The Effectiveness

of Compact Fine-Tuned LLMs 1n

Log Parsing

Maryam Mehrabi
ECE, Concordia University
Montreal, QC, Canada
me_marya@live.concordia.ca

Abstract—Log parsing is defined as the process of extracting
structured information from unstructured log data. It is an
important step prior to many log analytics tasks. The emergence
of Large Language Models (LLMs), like Generative Pre-trained
Transformers (GPTs), has driven the development of novel log
parsing methods. Existing studies have examined the effectiveness
of large-scale general-purpose LLMs in log parsing. In this
paper, we argue that the long-term adoption of such LLMs
pose challenges of data privacy, cost, and tool integration. To
address these challenges, we explore the viability of supervised
fine-tuning of an open-source compact LLM for log parsing as
a prospective alternative. To this end, we fine-tune the Mistral-
7B-Instruct LLM on a diverse set of log files and evaluate its
performance, in terms of both accuracy and robustness, against
OpenAI’s GPT-4-Turbo using different configuration settings. We
apply two evaluation approaches, namely metric-based and LLM-
based. Our overall findings show that fine-tuning a compact LLM
such as Mistral-7B provides similar and sometimes better results
than using a large-scale LLM, in our case GPT-4-Turbo. These
findings are important because they enable companies to use a
smaller LLM that they can readily adapt to parsing their log
data, and integrate into their log analytics tools, without the
need to rely on third-party LLM providers.

Index Terms—Log Parsing, Large Language Models, Machine
Learning, Software Maintenance and Evolution

I. INTRODUCTION

Logs are used by software development and operations
teams to understand and analyze the behaviour of software
systems [1]. Log analysis is instrumental in facilitating a
variety of tasks including the detection of system anomalies
[2fl, [3]l, root cause analysis of system faults [4], [5], and
performance optimization [6].

Logs, however, are largely unstructured [7] [8]], [9]], making
it challenging to analyze their content [[10]. To address this
challenge, several log parsing techniques have been proposed
(e.g., [11] [12]) with the main objective to automatically
extract log event structures (also called event templates) from
unstructured log files. Log parsing is a prerequisite to many
log analytics tasks as discussed in [9], [13]].

As an example, consider the log event in Figure
which was generated from the Hadoop Distributed File
System (HDFS). This log event contains a mix of static
tokens (PacketResponder, for, terminating) and
dynamic tokens, which correspond to the values of the logged
variables (1, blk_5017373558217225674). The chal-
lenge of log parsing is to automatically distinguish between
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the static tokens and dynamic tokens. One possible solution
would be to use regular expressions. The problem is that
typical log files may contain thousands of event templates [[8]].
In addition, any modifications to the system would require
constant changes to the regular expressions. To make things
worse, it is common for companies to have several types of log
files, further complicating the development and maintenance
of regular expressions to parse log data [[14] [10].

Log Event: PacketResponder 1 for block
blk_5017373558217225674 terminating

Event Template: PacketResponder <*>
for block <x> terminating

Fig. 1: An example of a log event and its corresponding event
template

Recently, Large Language Models (LLMs) have been used
to support a variety of software engineering tasks. In the con-
text of log analytics, LLMs have been used for automatic gen-
eration of logging statements [15], log parsing [16]-[19], and
root cause analysis [20]—[22]. Existing studies have reported
satisfactory results, showcasing the analytical capabilities of
these models for log analytics.

Recent LLM-based log parsing studies have mainly lever-
aged large-scale general-purpose LLMs such as the GPT
family of languages [16]-[19], [23]. The use of such large-
scale LLMs for log analytics pose three challenges related to
privacy, tool integration, and cost:

1) Privacy: Logs often contain private information such as
user names, IP addresses, MAC addresses, etc. Using
a proprietary LLM (e.g., GPT-4) would require from
companies to send their logs to be processed on third-
party LLM servers, increasing the risk of violating
privacy regulations that govern the use of personal data.
2) Tool Integration: Log parsing is only one step in the
entire log analytics pipeline. From the development per-
spective, integrating a third-party LLM with the existing
log analytics tooling can be challenging. Companies



should be able to download the LLM, fine-tune it to their
specific needs, and integrate it with their tool suite.

3) Cost: The high-performing LLMs tend to be expensive
when used with large data [24] [25]. Log files are noto-
riously known to be considerably large [26], potentially
resulting in high processing costs.

