.2.6.  Mapping to Configuration Files 

In Tables 4.8 to 4.14, routines shown in bold have an instance in configuration files. This 

means that there is a mapping between the code and configuration files. Through this 

mapping we detect the configuration parts which are related to the observed behaviour. 

There is a part in the configuration file which has information about 

“taws::Navigation::vertcalSpeed”. This routine was detected in the call path of 

“taws::TawsMode1::warningMessage”.This part of the configuration file specifies 

that the element “verticalSpeed” of component “Navigation” from the module 

“TAWS” reads its value which is stored in the label “NAV1VSpeed”. The reading method 

is also specified in the configuration file as “LabelType” which confirms that the 

original value is stored in a label. We have already obtained the essential information 

such as element name (VerticalSpeed) and class name in the body of detected 

method. To obtain the name of the label we used simple XML parsing and produced the 

result as a pair of element id and label name. For this case, the result would be 

<Navigation::verticalSpeed, NAV1VSpeed>. 

For routine “taws::Navigation::vertcalSpeed” we succeeded to find the mapped 

label. But the other detected routine in S1, although we found the representation of it in 

the configuration part, we could not find the mapped label. The configuration file part for 

“taws::Input::aboveGroundLevel”  is different in reading method. For this 

elements, the reading method is defined as “InternalType” which specifies that the 

original value for “aboveGroundLevel” element is calculated locally within the 

system. As the result it is not mapped to any label. 
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We did the mapping for all detected routines in the previous section and produced label 

sets for each of the scenarios. Tables 4.15 till 4.19 show the results that are mapped to 

labels in the common database. 

Table 4.15. S1 label set 

Navigation::verticalSpeed NAV1VSpeed 

Navigation::glides NAV1Glide 

 

Table 4.16. S2 label set 

Navigation::aboveGroundLevel NAV1AGLevel 

Navigation::runWayIndex NAV1RWIndex 

Navigation::aboveSeeLevelValid NAV1ASLevelV 

Navigation::aboveSeaLevel NAV1ASLevel 

TawsAircraft::gearsStatus AC2POGear 

Navigation::airSpeed NAV1ASpeed 

 

Table 4.17. S3 label set 

Navigation::aboveGroundLevel NAV1AGLevel 

Navigation::glides NAV1Glide 

Navigation::aboveSeeLevelValid NAV1ASLevelV 

Navigation::aboveSeaLevel NAV1ASLevel 

TawsAircraft::flapsStatus AC2POFlap 
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Navigation::airSpeed NAV1ASpeed 

 

Table 4.18. S4 label set 

tcas::Intruders::verticalSpeed INT1VSpeed 

tcas::Intruders::heading INT1Heading 

tcas::Intruders::activeIntruder INT1INTActive 

tcas::Intruders::groundSpeed INT1GSpeed 

tcas::Intruders::horizontalSpeed INT1HOSpeed 

tcas::Intruders::intruderAltitude INT1INTAltitude 

tcas::Intruders::intruderRelativeAltitude INT1INTMAltitude 

tcas::Intruders::airSpeed INT1ASpeed 

 

Table 4.19. S5 label set 

tcas::Intruders::groundSpeed INT1GSpeed 

tcas::Intruders::heading INT1Heading 

tcas::Intruders::activeIntruder INT1INTActive 

tcas::Intruders::airSpeed INT1ASpeed 

tcas::Intruders::horizontalSpeed INT1HOSpeed 

tcas::Intruders::verticalSpeed INT1VSpeed 

tcas::Intruders::intruderAltitude INT1INTAltitude 

 



 52 

4.2.7.  Evaluating Results 

To evaluate the result of our approach, we needed to have the valid labels for each 

scenario, something to compare our results against. We asked the same expert to provide 

us with the most relevant labels. In Tables 4.15 to 4.19, bolded routines and labels are the 

validated results by configuration experts. 

