
Towards an Emerging Theory for the Diagnosis of
Faulty Functions in Function-call Traces

Syed S. Murtaza and Abdelwahab Hamou-Lhadj
Software Behaviour Analysis Research Lab

ECE, Concordia University
Montreal, QC, Canada

{smurtaza, abdelw@ece.concordia.ca}

Nazim H. Madhavji
Dept. of Computer Science,

University of Western Ontario,
London, Ontario, Canada

madhavji@csd.uwo.ca

Mechelle Gittens
Dept. of Computer Science
University of West Indies

Cave Hill, Barbados
mechelle.gittens@cavhill.uwi.edu

Abstract—When a fault occurs in the field, developers
usually collect failure reports that contain function-call traces
to uncover the root causes. Fault diagnosis in failure traces is
an arduous task due to the volume and size of typical traces.
Previously, we have conducted several research studies to
diagnose faulty functions in function-call level traces of field
failures. During our studies, we have found that different faults
in closely related functions occur with similar function-call
traces. We also infer from existing studies (including our
previous work) that a classification or clustering algorithm can
be trained on the function-call traces of a fault in a function
and then be used to diagnose different faults in the traces
where the same function appears. In this paper, we propose an
emerging descriptive theory based on the propositions
grounded in these empirical findings. There is scarcity of
theorizing empirical findings in software engineering research
and our work is a step towards filling this gap. The emerging
theory is stated as: a fault in a function can be diagnosed from
a function-call trace if the traces of the same or a different fault
in that function are already known to a clustering or
classification algorithm. We evaluate this theory using the
criteria described in the literature. We believe that this
emerging theory can help reduce the time spent in diagnosing
the origin of faults in field traces.

Index Terms—Fault diagnosis, Function-call traces, Field
failures, Corrective software mainteance

I. INTRODUCTION
Software maintainers use failure reporting techniques to

collect information about system failures in the field.
Usually the failure reports consist of configuration
information and function-call traces from the field. Windows
Error Reporting tool1, the Mozilla crash reporting system2,
IBM DB2 [23], and IBM WebSphere [15] systems are
examples of reporting system that collect function-call traces
for crashing and non-crashing failures. However, failure
reports of software products with a large client base can be
quite overwhelming to software developers due to their sheer
volume. This problem is further aggravated by the large size
of typical traces [16]. It is known to be a challenging task to
analyze the content of these traces. It is no surprise that fault
diagnosis in corrective software maintenance can take up a
large amount of the maintenance time.

1http://msdn.microsoft.com/en-us/library/windows/hardware
/gg487440.aspx
2http://crash-stats.mozilla.com

In previous work, we have conducted three different
studies to help developers in quickly diagnosing faulty
functions in function-call level failure traces of deployed
software applications [25][26][27]. We have found that
function-call traces of different faults in closely related
functions occur with similar function-call traces: if a
classifier (e.g., decision tree) is trained on the traces of one
fault in a function, it can then be used to diagnose different
faults in failure traces of that function. We extensively
evaluated this approach on 12 different programs ranging
from 1000 LOC to 20 million LOC in different empirical
settings. These programs include seven programs in Siemens
suite [16], a Space program [11], three UNIX utilities [11],
and a large industrial program from IBM [27]. Our
experiments showed that faults in functions of approximately
(average) 85% of the function-call level failure traces of an
application can be diagnosed by using decision trees.

Prior researchers have focused on clustering function-call
traces of failures from the deployed software systems to
group together similar faults [5][9][10][22][30]. We also
evaluated clustering technique in a similar manner to our
classification approach and found that faults in functions of
approximately 77% of the failure traces can be diagnosed.

Thus, we observed that our empirical research findings
can lead to the foundation of an emerging theory in the field
of software fault diagnosis for function-call level traces. We,
therefore, propose an emerging descriptive theory that
describes the relationship between function-call traces of
different faults in a bottom-up fashion. First, we define the
propositions of the emerging theory based on our empirical
findings. The propositions of the emerging theory are formed
by a hypothetico-inductive model as described by Sjoberg et
al. [31]. Second, we use the propositions to state the
emerging theory. Third, we evaluate the propositions using
the criteria for measuring the goodness of a theory as
described by Sjøberg et al. [31]. In short, we state the
emerging theory based on the propositions derived from our
empirical findings as follows:

A fault in a function can be diagnosed from a function-
call trace if the traces of the same or a different fault in
that function are already known to a clustering or
classification algorithm.

We believe that this emerging theory will facilitate the
diagnosis of the origin of faults in function-call traces,
particularly during software maintenance. It will also reduce

the time and effort spent in corrective software maintenance
and will lead to improvements in software quality:
developers can spend more time in fixing the faults rather
than finding them. To our knowledge, the emerging theory is
novel and no such work has been undertaken on an emerging
theory in Software Engineering for fault diagnosis in
function-call traces. Stol et al. noted that there is a need to
effectively theorize research findings in the field of software
engineering [32], and our work contributes in that direction.

 The paper continues as follows. The details of our three
studies are described in Section II. The propositions of
emerging theory are formed in Section III and the emerging
theory is stated in Section III using those propositions. The
propositions are evaluated in Section IV and the implications
of this theory are discussed in Section V. The related work is
described in Section VI and the paper is concluded in Section
VII.

II. BACKGROUND
Figure 1 shows an overview of our approach in our

earlier work. The key objective of our earlier work was to
diagnose faulty functions in a program’s function-call based
failure traces collected from the field after deployment. To
diagnose faulty functions in new failure traces, we used
historical failure traces of that program. The historical failure
traces were composed of past failure traces collected from
the field for the program, or the failure traces of artificial
faults (mutants) seeded automatically in that program. The
faulty functions were also known in the historical traces. We
then trained multiple decision trees on the historical traces
using one-against-all approach [33]. In the one-against-all
approach, a dataset of multiple labels (in our case multiple
faulty functions) is divided into multiple dataset such that all
the failure traces of one label (i.e., faulty function) are
labelled as faulty and the traces of all other faulty functions
are labelled as others. This allowed us to trained one decision
tree on the failure traces of every faulty function—i.e., one
decision tree per faulty function. Whenever a new failure
trace arrived, we passed it to the trained decision trees which
in turn predicted their labels, the faulty function or the others
label, with a probability. We arranged all the predicted faulty
functions (excluding others) in the decreasing order of their
probabilities with the intuition that the function ranked higher
in the list would be more likely to faulty. The ranked list was
then presented to the developers. This process is also shown
in Figure 1.