To address these challenges, in this paper, we investigate
the use of a compact open-source LLM as an alternative
solution. More particularly, we show how fine-tuning Mistral-
7B—Instructﬂ a 7 billion parameter model, can perform log
parsing tasks as well as OpenAIl’s GPT-4-Turbo, a large-scale
state-of-the-art LLM speculated to have more than 1 trillion
parameters [27]. We choose Mistral-7 as one of the top
performer LLMs for its size on the Huggingface Open LLM
Leaderboarcﬂ To support our findings, we experimented with
several log files. Our evaluation includes an examination of
both the accuracy and robustness of the results using two
complementary approaches, namely metric-based and LLM-
based. For the metric-based method, we quantitatively measure
accuracy and robustness. However, because language models
(particularly the smaller ones) have the potential to produce
extraneous tokens, metric-based evaluation methods tend to be
sensitive to such noise. To address this, we use an LLM-based
evaluation method where we ask GPT-4 to act as an expert and
evaluate the accuracy and robustness of the models.

The contributions of this paper are as follows:

o To our knowledge, this is the first study that explores
the applicability of a compact fine-tuned LLM (in our
case Mistral-7B) for log parsing, as an alternative to a
general-purpose proprietary LLM such as GPT-4.

o We use a comprehensive evaluation framework compris-
ing two complementary methods that are designed to
ascertain whether a smaller, fine-tuned model can achieve
the performance of a large-scale model in log parsing
tasks in terms of accuracy and robustness.

II. BACKGROUND ON LARGE LANGUAGE MODELS

LLMs are large-scale language models that are pre-trained
on an extensive corpus of language data [28]. These models
are fundamentally categorized into two types based on their
architectural approach: autoregressive models and masked
token models. Autoregressive models, exemplified by the GPT
series, employ a decoder-only architecture. In this setup,
the prediction of the next token regarding preceding tokens.
Masked token models, on the other hand, are designed to pre-
dict the value of masked tokens within a given input sequence
by understanding the context provided by the unmasked tokens
[29], [30]. In this paper, we focus on two tiers of auto-
regressive language models in terms of number of model
parameters and specialization.

Uhttps://huggingface.co/NousResearch/Yarn-Mistral-7b- 128k

2From this point forward, any reference to GPT-4 and Mistral-7B will mean
GPT-4-Turbo and Mistral-7B-Instruct, respectively.

3https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

A. Large-scale general-purpose LLMs

These models are noteworthy for their scale in terms of
the number of training parameters and the sources of data
used for their training. As an example GPT-4 speculated
to have more than one trillion parameters and is trained
on a diverse array of data sources, from Wikipedia texts
to programming projects on GitHub. As a result, they have
achieved state-of-the-art performance across a multitude of
natural language processing (NLP) tasks, including translation,
summarization, and text generation, showcasing their capacity
to handle complex language-related challenges efficiently [31].

B. Compact fine-tuned LLMs

Compact models are designed to provide substantial lan-
guage understanding and generation capabilities while hav-
ing lower compute requirements for training and inference
compared to the larger-scale models. An illustrative example
within this category is the Llama2 collection, which offers
models with parameter counts ranging from 7 billion to 70
billion [32]. Despite their relatively lower parameter count
and training on a more concise corpus of data, these mod-
els consistently produce high-quality inferences. Their open-
source nature and their resource-efficient design, renders them
particularly advantageous for fine-tuning and the development
of specialized, task-specific models.

In-context learning and fine-tuning are two distinct method-
ologies that facilitate the adaptation of LLMs to specific tasks.

1) In-context Learning

This approach enables a model to learn specific tasks
utilizing a set of examples, instead of explicit retraining or
fine-tuning on task-specific datasets. The core mechanism of
in-context learning involves the following steps: 1) providing
a prompt containing several examples illustrate the task and
guiding the model regarding the expected outcomes. 2) Utiliz-
ing these examples, the model deduces the task’s requirements
and crafts a response that aligns with the task [33].

2) Fine-tuning

Fine-tuning is when a pre-trained model undergoes ad-
ditional training on a smaller, specific dataset relevant to
a particular task or domain. Fine-tuning is generally more
effective than in-context learning in terms of performance and
is more resource-efficient compared to training a model from
scratch [34].