We used precision and recall to measure the accuracy of our approach. We define 

precision and recall as follows: 

Precision = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑖𝑑 𝑙𝑎𝑏𝑒𝑙𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑑𝑒𝑡𝑒𝑡𝑐𝑒𝑑 𝑙𝑎𝑏𝑒𝑙𝑠
 

Recall = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑖𝑑 𝑙𝑎𝑏𝑒𝑙𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑖𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑖𝑑 𝑙𝑎𝑏𝑒𝑙𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜
 

Table 4.20 shows the results. We can observe that the approach has good recall but 

relatively low precision. For all scenarios (except Scenario S1), the recall is 100%. This 

means that we detected all valid labels. The precision, on the other hand, indicates that 

we detected also labels (though not too many) that were irrelevant to the failure. 

Table 4.20. Precision and Recall 

N1: Number of labels detected by the approach; N2: Number of valid labels detected by the approach; N3: Number of 

valid labels for each scenario, provided by the expert.  

Scenarios N1 N2 N3 Precision 

(N2/N1) 

Recall 

(N2/N3) 

S1 2 1 2 50% 50% 

S2 6 3 3 50% 100% 

S3 6 3 3 50% 100% 

S4 8 3 3 38% 100% 

S5 7 4 4 57% 100% 
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For Scenario S1, we detected two labels but only one of them is valid. The valid label 

holds the descending speed of the plane. In this scenario, the plane was going at -3000 

feet a minute. The approach missed a label that is used to store the plane’s altitude. After 

analysis of the trace content, we found that the corresponding function did not appear in 

the trace path. This was caused by the fact that the query only referred to the TAWS 

warning without specifying the factors that might have caused these warnings (i.e., 

altitude and speed). A richer query would have given better recall with the risk of further 

reducing precision. 

For Scenario S2, the query resulted in two seed functions selected by the configuration 

designer. As a result, we had to include routines from two different execution paths. We 

detected six relevant routines. Only three of them return variables that map to the correct 

labels. These functions return altitude, airspeed, and flaps position. For Scenario S3, the 

result was similar. We detected three valid labels that represent the altitude of the aircraft, 

the positioning of the gears, and the caution message to the pilot about the status of the 

gears. 

In both cases, we detected labels that were not on the list of valid labels provided by the 

expert. The first label represents the altitude above sea (Mode4 is concerned with the 

altitude above ground only). This label would have been eliminated if the query had the 

keyword “ground‟ in it. The next two labels are used for consistency checks (for 

example, making sure that the altitude is returned only when it is available). They might 

not be relevant to the failure but are needed internally to ensure that the modules are 

functioning properly.  
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For TCAS Scenario S4, we detected the altitude above sea, the relative altitude of the 

intruder, and the intruder's vertical speed. And for the second scenario (S5), we detected 

all valid labels which represent speed properties were vertical, horizontal and relative 

speed as well as the intruder’s airspeed. But again, for both TCAS scenarios, the 

precision was relatively low. The additional labels that were detected return information 

about the intruders in the area (e.g., number of intruders, intruders heading, etc.). 

 

4.3. Discussion 

We showed the results to two configuration designers at CAE. In their opinion, there are 

two main factors that contributed to the significance of the study. The first one is the fact 

that the approach detects (in most cases) all valid labels (i.e., it has good recall). For 

example, using this approach, for Scenario S4 (which has the lowest precision 38%), 

configuration designers will need to examine, in the worst case scenario, only eight labels 

instead of going through the entire configuration file which contains 620 labels (see 

Table 4.2). The relatively low precision did not seem to be a concern because the number 

of detected labels was considerably smaller than the number of labels in the configuration 

files (in our cases, we detected at most eight labels). 

The second factor has to do with the fact that our FELODE does not require static 

analysis of the source code or access to any other system artefacts except trace 

information. This is an important enabler for the adoption of this method because it fits 

well with the actual work environment of configuration designers. It is particularly well 

suited in an environment with heterogeneous software systems relying solely on software 

binaries. The approach is also simple to use. 
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Precision can be improved in two ways. First, by having configuration designers 

continuously refine the queries and re-execute the approach until a satisfactory set of 

labels is identified. The challenge with this method is to know when to stop. Another 

approach is to build a model that associates the behaviour exhibited by the monitor with 

labels in the shared database. The model can be improved overtime as new failures occur. 