 Figure 1 also shows examples of function-call traces
where a function entry represents when control enters the
function and function exit represents when control exits it.
For example, consider that a fault occurred in a function foo4
because of an invalid input—foo4 requires a number and
string was passed. A trace for this fault has been collected
from the field and passed on to our technique. Our technique
compares this trace against the historical set of existing traces
of different faulty functions by using the decision trees. If
there are traces for the same fault (i.e., invalid input) of foo4
or any other fault (e.g., divide by zero overflow) in foo4, then
the decision tree trained for foo4 is going to predict the faulty
function foo4. All the predicted faulty functions by different
decision trees are then arranged in the decreasing order of the
probabilities and presented to a developer. Final evaluation is

done by measuring how many functions a developer needs to
review to find the correct faulty function.

Figure 1 actually shows the general overview of our
approach for our previous three studies [25][26][27]. Three
studies were performed in different empirical settings using
this process and each of them with their specific process is
briefly explained in the following sections. We have also
described evaluation of clustering techniques in the following
section.

Fig. 1. Overview of our approach

A. Study [S1]: Finding Recurrent Faults from the Field
using Function-call level Failure Traces of Software in
the Field [26]
The objective of the first study was to diagnose the

recurrent faulty function in the function-call level traces of
field failures [26]. In practice, 50-90% of the failures are the
rediscoveries of previous faults [22][27][34]. We call them
recurrent faults. The focus of this study was on those field
failures that occurred due to recurrent faults or due to new
faults in the recurring faulty function. The first study actually
showed that function-call traces of the same or different
faults in a faulty function are the same, and the failure traces
of one fault can be used to diagnose another fault in the same
function.

In the first study, we performed experiments on the
Siemens suite, which is a collection of seven programs of
approximately 1000 LOC each [11][16], and the Space
program, which constituted approximately 10,000 LOC.
There were 7-21 functions in the seven programs of Siemens
suite and 136 functions in the Space program. The number of
failure traces was 275-4266 and the number of distinct faulty

functions was 2-10 in the Siemens suite. The number of
failure traces in the Space program was 71,958 and the
number of distinct faulty functions was 26. In the Siemens
suite, the faults were hand seeded by several developers
independently [11], and in the Space program faults were
found during development at the European Space Agency
[11]. The failure traces were collected by executing test
cases. The failure traces of these programs consisted of both
crashing and non-crashing failures. A non-crashing failure is
more difficult to diagnose than the crashing failure because a
fault in the non-crashing failure can occur long before the
appearance of the failure [30]. Our approach focused on both
kinds of failures.

Fig. 2. Diagnosis of faulty functions in the failure traces of the Siemens
Suite and Space Program

We partitioned the dataset of failure traces into 3
stratified parts; only one part (33%) of the data was kept for
training and the rest (66%) was kept for testing. This is to
simulate the realistic case of minimal set of traces available
in the field. To evaluate that the different faults in the same
functions occur with similar function-call traces, we only
kept failure traces of one fault in a faulty function in the
training set and put the failure traces of different faults in a
function in the test set. The decision trees are then trained on
the traces in the training set and tested on the traces in the test
set.

In Figure 2, we show the results on the seven programs of
the Siemens suite and the Space program. The horizontal axis
(X-axis) represents the percentage of a program that needs to
be examined by a developer before diagnosing the faulty
function from the ranked list of functions generated by our
technique for a test trace. It is measured by the number of
functions reviewed by a developer up to the faulty functions
from the ranked list of functions divided by the total number
of functions. The vertical axis (Y-axis) measures the
cumulative percentage of system failure traces that achieve a
score within a segment on X-axis. This metric is an effective
way of assessing the results, also adopted by other fault
localization techniques [8][20], and it is given in Equation 1.

100*
%

functionsTotal
functionfaultytheuptoreviewedFunctions

reviewto
programof

=⎥
⎦

⎤
⎢
⎣

⎡

Equation 1. Estimating program review effort in functions

For example, a point (2, 90) on the chart in Figure 2, can
be read as only 2% of the program (number of functions) was
required to be reviewed by developers to diagnose faulty
functions in 90% of the failure traces. In the case of Space
program, 2% of the program was equivalent to 1.4 functions
and in the case of the Siemens suite 14% of the program was
equivalent to 2 functions (i.e., 1 function = 7% of the
program). This showed that recurrent faulty functions
irrespective of the type of faults can be diagnosed in the
function-call level failure traces easily by using a classifier
and by reviewing only first few functions.

B. Study [S2]: Identifying Recurring Faulty Functions in
Field Traces of a Large Industrial Software System[27]
In the second study, we extended the evaluation of our

approach on a large industrial program of 20 million lines of
code (LOC) and 200,000 functions3 [27]. The objective of
this study was to find recurrent faults in the failure traces of a
large industrial program collected from the field and address
the issue of scalability on traces exceeding several Gigabytes.
During the evaluation, we have determined that different
types of events in function-call traces do not contribute to the
automated diagnosis of faulty functions using a classifier. For
example, exceptions thrown and functions that occur
consistently without much variation across traces can be
ignored.

We were able to collect crashing and non-crashing failure
traces of three different releases, for a period of three years,
for this large commerical application. The types of the faults
varied from crashing faults (e.g., null pointer) to non-
crashing faults (e.g., performance faults). All the failure
traces that we collected were actually caprtured when a
failure manifested itself to customers of this application in
the field.

In a similar manner to study [S1] (Section II.A), we
divided the trace dataset of each release into 33% training set
and 66% test set. The results for the evaluation of our
approach on each of the three releases are shown in Figure 3.
In this large program, the total number of functions were
approximately 200,000 and the average number of distinct
functions in a trace were 10,000. However, we considered
that the total number of functions reviewed by the
programmer to diagnose the faulty function would be
approximately 1000 at least (after discussing with
programmers of this large system). Therefore, in Figure 3, a
point (0.8, 79) of the code review means 8 functions are
required to review for diagnosing the faulty functions in 79%
of the failure traces.

In this large software system, there were 82% recurrent
faults in our sample dataset, so the accuracy we obtained (i.e.
65% to 80% depending on the release) is out of the 82%
existing recurrent faults. This is equivalent to an accuracy of
92% (Release 1), 98% (Release 2), and 80% (Release 3) out
of 100% recurring faulty functions. The average accuracy is

 3Due to confidentiality reason, the name of the commercial software

product is not disclosed.

therefore 90% on the review of 0.8% or less of the code
(fewer than 8 functions). A line (without markers) in Figure 3
shows that no classification is made, and a developer has to
use 100% of the program to identify faulty functions. This
line goes up to the last point (100,100) on the chart but it is
not shown up to 100% on the chart for better visibility of the
markers. Mostly, the line represents those traces that have
newer faulty functions and are not found in the training set.