III. EXPERIMENT SETUP
A. Study Objective

The objective of this study is to investigate the performance
of Mistral-7B, a compact LLM, for parsing log events as
compared to GPT-4, a large-scale LLM. The study addresses
the following research questions.

« RQI1: What is the accuracy of Mistral-7B compared
to GPT-4 across various configuration settings using a
metric-based evaluation method?

e« RQ2: What is the robustness of Mistral-7B compared
to GPT-4 across various configuration settings using a
metric-based evaluation method?
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Fig. 2: Overview of our approach

o« RQ3: What is the accuracy and robustness of Mistral-
7B compared to GPT-4 using an LLM-based evaluation
method?

For RQ1 and RQ2, we examine the relative accuracy and ro-
bustness of a fine-tuned compact LLM, Mistral-7B, compared
to GPT-4, a large-scale general-purpose LLM, when applied to
the task of log parsing in various configurations. Additionally,
in RQ3, we explore the need for LLM-based evaluation as a
complementary approach to quantitative metric-based methods
for assessing the performance of a log parser.

B. Approach

Figure [2| shows our approach to answer the RQs, which
consists of four steps. In Step 1, we curate a diverse subset of
logs with their corresponding templates from the LogPai log
file repository [10]] to create the fine-tuning dataset. We made
some corrections to the ground truth log templates to ensure
the fine-tuning dataset is accurate and consistent. Then, we
build the instruction-tuning prompts and create a fine-tuning
dataset for the Mistral-7B model. In Step 2, we first tune the
LLM fine-tuning hyperparameters using Low-Rank Adaptation
(LoRA), which is a parameter-efficient method to update a
smaller subset of the model’s parameteres [35]]. Then we fine-
tune the Mistral-7B model with the log parsing instruction
dataset prepared in Step 1. During Step 3, we select a diverse
dataset from the LogPai repository for testing. The test data
includes the templates seen in the fine-tuning dataset as well
as unseen templates. Then, we prepare log parsing prompts
for different configuration settings, and use the Mistral-7B and
GPT-4 to infer the corresponding templates for each log event.
In Step 4, we evaluate the effectiveness of the selected models
using metric-based and LLM-based evaluation methods. The
metric-based method focuses on quantifiable aspects, whereas
the LLM-based method examines the model performance by
using GPT-4 as an evaluator.

C. Data Preparation

Fine-tuning Dataset: The log files used in this study are
from the LogPai benchmark [10]. The benchmark contains
16 log files that are generated from different types of sys-
tems, namely distributed systems, supercomputers, operating
systems, mobile applications and server applications. These
datasets are used extensively in log parsing studies.

To construct the fine-tuning dataset, we select randomly
five log files, the ones generated from Apache, BGL, HPC,
Proxifier, and Zookeeper. Each log file comes with a subset of
2,000 log events that have been parsed manually. The event
templates were identified, and each log event out of the 2,000
events was associated with a specific event template. These
labelled log files are used as ground truth against which we
can check the accuracy and robustness of our models.

In addition, to construct a well-defined fine-tuning dataset,
we randomly choose 80% of the event templates from each of
the five log files (see Table [). Subsequently, for each event
template, we select randomly 15 log events that we will use
to fine-tune the LLM models. A different number of events
could have been chosen, but we do not believe that this would
have much effect on the results. What is important is to have
the same distribution for each event template to ensure that the
LLM learns the patterns in the data across multiple log files.
In cases where the number of log events for a certain template
was fewer than 15, we used oversampling to ensure an equal
number of log events across each event template. The detailed
composition of the fine-tuning dataset is shown in Table

Test Dataset: We divide the test dataset into three dis-
tinct categories to ensure a comprehensive evaluation of the
performance of the models across a variety of scenarios with
different levels of familiarity with the data. Specifically, one
third of the event templates are extracted directly from the
training dataset (i.e., 80% of the event templates). Another