This learning-based approach can be further combined with a query-based model for full 

detection power. 

Finally, during this study, our ultimate objective was to detect key labels that are most 

relevant to the observed failure. However, after examining the results of the case study, 

we realized that there are also other labels that might not be the most important ones but 

can still contribute (perhaps at a lesser degree) to understanding the cause of the failure. 

For example, knowing the intruder’s information for Scenario S4 and S5 might be useful 

to debug similar scenarios. Adding the corresponding labels to the detected labels would 

increase significantly precision. 

4.3.1.  Lessons Learned 

We demonstrated through this study that feature location techniques can help in 

debugging tasks in an industrial setting. However, each environment will likely 

necessitate a tailor-made approach. We could not directly apply existing techniques 

because they required either multiple traces for each scenario [Antoniol05, Antoniol06, 

Eisenberg05, Eisenbarth01b, Wilde92, Wilde95], or access to the source code [Chen00, 

Hayashi10a, Hill07, liu07, Rajlich04, Rohatgi08]. Both solutions were quickly rejected 

and found impractical in the context of CAE. Generating multiple traces means 

exercising many simulation scenarios. We discussed the limitations of using source code 
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analysis in the previous sections. It was important to design a light-weight solution that is 

simple to use and implement. But most importantly, a solution that does not require 

significant changes to the work habits of the configuration designers. 

In the beginning of the study, we investigated fully automated solutions. However, after 

conducting the experiments, we realized that the user input was critical to reducing the 

complexity of finding the most relevant routines in the trace. We believe that any future 

work should integrate user feedback as a key element. Furthermore, the approach should 

be tailored to varying levels of experience and domain knowledge of the users. To reduce 

user intervention, we can invest in building models that capture essential knowledge 

needed for the approach. For example, there should be a way to save queries and enrich 

them overtime for further use. We believe that the effort spent on managing this 

knowledge will pay off in the future by increasing the detection accuracy of the approach. 

Finally, we found that input from CAE software engineers was critical to the design 

choices we made. For example, the two-phase approach for extracting routines from a 

trace was suggested by a CAE configuration designer. Also, guidance from CAE 

engineers greatly facilitated our efforts to relate terms in the query to terms in routine 

names. 
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Chapter 5 Conclusion  

 

5.1. Research Contributions 

In this study, we introduced a novel approach for locating features in configuration files 

used at CAE to understand the behaviour of simulation scenarios.  

Our approach uses dynamic information stored in trace files and user queries to obtain the 

relevant elements to the scenario under study. Dynamic analysis narrows down the search 

space that would have been unnecessarily complex if static analysis is used. Combined 

with user queries, our approach is capable of detecting scenario-relevant routines and 

configuration labels. 

To our knowledge, this is the first time that a feature location technique is applied to the 

avionic domain. We applied FEOLDE on two sub-modules of CAE and five different 

scenarios. We achieved in average 50% precision and up to 100% recall. We argued that 

the precision can be further improved by (a) having richer queries, and (b) considering 

labels that are not most relevant but still contribute to the understanding of the failure. 

One key finding of this study is that feature location techniques, once customized 

depending on the context, are applicable to solving real industrial problems. 

Future research should focus on conducting additional experiments with more simulation 

scenarios. In this experiment, we isolated some of the modules to analyze the behaviour. 

We also need to study the performance of FELODE, especially when applied to complex 

scenarios which require processing extremely large traces. 
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We need to gain more comprehensive knowledge of (a) the variables defining a 

simulation scenario failure, and (b) relationship among modules. This would help 

configuration designers to draft richer queries which will ultimately lead to better trace 

slicing techniques. We also need to build a knowledge base where queries are saved and 

improved over time. This knowledge-directed approach can further enhance the detection 

accuracy. 
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