Fig. 3. Diagnosis of faulty function in the failure traces of three releases of
an industrial application of 20 million LOC

In this study, we also evaluated our approach by training
the decision trees on the failure traces of previous releases
and using them to diagnose faulty functions in the failure
traces of the succeeding releases. In Figure 4, we show the
results of identification of recurring faulty functions in traces
of succeeding releases by training decision trees on earlier
releases. Figure 4 shows that faulty functions in
approximately 97% of the failure traces were diagnosed by
reviewing 3% to 4% of the program when training was done
on previous releases. In short, this shows that recurrent faulty
functions can be diagnosed across releases irrespective of the
type of fault.

In this study, we also focused on the work done by other
researcher. Prior researchers focusing on traces of deployed
software systems have mostly focused on clustering function-
call traces of failures from the field [5][9][10][22][30]. The
majority of these techniques focus on clustering traces of
crashing failures [5][9][10][22]. They usually form clusters
by measuring similarity in function-call sequences of top
frames of stacks (functions that execute last). Podgurski et al.
[30] proposed a technique of k-medoid clustering for non-
crashing failures. The authors’ intuition was that traces in
each cluster would belong to the same faulty file. Non-
crashing failures are difficult to diagnose than the crashing
failures because a fault may not appear in functions
appearing in the collected function-call trace.

Fig. 4. Diagnosis of faulty functions across releases in an industrial
application of 20 million LOC

In order to evaluate clustering based approaches, we
implemented a clustering technique ourselves. We used the
dataset of traces of a large software system of 20 million
lines of code, already described in Section II.B. In our
dataset, the traces were a combination of both crashing and
non-crashing failures. Therefore, we used k-medoid
clustering on the function-call traces of the large software
system, a similar approach to Podgurski et al. [30]. We
applied clustering on the traces of one the release of the large
software system by forming as many groups (clusters) as
there were classes (faulty functions) in training traces. We
employed Manhattan distance as the median based distance
measure by using Weka [33]. The idea was that each cluster
would represent one class (i.e., faulty functions). We found
out that many clusters contained traces of more than one
faulty function. To evaluate clustering exactly in the same
way as our approach, a ranking method was required such
that closely related clusters for a new trace in the test set can
be predicted in an ordered list. No such ranking method
exists in the literature.

We created a clustering based ranking on the basis of
simple intuition. First, we clustered traces in the training set
using k-medoid clustering with as many clusters (groups) as
there were faulty functions. Second, we measured the
Manhattan distance of a trace in the test set to all the formed
clusters and assigned the trace to a cluster with a minimum
Manhattan distance. Third, we matched the faulty function of
the test trace with one of the m faulty functions of the cluster
that the trace was assigned to. If a match was found, then we
considered that m functions were reviewed by a developer to
discover the faulty function. Fourth, in the case of no match,
we matched the faulty function of the trace with the faulty
functions of other clusters one by one in decreasing order of
the number of traces in the clusters. The intuition is that the
developer would consider one of the faulty functions of the
cluster with the largest number of traces as the suspected
faulty function for the trace. When the match is not found,

the developer would review faulty functions of the cluster
with the second largest number of traces, and so on, to the
last cluster. Fifth, the effort of the developer was measured
by Equation 1, the number of functions reviewed up to the
diagnosis of actual faulty function of the trace. In a similar
manner to our approach, we considered the total number of
functions as 1000 for Equation 1. Figure 5 shows the results
of clustering based ranking on Release 1 of the large
industrial program. Figure 5 also shows the results of our
approach on the same release.

Fig. 5. Our approach (called F007) against an approach using ranking based
on k-medoid clustering

Figure 5 shows that our approach diagnoses faulty
functions in function-call traces with a better accuracy than a
clustering-based approach. However, Figure 5 also shows
that the clustering-based approach does not yield poor
results. In fact, faulty functions in 77% of the function-call
traces can be diagnosed by reviewing 3.5% of the program
using the clustering-based approach. The traces in the
training set had the same or different faults in functions when
compared to the traces in the test set, and the clustering based
approach was still able to diagnose faulty functions in up to
77% of the traces in the test set. This shows that there is a
certain degree of similarity in function-call traces of different
faults in a function.

C. Study [S3]: An Empirical Study on the Use of Mutant
Traces for Diagnosis of Faults in Deployed Systems[25]
In the third study, we investigated how artificial faults,

generated using software mutation in test environment, can
be used to diagnose actual faults in deployed software
systems. The use of traces of artificial faults can provide
relief when it is not feasible to collect different kinds of
traces from deployed systems. In this study, we also
investigated the similarity of function-call traces of different
faults in functions using artificial and actual faults [25].

In this study, we first generated mutants (artificial faults)
for every function of a program. A software mutant is an
artificially generated fault in a program and Andrews et al.

[1] showed that mutants are close representative of actual
faults. In the next step, we executed test cases on these
mutants and collected traces when the test cases failed. We
called these traces mutant traces and labeled them with the
corresponding faulty function. We then trained decision trees
on these mutant traces and used them to diagnose faulty
functions in the actual failure traces. The actual failure traces
were also collected by running test cases. We evaluated this
approach on the three UNIX utilities, namely Grep, Gzip and
Sed [11], and on the Space program developed at the
European Space Agency [11]. The results are shown in
Figure 6 and it can be interpreted in the same way as earlier
results for the studies [S1] and [S2].

Fig. 6. Diagnosis of faulty functions in actual failure traces of four

programs by using traces of mutants (artificial faults)

The results in Figure 6 show that faulty function in 80-
100% of the failure function-call traces can be diagnosed by
reviewing 5-20% of the program’s functions. These results
show that different faults in the same functions have similar
function-call traces because mutant faults and actual faults
are different faults. However, the results also show that
function-call traces of some faulty function overlap with
some other faulty functions because 100% accuracy was not
obtained on the review of first function.

III. EMERGING THEORY
Sjøberg et al. [31] proposed a framework for describing

Software Engineering (SE) theories by using the frameworks
proposed earlier for other sciences, such as social sciences
[24][35] and information systems sciences [6]. Sjøberg et al.
argue that Software Engineering (SE) theories are different
from social and behavioral sciences because SE theories are
more applied and dependent on time and place at the current
stage of development [31]. For example, change in education
and skill of a software engineer over time may change the
validity of a theory. Also the context of lab or industry as a
placeholder may affect the validity of a theory [31]. Thus, we
adopted the framework for describing SE theories by Sjøberg
et al. to propose an emerging theory in this paper.

Sjøberg et al. identified three levels of abstractions to
develop a theoretical proposition. In the first level (or Level
1), relationships that are concrete and can be directly inferred
from the observations become the Level 1 propositions.
Level 2 propositions are abstract representation of possibly
many Level 1 theoretical propositions. Finally, Level 3
theoretical proposition combine all other theoretical
propositions and tend to articulate an aspect of Software
Engineering (SE).