TABLE I: Summary of the fine-tuning dataset

Log File #Total #Selected #Selected
Templates | Templates | Log Events
Apache 6 4 60
BGL 120 96 1440
HPC 46 36 540
Proxifier 8 6 90
Zookeeper 50 40 600
Total number of train log events 2730
#Selected Templates = 0.8 * #Total Templates
#Selected Log Events = 15 * #Selected Templates

third is meticulously selected from the remaining 20% of
the training dataset. The final third is comprised of event
templates drawn from three new log files from the LogPai
benchmark that were not part of the training process. For
this last third, we select randomly three log files, namely the
Hadoop, OpenStack, and Spark log files; each contributing
16 event templates to the test dataset. The motivation behind
using unseen log files in this study is to investigate the ability
of LLMs to recognize the structure of log files beyond those
used during training. For each event template within these
categories, three log events are randomly selected to represent
a wide range of potential scenarios. In situations where the
available log events for a given template were fewer than
three, oversampling is employed and thus standardizes the
dataset, ensuring a uniform number of log events for each
event template. The selection and organization of these event
templates and log events are detailed in Table

TABLE II: Summary of the test dataset

Cat #Selected #Selected
ategory Templates | Log Events

From the training dataset

and included in training 48 144

From the training dataset

but not included in training 48 144

From new log files

(Hadoop, Spark, OpenStack) 48 144

Total Number of test log events 432

#Log events = #Templates * 3

Dataset Correction: Our initial examination of the log files
used for training and testing revealed several inconsistencies
in the labelled ground truth. This was also noticed in other
studies [36]. To address these issues, we reviewed the ground
truth and rectified small ground truth inconsistencies to ensure
that event templates corresponding to similar log events ad-
here to uniform extraction patterns. For example, the ground
template Found block rdd_<*> locally should be
Found block <x> locally. The token rdd_ is part
of the dynamic token that was mistakenly classified as a static
token. Examples of changes to the ground truth are included
on the GitHub repositor

Building the LLM System Prompts: The preparation of
the training data for fine-tuning Mistral-7B , testing purposes,

4https://github.com/maryam-mrb/logparsing-compactLLMs/tree/main/
RectifiedTemplates

and LLM-based evaluation required the development of stan-
dardized prompt templates. These templates are subjected to
iterative optimization processes, with modifications made to
various details to identify configurations that yielded the most
favorable results during model inference.

To cover all targeted configurations, namely zero-shot, few-
shot, and fine-tuned settings, we prepare distinct prompts
tailored to each scenario. The prompt used for Mistral-7B
zero-shot configuration is identical to that used in the fine-
tuning process. It is designed to assess the model’s innate
capabilities without prior exposure to specific examples. For
the few-shot setting in both Mistral-7B and GT-4 models, we
use identical prompts that are augmented with two illustrative
examples. It is intended to facilitate the models’ learning from
these minimal yet targeted inputs. The prompt prepared for
the LLM-based evaluation also include the definition of the
evaluation metrics and two examples. In each example, we
teach the model the given log event, inferred event template,
and ground truth template and the appropriate score for the
targeted evaluation metric.

D. Fine-tuning Configuration

We fine-tune Mistral-7B with HuggingFace’s Parameter-
Efficient Fine-Tuning (PEFTf] and Low-Rank Adaptation
(LoRA). LoRA helps in reducing the computational and mem-
ory overhead associated with traditional fine-tuning methods
and has been shown to perform on par or even better than
full fine-tuning in some cases, despite having fewer trainable
parameters and higher training throughput [35[]. Our code,
prompts, and experimental results are available on GitHulﬂ

E. Inference Configuration

Model Selection The selection of the LLMs for our study
is based on an evaluation of its capabilities and performance
benchmarks, particularly emphasizing LLMs with the mini-
mum viable number of parameters. As we discussed earlier, for
the compact LLM, we select the Mistral model with 7 billion
parameters. This model was distinguished by its exceptional
performance among the models with 7 billion parameters on
the Huggingface Leaderboard at the time our experiments were
conducted. For the large-scale LLM, we select the GPT-4
model.

E Evaluation

We employ two synergistic methodologies for the evaluation
of our LLM-based log parsers: a metric-based approach and
an LLM-based approach.

