
TR-2017-042.R2

1

Abstract— Ensemble based Anomaly Detection Systems

(ADSs), using Boolean combination, have been shown to reduce
the false alarm rate over that of a single detector. However, the
existing Boolean combination methods rely on an exponential
number of combinations making them impractical, even for a
small number of detectors. In this paper, we propose weighted
pruning based Boolean combination, an efficient approach for
selecting and combining accurate and diverse anomaly detectors.
It works in three phases. The first phase selects a subset of the
available base diverse soft detectors by pruning all the redundant
soft detectors based on a weighted version of Cohen’s kappa
measure of agreement. The second phase selects a subset of
diverse and accurate crisp detectors from the base soft detectors
(selected in Phase1) based on the unweighted kappa measure.
The selected complementary crisp detectors are then combined in
the final phase using Boolean combinations. The results on two
large scale datasets show that the proposed weighted pruning
approach is able to maintain and even improve the accuracy of
existing Boolean combination techniques, while significantly
reducing the combination time and the number of detectors
selected for combination.

Index Terms—Anomaly Detection Systems, Ensemble
Methods, Multiple-Detector Systems, Weighted Kappa, Software
Reliability and Security.

ACRONYMS AND ABBREVIATIONS

5FCV 5-Fold Cross Validation
ADFA-LD ADFA Linux Dataset
ADS Anomaly Detection System
AUC Area Under the Curve
BBC2 Pair-wise Brute-force Boolean Combination
BW Baum-Welc
CANALI-WD CANALI Windows Dataset
EM Expectation-Maximization
FB Forward-Backward
HIDS Host-based Intrusion Detection System
HMM Hidden Markov Model
IBC Iterative Boolean Combination
NIDS Network Intrusion Detection System
OC-SVM One-Class Support Vector Machine
PBC Pruning Boolean Combination
ROC Receiver Operating Characteristics
ROCCH Receiver Operating Characteristics Convex Hull

Md Shariful Islam is with the Department of Electrical and Computer

Engineering, Concordia University, Montreal, QC, Canada (e-mail:
mdsha_i@ece.concordia.ca).

Wael Khreich is with the Department of Electrical and Computer
Engineering, Concordia University, Montreal, QC, Canada (e-mail:
wkhreich@ece.concordia.ca).

Abdelwahab Hamou-Lhadj is with the Department of Electrical and
Computer Engineering, Concordia University, Montreal, QC, Canada (e-mail:
abdelw@ece.concordia.ca).

STIDE Sequence Time-Delay Embedding
WPBC2 Pair-wise Weighted Pruning Boolean Combination
WPIBC Weighted Pruning Iterative Boolean Combination

NOTATIONS

avg average value on 5-Fold Cross Validation results
fpr false positive rate outputted by a crisp detector
kp-fpr kappa versus false positive rate plotting diagram
kp-tpr kappa versus true positive rate plotting diagram
max maximum value on 5-Fold Cross Validation results
min minimum value on 5-Fold Cross Validation results
std standard deviation on 5-Fold Cross Validation
tpr true positive rate outputted by a crisp detector

I. INTRODUCTION
ntrusion Detection Systems (IDS) are divided into two
categories: Network Intrusion Detection Systems (NIDS)

and Host-based Intrusion Detection Systems (HIDS). A NIDS
monitors and analyzes network traffic. It is transparent (i.e., it
can move in different locations) and independent (i.e., it can
work in different network topologies). An HIDS works on a
host computer and monitors user activities to detect
unauthorized access, illegitimate modification of configuration
files, and other unwanted behaviors. IDS can be further
classified into two categories: Signature-based (or misuse)
IDS and Anomaly Detection Systems (ADS). The former can
only detect known attacks [30], whereas the latter, the focus of
this paper, is capable of detecting novel attacks by analyzing
deviations from the normal behavior of a system.

Anomaly detection methods often vary in their design
depending on the application domain [62], but the common
practice is to train a model that characterizes the normal
behavior of a system. The model is used later as a baseline to
detect deviations (anomalies) from normalcy. When a trained
model produces scores instead of a decision (i.e., normal or
anomalous), it is called a soft detector. When it produces a
decision instead of scores, it is called a crisp detector. A soft
detector can be converted into one or more crisp detectors by
setting different thresholds on the output scores. A single crisp
detector, however, is known to generate an excessive number
of false alarms, which is one the main reasons that limits
deployment of ADS in commercial settings [20].

Training an anomaly detector is a one-class classification
problem that depends on the normal (or healthy) data. The
detector, which in our case is based on HMM, is trained using
the normal traces and expected to represent the normal
behavior of the system. It should be noted that we used HMM

Anomaly Detection Techniques Based on
Kappa-Pruned Ensembles

Md. Shariful Islam, Wael Khreich, and Abdelwahab Hamou-Lhadj, Member; IEEE

I

TR-2017-042.R2

2

because of it has been shown to provide best accuracy [41]
compared to other classification techniques. Our approach,
however, can be used with any other one-class classification
method. The combination of several soft or crisp detectors
requires a labeled dataset including both normal and
anomalous traces to be able to select the best crisp detectors
and the Boolean combination functions to optimize the
performance (i.e., minimize the fpr and maximize the tpr). In
practice, the evaluation of an anomaly detection system
requires a labeled validation set to select the operating
thresholds (e.g., tolerable fpr). Our approach takes further
advantage of this validation set to select the operating
thresholds and Boolean functions that yield the most accurate
and concise ensemble of detectors, which will be used during
system operation.

In this paper, we propose a weighted pruning of Boolean
combinations that selects the best subset of diverse base soft
detectors by pruning all the redundant ones. Each diverse base
soft detector is then used independently to select the
complementary crisp detectors instead of brute-force search
like in PBC. The complementary crisp detectors are then
combined by leveraging both Pair-wise Brute-force Boolean
Combination (BBC2) and Iterative Boolean Combination
(IBC) [1] [21], which shows that the pruning approach can be
used with any Boolean combination approach.

We leverage both weighted and unweighted Cohen’s kappa
[46][58] in order to select the best subset of diverse base soft
detectors. Weighted Cohen’s kappa is a special case of simple
kappa (unweighted kappa) that is particularly used when the
agreements between two detectors are ordinal instead of
nominal. In our case, the scores of a soft detector are ordinal
and the decision of a crisp detector based on a given threshold
is nominal. Our weighted pruning approach prunes both soft
and crisp detectors based on the ordinal agreements and the
nominal agreements between two detectors. The selected
diverse and accurate crisp detectors are then used for Boolean
combination. During combination, we leverage both the pair-
wise and iterative Boolean combinations introduced by
Barreno et al. [1] and Khreich et al. [21], respectively. The
proposed Pair-wise Weighted Pruning Boolean Combination
(namely called WPBC2) fuses and combines all possible pairs
of crisp detectors generated from the selected diverse base soft
detectors. Whereas, the Weighted Pruning Iterative Boolean
Combination (namely called WPIBC) fuses and combines the
selected diverse base soft detectors sequentially until no
significant improvement is possible. Another major
contribution of this paper is the evaluation of our approach for
detecting anomalies at the system call levels. We compare the
performance of WPBC2 and WPIBC to that achieved with the
original BBC2 and IBC techniques. In addition, we compare
the performance of our approaches to Pruning Boolean
Combination (PBC) [45].

In sum, the main contributions of this paper are:
1. We propose an anomaly detection approach that

enforces the diversities among the combined soft and
crisp detectors using weighted and unweighted Cohen’s
kappa [46].

2. The approach can be used with both pair-wise and
iterative Boolean combination techniques [1][21], and
easily adaptable to other Boolean combination
methods.

3. We evaluate our approach on two large publicly
available system call datasets: ADFA Linux Dataset
(ADFA-LD) [6] and CANALI Windows Dataset
(CANALI-WD) [47].

4. We show that our approach outperforms BBC2, IBC,
and PBC by achieving lower false positive rate, while
maintaining and improving the detection accuracy,
measured using AUC.

The organization of this paper is as follows. The related
anomaly detection approaches are discussed in Section II.
HMM based anomaly detection systems using system call
sequences are discussed in Section III. The convex hull under
the ROC space and related Boolean combination techniques
are explained in Section IV. The proposed weighted pruning
based Boolean combination techniques are discussed in
Section V. Section VI presents the proposed method for
pruning the Boolean combination as well as the results of the
experiments that are carried out on two benchmarks datasets
of system call sequences. The effects of pruning based
Boolean combination are discussed in Section VII. The
limitations of our approach are discussed in Section VIII. The
conclusion and future work are reported in Section IX.

II. RELATED RESEARCH
Anomaly detection is an important component used to

enhance system reliability and security in a variety of
domains. In their detailed survey, Chandola et al. [62] showed
that anomaly detection is used in a wide variety of
applications such as fraud detection for credit cards, insurance
or health care, intrusion detection for cyber-security, fault
detection in safety critical systems, and military surveillance
for enemy activities. Anomaly detection techniques have also
been shown useful in enforcing the reliability of software and
hardware systems. Shariyar et al. [67] presented an approach
and a supporting tool to detect program functions that are
likely to introduce faults in a software system by examining
historical execution traces. Their approach can be used to
enhance testing and other software verification methods. In a
recent study, Sha et al. [68] proposed an approach based on
anomaly detection to ensure the safety of cloud-based IT
infrastructures. Bovenzi et al. [69] proposed an approach for
revealing anomalies at the operating system level to support
online diagnosis activities of complex software systems. Yang
et al. [70] proposed an efficient method for detecting abnormal
executions of Java programs using sequential pattern mining.
Gizopoulos et al. [71] argued that the huge investment in the
design and production of multicore processors may be put at
risk because of reliability threats, mainly due to the existence
of bugs and vulnerabilities, unless these systems are equipped
with robust anomaly detection tools. They proposed multicore
processor architectures that integrate solutions for online error
detection, diagnosis, recovery, and repair during field
operation.

TR-2017-042.R2

3

Several studies (e.g., [11, 41]) showed that the temporal
order of system calls issued by a process to request kernel
services is effective in describing normal process behavior.
This has led to a considerable amount of research studies that
investigated various techniques for detecting anomalies at the
system call level (see survey in [12]). Among these, sequence
time-delay embedding (STIDE) and Hidden Markov Models
(HMMs) are the most commonly used [41]. Ensemble
methods have been proposed to improve the overall ADS
accuracy by combining the outputs of several accurate and
diverse models [7] [23] [25] [44]. In particular, combining the
outputs from multiple crisp HMM (Hidden Markov Model)
detectors generated from multiple soft HMM detectors, each
trained with a different number of states, in the Receiver
Operating Characteristics (ROC) space, has been shown to
provide a significant improvement in the detection accuracy of
system call anomalies [11][21][41].