In Table I, we hierarchically organize different level of
propositions emerging from our earlier studies described in
Section II. Table I uses the labels [S1], [S2] and [S3] to refer
to the studies described in Section II. Level 1 proposition is
observed directly from the empirical results of the studies.
Level 2 proposition is the higher level abstract
representations of Level 1 propositions. Both Level 1 and
Level 2 propositions are testable and tested in their source
studies. Each level proposition is also assigned a unique
number which will be used in explaining the propositions
below. There are no Level 3 propositions for our findings
because typically Level 3 findings are derived from a larger
set of studies as the discipline becomes mature [31].

A. Proposition P1
1

During our experiments on the Siemens suite [16] and the
Space program [11] in the study [S1], we have observed that
F007 can identify the same faulty functions with different
faults in 60-90% of the failure traces on reviewing 2 to 3
functions in the Space program and the Siemens suite,
respectively (see Section II.A). For the Siemens suite, 7% of
the program-review was approximately equivalent to 1
function, and for the Space program 1% of the program-
review was equivalent to 1 function. This implies proposition
P1

1 and it shows that different faults in the same function
occur with similar occurrences of function calls but up to a
certain limit.

B. Proposition P1
2

Our experiments on a large commercial program of 20
million LOC showed that recurring faulty functions in up to
90% of the failure traces from the field can be easily
diagnosed on the review of less than 1% of the program. This
is when a classifier is trained on the traces of same or
different faults in the same functions. This facilitated in
quickly diagnosing recurrent faults and implying the
proposition P1

2 from the study [S2].

C. Proposition P1
3

In study [S2], we found that common faulty functions
exist in multiple releases of a program, and common faulty
functions in failure traces of a succeeding release can be
diagnosed by using the failure traces of those functions from
prior releases. When a classifier was trained on the failure
traces of earlier releases, it was able to diagnose common
faulty functions in up to 98% failure traces of future releases
on the review of approximately 4% of the program. This
implies proposition P1

3 and it again shows a similarity in
function-call traces of different faults in the same functions.

D. Proposition P1
4

In order to determine how different or similar are the
function calls of faults in one function with the function calls
of faults in other functions we conducted the study [S3]. In
the study [S3], we made every function in the Space, Grep,
Gzip and Sed programs artificially faulty using mutants. The
results showed that faults in the actual failure traces can be
diagnosed using traces of artificial faults (i.e., proposition
P1

4).

E. Proposition P1
5

Several researchers proposed the use of clustering on
function-call traces of deployed software systems in the past.
When we applied clustering on function-call traces of the
large program of 20 million LOC in study [S2], we again
found out similarity in function-call traces of faults in a
function. We were able to diagnose faulty functions in 78%
of the failure traces of a large program by reviewing
approximately 3.5% of the program. This implies proposition
P1

5.

F. Proposition P2
1

The Level 1 propositions imply that the faulty functions
in the actual failure traces are not entirely distinguishable but
they are distinguishable up to a certain extent. This is
because 100% or closer accuracy was not obtained on
reviewing first function from the ranked list of faulty
functions. However, near 100% accuracy was still obtained
on the review of first few functions in the ranked list (i.e., a
small percentage of a program). This can be observed from
all the Level 1 propositions P1

1 to P1
5.

In all the propositions, except P1
4, only those functions

were used as faulty functions that were actually found (or
made) faulty in development or field. One can argue that
there were fewer faulty functions (as labels or groups) for
classifier or clustering algorithm, therefore the higher
accuracy was obtained on the review of few functions (labels
in terms of machine learning). However, in the proposition
P1

4, we made all the functions faulty in a program and
collected their failed (mutant) traces. In the case of P1

4, we
still observed that the accuracy is still not poor; i.e., review of
all the functions (100% of the program) is still not required to
diagnose faulty functions in majority of the traces. In terms
of machine learning, there are many more labels for P1

4 than
all other propositions but still they accuracy is similar. This
implies that function-call traces of faults in a function overlap
with the function-call traces of faults in some other functions
but at the same time the function-call traces of faults in a
function are also different from traces of many other
functions. The reason is that if function-call traces of all the
functions had overlapped, then we would have had to review
about 100% (or closer to 100%) of the program (functions) to
identify the faulty functions in any trace. However, we found
faulty functions in traces by reviewing only few functions.

TABLE I. THEORETICAL PROPOSITIONS ARISING FROM THE EMPIRICAL STUDIES.

[S1], [S2] and [S3] represent the three studies described in Section II.

PL
J represents a unique proposition number, where L = level number and J=proposition id at that level.

Level 1 proposition Level 2 proposition

(P1
1) Faulty functions in 60-90% of failure traces can be

diagnosed on reviewing 2-7% program, when a classifier is
trained on the traces of at most one fault in those functions
of the Space program and the Siemens suite [S1].

(P2
1) A group ‘Mi’ of related functions has

similar function-call traces when a fault occurs
in any of the functions of that group ‘Mi’, and
function-call traces of ‘Mi’ are different from
the function-call traces of another group of
function ‘Mk’ if a fault occurs in the functions
of group ‘Mk’; where i, k= 1-n and i ≠ k and Mi ⊂ N and Mk ⊂ N and N={functions | functions ∈ program}. If only traces of one fault in a
function are already known, then that faulty
function in unknown failure traces can be
diagnosed due to the similarity of function calls
of a group.

(P1
2) Faulty functions in up to 90% of failure traces can be

diagnosed on reviewing 0.8% program, when a classifier is
trained on the traces of same or different faults in those
functions of the large commercial program of 20 million
LOC and 200,000 functions [S2].

(P1
3) Faulty functions in 98% of failure traces in a

succeeding software release can be identified on reviewing
4% of the program, when a classifier is trained on the traces
of faults in the same functions of preceding software
releases of a large program of 20 million LOC and 200,000
functions [S2].

(P1
4) Faulty functions in 80-100% of the actual failure

traces can be diagnosed on reviewing 5-20% of the
program, when a classifier is trained on the traces of
mutants (artificial faults) of all the functions in the Grep,
Gzip, Sed and Space programs [S3].

(P1
5) Faulty functions in 78% of the actual failure traces can

be diagnosed on reviewing approximately 3.5% of the
program, when a clustering approach was applied to the
function-call traces of a large program of 20 million LOC
and 200,000 functions [S2].

 We can generalize this to proposition P2
1 that there are M

groups of closely related functions, and functions in each
group make calls to each other or call the same functions
regularly. When a fault occurs in one of the functions of a
group (e.g., Mi), then function calls overlap with each other.
When a fault occurs in a function in another group Mk, then
there are fewer overlapping function calls with the function
calls of faults in groups other than Mk. Thus, the faulty
function in an unknown failure trace can be diagnosed by
only knowing the failure traces of one (same or different)
fault in that function (e.g., as in P1

1) but this diagnosis will
require reviewing few functions. Few functions will be
required to review because a function-call trace of a fault in
function overlaps with traces of some other functions that
form a group. This results in proposition P2

1

G. Emerging Theory Statement
 The proposition P2

1 generalizes from the propositions at
Level 1 by using the fact that a faulty function can be
approximately identified from traces if a classification or
clustering algorithm is trained on the traces of at least one
(same or different) fault of that faulty function. Thus based
on the propositions at Level 1 and Level 2 we state the
emerging theory as:

A fault in a function can be diagnosed from a function-call
trace if the function-call traces of the same or a different
fault in that function are already known to a clustering or
classification algorithm.