1) Metric-based Approach

We use accuracy and robustness as the primary metrics to
gauge the performance of a log parselﬂ

Shttps://huggingface.co/docs/peft/en/index

Shttps://github.com/maryam-mrb/logparsing-compactLLMs

7A third dimension for measurement is computational efficiency, that is,
how fast the extracted templates are generated and how much computational
resources are consumed. Computational efficiency can be evaluated by metrics
such as run time, memory usage, and scalability, which is beyond the scope
of this work.
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We quantitatively assess the accuracy of each LLM-based

log parser using the following metrics.

o Message Level Accuracy (MLA) is defined as the ratio
of the number of log events for which event templates that
precisely match the ground truth data were successfully
inferred to the total number of log events analyzed [37].

o Levenshtein Edit Distance (ED) measures the similarity
between the inferred event template and ground truth
by quantifying the minimum number of single-character
edits (i.e., insertions, deletions, or substitutions) required
to transform the inferred event template into ground truth
[37]. A lower ED indicates a more accurate log parser.

o F1 Score is the harmonic mean of precision and recall.
For each template, precision measures the percentage of
log messages correctly identified as belonging to that
certain template among all the messages identified as
belonging to that template, while recall measures the
percentage of messages correctly identified as belonging
to the template among all the messages actually belonging
to that template in the ground truth. The F1 Score
ranges from O to 1, where 0 means no similarity and
1 means perfect match. A higher F1 Score indicates a
more accurate log parser.

In evaluating robustness, we measure the efficacy with
which a log parser manages diverse and complex log data. This
includes logs characterized by undefined or poorly-defined
templates, multiple parameters, or noisy messages. We assess
the robustness of each LLM-based log parser in relation to
the ground truth template size (quantified by the number of
characters), the log dataset to which the template belongs,
and whether the template and its associated log dataset were
exposed to the log parser during the fine-tuning process.

2) LLM-based Approach

The LLM-based evaluation involves using GPT-4 as a log
parsing evaluator, to rate the inferred event templates given
the ground truth. More specifically, we prompt GPT-4 to
subjectively evaluate each individual extracted log template
in terms of accuracy and robustness and give a score between
0 and 5 for each evaluation criterion. The complete system
prompts are provided as part of the reproduction package.

IV. EVALUATION RESULTS

In this section, we present the findings of our experimental
analysis, aimed at addressing the research questions.

A. RQI: What is the accuracy of Mistral-7B compared to
GPT-4 across various configuration settings using a metric-
based evaluation method?

Table [[II] details the accuracy assessment for the Mistral-
7B and GPT-4 models across various configurations, using
MLA, ED, and F1 score as metrics. For the Mistral-7B model,
there is a noticeable drop in MLA from one-shot (22.9%)
to two-shot (14.1%); however, fine-tuning the model boosts
the MLA to 74.8%. The fine-tuned version shows a mean
ED of 7.2 and a median of 0.0, and an F1 score with a
mean of 0.74 and a perfect median of 1.0, indicating highly

accurate performance on most inputs after fine-tuning. GPT-
4, in its zero-shot configuration, achieves a MLA of 47.2%,
improving to 72.2% in a two-shot scenario. The model’s ED
scores are low, with means of 6.4 in the zero-shot and 9.2 in
the two-shot, both with a median of 0.0, suggesting precision
in edits. For the F1 score, GPT-4 scores a mean of 0.46 in zero-
shot and improves to 0.71 in two-shot, demonstrating less but
competitive score compared to Mistral-7B’s.

Finding RQ1: The results show that fine-tuned Mistral-
7B achieves better accuracy compared to GPT-4 using all
three metric-based assessment, MLA, ED, and F1 Score.

B. RQ2: What is the robustness of Mistral-7B compared to
GPT-4 across various configuration settings using a metric-
based evaluation method?

To address this question, we evaluate robustness of each
LLM-based log parser in relation to the the ground truth
template size, the log dataset to which the template belongs,
and whether the template and its associated log dataset were
seen by the LLM during the fine-tuning process. We use
different parsing accuracy metrics, including MLA, ED, and
F1 Score, to assess robustness of each LLM-based parser under
various configurations.

Template Size: Figures [3] @ and [5 demonstrate the
MLA, ED, and F1 Score variations across log template sizes,
respectively.

For MLA (Figure [3), both models exhibit a general trend of
decreasing accuracy with an increase in template size, although
the fine-tuned Mistral-7B maintains relatively higher accuracy
across the board, suggesting robustness in handling complex
parsing tasks.

In terms of ED (Figure M), the fine-tuned Mistral-7B
presents lower edit distances, implying that its outputs are
closer to the desired results with fewer modifications needed, a
clear indicator of its robust nature post fine-tuning. The GPT-
4 model, particularly in the two-shot configuration, shows a
smaller increase in ED with the rise in template size, which
suggests a certain degree of robustness in adapting to the
increased complexity.