Among existing combination approaches, the Pair-wise
Brute-force Boolean Combination (BBC2) combines all
possible pairs of crisp detectors by fusing all types of Boolean
functions [1]. BBC2 reported a significant improvement in
reducing false alarms as compared to a single learned model
[1]. However, an exhaustive brute-force search to determine
optimal combinations leads to an exponential number of
combinations, which is prohibitive even for a small number of
detectors [1]. To address this, Khreich et al. [21] proposed an
Iterative Boolean Combination (IBC) approach for combining
relatively a large number of soft HMM detectors while
avoiding the exponential explosion of BBC2. However, IBC
produces a sequence of combination rules that grows linearly
with both the number of soft HMM detectors and the number
of iterations, which is difficult to analyze and understand.
Furthermore, the algorithm is sensitive to the order of the
combined crisp HMM detectors, making it challenging to find
the best subset for combination operations.

It is clear that if the number of combined crisp detectors (K)
increases, the computation time and complexity also increase
linearly for IBC and exponentially for BBC2. Moreover, we
also know that the performance of an ensemble method is
highly dependent on the diversity of combined detectors [27]
[53]. The question is: how can we select the smallest and most
diverse subset of detectors (among all the available ones) that
can maintain or improve the detection accuracy (while
reducing the false alarm rate) using the smallest number of
Boolean combinations?

In previous work [45], we proposed an effective Pruning
Boolean Combination (PBC) method based on Cohen’s kappa
[5] coefficient (a statistical measure of the degree of
agreement between two classifiers). MinMax-Kappa, a
pruning technique of PBC, selects a small subset of diverse
and accurate crisp HMM detectors based on measuring the
kappa coefficients between each crisp HMM detector’s
decision and the true decision labels (or ground truth),
provided by the validation set (comprising both normal and
attack traces). MinMax-Kappa computes the kappa values for
all possible crisp HMM detectors, and then sets Min
(Minimum kappa value) and Max (Maximum kappa value)

boundaries with sorting them in ascending order. After that,
MinMax-Kappa selects 50% crisp HMM detectors whose
kappa values are close to Min and another 50% crisp HMM
detectors whose kappa values are close to Max. However,
PBC uses the kappa coefficients between two crisp HMM
detectors, it cannot ensure the diversity among soft HMM
detectors. For example, if the scores of a subset of available
soft HMM detectors on a validation set are almost the same,
the responses of the crisp HMM detectors at a decision
threshold of these redundant soft HMM detectors will
probably be the same. Particularly, the computed kappa values
for each crisp HMM detectors generated from these redundant
soft HMM detectors will probably be almost equal. So, if the
kappa value of one of these redundant crisp HMM detectors is
close to Min or Max, the chances of selecting the rest of the
redundant crisp HMM detectors are very high. Therefore, only
one soft HMM detector from this subset of redundant soft
HMM detectors should be used while the rest of the redundant
soft HMM detectors should be pruned before converting them
into crisp HMM detectors.

III. HIDDEN MARKOV MODELS FOR ANOMALY DETECTION
USING SYSTEM CALL SEQUENCES

The sequences of system calls collected from the system
call traces are known to provide a stable signature of normal
behavior of a process [11] [41] [47]. There are two properties
of system call sequences that make them potential features for
anomaly detection. The first property is uniqueness where
different processes generate different patterns of system call
sequences. The second one is the matching probability, tends
to be low when an intruder is attempting to alter the normal
sequential pattern of system calls of a process. Researchers
from diverse disciplines use these two important properties of
system call sequence, which have been proposed in a large
number of anomaly detection techniques such as neural
network [15], k-nearest neighbors [29], Markov models [19]
[31], and Bayesian models [24].

To our knowledge, the very first approach for anomaly
detection is based on sequence matching [11] [41]. During
training, this approach builds the normal profile by
segmenting the full-length sequences of system calls into a
fixed-length contiguous sub-sequences using a fixed-size
sliding window, shifted one by one symbol. In testing, an
unknown sequence of system calls is also segmented into sub-
sequences (as in training) and classified as normal if all sub-
sequences are present in the normal profile. Otherwise, it is
classified as an attack.

HMM has been shown to be a very effective method to
model a system’s behavior over time [36]. An HMM is a
stochastic model for sequential data determined by the two
interrelated mechanisms –a latent Markov chain having a
finite number of states and a set of observation probability
distributions, each one associated with a state. An HMM is
typically determined by three parameters λ = (A, B, π), which
represent the states and transition probability distribution (A)
of a system in a Markov process, the observation probability
distribution (B) of observation sequences that come from the

TR-2017-042.R2

4

temporal order of executions of a system, and the initial state
probability distribution (π) of each hidden state in a Markov
process. The first parameter, A, is usually hidden in an HMM.
The only physical events are the observation sequence (B) that
is associated with the hidden states of a Markov process. Fig.
1 illustrates a generic topology of an HMM, λ = (A, B, π) [48].

Number of Hidden States (N): To learn an HMM, we have
to set the number of hidden states (N) in a Markov process.
Let the distinct states be 𝑆", 𝑖 = {0,1, … , 𝑁 − 1}. The notation
𝑋. = 𝑆" represents the hidden state sequence at time t.

Number of Observation Symbols (M): To learn an HMM,
we have to set the number of observation symbols (M). Let the
distinct observation symbols be 𝑅0, 𝑘 = {0,1, … ,𝑀 − 1}. The
notation 𝑂. = 𝑅0 represents the observed symbol 𝑅0 at time t
for the given observation sequence 𝒪 − (𝒪6, 𝒪7, . . . , 𝒪9:7),
where T is the length of the observation sequence.

State Transition Distribution (A): The first row stochastic
process is the hidden state transition probability distribution
matrix 𝐴 = {𝑎">}. 𝐴 is an 𝑁	×	𝑁 square matrix and the
probability of each element {𝑎">} is denoted in Equation (1)
as:

𝑎"> = 𝑃 𝑠𝑡𝑎𝑡𝑒	𝑆>	𝑎𝑡	𝑡 + 1 𝑠𝑡𝑎𝑡𝑒	𝑆"	𝑎𝑡	𝑡 ,																																(1)
𝑖, 𝑗 = 0,1, … , 𝑁 − 1

The transition from one state to the next is a Markov

process of order one [36]. This means the next state depends
only on the current state and its probability value. As the
original states are “hidden” in HMM, we cannot directly
compute the probability values in the past. But we are able to
observe the observation symbols for the current state 𝑆" at time
𝑡 from a given observation sequence 𝒪 to learn an HMM
model.

Observation Symbol Distribution (B): The second row
stochastic process is the observation symbol probability
distribution matrix 𝐵 = {𝑏>(𝑅0)}. 𝐵 is an 𝑁	×	𝑀 dimensional
matrix that is computed based on the observation sequences
(i.e., the temporal order of executions of a system). The
probability of each element 𝑏>(𝑅0) is denoted in Equation (2)
as:

𝑏> 𝑅0 = 𝑃 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛	𝑠𝑦𝑚𝑏𝑜𝑙	𝑅0	𝑎𝑡	𝑡 𝑠𝑡𝑎𝑡𝑒	𝑆>	𝑎𝑡	𝑡 		(2)

Initial State Distribution (𝜋): The third row stochastic

process is the initial state probability distribution	𝜋 = {𝜋"}. 𝜋
is a 1×𝑁 row matrix and the probability of each element {𝜋>}
is denoted in Equation (3) as:

𝜋" = 𝑃 𝑠𝑡𝑎𝑡𝑒	𝑆"	𝑎𝑡	𝑡 = 0 																																																											(3)

A. Training an Ergodic HMM
The behavior of a system can be discrete (e.g., symbols

from a finite alphabet) or continuous (e.g., signals from a
speech, music, etc.). In our case, the behavior of a process in
UNIX or Windows system can be represented as a discrete
sequence of system calls. Since a discrete HMM is a stochastic

process for sequential data [36] [48], we can use it to learn the
behavior of a process. A well-trained HMM model using the
discrete normal sequences of system calls can be used as a
potential model for detecting anomalies. Practically, training
an HMM using a discrete sequence of observation 𝒪-
(𝒪6, 𝒪7, . . . , 𝒪9:7) aims at maximizing the likelihood function
𝑃(𝒪|	𝜆) over the parameter space represented by 𝐴, 𝐵, and 𝜋.
The Baum-Welch (BW) algorithm is one of the most
commonly used Expectation-Maximization (EM) algorithm
for learning the HMM parameters [2]. The BW algorithm is an
iterative procedure to estimate the HMM parameters. It uses a
Forward-Backward (FB) algorithm [48] at each iteration to
efficiently evaluate the likelihood function 𝑃(𝒪|	𝜆), and then
updates the model parameters until the likelihood function
stops improving or a maximum number of iterations is
reached. In our experiments, we have chosen the BW
algorithm to train all HMMs using the system calls datasets.

The user-defined three initial distributions of 𝐴, 𝐵, and 𝜋,
and two fixed-value parameters of 𝑀 and 𝑁 have an impact on
the performance of HMM. The common solution for the initial
distributions of 𝐴, 𝐵 and 𝜋 is the random initialization and the
use of validation set to select the best parameters [49]. We
have also initialized the distributions of 𝐴, 𝐵 and 𝜋 randomly
and repeated the training process ten times. The initial
distributions for which we obtain the highest AUC on the
validation set are selected. The alphabet size 𝑀 is defined by
the number of distinct system calls in a system. However, it is
difficult to define the number of states 𝑁 in advance. The
reason for that is a single HMM trained with a predefined
number of states 𝑁 may have limited chances to fit the
underlying structure of the data [36]. In fact, the underlying
distribution of sequences of system calls at different states
varies according to the architectural complexity of a system
and results in many local maxima of the log-likelihood
function [20].

To tackle the variations in the underlying distribution of the
sequences of system calls, ensemble HMMs have shown to be
a better choice than a single HMM [7] [23]. The ensemble
methods have been reported that the diversity among the
ensemble classifiers is an essential factor in increasing the
accuracy. In particular, Khreich et al., [21] showed that the
Iterative Boolean Combination (IBC) of the responses of
several accurate and diverse HMM detectors significantly
increases the accuracy while reducing the number of false
alarms. We have also trained different discrete-time ergotic
HMMs with various 𝑁 using the BW algorithm. These ergodic
HMMs are the primary inputs to the proposed weighted

Fig. 1. A general topology for an HMM model.

TR-2017-042.R2

5

pruning approach for Boolean combination.