IV. EVALUATING THE EMERGING THEORY
Sjøberg et al. [31] also list criteria for evaluating the

“goodness” of theories. Similar criteria to measure the
goodness of theories were also presented by Boehm and Jain
(2005). We have adopted the following criteria from the
work of Sjøberg et al. In fact, Sjøberg et al. criteria are
almost similar to the work of Boehm and Jain [4] criteria and
can be considered as their representative. Sjøberg et al. (and
also Boehm and Jain [4]) criteria were adapted for SE theory
evaluation from other disciplines such as Business
Management [2], Psychology [14], and Sociology [7].

 Following are the criteria taken from the work by
Sjøberg et al. (2008) where each criterion designates the
degree of support (i.e., low, medium, or high) for the
emerging theory from the empirical studies (e.g., [S1][S2]
and [S3] in our case) The classification of each criterion as
low, medium, or high is based on a researcher’s subjective
judgment. Our judgment is derived from the explanation
given by Sjøberg et al. for each criterion and it is further
explained in the following subsections.

A. Empirical Support
The first criterion is the degree to which a theory is

supported by empirical studies that confirm its validity [31].
We consider that empirical support will be high if the
evaluation of a theory is done using a series of studies that
complement each other; whereas, empirical support will be
low if there is only one study that evaluates the technique.
The reason is that if there are many studies repeating the
same evaluation of a theory, then we can consider that the
results of this theory will be the same in practice.

The empirical support of this emerging theory is
considered to be medium because the number of programs on
which we performed experiments in three studies was 12
from small to very large programs and four of these programs
had several releases (see Section II). This shows that the
results were empirically grounded in the results from a
sufficient number of programs and from different types of
experiments in three studies. Thus, we consider that the
empirical support is medium and there is certainly room to do
more.

B. Utility
 The second criterion determines the degree to which a

theory supports the relevant areas of the software industry
[31]. We consider that the utility of a theory will be high if
the propositions of a theory can be used as input in decision
making, understanding and prediction in a given industrial
setting. The utility of a theory will be low if the theory is not
able to reduce the complexity of the empirical world and
decision making.

The emerging theory can be used as an aid to maintainers
in identifying the origin of faults during software
maintenance. During maintenance approximately 50-90% of
the faults in the field are rediscoveries of previously known
faults [22][27][34]. Maintainers can use our technique,
discussed in the lead text in Section II, to diagnose faulty
functions in the field failures with a lesser time and effort
than the contemporary techniques. Thus, we consider utility
of this theory to be high in practice.

C. Generality
The third criterion determines the breadth of the scope of

a theory and the degree to which the theory is independent of
specific settings [31]. We consider that higher generality
means broader applicability of a theory in different settings;
whereas, lower generality means application of a theory is
valid in specific settings.

We have experimented on 12 different programs of small
to very large sizes in different experimental settings: we
consider this theory to be generalizable to other programs. In
11 of the programs, the traces were collected in lab settings
by running test cases. In the case of the very large program,
traces were actually field traces and were collected when
failure occurred at the customer site. The theory itself is
independent of specific formats and program elements in a
trace, making it more generalizable to systems across
different programming concepts (such as process-to-process
communication mechanisms, events, triggers, message
passing, call/return, etc.). This theory is also independent of a
programming language and the age of a program because we
analyzed execution traces not the constructs of source code to
discover faulty functions. We also evaluated several releases

of programs, a large program with legacy and new code, and
the programs written by several hundreds or thousands of
developers. Considering all these aspects we judge medium
generality for this theory.

D. Testability
The fourth criterion determines the degree to which a

theory can be empirically refuted [31]. We consider higher
testability when propositions of a theory are internally
consistent, free from ambiguities, and tested in empirical
studies. Alternatively, we consider lower testability when all
propositions of a theory are not tested in empirical studies
and the propositions lack consistency such that they are not
easy to be tested in other replicated studies.

The propositions of the emerging theory are defined in a
consistent, understandable and non-ambiguous way. Each of
the studies [S1][S2][S3] can be easily replicated and the
stated propositions (P1

1, P1
2, P1

3, P1
4, P1

5 and P2
1) are based

on these studies. Each of the propositions has been
empirically validated and tested. Different study designs
(e.g., identifying faults at system’s configuration level) can
be used to independently test the propositions. We consider
the testability high for this emerging theory.

E. Explanatory Power
The fifth criterion identifies the degree to which a theory

accounts for and predicts all known observations within its
scope. The fifth criterion determines that the theory is simple
in that it has few ad hoc assumptions and relates to that
which is already well understood [31]. We judge that a
theory will have high explanatory power when it can be
supported by analogies to well-known theories, explains all
relevant relationships, and accounts for all known data in its
field. Alternatively, we consider explanatory power low for a
theory when it cannot be associated with well-known theories
and misses some relationships in its explanation.

The emerging theory presented in this paper provides an
explanation of identification of a faulty function in a failure
trace from traces of different faults in that function. We
believe that theory can be made stronger in explanatory
power by identifying quantitative characteristics to its
attributes. For example: (a) what proportion of failure traces
can be resolved correctly? (b) can we generalize this theory
quantitatively like the 80-20 Pareto rule [3][13][29] (e.g., can
we resolve 80% of failure traces using traces of 20% of
functions)? Thus, we consider explanatory power low for this
emerging theory, and further studies can strengthen the
explanatory power of this theory.

F. Parsimony
 The sixth criterion determines the degree to which a

theory is economically constructed with minimum of
concepts and propositions. There is a delicate balance
between parsimony and explanatory power. We consider that
higher parsimony means removal of unnecessary concepts
and propositions that add little additional value to our
understanding; whereas, lower parsimony means complex
concepts and propositions that are difficult to understand.

This emerging theory at both levels of proposition is
constructed using few, clear and concise concepts (such as
function calls, traces, faults, program-review and faulty

functions). The applications of these concepts were also
shown in Section II. Thus we think that parsimony is high.

V. IMPLICATIONS OF THE EMERGNING THEORY
The emerging theory has several implications on both

research and practice.

A. Research
Researchers can validate this theory by using it as a

preliminary hypothesis and by performing experiments on
different programs or from different perspectives. The results
can then be fed back to this theory and it can be modified or
further strengthened.