The F1 Score (Figure [3)), is notably high for the fine-
tuned Mistral-7B across all template sizes, underscoring its ro-
bust performance. GPT-4 demonstrates competitive F1 Scores,
especially in the two-shot configuration, indicating a robust
design that efficiently leverages additional context for perfor-
mance enhancement.

Diversity of Datasets: Figures [6] [7] and [§] compare the
robustness of the Mistral-7B and GPT-4 models across various
datasets using MLA, ED, and F1 Score as evaluation metrics.
It is worth to mention that Hadoop, Spark, and Open Stack
datasets did not used as training datasets during fine-tuning
the Mistral-7B model.

When observing MLA (Figure[6), the fine-tuned Mistral-7B
demonstrates a higher accuracy, indicating effective learning
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TABLE III: Metric-based evaluation results for assessing the accuracy

Model MLA ED F1 Score

Mean Median Mean Median

Mistral-7B (0-shot) 229% 219 12.0 0.23
Mistral-7B (2-shot) 141% 542 55.5 0.13
Mistral-7B (Fine-tuned) 74.8% 7.2 0.0 0.74
GPT-4 (0-shot) 47.2% 6.4 2.0 0.46
GPT-4 (2-shot) 72.2% 9.2 0.0 0.71
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and adaptation to various datasets. This LLM performs even Hadoop dataset that highlights the robustness of fine-tuned

better than GPT-4 in zero-shot and two-shot settings facing LLM versus a large-scale LLM.

unseen data from Spa.rk dataset. It sl}owcases a better per- Regarding ED (Figure []), the fine-tuned Mistral-7B model
formance than GPT-4 in zero-shot setting for OpenStack and  gemonstrates consistently lower distances across the majority
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of datasets. As anticipated, it exhibits higher edit distances
for the Hadoop and OpenStack datasets, which were not
included in its fine-tuning. However, the templates inferred
for the unseen log events from Spark aligned perfectly with
the ground truth. In contrast, GPT-4, in both zero-shot and
two-shot configurations, recorded higher edit distances for the
Spark dataset. Nonetheless, GPT-4 generally exhibits greater
robustness in the two-shot setting as compared to zero-shot.

Regarding the F1 Score (Figure [8), the fine-tuned Mistral-
7B achieves higher scores across the majority of datasets. As
anticipated, its performance is lower on new datasets; however,
overall, it has the best scores compared to GPT-4 in both zero-
shot and two-shot settings. GPT-4 maintains competitive F1
Scores, especially in the two-shot setting, which highlights
its inherent ability to comprehend and adapt to various data
structures and complexities.

Exposure during fine-tuning: To investigate the extent
of the fine-tuned Mistral-7B’s reliance on memorization, we
divided the test data into different levels of familiarity: 1) log
events with event templates that are present in the training
data; 2) log events originating from datasets included in the
training phase, yet featuring event templates that were not part
of the training set; and 3) completely unseen event logs derived
from datasets that were excluded from the training process.

In terms of MLA (Figure [J), log events with templates that
were seen during training has the highest score, suggesting
an excellent retention of the learned patterns. For log events

derived from datasets that were included in the training phase
but whose specific templates were not part of the training set,
the fine-tuned LLM exhibits satisfactory accuracy. However,
there is a noticeable decline in MLA for log events from
unseen datasets with new templates.

For ED (Figure @), the fine-tuned Mistral-7B shows mini-
mal need for edits when dealing with familiar both templates
and novel templates from datasets that were part of the
training. Conversely, the model incurs a higher ED when
confronted with entirely unseen data, suggesting an area for
potential enhancement in model generalization capabilities
beyond the training domain.

The F1 Score (TI) follows a similar pattern, the highest
score relates to familiar data and there is a gradual decline
as the data becomes less familiar. The sustained performance
on unseen templates from known datasets suggests the LLM’s
ability to apply learned knowledge to novel scenarios within
familiar contexts. However, the lower F1 Score for entirely
new datasets reflects the model’s challenge in extrapolating
beyond its training scope.