B. Soft and Crisp HMM Detectors
In a binary classification problem, any trained model that

produces a score instead of a decision (i.e., positive or
negative) is called a soft detector. During operation, a trained
HMM (𝜆) outputs a score computed by the FB algorithm. The
score is the likelihood or the probability 𝑃(𝒪7:9|	𝜆) for a given
new observation sequence 𝒪7:9. Normally, the score provided
by 𝜆 should be significantly high, if the new observation
sequence 𝒪7:9 is normal; otherwise, it is considered as an
anomaly if the score is comparatively low. Since the output of
a trained HMM is a score instead of a decision (normal or
anomalous), then this model 𝜆 is a soft detector.

On the other hand, in a binary classification problem, any
trained model that produces a decision (i.e., positive or
negative) instead of a score is called a crisp detector. We can
convert a soft detector to one or more crisp detectors by
setting one or more thresholds 𝜃 on the output scores produced
by a soft detector. A crisp detector always gives a decision
whether the testing sequence is normal (𝑠𝑐𝑜𝑟𝑒 ≥ 𝜃) or
anomalous (𝑠𝑐𝑜𝑟𝑒 < 𝜃) based on a predefined threshold, 𝜃.

However, because of the limited amount of representative
data, complex behavior of a system, imbalanced distributions
of classes, it is difficult to determine a threshold on the scores
that will always separate the normal and anomalous sequences
during operation [21]. Therefore, a single crisp HMM detector
may generate a large number of false alarms. The Boolean
combination of responses of multiple crisp HMM detectors
(crisp-HMMs) in the ROC space have been shown to decrease
the false alarm rate [21]. The crisp-HMMs are produced by
setting various thresholds on the scores of the multiple soft
HMM detectors (soft-HMMs). The following section
introduces the two most useful Boolean combination
techniques BBC2 and IBC for combining crisp-HMMs and
also reports on their limitations.

IV. ROC-BASED BOOLEAN COMBINATION TECHNIQUES
The ROC curve is a commonly used metric for evaluation

of detectors’ performance. It plots the performances of a
binary classifier in a 2-D space [9], where, y-axis represents
the true positive rate (tpr) and x-axis represents the false
positive rate (fpr) for every possible crisp detector. The tpr is
the proportion of correctly classified positive responses over
the total number of positive samples tested by a crisp detector.
The fpr is the proportion of incorrectly classified negative
responses over the total number of negative samples tested by
a crisp detector. Therefore, a single crisp detector plots a
single point (fpr, tpr) in a ROC space, while a soft detector
produces a ROC curve by connecting all the possible crisp
detector’s points at various decision thresholds.

A. The ROC Convex Hull (ROCCH)
All the points in a ROC space can be classified into two

groups superior and inferior based on their tpr and fpr.
Suppose a and b are two operating points in the ROC space, a
is defined as superior to b, if 𝑓𝑝𝑟\ ≤ 𝑓𝑝𝑟 and 𝑡𝑝𝑟\ ≥ 𝑡𝑝𝑟 . If

a ROC curve has 𝑡𝑝𝑟 ∗ > 𝑓𝑝𝑟 ∗ for all its points ∗ , then it
is a proper ROC curve. The ROC convex hull (ROCCH) is
therefore the piece-wise outer envelope connecting only its
superior points [6] [9] [52]. The linear interpolation is used to
connect the two adjacent superior points so that, no points in a
ROC space lies out of the final ROCCH curve. The accuracy
of a ROCCH curve is measured by the Area Under the Curve
(AUC).

The ROCCH can be used for the combination of two or
more crisp classifiers in a ROC space [50] [51]. However,
ROCCH combination rules discard the inferior points without
verifying their combination in order to improve the system
performance. The following sub-section B introduces the
Boolean combination approaches [1] [21] [54] of multiple
ROC curves and showed that the new composite ROCCH
improves the AUC as compared to the original ROCCH.

B. The Boolean Combination of ROC Curves
The very first Boolean combination approach, proposed by

Daugman [54], used only the conjunction (AND) and
disjunction (OR) rules and fused on all the responses in a ROC
space. The author applied these rules in a biometric test and
concluded that the new composite ROCCH may increase the
AUC of the ROC curve. As a consequence, other researchers
also applied the AND or OR combination to combine soft
detectors [55] [56].

For example, consider a pair of soft detectors (𝑆\, 𝑆^) and
the various decision thresholds are Ta and Tb, respectively. In a
pair-wise combination, the AND or OR rules are fused
between each pair of converted crisp detectors 𝐶"\, 𝐶>^ . The
optimum thresholds are then selected based on the Neyman-
Person test1 [52]. Finally, the selected optimum thresholds
along with the corresponding Boolean functions are stored and
used during operation.

However, the AND and OR combinations cannot provide
optimal thresholds when the training and validation datasets
are limited and imbalanced [21]. The reason for the limited
and imbalance data may lead to the appearance of large
concavities in the resulting ROC curves [57]. In particular, the
false alarm may be increased, if we fuse the best detector and
the worst detector. But, the diversity among the combined
detectors is an important factor in order to improve the
performance while reducing the false alarm rate [53].

Therefore, further improvement is possible by including the
other Boolean rules, in addition to the AND and OR rules. The
following sub-sections introduce the two most common
combination techniques using all Boolean rules: Pair-wise
Brute-force Boolean Combination (BBC2) [1] and Iterative
Boolean Combination (IBC) [21]. We also report on the
limitations and complexities of these techniques.

C. Pair-wise Brute-force Boolean Combination (BBC2)
The Pair-wise Brute-force Boolean Combination (BBC2)

fuses all possible pairs of crisp detectors generated from all
the available soft detectors using all Boolean functions. As

1 The point (tpropt, fpropt) of a crisp detector in a ROC space, is optimum, if
all the other points for the same value of fpropt, the value of tpropt is maximum.

TR-2017-042.R2

6

BBC2 uses all Boolean functions, it implicitly combines
responses of both accurate and diverse crisp detectors at both
superior and inferior points in the ROC space. However, the
pair-wise brute-force strategy is computationally expensive
due to the high number of permutations. For example, if the
number of crisp detectors is N, there are N2 possible
combinations for only one Boolean function. Barreno et al. [1]
reported that exploiting all Boolean functions using an
exhaustive brute-force search to determine optimum points
leads to an exponential number of combinations.

D. The Iterative Boolean Combination (IBC)
IBC avoids the impractical exponential explosion associated

with the BBC2 by combining the emerging responses on a
composite ROCCH sequentially. It first combines the first two
ROC curves of the first two soft detectors. Then, the combined
ROCCH, particularly, the emerging points are combined with
the next ROC curve, and so on until the Kth ROC curve is
combined. IBC repeats these sequential combinations
iteratively until there are no further improvements or it reaches
to a predefined maximum number of iterations. However, in
practice, IBC requires a sequence of combinations of 11 to 20
crisp detectors to reach a final point on the final composite
ROCCH [45]. In fact, it grows linearly with the increase of the
number of iterations. Tracking and analyzing such a long
sequence of combination rules during testing time increase the
complexity of IBC. Moreover, the order of combined crisp
detectors makes the IBC algorithm more sensitive to finding
the best subset.

It is evident that the computation time and complexity
increase exponentially for BBC2 and linearly for IBC with the
increase of the number of combined soft detectors (K), and
thus making them inefficient. Our proposed pruning approach
select the smallest and most diverse subset of detectors
(among all available ones), which does not only reduce the
computation time and complexity for Boolean combinations
but also maintains or improves the detection accuracy (while
reducing the false alarm rate) using the smallest number of
Boolean combinations.

V. PROPOSED WEIGHTED PRUNING TECHNIQUE
The proposed weighted pruning based Boolean combination

approach leverages both weighted and unweighted kappa
measures of (dis)agreement. The main novelty of this work is
to ensure that the diversity among the scores of all the
available ensemble of soft detectors by pruning the redundant
soft detectors using weighted kappa. Then, our approach
applies the unweighted kappa based MinMax-Kappa pruning
technique (one of the pruning techniques of PBC) individually
on each selected diverse base soft detectors and selects the
complementary crisp detectors. At the end, we merge all the
selected complementary crisp detectors from each selected
diverse base soft detectors and use them for Boolean
combination.

A. Kappa Measure of (Dis)Agreement
Cohen’s kappa or simply called kappa is a statistical tool

that is widely used for measuring the inter-rater reliability or
(dis)agreement between raters [5]. There are two types of
kappa coefficients that can be used in computing the inter-
rater reliability. The unweighted kappa coefficient is the
simplest version of kappa [58] that is used only for nominal
category. The weighted kappa coefficient is an extended
version of kappa [46] that is used when the category is ordinal
[59]. Our pruning techniques leverage both kappa coefficients.
The weighted kappa coefficient is used to prune the redundant
soft detectors when the level of scores is ordinal (thresholds).
And the unweighted kappa coefficient is used to prune the
trivial and redundant crisp detectors when the decision is
nominal (anomaly/normal).

The contingency matrix for both kappa coefficients of
(dis)agreement is defined on two detectors. Let the two
detectors be D1 and D2 and the contingency matrix is 𝐶b×b.
Here, n is the order of levels. For unweighted kappa
coefficient, n is fixed to two that is either positive or negative.
For weighted kappa coefficient, n is equal to the number of
levels or thresholds with the assumption that both detectors
have the same number of constant levels or thresholds. An
example of a contingency table 𝐶c×c for n=2, is given in Table
I. Where, each element 𝑎"> represents the number of instances
on which detector D1 and detector D2 agree at leveli and
levelj. The sum of all elements in Table I is equal to the size of
the validation set.

For the weighted kappa coefficient, we need to define the
weighted matrix 𝑊 in addition to the contingency matrix 𝐶.
Among the many possible weighting schemes, the linear
weighting scheme is effective when one order is important
than the next one [60]. We also use linear weight when the
order is the number of thresholds and the distance between
two thresholds is important to define whether two soft
detectors are similar or diverse. We can compute the linear
weighting matrix 𝑊 using (4).