Researchers can further build new emerging theories
based on this theory, for example, by investigating what is
the relationship among the functions in a group, how
different functions form a group when a fault occurs in them,
and what are those functions? Such theories could be used to
determine the groups of functions before releasing software
and traces of a fault in one function can be used to identify
another faulty function of the same group.

Moreover, researchers can investigate a new theory using
the 80-20 Pareto rule for software code [3][13][29] as a basis.
For example, if 20% of the code is causing 80% of the faults,
then is it possible to identify faulty functions in 80% of the
traces using the traces of 20% functions?

B. Practice
The emerging theory will have its implications in

improving the quality of software. Software quality will
improve because the maintainers can spend more time on
fixing the faults rather than diagnosing the faults. The
emerging theory will also help in reducing the time and effort
spent in corrective maintenance. It can be used in diagnosing
faults in configuration of a system using operating system
level call traces. It can also be used in diagnosing fault
location during the testing phase of succeeding releases using
the failure traces of previous releases. In addition, the theory
can be further applied to sample traces or abstract views of
function-call traces (see [17][18] for examples of trace
abstraction techniques), relieving software engineers from
having to examine large-sized traces.

VI. RELATED WORK
Software Engineering (SE) research is usually not guided

by explicit theories and nor does it yield explicit theories.
Researchers within the SE community have also argued that
SE needs strong theoretical foundation to become a real
engineering science [32]. Only few authors have built the
guidelines to construct SE theories by borrowing insights
from other disciplines, such as Sjøberg et al. [31]. Sjøberg et
al. proposed a framework to develop constructs and
proposition of SE theories and to evaluate the goodness of SE
theories (see Section III and Section IV). Using the Sjøberg
et al. criteria, Ferrari [12] also developed an emerging SE
theory on the interaction of system architecting and
requirement engineering. Ferrari performed a sequence of
empirical studies and used the empirical findings to define an
emerging theory. Our work in this paper is inspired by the
work of Ferrai [12]. Similarly, Lawrance et al. [21] proposed
an information foraging theory for how programmers
perform debugging during software development. Lawrance

et al. [21] also used the criterion defined by Sjøberg et al. as
the basic building block of their theory. Stol and Fitzgerald
[32] argued that SE research papers does show the traces of
an SE theory and they called them theory fragments. They
use a framework from social science on three papers having
high impact in SE to illustrate the role of theorizing in SE
research. They conclude that SE researchers already theorize
but they just don’t know yet and new researchers need
training to conduct a theory focused research.

In this paper, we have taken a step towards the creation of
an emerging theory for the diagnosis of faulty functions from
function-call traces. We proceeded by theorizing the
empirical findings of the three studies we conducted earlier
[25][26][27] and the studies conducted by other researchers
[5][9][10][22][30] on function-call traces from the field. To
our knowledge, this work is novel and as such it contributes
to the SE theories.

VII. CONCLUSION
Diagnosis of faults from traces of field failures is an

difficult and time consuming task. In this paper, we propose
an emerging theory on the diagnosis of faults from function-
call level traces of field failures by using empirical findings
of existing studies (see Section II). This emerging theory
identifies the relationship between function-call traces of
different faults in a function. It is stated as:

A fault in a function can be diagnosed from a function-call
trace if the traces of the same or a different fault in that
function are already known to a clustering or classification
algorithm.

The emerging theory was developed in a bottom-up
fashion using a hypothetico-inductive model [31] and each of
its propositions (see Section III) was empirically grounded in
the findings of the three studies (see Section II).
Subsequently, we also evaluated this theory (see Section IV)
on the basis of “theory goodness” criteria proposed by
Sjøberg et al. [31] and similar criteria of Boehm and Jain [4].
Overall, the emerging theory satisfies the goodness criteria of
utility, generality, parsimony, testability, empirical support
and explanatory power (see Section IV).

This theory is still at its initial stages as it was derived
from experimenting with only 12 programs of small (1000
LOC) to very large sizes (20 million LOC). Clearly, more
empirical studies are needed to test the specific aspects of the
theory, such as what are those functions that form a group of
functions with the similar function-call traces. More efforts
are needed from the maintenance community to conduct
studies in various contexts and from various perspectives to
strengthen or validate this emerging theory.

REFERENCES
[1] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an

Appropriate Tool for Testing Experiments?,” In Proc. of the
27th International Conference on Software Engineering,
ACM, St. Louis, USA, 2005, pp. 402-411.

[2] S. B. Bacharach, “Organizational Theories: Some Criteria for
Evaluation,” The Academy of Management Review, vol. 14,
no. 4, 1989, pp. 496–515.

[3] B. Boehm, and V. R. Basili, "Software Defect Reduction Top
10 List," Computer, vol. 34, no. 1, IEEE CS Press, 2001, pp.
135-137.

[4] B. Boehm, and A. Jain, “An Iinitial Theory of Value-based
Software Engineering,” In Value-Based Software Engineering
(1st edition), Springer, LNCS, Germany, 2005, pp. 15-33.

[5] M. Brodie, Ma Sheng, G. Lohman, L. Mignet, M. Wilding, J.
Champlin, P. Sohn, “Quickly Finding Known Software
Problems via Automated Symptom Matching,” In Proc. of the
2nd International Conference on Autonomic Computing,
Seattle, WA, 2005, pp. 101-110.

[6] J. Carroll, and P. A. Swatman, “Structured-case: A
Methodological Framework for Building Theory in
Information Systems Research,” European Journal of
Information Systems, vol. 9, no. 4, 2000, pp. 235–242.

[7] B. Cohen. Developing Sociological Knowledge: Theory and
Method. 2nd ed., Belmont, CA: Wadsworth Publishing, 1989.

[8] V. Dallmeier, C. Lindig, and A. Zeller, “Lightweight Defect
Localization for Java,” In Proc. 19th European Conference.
on Object-Oriented Programming, Springer LNCS, Glasgow,
UK, 2005, pp. 528-550.

[9] Y. Dang, R. Wu, H. Zhang, D. Zhang, P. Nobel, “ReBucket:
A Method for Clustering Duplicate Crash Reports Based on
Call Stack Similarity,” In Proc. of the 34th International
Conference on Software Engineering , Zurich, Switzerland,
2012, pp. 1084-1093.

[10] T. Dhaliwal, F. Khomh, and Y. Zou, “Classifying Field Crash
Reports for Fixing Bugs: A Case Study of Mozilla Firefox,”
In Proc. of 27th IEEE International Conference on Software
Maintenance, 2011, pp. 333-342.

[11] H. Do, S. G. Elbaum, and G. Rothermel, “Supporting
Controlled Experimentation with Testing Techniques: An
Infrastructure and its Potential Impact,” Empirical Software
Engineering, vol. 10, Springer, 2005, pp. 405-435.