C. RQ3: What is the accuracy and robustness of Mistral-
7B compared to GPT-4 using an LLM-based evaluation
method?

In the application of language models for extracting event
templates within log parsing tasks, it is observed that partic-
ularly the smaller models may append or prepend extraneous
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Finding RQ2: The results show that fine-tuned Mistral-
7B achieves the best robustness in metric-based assess-
ment with different template sizes and different datasets. It
also has a satisfactory robustness when used with familiar
datasets. However, it requires enhancement in order to be
more robust when used with new and unseen log files.

tokens relative to the target event templates. This can lead to
instances where the models struggle to identify the correct
sequence in their template generation. In the metric-based
evaluation, the accuracy and edit distance of inferred event
templates are determined by syntactic alignment with ground
truth templates. This necessitates a thorough post-processing
procedure to extract the correct part of the generated text to
achieve the template. The challenge intensifies due to the ab-
sence of a standardized pattern in the generation of extraneous
tokens by these models, rendering the post-processing not only
challenging but also time-intensive.

When leveraging GPT-4 to evaluate inferred templates, its
extensive pre-training on code and logs provides a significant
advantage. This large-scale LLM brings a depth of under-
standing to the domain, allowing to evaluate beyond mere
syntactic correctness and incorporate semantic interpretation.
Through in-context learning, this LLM is equipped to perform
assessments with a level of expertise, recognizing the specific,
relevant components within the templates. This proficiency
enables a more nuanced and accurate analysis of the in-
ferred log data, like the evaluation expected from a human
expert. Consequently, the integration of LLM-based evaluation
alongside metric-based method as a complementary strategy
enhances the precision of the assessment.

Table [TV] presents LLM-based evaluation results for accu-
racy and robustness, providing scores on a scale from 0 to 5 for
the Mistral-7B and GPT-4 LLMs under various configurations.
The Mistral-7B, in its zero-shot form, starts with lower mean
scores for accuracy and robustness, but these scores improve in
the two-shot setting. The most significant enhancement is ob-
served when Mistral-7B is fine-tuned, reflected by near-perfect
mean scores and a consistent median of 5.0, indicating highly

reliable performance. On the other hand, GPT-4 demonstrates
strong capabilities from the outset in the zero-shot setting,
with both accuracy and robustness mean scores exceeding
4.2 and a median of 5.0, suggesting a considerable degree
of inherent robustness. When given additional context in the
two-shot configuration, GPT-4’s mean scores rise slightly,
suggesting marginal gains with more information. This LLM-
based evaluation underscores the significant impact of fine-
tuning on the Mistral-7B and the robust initial performance of
the GPT-4, which is further enhanced with two-shot learning.

A comparison between the results of metric-based evalua-
tion (Figures [T4] [I5] and [I6) and LLM-based evaluation (Fig-
ures [12] and [T3) shows why we need the LLM-based approach
as a complementary approach. Both approaches confirm that
Mistral-7B in fine-tuned setting and GPT-4 in two-shot setting
are too close and have the highest accuracy and robustness.
However, in metric-based, fine-tuned Mistral-7B shows a
better performance and in the LLM-based approach GPT-4
is slightly better. Also, Mistral-7B exhibits superior accuracy
and robustness when operating in a zero-shot setting compared
to two-shot setting. Conversely, in LLM-based assessment the
results are different. Here, the two-shot setting demonstrates
enhanced accuracy and robustness. The reason is that GPT-
4 has the ability to analyze both syntax and semantics. This
capability ensures that the LLM’s judgement remains robust
against the absence of an intense post processing.

Finding RQ3: The LLM-based results confirm that
fine-tuned Mistral-7B achieves a similar result than
GPT-4 both in terms of accuracy and robustness. This
result demonstrates that a fine-tuned compact LLM
such as Mistral-7B can be effectively used as an
alternative solution to GPT-4, a large scale LLM.

V. DISCUSSION

Efficiency vs. Effectiveness: In this study, we carried out
a comprehensive evaluation to compare the effectiveness in
terms of accuracy and robustness of a fine-tuned compact LLM
with a large-scale LLM. However, it is worth noting that one of
the critical metrics for comparing log parsers is their efficiency
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TABLE IV: GPT-4 evaluated accuracy and robustness scores

Model Accuracy Robustness
Mean Median Mean Median
Mistral-7B (0-shot) 2.23 2.0 2.50 2.0
Mistral-7B (2-shot) 3.34 4.0 3.25 4.0
Mistral-7B (Fine-tuned)  4.45 5.0 4.44 5.0
GPT-4 (0-shot) 4.21 5.0 4.40 5.0
GPT-4 (2-shot) 4.61 5.0 4.63 5.0
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(specifically in terms of running time). Since OpenAl employs
advanced hardware for its operation, whereas our inference is
conducted on standard platforms, a direct comparison of the
efficiency between these two LLMs is not fair.