𝑊 = 𝑤"> = 1 −
𝑎𝑏𝑠 𝑖 − 𝑗
𝑛 − 1

																																																									(4)

When 𝐶 and 𝑊 are the same dimensional square matrices,

the kappa coefficient for both unweighted and weighted kappa
can be computed based on the Hadamard product (𝜊) [46] or
element-wise product of matrices according to (5):

𝑘𝑝 =
𝑝\ − 𝑝i
1 − 𝑝i

																																																																																		(5)

where 𝑝\ = 𝑠𝑢𝑚(𝐶𝜊𝑊) is the proportion of weighted

agreement (for unweighted kappa, 𝑊 = 𝐼 means complete
agreement). The parameter 𝑝i is the proportion of agreement
due to chance and computed using (6) as:

TABLE I
CONTINGENCY MATRIX

D1

D2
 Positive/level1 Negative/level2
Positive/level1 a11 a12

Negative/level2 a21 a22

TR-2017-042.R2

7

𝑝i = (𝑐b×7×𝑟7×b)𝜊𝑊																																																																			(6)

Here, 𝑐b×7 denotes a column matrix in which each element

is the sum of each row of 𝐶. Similarly, 𝑟7×b is a row matrix in
which each element is the sum of each column of 𝐶. The
kappa coefficient 𝑘𝑝 computes the inter-rater reliability based
on the proportion of agreement (𝑝\) and agreement due to
chance (𝑝i), where the degrees of disagreement are controlled
by the weight matrix 𝑊 (𝑊 = 𝐼 for unweighted kappa that
means no degrees of disagreement). Therefore, 𝑘𝑝 = 1
indicates perfect agreement (i.e., both detectors agree at the
same level for every instances) and 𝑘𝑝 = 0 indicates that any
agreement is totally due to chance. The value of 𝑘𝑝 might also
be negative. Negative values indicate both detectors are
negatively correlated, and such complementary detectors are
important in the combination of ensemble techniques [27]
[53].

In the rest of this paper, we use the running example shown
in Fig. 2 to describe the phases of our approach. In this
example, we have selected three HMM-based detectors, D1,
D2, and D3 by varying the number of hidden states. Fig. 2 (a)
shows the scores of each detector.

Phase1-Pruning Using Weighted Kappa: The first phase of
Algorithm 1 describes the steps for pruning the redundant soft
detectors using weighted kappa coefficient 𝑘𝑝. Suppose, we
have 𝐾 soft detectors and they produce 𝑆0{𝑘 = 1…𝐾} score
vectors using a validation set 𝑉. In the example of Fig. 2, K =
3 and the scores for each detector are shown in Fig. 2 (a). Let
the number of thresholds of each soft detector be 𝑛0. In the
example of Fig. 2, 𝑛0 = 4. Therefore, we have 𝐾 ROC curves
𝑆0, 𝑛0 with probably K different AUC values. In each

iteration (lines 7-18 in Algorithm 1), we select one out of 𝐾
available soft detectors for which the AUC is maximum and

use it as a base soft detector 𝑆^. We store 𝑆^ onto B (line 9 in
Algorithm 1) for the next Phase2. Now, we compute the
weighted kappa coefficients 𝑘𝑝 between 𝑆^ and each of the
rest 𝐾 ← 𝐾 − 𝑆^ soft detectors where the thresholds 𝑛0 of 𝑆^
are used as an order or levels. Then, the soft detectors among
the 𝐾 − 𝑆^ soft detectors which perfectly agree (0.8 < 𝑘𝑝 ≤
1) with 𝑆^ based on the computed weighted kappa kp, are
pruned as a redundant copy of 𝑆^. Let say, the number of
redundant detectors we found in each iteration is 0 ≤ 𝐾q ≤
𝐾 − 1, and then we remove them from the available 𝐾
detectors as: 𝐾 ← 𝐾 − 𝐾q. We repeat this process until 𝐾 is
zero.

Using the example shown in Fig. 2, we have 𝑆^ = 𝐷7
because the AUC of D1 is maximum. We then store 𝐷7in B as
a base soft detector. Suppose, 𝑛0 of 𝐷1 is equal to four
different levels (𝑆 ≥ 3; 	3 > 𝑆 ≥ 2; 2 > 𝑆 ≥ 1; 	𝑎𝑛𝑑	1 > 𝑆 ≥
0) of scores 𝑆(𝐷7). First, we have to compute the contingency
and weighted matrices between base (𝑆^ = 𝐷7) and each of the
rest two (𝐾 ← 𝐾 − 𝑆^) soft detectors 𝐷c and 𝐷u. Fig. 2(b)
shows the contingency tables (𝐶v×v) for four different levels.

Algorithm 1: 𝑃𝑆𝐶𝐷𝑠(𝑆7,… 𝑆w, 𝑇7 ,… 𝑇w, 𝑙𝑎𝑏): Pruning Soft and Crisp
Detectors

input: scores of K soft detectors {𝑆7,… 𝑆w} on a validation set along with
their thresholds {𝑇7 ,… 𝑇w}, and true labels 𝑙𝑎𝑏 of size |𝑙𝑎𝑏|.
output: selected 𝐿 ≪ 𝐾 diverse base soft detectors {𝐵7 ,… 𝐵{} along with
their complementary crisp detectors or thresholds {𝜃7, …𝜃{} where 𝜃| ≪ 𝑇|
(𝜃| = 12 and 𝑇| = 100 on average)

1 // Phase1-pruning soft detectors using weighted kappa

2 allocate an array 𝐴𝑈𝐶\||[1: 𝐾] // temporary store auc of each Sk
3 for k ← 1 to K do
4 compute auc of ROC(Sk,Tk)
5 push auc onto 𝐴𝑈𝐶\||
6 allocate an empty array B = [] //store selected diverse soft detectors
7 while (K)
8 select base soft detector: 𝑆^ ← 𝑚𝑎𝑥0[𝐴𝑈𝐶\||(𝑘)]
9 store 𝑆^onto B // store 𝑺𝒃 as a base soft detector

10 let 𝑛^ ← number of order/levels/thresholds in 𝑇
11 update K ← K - 𝑆^ // remove 𝑺𝒃 from K soft detectors
12 update 𝐴𝑈𝐶\|| ← 𝐴𝑈𝐶\|| - 𝐴𝑈𝐶\||(𝑆^) // remove auc for 𝑺𝒃
13 let n ← the size of | K |
14 for k ← 1 to n do
15 compute linear weighted kappa kp between 𝑆0 and 𝑆^ using 𝑛^
16 if 0.80 < kp <=1
17 update K ← K - 𝑆0 // remove 𝑺𝒌 as a redundant copy of 𝑺𝒃
18 update 𝐴𝑈𝐶\|| ← 𝐴𝑈𝐶\|| - 𝐴𝑈𝐶\||(𝑆0) // remove auc for 𝑺𝒌
19 // -----Phase2- pruning crisp detectors using unweighted kappa-----------

20 let 𝐿 ← number of selected diverse base soft detectors in 𝐵
21 let 𝑚 ← number of selected complementary crisp detectors from 𝑆^ ∈ 𝐵
22 allocate an empty array 𝜃 = [] //store thresholds of each complementary crisp

//detectors
23 for b← 1 to 𝐿 do
24 let 𝑛^ ← number of crisp detectors or thresholds in 𝑇 ∈ 𝑆^
25 allocate an array 𝑈[1: 𝑛^] // store temporary kappa coefficients
26 allocate an array 𝑉[|𝑙𝑎𝑏|: 𝑛^] //store temporary responses
27 for j ← 1 to 𝑛^ do
28 𝑟 ← 𝑆^ ≥ 𝑡> //temporary responses at decision threshold 𝒕𝒋 ∈ 𝑻𝒃
29 compute unweighted kappa kp between r and 𝑙𝑎𝑏
30 push kp onto U and r onto V
31 filter U and 𝑉 by removing trivial detectors
32 select 𝑚 complementary crisp detectors using 𝑀𝑖𝑛𝑀𝑎𝑥𝐾𝑎𝑝𝑝𝑎(𝑈, 𝑉)

pruning technique
33 map 𝑚 selected complementary crisp detectors into 𝜃^ thresholds
34 store 𝜃^ thresholds onto 𝜃// store 𝜽𝒃 complementary crisp detectors of 𝑺𝒃
35 return 𝐵 < 𝑆7,… 𝑆{ > and 𝜃 < 𝜃7,… , 𝜃{ >

Fig. 2. A simple example of weighted and unweighted kappa for pruning
redundant soft and crisp detectors

TR-2017-042.R2

8

Since the dimension of the contingency and weighted matrices
are the same, we put them together, where, each cell
𝑐">(#_#_𝑤">) in Fig. 2(b) represents three values: The first
and second values represent the number of samples agreed at
levels 𝑖 and 𝑗 of the two contingency tables between 𝐷7 and 𝐷c
and between 𝐷7 and 𝐷u, respectively. The third value is the
linear weight, computed using Equation (4).

Based on the contingency and weighted matrices between

two detectors, we can compute the weighted kappa (𝑘𝑝)
coefficients using Equation (5). The weighted kappa 𝑘𝑝
between 𝐷7 and 𝐷c is 1, meaning that both are in perfect
agreement (i.e., 𝑘𝑝	 ∈ 0.8 < 𝑘𝑝 ≤ 1) at the same level for
every instances, and thus 𝐷c should be pruned (lines 15 to 18
in Algorithm 1). However, the weighted kappa 𝑘𝑝 between
𝐷7 and 𝐷u is 45.65, meaning poor agreement (i.e., 𝑘𝑝	 ∉

(a) kp-fpr diagram

(b) kp-tpr diagram

Fig. 4. Example of selected complementary crisp detectors (red bold points)
under the simple kappa versus true positive rate (kp-tpr) diagram (a) and
kappa versus false positive rate (kp-fpr) diagram (b) with pruning trivial and
redundant crisp detectors (small black points) from the L base soft detectors
(selected by Phase1 in Algorithm 1) using MinMax-Kappa pruning
technique (Phase2 in Algorithm 1) on ADFA-LD dataset.

(a) Diverse and redundant soft detectors on ADFA-LD dataset

(b) Diverse and redundant soft detectors on CANALI-WD dataset

Fig. 3. Example of selected base soft detectors (green solid lines) with
pruning redundant soft detectors (doted black lines) under the ROC space
using weighted kappa (Phase1 in Algorithm 1) on ADFA-LD dataset (a) and
CANALI-WD dataset (b).

TR-2017-042.R2

9

0.8 < 𝑘𝑝 ≤ 1) at the same level for every instances, and
therefore 𝐷u is more likely to diverse from D1 and should be
selected for combination. At the end of the first iteration, we

only keep D3 (i.e., K=1), while D2 is pruned because it is
redundant of the base detector, D1. The final results of this
phase consist of two diverse base soft detectors D1 and D3.
The diversities at the response level for four different
thresholds are presented in Fig. 2(c). We can see that the
responses of the two selected base soft detectors, D1 and D3,
diverse at various instances (see Fig. 2(c)) for all threshold
points, except for 𝑆 ≥ 0.