[12] R. Ferrari, “An Emerging Theory on the Interaction Between
Requirements Engineering and Systems Architecting based on
a Suite of Exploratory Empirical Studies,” Ph.D. dissertation,
University of Western Ontario, Ontario, Canada, 2010.

[13] M. Gittens, Y. Kim, and D. Godwin, “The Vital Few Versus
the Trivial Many: Examining the Pareto Principle for
Software.” In Proc. of the 29th International Conference on
Computer Software and Applications, Edinburgh, Scotland,
2005, pp. 179-185.

[14] B. D. Haig, “An Abductive Theory of Scientific Method,”
Psychological Methods, vol.10, no. 4, 2005, pp. 371–388.

[15] Hare, D.; and Julin, D.; “The Support Authority: Interpreting a
WebSphere Application Server Trace File”, IBM WebSphere
Developer Technical Journal, 2007.
http://www.ibm.com/developerworks/websphere/techjournal/0
704_supauth/0704_supauth.html

[16] A. Hamou-Lhadj, "Techniques to Simplify the Analysis of
Execution Traces for Program Comprehension", Ph.D.
Dissertation, School of Information Technology and
Engineering (SITE), University of Ottawa, 2005.

[17] H. Pirzadeh, A. Hamou-Lhadj, "A Novel Approach Based on
Gestalt Psychology for Abstracting the Content of Large
Execution Traces for Program Comprehension," In Proc. of
the 16th IEEE International Conference on Engineering of
Complex Computer Systems (ICECCS '11), pp. 221 - 230,
2011.

[18] A. Hamou-Lhadj, and T. Lethbridge, "Reasoning About the
Concept of Utilities," ECOOP International Workshop on
Practical Problems of Programming in the Large, Oslo,
Norway, Lecture Notes in Computer Science (LNCS), vol.
3344, Springer-Verlag, pp. 10-22, 2004.

[19] M. Hutchins, H. Foster, T. Goradia, T. Ostrand, “Experiments
on The Effectiveness of Dataflow- and Control-Flow-Based
Test Adequacy Criteria,” In Proc. of the 16th International
Conference on Software Engineering, IEEE CS, Sorrento,
Italy, 1994, pp.191-200

[20] J. A. Jones, and M. J. Harrold, “Empirical Evaluation of the
Tarantula Automatic Fault-Localization Technique,” In Proc.
of 20th International Conference on Automated Software
Engineering, IEEE/ACM, CA, USA, 2005, pp.273-282.

[21] J. Lawrance, C. Bogart, M. Burnett, R. Bellamy, K. Rector, S.
D. Fleming, "How Programmers Debug, Revisited: An
Information Foraging Theory Perspective," IEEE
Transactions on Software Engineering, vol. 39, no. 2, 2013,
pp.197,215.

[22] I. Lee, and R. Iyer, “Diagnosing Rediscovered Problems
Using Symptoms, ” IEEE Transactions on Sofware
Engineering, vol. 26, no. 2, 2000, pp.113-127.

[23] R. B. Melnyk, “DB2 Basics: An introduction to the DB2 UDB
trace facility,” DB2 Information Development, IBM Canada
Ltd., 2004. http://www.ibm.com/developerworks/
data/library/techarticle/dm-0409melnyk/index.html

[24] R. K. Merton. Social Theory and Social Structure, 3rd ed.,
New York: The Free Press, 1968.

[25] S. S. Murtaza, A. Hamou-Lhadj, N. H. Madhavji, M. Gittens,
“An Empirical Study on the Use of Mutant Traces for
Diagnosis of Faults in Deployed Systems”, Journal of Systems
and Software, Elsevier, vol. 90, 2014, pp.29-44.

[26] S. S. Murtaza, M. Gittens, Z. Li, N. H. Madhavji, “F007:
Finding Rediscovered Faults from the Field Using Function-
level Failed Traces of Software in the Field”, In Proc. of the
2010 Conference of the Centre for Advanced Studies on
Collaborative Research (CASCON), ACM, Canada, 2010, pp.
61-75.

[27] S. S. Murtaza, N. H. Madhavji, M. Gittens, A. Hamou-Lhadj,
“Identifying Recurring Faulty Functions in Field Traces of a
Large Industrial Software System,” IEEE Transactions on
Reliability, vol. 64, no. 1, 2014, pp. 269-283.

[28] A. Offutt, and R. H. Untch, “Mutation 2000: Uniting the
Orthogonal,” In Mutation Testing for the New Century, USA:
Kluwer Academic Publishers, 2001, pp. 34-44.

[29] T. J. Ostrand, E. Weyuker and R. M. Bell, “Predicting the
Location and Number of Faults in Large Software Systems,”
IEEE Transactions on Software Engineering, vol. 31, no. 4,
2005, pp. 340-355.

[30] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J.
Sun, B. Wang, “Automated Support for Classifying Software
Failure Reports,” In Proc. of 25th International Conference on
Software Engineering, IEEE CS, Portland, US, 2003, pp. 465-
475.

[31] D. Sjøberg, D. Dyba, B. C. Anda, and J. Hannay, “Building
Theories in Software Engineering,” In Guide to Advanced
Empirical Software Engineering, London: Springer, 2008,
pp. 312–336.

[32] K. J. Stol, B. Fitzgerald, "Uncovering Theories in Software
Engineering," In Proc. of 2nd SEMAT Workshop on a General
Theory of Software Engineering (GTSE), 2013, pp.5-14.

[33] I. H. Witten, and E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, San
Francisco, USA, 2005.

[34] A. Wood, “Software Reliability from the Customer View,”
Computer, vol. 36, no. 8, IEEE CS, 2003, pp.37-42.