Generalizability of the findings: We experimented with
Mistral-7B and GPT-4. We also worked with the log files of the
LogPai benchmark, which covers a range of software systems.
We need to experiment with more LLMs and log files to claim
generalizability of the results. This is the main threat to validity
of our this study.
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Hyperparameter Tuning: While the fine-tuned Mistral-
7B with our carefully curated log parsing instruction dataset
demonstrates the promise of fine-tuning smaller LLMs for
log parsing applications, it encourages us to further optimize
the fine-tuning process in order to explore the boundaries
of a compact LLM adapting to log parsing tasks in various
scenarios. In particular, rank of decomposition, learning rate,
and scaling factor are among the most important LoRA
hyperparameters to be optimized. This represents an avenue
for future work.
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Training dataset: The training dataset influences the per-
formance of the fine-tuned LLM. Given the presence of several
inconsistencies within the ground truth log files used in this
paper, the preparation of a consistent labeled dataset for fine-
tuning and pre-training on log data would be beneficial.

VI. RELATED WORK

There are several log parsing tools that use an algorithmic
approach [9]. In this section, we only discuss LLM-based log
parsing approaches.

Le and Zhang [16] conducted a study into the use of
ChatGPT for log parsing. The authors experimented with
different configurations, including zero-shot and multi-shot
learning, as well as varying the prompts, to assess their impact
on the LLM’s performance. Xu et al. [18] presented LogDiv, a
GPT-3 framework that is adapted through in-context learning
to log parsing. The authors implemented a method for the
selection of examples for in-context learning, as opposed to
manual selection. For few-shot prompting, a pool of distinct
samples was created. By receiving a log message as input, the
framework automatically selects pertinent examples based on
a similarity score, facilitating the LLM’s parsing capability.

Liu et al. [[17] introduced LogPrompt, a log parsing ap-
proach designed for zero-shot scenarios, with the aim of
enhancing robustness when encountering unseen data. The
authors’ method relied on ChatGPT, demonstrating its adapt-
ability. The authors proposed three distinct prompt strategies
to optimize performance, namely, the self-prompt strategy, the
Chain-of-thought, and the In-context prompt strategy. Jiang
et al. [19] introduced LILAC, a framework to address the
challenges related to the generation of unstable output tem-
plates and the high computational resources required by large-
scale general-purpose LLMs for log parsing. LILAC combines
in-context learning with an adaptive cache mechanism. A
candidate sampling algorithm is used to select examples during
in-context learning. Guo et al. [38] addressed the issues of
high inference times and the generation of unstable results
associated with LLM-based log parsers by proposing Lemur,
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a LLM-based framework for log parsing. To mitigate these
issues, they integrated an entropy sampling approach for
clustering log messages and identifying variable components
within logs for template generation. Furthermore, they used a
chain-of-thought method to merge these templates effectively.
Le and Zhang [23] introduced LogPPT, a log parser lever-
aging prompt-based few-shot learning. LogPPT incorporates
an Adaptive Random Sampling algorithm designed to select a
subset of log data and their ground truth to serve as training
samples. The authors used the fact that most keywords within
log statements are valid, dictionary-lookup words, and thus
more readily predictable by a language model. This approach
contrasts with the challenge of predicting parameters, which
are inherently dynamic and less predictable. Consequently,
the task of log parsing is redefined as a label token predic-
tion problem, and a pre-trained language model, specifically
RoBERT%, is used to predict a designated label token at the
parameter positions within log messages.

VII. CONCLUSION

We examined the use of a fine-tuned compact LLM for log
parsing, as a viable alternative to large-scale general-purpose
LLMs. To this end, we fine-tuned Mistral-7B, a compact
LLM, with various log parsing datasets. Then, we evaluated its
accuracy and robustness against GPT-4, a large-scale general-
purpose LLM. Our evaluation framework uses two methods:
a metric-based method and an LLM-based approach. The
findings show that the performance of the fine-tuned compact
LLM, Mistral-7B is on par with that of its larger general-
purpose counterpart, GPT-4, supporting the fact that a smaller
fine-tuned LLM can be used for log parsing as an alternative
to a large-scale GPT-4 model.
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