In Fig. 3 (a), we show a more realistic example, using the
ADFA-LD dataset with 20 soft HMM detectors. In this figure,
we have eight base soft diverse detectors (green solid ROC

Fig. 5. Example of selected complementary crisp detectors (red bold points)
under the ROC space with pruning trivial and redundant crisp detectors
(small black points) from the L base soft detectors (selected by Phase1 in
Algorithm 1) using MinMax-Kappa pruning technique (Phase2 in Algorithm
1) on ADFA-LD dataset

Algorithm 2: 𝑊𝑃𝐵𝐶2(𝑆7,… 𝑆w, 𝑇7, …𝑇w, 𝑙𝑎𝑏): Weighted Pruning Pair-wise
Boolean Combination

input: scores of K soft detectors {𝑆7,… 𝑆w} on a validation set along with
their thresholds {𝑇7 ,… 𝑇w}, and true labels 𝑙𝑎𝑏 of size |𝑙𝑎𝑏|.
output: a new composite 𝑅𝑂𝐶𝐶𝐻⎯consturcted by |𝑃� | (size of 𝑃�)
combination responses or |𝑃�| emerging points. Each point is a
combination of two crisp detectors using only one Boolean function.

1 prune redundant soft and crisp detectors
 (𝐵 < 𝑆7,… 𝑆{ >, 𝜃 < 𝜃7,… , 𝜃{ >) ← 𝑃𝑆𝐶𝐷𝑠(𝑆7,… 𝑆w, 𝑇7, …𝑇w, 𝑙𝑎𝑏)
// where 𝑳 ≪ 𝑲 is the number of selected diverse base soft detectors

2 set BooleanFunctions ← {a∧b,¬a∧b,a∧¬b,¬(a∧b),
 a∨b,¬a∨b,a∨¬b,¬(a∨b),a⊕b,a≡b}

3 let 𝐹 ← number of Boolean functions in BooleanFunctions
4 let 𝑚" ← number of decision thresholds in 𝜃"
5 let 𝑀 ← ∑ 𝑚"

{
"�7 total number of crisp detectors

5 allocate an array 𝐶[|𝑙𝑎𝑏|,𝑀]
6 // convert soft detectors to crisp detectors

7 for i ← 1 to L do
8 for j ← 1 to 𝑚" do
9 r ← Si ≥ tj //temporary responses at decision threshold 𝒕𝒋 ∈ 𝜽𝒊

10 push r onto 𝐶
11 allocate an array 𝑃[2, 𝐶c×𝐹]

// temporary store points (fpr, tpr) of fused responses
12 foreach bf ∈ BooleanFunctions do
13 for i ← 1 to M do
14 for j ← 1 to M do
15 𝑟 ← 𝑏𝑓(𝐶[𝑖], 𝐶[𝑗]) // combine responses
16 compute p ← (tpr, fpr) using 𝑟 and lab
17 push p onto P
18 compute composite 𝑅𝑂𝐶𝐶𝐻 of all ROC points in P
19 map each emerging points 𝑃� on 𝑅𝑂𝐶𝐶𝐻 into a 3-tuples:

 𝑃� ←	< (𝑆", 𝑡>), (𝑆" , 𝑡>), bf > //where 𝒊 = {𝟏,… , 𝑳} and 𝒕𝒋 ∈ 𝜽𝒊
20 return ROCCH along with all emerging points {𝑃7 ,… , 𝑃� }

Algorithm 3: 𝑊𝑃𝐼𝐵𝐶(𝑆7,… 𝑆w, 𝑇7 ,… 𝑇w, 𝑙𝑎𝑏): Weighted Pruning Iterative
Boolean Combination

input: scores of K soft detectors {𝑆7,… 𝑆w} on a validation set along with
their thresholds {𝑇7 ,… 𝑇w}, and true labels 𝑙𝑎𝑏 of size |𝑙𝑎𝑏|.
output: a new composite 𝑅𝑂𝐶𝐶𝐻⎯consturcted by |𝑅".�� | (size of 𝑅".��)
combination responses or |𝑅".�� | emerging points. Each point is a
sequential combination on average of five crisp detectors using four
Boolean functions.

1 call pruning function //prune redundant soft and crisp detectors
 (𝐵 < 𝑆7,… 𝑆{ >, 𝜃 < 𝜃7,… , 𝜃{ >) 	← 𝑃𝑆𝐶𝐷𝑠(𝑆7, …𝑆w, 𝑇7 ,… 𝑇w, 𝑙𝑎𝑏)
 // where 𝑳 ≪ 𝑲 is the number of selected diverse base soft detectors

2 set BooleanFunctions ← {a∧b,¬a∧b,a∧¬b,¬(a∧b),
 a∨b,¬a∨b,a∨¬b,¬(a∨b),a⊕b,a≡b}

3 iter ←1
// combine the first two ROC curves of the first two diverse base soft detectors

4 let 𝑚7 ← number of points in first curve 𝑅𝑂𝐶(𝑆7, 𝜃7)
5 let 𝑚c ← number of points in second curve 𝑅𝑂𝐶(𝑆c, 𝜃c)
6 allocate an array 𝑃[2,𝑚7×𝑚c] //temporary store the points of fused responses
7 foreach bf ∈ BooleanFunctions do
8 for i ← 1 to 𝑚7 do
9 𝑟7 ← 𝑆7 ≥ 𝑡" // temporary responses at decision threshold 𝒕𝒊 ∈ 𝜽𝟏

10 for j ← 1 to 𝑚c do
11 𝑟c ← 𝑆c ≥ 𝑡> //temporary responses at decision threshold 𝒕𝒋 ∈ 𝜽𝟐
12 𝑟7c ← 𝑏𝑓(𝑟7 , 𝑟c) // fuse responses
13 compute 𝑝 ← (𝑡𝑝𝑟, 𝑓𝑝𝑟) using 𝑟7c and lab
14 push 𝑝 onto 𝑃
15 compute 𝑅𝑂𝐶𝐶𝐻".�� of all combination ROC points in 𝑃
16 map each emerging points 𝑝� on 𝑅𝑂𝐶𝐶𝐻".�� into a 3-tuples:

 𝑝� ←	< (𝑆7, 𝑡"), (𝑆c, 𝑡>), bf >
17 store all emerging points 𝑝� on 𝑅𝑂𝐶𝐶𝐻".�� onto 𝑅7:c
18 // combine rest of the ROC curves of rest of the L-2 diverse base soft detectors
19 for 𝑏 ← 3 to 𝐿 do
20 let 𝑛� ← number of emerging points in 𝑅7:^:7
21 let 𝑚^ ← number of points in 𝑙 𝑅𝑂𝐶^(𝑆^, 𝜃^) curve
22 allocate an array 𝑃[2, 𝑛�×𝑚^] //temporary storage of fused responses
23 foreach bf ∈ BooleanFunctions do
24 for i ← 1 to 𝑛� do
25 𝑟7 ← 𝑅7:^:7(𝑖) // responses from immediate previous combinations
26 for j ← 1 to 𝑚^ do
27 𝑟c ← 𝑆^ ≥ 𝑡> //temporary responses at decision threshold 𝒕𝒋 ∈ 𝜽𝒃
28 𝑟7c ← 𝑏𝑓(𝑟7 , 𝑟c) // fuse responses
29 compute 𝑝 ← (𝑡𝑝𝑟, 𝑓𝑝𝑟) using 𝑟7c and lab
30 push 𝑝 onto 𝑃
31 update 𝑅𝑂𝐶𝐶𝐻".�� of all combination ROC points in P
32 map each emerging points 𝑝� on 𝑅𝑂𝐶𝐶𝐻".�� into a 3-tuples:

 𝑝� ←	< 𝑅7:^:7(𝑖), (𝑆^, 𝑡>), bf >
33 store all emerging points 𝑝� on 𝑅𝑂𝐶𝐶𝐻".�� onto 𝑅7:^
34 store all the emerging points to reach on the final 𝑅𝑂𝐶𝐶𝐻".�� onto

𝑅".�� ← R7:{ 	
35 set maxiter and tol // maximum number of iterations and tolerance
36 iter ←2 to maxiter
37 repeat steps 2 to 33 with 𝐿 + 1 ROC curves:

𝑅𝑂𝐶(𝑅".��:7)	𝑎𝑛𝑑	𝑅𝑂𝐶(𝑆7, 𝜃7),… , 𝑅𝑂𝐶(𝑆{, 𝜃{)
38 if (𝐴𝑈𝐶𝐻".�� ≤ 𝐴𝑈𝐶𝐻".��:7 + 𝑡𝑜𝑙) then
39 break // stop further iteration
40 return 𝑅𝑂𝐶𝐶𝐻".�� and 𝑅".��

TR-2017-042.R2

10

curves) and 12 pruned redundant soft detectors (black dotted
ROC curves). Similarly, Fig. 3 (b) shows the experiment on
CANALI-WD dataset, where we have only three base soft
diverse detectors and 17 pruned redundant soft detectors. At
the end of Phase1, all the selected base soft diverse detectors
𝐿 ≪ 𝐾 (stored in B) are then fed into Phase 2 of Algorithm 1.

Phase2-Pruning Using Unweighted Kappa: The second
phase of Algorithm 1 leverages the MinMax-Kappa pruning
method [45], one of the two pruning methods of PBC using
unweighted kappa, to select the complementary crisp
detectors. Since the base soft detectors selected in Phase1 are
diverse, we apply the MinMax-Kappa pruning method on each
base soft detector individually instead of brute-force search
like in PBC. We compute the unweighted kappa coefficient 𝑘𝑝
between a base soft detector’s decision vector (or crisp
detector) and the true decision labels (or ground truth), same
as in PBC. If 𝑛^ is the number of decision levels on a base
detector’s scores vector 𝑆^, then we obtain 𝑛^ crisp detectors.
Now, we compute unweighted kappa coefficients of 𝑛^ crisp
detectors and sorted them in ascending order. According to
MinMax-Kappa, the accurate crisp detectors should reside
close to 𝑘𝑝 ≈ 𝑘𝑝�\� and their complementary crisp detectors
should reside close to 𝑘𝑝 ≈ 𝑘𝑝�"b. However, we have to set
the number of crisp detectors and the ratio of them to be
selected close to 𝑘𝑝�\� and 𝑘𝑝�"b. We set the ratio is 50%,
same as in MinMax-Kappa. Moreover, before selecting the
complementary crisp detectors, we have to filter out the trivial
crisp detectors (giving always either positive or negative
responses) whose 𝑘𝑝 is close to zero.

In the running example shown in Fig. 2, Phase2 selects two
diverse base soft detectors 𝐷7 and 𝐷u with four different
thresholds. Therefore, each base soft detector produces four
crisp detectors at four different levels or thresholds. The
responses 𝑅(𝐷 𝑆 ≥ 𝜃) of each crisp detector for 25 instances
and their corresponding true labels (ground truth) are shown in
Fig. 2(c). Fig. 2(d) shows the unweighted kappa values sorted
in ascending order for each crisp detector of two base soft
detectors 𝐷7 and 𝐷u.