[35] R. K. Yin. Case Study Research: Design and Methods.
Thousand Oaks, CA, USA: Sage Publications, 1984.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /blex
 /blsy
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /Cmb10
 /CMB10
 /Cmbsy10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /Cmbx10
 /CMBX10
 /Cmbx12
 /CMBX12
 /Cmbx5
 /CMBX5
 /Cmbx6
 /CMBX6
 /Cmbx7
 /CMBX7
 /Cmbx8
 /CMBX8
 /Cmbx9
 /CMBX9
 /Cmbxsl10
 /CMBXSL10
 /Cmbxti10
 /CMBXTI10
 /Cmcsc10
 /CMCSC10
 /Cmcsc8
 /CMCSC8
 /Cmcsc9
 /CMCSC9
 /Cmdunh10
 /CMDUNH10
 /Cmex10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /Cmff10
 /CMFF10
 /Cmfi10
 /CMFI10
 /Cmfib8
 /CMFIB8
 /Cminch
 /CMINCH
 /Cmitt10
 /CMITT10
 /Cmmi10
 /CMMI10
 /Cmmi12
 /CMMI12
 /Cmmi5
 /CMMI5
 /Cmmi6
 /CMMI6
 /Cmmi7
 /CMMI7
 /Cmmi8
 /CMMI8
 /Cmmi9
 /CMMI9
 /Cmmib10
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /Cmr10
 /CMR10
 /Cmr12
 /CMR12
 /Cmr17
 /CMR17
 /Cmr5
 /CMR5
 /Cmr6
 /CMR6
 /Cmr7
 /CMR7
 /Cmr8
 /CMR8
 /Cmr9
 /CMR9
 /Cmsl10
 /CMSL10
 /Cmsl12
 /CMSL12
 /Cmsl8
 /CMSL8
 /Cmsl9
 /CMSL9
 /Cmsltt10
 /CMSLTT10
 /Cmss10
 /CMSS10
 /Cmss12
 /CMSS12
 /Cmss17
 /CMSS17
 /Cmss8
 /CMSS8
 /Cmss9
 /CMSS9
 /Cmssbx10
 /CMSSBX10
 /Cmssdc10
 /CMSSDC10
 /Cmssi10
 /CMSSI10
 /Cmssi12
 /CMSSI12
 /Cmssi17
 /CMSSI17
 /Cmssi8
 /CMSSI8
 /Cmssi9
 /CMSSI9
 /Cmssq8
 /CMSSQ8
 /Cmssqi8
 /CMSSQI8
 /Cmsy10
 /CMSY10
 /Cmsy5
 /CMSY5
 /Cmsy6
 /CMSY6
 /Cmsy7
 /CMSY7
 /Cmsy8
 /CMSY8
 /Cmsy9
 /CMSY9
 /Cmtcsc10
 /CMTCSC10
 /Cmtex10
 /CMTEX10
 /Cmtex8
 /CMTEX8
 /Cmtex9
 /CMTEX9
 /Cmti10
 /CMTI10
 /Cmti12
 /CMTI12
 /Cmti7
 /CMTI7
 /Cmti8
 /CMTI8
 /Cmti9
 /CMTI9
 /Cmtt10
 /CMTT10
 /Cmtt12
 /CMTT12
 /Cmtt8
 /CMTT8
 /Cmtt9
 /CMTT9
 /Cmu10
 /CMU10
 /Cmvtt10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Dcb10
 /Dcbx10
 /Dcbxsl10
 /Dcbxti10
 /Dccsc10
 /Dcitt10
 /Dcr10
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EuroSig
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KozGoProVI-Medium
 /KozMinProVI-Regular
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomDGR-Bold
 /NimbusRomDGR-BoldItal
 /NimbusRomDGR-Regu
 /NimbusRomDGR-ReguItal
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440639063106360020063906440649002006270644063406270634062900200648064506460020062E06440627064400200631063306270626064400200627064406280631064A062F002006270644062506440643062A063106480646064A00200648064506460020062E064406270644002006350641062D0627062A0020062706440648064A0628061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043f043e043a0430043704320430043d04350020043d043000200435043a04400430043d0430002c00200435043b0435043a04420440043e043d043d04300020043f043e044904300020043800200418043d044204350440043d04350442002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020007a006f006200720061007a006f007600e1006e00ed0020006e00610020006f006200720061007a006f007600630065002c00200070006f007300ed006c00e1006e00ed00200065002d006d00610069006c0065006d00200061002000700072006f00200069006e007400650072006e00650074002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000730065006c006c0069007300740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002c0020006d0069007300200073006f006200690076006100640020006b00f500690067006500200070006100720065006d0069006e006900200065006b007200610061006e0069006c0020006b007500760061006d006900730065006b0073002c00200065002d0070006f0073007400690067006100200073006100610074006d006900730065006b00730020006a006100200049006e007400650072006e00650074006900730020006100760061006c00640061006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003b103c103bf03c503c303af03b103c303b7002003c303c403b703bd002003bf03b803cc03bd03b7002c002003b303b903b100200065002d006d00610069006c002c002003ba03b103b9002003b303b903b1002003c403bf0020039403b903b1002d03b403af03ba03c403c503bf002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05EA05E605D505D205EA002005DE05E105DA002C002005D305D505D005E8002005D005DC05E705D805E805D505E005D9002005D505D405D005D905E005D805E805E005D8002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000500044004600200064006f006b0075006d0065006e0061007400610020006e0061006a0070006f0067006f0064006e0069006a006900680020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f0161007400690020006900200049006e007400650072006e0065007400750020006b006f00720069007300740069007400650020006f0076006500200070006f0073007400610076006b0065002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF00410020006b00e9007000650072006e00790151006e0020006d00650067006a0065006c0065006e00ed007400e9007300680065007a002c00200065002d006d00610069006c002000fc007a0065006e006500740065006b00620065006e002000e90073002000200049006e007400650072006e006500740065006e0020006800610073007a006e00e1006c00610074006e0061006b0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b00790074006900200072006f006400790074006900200065006b00720061006e0065002c00200065006c002e002000700061016100740075006900200061007200200069006e007400650072006e0065007400750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f007400690020007201010064012b01610061006e0061006900200065006b00720101006e0101002c00200065002d00700061007300740061006d00200075006e00200069006e007400650072006e006500740061006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079015b0077006900650074006c0061006e006900610020006e006100200065006b00720061006e00690065002c0020007700790073007901420061006e0069006100200070006f0063007a0074010500200065006c0065006b00740072006f006e00690063007a006e01050020006f00720061007a00200064006c006100200069006e007400650072006e006500740075002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020006100660069015f006100720065006100200070006500200065006300720061006e002c0020007400720069006d0069007400650072006500610020007000720069006e00200065002d006d00610069006c0020015f0069002000700065006e00740072007500200049006e007400650072006e00650074002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f0020044d043a04400430043d043d043e0433043e0020043f0440043e0441043c043e044204400430002c0020043f0435044004350441044b043b043a04380020043f043e0020044d043b0435043a04420440043e043d043d043e04390020043f043e044704420435002004380020044004300437043c043504490435043d0438044f0020043200200418043d044204350440043d043504420435002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020007a006f006200720061007a006f00760061006e006900650020006e00610020006f006200720061007a006f0076006b0065002c00200070006f007300690065006c0061006e0069006500200065002d006d00610069006c006f006d002000610020006e006100200049006e007400650072006e00650074002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f01610074006f00200069006e00200069006e007400650072006e00650074002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0045006b00720061006e002000fc0073007400fc0020006700f6007200fc006e00fc006d00fc002c00200065002d0070006f00730074006100200076006500200069006e007400650072006e006500740020006900e70069006e00200065006e00200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f0062006100740020007600650020004100630072006f006200610074002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a0456043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043f0435044004350433043b044f043404430020043700200435043a04400430043d044300200442043000200406043d044204350440043d043504420443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