Consider a ratio of 50% and the number of crisp detectors to
be selected to be two. Therefore, from Fig. 2 (d), we obtain,
𝑘𝑝�\� ≈ 0.62 and 𝑘𝑝�"b ≈ 0 for 𝐷7. Similarly, for 𝐷u,
𝑘𝑝�\� ≈ 0.59 and 𝑘𝑝�"b ≈ 0. However, the trivial crisp
detectors, one for 𝐷7: 𝑅(𝑆 ≥ 0); and two for 𝐷u: 𝑅(𝑆 ≥ 1) &
𝑅(𝑆 ≥ 0) should be filtered out first. Fig. 2 (d) shows the
filtered trivial crisp detectors (large diagonal marker with
cross sign). Since the ratio is 50%, from each base soft
detector, one crisp detector should be selected close to 𝑘𝑝�\�
and another one should be selected close to 𝑘𝑝�"b. Fig. 2 (d)
shows the four selected complementary crisp detectors (two
from each base soft detector, marked with large circle marker).

In general, if the number of selected complementary crisp
detectors from a selected base soft detector is m (i.e., m/2
close to 𝑘𝑝�\� and m/2 close to 𝑘𝑝�"b), then the total number
of selected crisp detectors will be 𝑀 = 𝑚 ∗ 𝐿, where L is
number of selected base soft detectors (selected from Phase1).
We tested m with different setting (l=4, 8, 12, 16, and 20) and

obtained best results for m = 12.
In Fig. 4, we show a more realistic example, using ADFA-

LD dataset. In this figure, we have 𝑀 complementary crisp
detectors (red bold points) selected from L diverse base soft
detectors (selected in Phase1) using unweighted kappa-based
MinMax-Kappa pruning technique. Fig. 4 (a) shows the results
under the space of kp-fpr and Fig. 4 (b) shows the results
under the space of kp-tpr. Fig. 5 also shows the selected total
𝑀 = 96 complementary crisp detectors from the 𝐿 = 8
diverse base soft detectors under the ROC space.

Phase3-Boolean Combination Techniques: The third

phase combines the selected complementary crisp detectors
using Boolean functions. The first combination approach
called Weighted Pruning Pair-wise Boolean Combination
(WPBC2), shown in Algorithm 2, combines all possible pairs
of complementary crisp detectors (selected from Phase1 and
Phase2) same as in BBC2. In contrast with BBC2, WPBC2
fuses only the complementary crisp detectors instead of using
Brute-force (i.e., all available crisp detectors). The second
approach called Weighted Pruning Iterative Boolean
Combination (WPIBC), shown in Algorithm 3, combines the
complementary crisp detectors of each diverse base soft
detectors sequentially same as in IBC. The difference is that
WPIBC only combines the most diverse base soft detectors
after pruning all the redundant soft detectors. As we will show
in the evaluation section, both WPBC2 and WPIBC Boolean
combination approaches using only 𝑀 ≪ 𝑁 complementary
crisp detectors of 𝐿 ≪ 𝐾 diverse base soft detectors improved
the true positive rate when the false tolerance is almost close
to zero.

B. Complexity Analysis
Suppose, we have 𝐾 soft detectors with 𝑆0{𝑘 = 1…𝐾}

scores using a validation set 𝑉. Let the number of decision
thresholds on the scores 𝑆0 of each soft detector is constant
and the size is 𝑇. And let 	𝑁 = 𝐾 ∗ 𝑇	be the total number of
crisp detectors.

The brute-force search for optimal combination is infeasible
in practice due to the doubly exponential combinations. In
fact, for N crisp detectors there are 2� possible outcomes that
can be combined in 2c� ways, which makes the brute-force
combination impractical even for small N values [1] [43]. The
worst-case time complexities of the proposed and existing
Boolean combination methods are given in Table II. The
pairwise combination of N crisp detectors employed in BBC2,

TABLE II
THE WORST-CASE TIME COMPLEXITY OF PRUNING AND WITHOUT

PRUNING BASED BOOLEAN COMBINATION METHODS
Methods Pruning Boolean

Combination
BBC2 NA 𝒪(𝑁c)

IBC NA 𝒪(𝑇c + 𝑁)

PBC 𝒪(𝑁(log𝑁 + 1)) 𝒪(𝑈c)

WPBC2 Phase1: 𝒪(𝐾c)
Phase2: 𝒪(𝐾 ∗ (𝑇(log 𝑇 + 1)))

𝒪(𝑀c)

WPIBC 𝒪(𝑚c + 𝑀)

TR-2017-042.R2

11

which requires 𝒪(𝑁c) Boolean operations, may not be
feasible in practice for large N values. The sequential
combination of the IBC algorithm reduces its worst-case time
complexity to 𝒪(𝑇c + 𝑁) Boolean operations.

Our recent pruning approach [43] used the kappa-error
diagrams or simply called unweighted kappa coefficient to
decide which ensemble members can be pruned with
maintaining a similar overall accuracy. Although 𝑃𝐵𝐶 reduces
the impractical exponential computation time for BBC2 to
𝒪(𝑁(log𝑁 + 1)), the performance at low false alarm values
is also decreased (details in Section VI). This is because PBC
selects 𝑈 ≪ 𝑁 complementary crisp detectors over the whole
𝑁 converted crisp detectors, it cannot consider the diversity
among the individual soft detectors.

The proposed pruning technique is more general as it
ensures the diversity among both of the individual soft and
crisp detectors instead of using 𝑁 crisp detectors. As shown
above, the total number of crisp detectors, N, depends on two
important parameters K and T. Phase1 in the proposed
weighted pruning technique reduces the size of the ensemble
from K to L diverse soft detectors, by pruning the redundant
ones. As shown in Fig. 3 (a), out of K=20 soft HMM
detectors, Phase1 selects only L=8 HMMs for ADFA-LD
dataset and only L=3 HMMs for CANALI-LD dataset (Fig. 3
(b)). Then, Phase2 optimizes the size of T of each selected
base diverse soft detector (L) to m<<T by pruning all the
trivial and redundant crisp detectors. Here, 𝑚 is a user defined
parameter and set based on the experimental results using
validation set (e.g., in this experiment, 𝑚 = 12 gives the best
result for both datasets). At the end, the proposed pruning
methods always selects 𝑀 = 𝐿 ∗ 𝑚 complementary crisp
detectors.

Therefore, the worst-case time complexity required by the
proposed pruning technique to select 𝑀 complementary crisp

detectors is	𝒪(𝐾c + 𝐾 ∗ (𝑇 log𝑇 + 1)); where, Phase1
requires about 𝐾c operations for computing and sorting the
AUC and the weighted kappa of K soft detectors, in order to
select 𝐿 diverse base soft detectors. And in Phase2, each base
diverse soft detector (𝐿) requires about 𝑇 log 𝑇 + 1
operations for computing and sorting the unweighted kappa
for 𝑇 crisp detectors, in order to select 𝑚 ≪ 𝑇 complementary
crisp detectors. Therefore, in case of worst-case, Phase1
selects all K soft detectors (i.e., 𝐿 = 𝐾). So, the worst-case
time complexity for Phase2 requires about (𝐾 ∗ 𝑇 log 𝑇 +
1) operations, in order to select a total of 𝑀 = 𝐾 ∗ 𝑚
complementary crisp detectors. At the end of pruning Phases,
Phase3 combines the decisions of 𝑀 complementary crisp
detectors. In Phase 3, the worst-case time complexity for the
proposed weighted pruning pairwise Boolean combination
(WPBC2) is about 𝒪(𝑀c) Boolean operations and for the
proposed weighted pruning iterative Boolean combination
(WPIBC) is about 𝒪(𝑚c + 𝑀) Boolean operations, where
𝑀 ≪ 𝑁 and 𝑚 ≪ 𝑇.

VI. EXPERIMENTS AND COMPARISON
We experimented with the proposed pruning approach on

two system call datasets: ADFA Linux Dataset (ADFA-LD)
[6] and CANALI Window Dataset (CANALI-WD) [47]. The
experimental results are compared with BBC2 [1] and IBC
[21] without pruning. We also compared our approach to PBC
that we proposed in previous work [43].

ADFA-LD dataset: ADFA-LD consists of normal and
anomalous sequences of system calls collected from Ubuntu
[6]. A normal sequence of system calls of a process is
collected from the system call traces while it is executed under
the normal conditions. An anomalous sequence of system calls
of an attack is collected from the system call traces while it is
executed against the system. There are in total 5,206 normal

Fig. 6. Algorithm comparisons on ADFA-LD dataset where one fold is used
for validation and four folds are used for testing.

Fig. 7. Algorithm comparisons on CANALI-WD dataset where one fold is
used for validation and four folds are used for testing.

TR-2017-042.R2

12

traces collected from various normal Unix-based processes
such as web browsing and Latex document preparations. The
dataset contains 60 attack traces by exercising six different
types of attacks: web-based exploitation, simulated social

engineering, poisoned executable, remotely triggered
vulnerabilities, remote password brute-force attacks, and
system manipulation. In training, we use the 833 normal traces
same as in [6] to train the 20 discrete-time ergodic HMMs

TABLE III
AVERAGE (AVG), MAXIMUM (MAX), AND MINIMUM (MIN) AUC VALUES AND TRUE POSITIVE RATE (TPR) WITH FALSE POSITIVE RATE (FPR)<=0.002, AND THEIR

STANDARD DEVIATIONS (STD) OVER THE 5FCV (TRAIN ON ONE FOLD AND TESTED ON FOUR FOLDS).
 AUC values tpr with fpr<=0.002

Datasets methods avg max min std avg max min std
 without pruning methods

ADFA-LD BBC2 0.98006 0.9852 0.9731 0.0044 0.38334 0.5 0.2292 0.1246
IBC 0.979 0.983 0.972 0.0042 0.25414 0.4792 0.1665 0.1329

CANALI-WD BBC2 0.96824 0.9726 0.9601 0.0049 0.36716 0.3739 0.3618 0.0046
IBC 0.97156 0.9799 0.9612 0.0069 0.36716 0.3739 0.3618 0.0046

 with pruning methods
ADFA-LD PBC 0.96762 0.9766 0.9608 0.0078 0.09576 0.2297 0.0208 0.0877

WPBC2 0.96604 0.9741 0.9602 0.0059 0.11886 0.246 0.054 0.0785
WPIBC 0.97762 0.9788 0.9767 0.0007 0.37498 0.5208 0.2083 0.0474

CANALI-WD PBC 0.96808 0.9726 0.9601 0.0049 0.24197 0.2639 0.2118 0.0046
WPBC2 0.96816 0.9729 0.9601 0.0051 0.27716 0.3739 0.2218 0.0071
WPIBC 0.96994 0.9808 0.9541 0.0021 0.34462 0.3739 0.3225 0.0034

TABLE IV

AVERAGE (AVG), MAXIMUM (MAX), AND MINIMUM (MIN) AUC VALUES AND TRUE POSITIVE RATE (TPR) WITH FALSE POSITIVE RATE (FPR)<=0.002, AND THEIR
STANDARD DEVIATIONS (STD) OVER THE 5FCV (TRAIN ON FOUR FOLDS AND TESTED ON ONE FOLD).

 AUC values tpr with fpr<=0.002
Datasets methods avg max min std avg max min std

 without pruning methods
ADFA-LD BBC2 0.98918 0.99945 0.9829 0.0043 0.4500 0.5833 0.2500 0.1263

IBC 0.99112 0.9939 0.9887 0.0021 0.41668 0.5000 0.3333 0.0589
CANALI-WD BBC2 0.97288 0.9963 0.9469 0.0208 0.58648 0.9142 0.3591 0.2963

IBC 0.98274 0.9981 0.9679 0.0127 0.60722 0.9142 0.3694 0.2798
 with pruning methods

ADFA-LD PBC 0.95648 0.9626 0.9533 0.0037 0.0000 0.0000 0.0000 0.0000
WPBC2 0.9661 0.9703 0.9643 0.0024 0.16666 0.3333 0.0000 0.1317
WPIBC 0.98724 0.992 0.9827 0.0033 0.49998 0.5833 0.3333 0.1020

CANALI-WD PBC 0.97288 0.9963 0.9469 0.0208 0.58648 0.9142 0.3591 0.2963
WPBC2 0.9736 0.998 0.9469 0.0217 0.58648 0.9142 0.3591 0.2963
WPIBC 0.98028 0.9981 0.9647 0.0151 0.5981 0.9142 0.3591 0.2034

Fig. 8. Algorithm comparisons on ADFA-LD dataset where four folds are
used for validation and one fold is used for testing in 5FCV.

Fig. 9. Algorithm comparisons on CANALI-WD dataset where four folds are
used for validation and one fold is used for testing.

TR-2017-042.R2

13

(i.e., K=20 soft detectors) with various values. The rest of the
4373 normal traces and the 60 anomalous traces are used for
evaluation.

CANALI-WD dataset: CANALI-WD consists of two
normal datasets called goodware and anubis-good and two
malware datasets called malware and malware-test [47]. The
goodware dataset contains a massive amount of 180 GB
execution traces of normal day-to-day operations which are
collected from 10 different machines. The anubis-good dataset
contains the traces of 36 benign applications executed under
Anubis [61]. The malware dataset is a collection of execution
traces of 6,000 malware samples including a mix of all the
existing categories (botnets, worms, dropper, Trojan horses,
etc.), which are randomly extracted from Anubis [61]. The
final malware-test dataset is a collection of execution traces of
1,200 malware samples which are collected from a different
machine than the normal ones used for Anubis. In training, we
use the anubis-good dataset and the traces for nine out of 10
machines in the goodware dataset (same as in [47]) to train 20
soft HMMs detectors with various values. In contrast to [47],
however, where the malware dataset was also used to train the
models, we only use malware for testing. This is because an
anomaly detector mainly models the normal behavior of a
system. Therefore, the rest of the 23 traces of the tenth
machine in the goodware dataset, 5,855 traces from malware
dataset, and 1,133 traces from malware-test dataset are used
for evaluation.

A. Experimental Setup
We use a stratified 5-Fold Cross Validation (5FCV)

technique, same as in [43], on the testing set for the evaluation
of the proposed pruning approach. Since the ratio between the
normal and anomalous traces in both datasets is not balanced,
we applied stratified 5FCV to partition the normal and
anomalous sets separately. This is because we want to keep
the same ratio (normal to anomalous) to guarantee that all
folds include the normal and anomalies traces. Therefore, for
ADFA-LD dataset, each fold contains 874 traces selected
randomly from the 4373 normal traces and 12 attacks traces
selected randomly from the 60 attack traces. Similarly, for
CANALI-WD dataset, each fold contains four traces selected
randomly from the 23 normal traces and 1,397 traces selected
randomly from the 6,988 anomalous traces. However, as we
followed the same setting as in PBC [43] instead the way of
standard cross validation, we also used one fold for validation
and the remaining four folds for testing on the both ADFA-LD
and CANALI-WD datasets.

As described in Section III, we apply the BW algorithm on
the validation set to learn the parameters of an HMM with
setting the random initialization of 𝐴, 𝐵 and 𝜋, and M = 340
distinct system call symbols for ADFA-LD dataset and M =
89 distinct symbols for CANALI-WD dataset. Since a single
HMM with a predefined number of states N may have limited
chances to fit the underlying structure of the data (as noted in
Section III), 20 different discrete-time ergodic HMMs (i.e., 20
soft detectors) are trained with various 𝑁 = 	10, 20… 200
values. For each state value 𝑁, we repeated the training

process ten times with a different random initialization of 𝐴, 𝐵
and 𝜋 to avoid the local minima, and the HMM that gives the
highest AUC value on the validation set is selected for
Boolean combination.

B. Results and Comparison
We mainly focus on how the proposed pruning based

Boolean combination approaches can reduce the computation
time (as discussed in Section V) of the BBC2 and IBC
techniques while maintaining or improving the detection
accuracy and reducing the false alarm rate.

Fig. 6 and 7 show the AUC results in the ROC space for the
proposed weighted pruning techniques on ADFA-LD and
CANALI-WD datasets. We can see that the ROC curve of the
proposed pruning based WPIBC shows slightly better AUC
than IBC. In particularly, WPIBC is able to ensure the
diversity among the fused crisp detectors (selected using
unweighted kappa at Phase 2 in Algorithm 1) where each crisp
detector comes from the selected diverse base soft detectors
(selected using weighted kappa at Phase 1 in Algorithm 1).
Therefore, in contrast to IBC, where the order of combination
responses in each iteration is the order of all the available soft
and crisps detectors, WPIBC maintains the order of
combination responses in each iteration among the selected
diverse soft and crisp detectors (see details in Algorithm 1 and
Algorithm 3). For instance, to achieve the final operating
points denoted in Fig. 6 with a large pink circle, WPIBC uses
only five selected complementary crisp detectors (red bold
plus marker points) and four Boolean operations, whereas IBC
uses 17 crisp detectors (black bold circle marker points) and
16 Boolean operations.

Compared to BBC2, although the AUC of WPBC2 is
slightly low, WPBC2 maintains the same AUC of PBC shown
in Fig. 6 and 7. However, WPBC2 overcomes the exponential
time complexity problem of BBC2 by pruning the redundant
and trivial crisp detectors, in fact, without pruning, BBC2’s
time complexity is exponential with respect to the number of
detectors (N^2) [1] [43].

 Table III shows the maximum detection accuracy (tpr)
achieved by each technique for a fixed (almost close to zero)
fpr value of 0.002, all values are averaged over the 5FCV.

For ADFA-LD dataset, although the AUC values of all
pruning methods are almost equal, the tpr of PBC with
MinMax-Kappa pruning technique is the worst. The tpr of
WPIBC is almost equal to that of BBC2 method, and slightly
better than that of IBC method. Moreover, the standard
deviation of WPIBC is also good as compared to the other
methods. For the CANALI-WD dataset, the tpr of WPIBC is
still better than PBC and WPBC2 pruning techniques, and
almost equal to BBC2 and IBC that do not use pruning
techniques. Through this analysis, we observed that when the
proposed weighted pruning technique combines the selected
complementary crisp detectors iteratively (i.e., called
WPIBC), it achieves similar results to that of IBC.
Particularly, when we compared the results with the tpr where
the maximum fpr is almost equal to zero (0.002), both WPIBC
and WPBC2 outperform PBC. And the results demonstrate

TR-2017-042.R2

14

that the proposed pruning approach is more general and
applicable to either pair-wise Boolean combinations (WPBC2)
and iterative Boolean combinations (WPIBC).

Moreover, we tested the proposed pruning approach by
using the standard way of 5FCV that is four folds are used in
validation and one fold is used in testing. With this setting, the
results of one fold of 5FCV are demonstrated in Fig. 8 for
ADFA-LD dataset and in Fig. 9 for CANALI-WD dataset.
Table IV shows the average results over the 5FCV with this
standard setting of 5FCV. From Fig. 8 and Fig. 9, we can see
that for both datasets our proposed pruning based Boolean
combination approaches is able to achieve the same
performance (in terms of AUC, fpr and tpr), while reducing
the time complexity, the number of crisp detectors, and the
number of Boolean combinations. For CANALI-WD dataset,
we got almost equal results with the original approaches
(which use all crisp detectors), and the highest value of tpr =
0.91 when the false alarm rate is zero, given in Table IV.
However, for ADFA-LD dataset, we observed a great
difference between the proposed pruning approach and the
PBC. When the average tpr = 0.49 for WPIBC (with the limit
of maximum fpr is equal to 0.002), it is equal to zero for PBC
and 0.17 for WPBC2. For example, from the Fig. 8, we got tpr
=0.51 (when fpr<=0.002) for WPIBC, it is still zero for PBC.

C. Cost Analysis
Table V shows the cost that is the combination time and the

number of Boolean operations are required by each method
during the validation and testing phases. The values are
averaged over the 5FCV on the ADFA-LD dataset. All 5FCV
executions are performed on a 3.1 GHz Intel Core i7 CPU
machine with 16 GB of RAM and a 17x5400 rpm hard disk.

We can see that although the pruning time of the proposed
approach is slightly more than the PBC, WPIBC reduced the
combination time and the number of Boolean operations to
almost half compared to IBC. The total computation time,
including pruning and combination during validation of
WPIBC was 7.9 seconds whereas PBC took 16.6 seconds.
Furthermore, in testing, WPIBC also reduced the number of
combined crisp detectors by almost half than the number
required by IBC (5 instead of 11). We can see in Fig. 6 that
WPIBC requires on average five crisp detectors while IBC
requires 11 crisp detectors to achieve a single point on the
final composite ROCCH. Similarly, WPBC2 always requires
only two crisp detectors similar to BBC2 and PBC to achieve
a single point on the final ROCCH. Therefore, the proposed
pruning approach is more general and it can be applicable to
both pair-wise and iterative Boolean combinations. However,
based on the computation time and the number of combined
Boolean operations, WPIBC is more desirable in order to
obtain better accuracy while reducing the false alarm rates (as
shown in Table III and Table IV).

From the worst-case time complexity given in Table II, we
can see that the proposed pruning approach reduces the total
number of crisp detectors i.e., 𝑁 = 𝐾 ∗ 𝑇 by optimizing two
important parameters of 𝐾 and 𝑇 in Phase1 and Phase2
respectively. For example, Phase1 of the proposed weighted

pruning approach selects only 𝐿 = 3 diverse ensembles of
HMM soft detectors out of 𝐾 = 20 HMM soft detectors
(shown in Fig. 3b) for CANALI-WD dataset. As a result,
Phase2 computes the unweighted kappa only for about 300
(i.e., 𝐿 ∗ 𝑇 and let say	𝑇 = 100) crisp detectors, in order to
select only 𝑀 = 36 (i.e., 𝑀 = 𝐿 ∗ 𝑚, where	𝑚 = 12)
complementary crisp detectors. Whereas, PBC always
computes the unweighted kappa for about 𝑁 = 2000
(i.e.,	𝑁 = 𝐾 ∗ 𝑇) crisp detectors, in order to select 𝑈 = 50
complementary crisp detectors. Moreover, since PBC can not
ensure the diversity among the ensembles of soft HMM
detectors, the probability of selecting the redundant
complementary crisp detectors or rejecting the other diverse
crisp detectors is also high. In fact, it is reported in Table III
and Table IV that PBC significantly reduced the tpr with a low
false alarm as compared to the other approaches due to the
rejection of some diverse complementary crisp detectors.

VII. EFFECTS OF WEIGHTED PRUNING BASED BOOLEAN
COMBINATION

For any ensemble based Boolean combination algorithms,
increasing the accuracy is highly dependent on the diversity
among the fused soft/crisp detectors (i.e., the level of
disagreement among the fused soft/crisp detectors should be
high). Although the existing ensemble based BBC2 and IBC
Boolean combination techniques implicitly fused such diverse
soft/crisp detectors and showed higher accuracy, they face the
challenges of computation time and complexity because of
fusing all the possible pair of crisp detectors from all the
available soft detectors (as discussed in Section IV and V; and
reported in Table III). In addition, the accuracy of IBC is also
dependent on the order of combinations. In fact, with the
increase of number of soft detectors, the computation time and
complexity increase exponentially for BBC2 and linearly for
IBC (discussed in Section IV).

To be clear, we tested the proposed approach using 50
available soft HMM detectors (i.e., on average 5000 crisp
detectors), trained with various 𝑁 = 	5, 10, … 250 values on
CANALI-WD dataset. The results are shown in Fig. 10, where
the values are transformed into a logarithmic scale. It is clear
that when we apply the proposed weighted pruning approach
(top one in Fig. 10), a noticeable improvement can be
observed in the reduction of the number of Boolean

TABLE V
COST ANALYSIS (VALUES ARE AVERAGED OVER 5FCV) IN TERMS OF

PRUNING AND COMBINATION TIME (S), AND NUMBER OF BOOLEAN
OPERATIONS APPLIED DURING VALIDATION PHASE, AND THE NUMBER OF
COMBINED CRISP DETECTORS REQUIRED TO ACHIEVE EACH VERTEX ON

ROCCH DURING TESTING PHASE
Methods Validation phase Testing

phase
 Pruning

time (s)
Combination

time (s)
Boolean
operations

combined
crisp

detectors
BBC2 NA 16364 4,000,000 2
IBC NA 11 11,000 11

PBC 1.6 15 19, 701 2

WPBC2 1.9 19 21,701 2
WPIBC 1.9 6 5, 000 5

TR-2017-042.R2

15

operations. Particularly, WIBC significantly reduces the
number of Boolean operations as compared to other
approaches. For example, BBC2 requires 25 million (7.4 in
logarithmic scale) Boolean operations for 50 soft detectors,
whereas, WPBC2 uses only 3,600 (3.4) operations. Similarly,
when IBC requires 15 thousand (4.2 in logarithmic scale)
Boolean operations, WIBC uses only 204 (2.3) operations. As
a result, we can state that WPBC2 6944 times faster than
BBC2 and WPIBC 73 times faster than IBC for 50 soft
detectors. Moreover, from the 30 soft detectors, WPBC2 and
WIBC always select five diverse soft detectors with the
increase of the number of soft detectors, and thus, reach a
constant number of Boolean operations.

The bottom part of Fig. 10 compares the computation time
(including pruning and combination time together for pruning
based approaches). We can see that WPBC2 and WIBC
reported the lowest computation times as compared to other
approaches. For example, WPBC2 is ten thousand times
(seconds) faster than BBC2 and WPIBC is two times faster
than IBC during validation phase using 50 available soft
detectors. Moreover, from the 30 soft detectors, although the
pruning time for WPBC2 and WIBC increase slightly with the
increase of number of soft detectors, the combination time
remains same as both are always using only five selected
diverse soft detectors. Compared to PBC pruning approach
where the pruning and combination time both are increasing
linearly with the increase of number of soft detectors.

In fact, PBC shows worst result when the false alarm is
almost zero for both ADFA-LD and CANALI-WD datasets
(given in Table III and Table IV). On the other hand, the
accuracy with almost zero false alarm is the desired expected

solution for deploying a ADS in a real world application. The
reason is that PBC also uses all the available soft detectors to
select a subset of complementary crisp detectors without
ensuring the diversities among the use of soft detectors. As a
result, the redundant soft detectors produces redundant crisp
detectors, and thus it increases the probability of selecting
these redundant copies if anyone is selected as a
complementary crisp detector by MinMax-Kappa pruning
technique of PBC.

The proposed WPBC2 and WPIBC weighted pruning
techniques select the most diverse base soft detectors from the
available soft detectors using weighted kappa. For instance,
from the Fig. 3 (a), eight diverse base soft detectors are
selected while 12 are pruned as for redundant copies for
ADFA-LD dataset. Similarly, from the Fig. 3 (b), only three
diverse base soft detectors are selected while 17 are pruned for
CANALI-WD dataset. As the selected base soft detectors are
diverse, the converted crisp detectors from them might also be
diverse as well. Therefore, when we apply the MinMax-Kappa
pruning technique on each selected diverse base soft detectors
individually, there has no chance for the selection of
redundant complementary crisp detectors. As a result, our
proposed pruning technique shows better accuracy when the
false alarm is close to zero compared to PBC for both datasets
(given in Table III and Table IV). Moreover, the proposed
weighted based pruning approach is more general as we can
combine the selected diverse soft/crisp detectors either pair-
wise or iteratively same as in BBC2 or IBC Boolean
combination techniques.

Although the proposed approach is experimentally validated
only on HIDS using system call data, it can be applied in other

Fig. 10. Algorithm’s computation time and complexity analysis on the validation subset of CANALI-WD dataset

TR-2017-042.R2

16

application domains particularly, where one model does not
formulate the complex normal behaviors of a system. In that
case, we can train ensemble detectors with considering various
normal behaviors. Then, the proposed method may be a good
one for pruning and combining the multiple detector’s
decisions. For example, detecting programming errors (i.e.,
software bugs) and root causes in a complex computer
programming system [64][65]. Fosdick et al. [66] reported that
a computer program is strongly related to the computation
patterns of input data and thus useful for detecting the data
flow anomalies. The sequences of operations i.e., the flows of
data are assumed to be consistent and used them to model
ensembles classifiers. A social or cultural event or road
accident can also be detected using sensor and user (e.g., users
of twitter, Facebook, etc.) generated data. For example,
Pramod et al. [63] trained several linear Markov models by
segmenting the non-linear traffic data and used them to detect
the city events.

VIII. LIMITATIONS AND DISCUSSION
Our approach is limited to ensemble of homogeneous soft

anomaly detectors (i.e., multiple HMMs). However, the input
can be ensemble of heterogeneous soft and crisp anomaly
detectors (e.g., STIDE [11], SVM [72], etc.). In fact, having
different types of detectors should further increase the
diversity in the ensemble and allow for improved performance
[73]. Heterogenous detectors use different learning techniques
and may commit different (and potentially complementary)
type of errors, which increases the diversity in the ensemble.
For example, OC-SVM models the normal behavior of a
system using fixed-size feature vectors instead of sequential
features like HMM; STIDE uses the Hamming distance,
whereas HMM uses likelihood probability as a matching
measure.

To adapt our approach to support heterogeneous detectors,
we need to modify Phase1, which assumes the same
thresholds of a base soft detector, which are the orders or
levels for the weighted kappa for computing the diversity
score. It may be more efficient to group them based on each
modeling technique. Then, apply the Phase1 pruning
technique on each group separately. For example, STIDE with
various sliding window sizes can be used to produce many
homogeneous soft detectors [11], which can then fed as input
to Phase1.

Although the proposed approach significantly reduces the
Boolean combination time (see Fig. 10) by pruning the
number of combined soft (K) and crisp detectors (N), the
worst-case time complexity, particularly, for the pruning
phases (given in Table II), will be increased exponentially
(𝐾c) with the increase of K. Therefore, for large values of K,
the pruning approach may suffer from scalability problems. To
address this limitation, we need resort to parallel processing
techniques and platforms such as the Hadoop ecosystem
[74][75].

Moreover, the proposed approach is dependent on the ROC
space for pruning and combining the decisions of the selected
complementary crisp detectors. However, here, the used ROC
curves is a binary classification problem. Therefore, to extend
the approach for multiclass classification problems, we need to

work with a ROC curve for more than two classes and then
adapt the Boolean combination and pruning techniques to
accommodate multiple classes.

IX. CONCLUSION
The proposed effective pruning-based Boolean combination

techniques analyze the diversities among the available
ensemble soft detectors (HMMs) using weighted kappa
(measures the agreement/disagreement between two soft
detectors). Based on the weighted kappa coefficients, it selects
a best subset of diverse base soft detectors while pruned all the
redundant soft detectors. Each selected base soft detector is
then converted into all the possible crisp detectors (at various
decision thresholds) and used them for selecting a subset of
complementary crisp detectors using unweighted kappa-based
MinMax-Kappa pruning technique. At the end, we merge all
the selected complementary crisp detectors and use them for
Boolean combinations. The experimental evaluation on the
two benchmarking ADFA-LD and CANALI-WD system call
datasets verified the validation of the proposed method. We
achieved much better results than the recent PBC pruning
technique, particularly, when the false alarm is almost close to
zero.

Our future plan is to investigate the proposed pruning
approach using different diverse detectors and other datasets.
Moreover, we also want to leverage Big Data platforms such
as Hadoop and the MapReduce programming model in order
to further improve the performance of our approach, especially
when used with multiple heterogeneous ensemble soft
detectors such as HMMs, One-class SVM, STIDE, and so on.

REFERENCES
[1] M. Barreno, A. Cardenas, and D. Tygar, “Optimal roc for a combination

of classifiers,” in Advances in Neural Information Processing Systems
(NIPS) 20, 2008, Jan. 2008.

[2] L. E. Baum, G. S. Petrie, and N. Weiss, “A maximization technique
occuring in the statistical analysis of probabilistic functions of Markov
chains,” The Annals of Mathematical Statistics, vol. 41, no. 1, pp. 164–
171, 1970.

[3] S. Bhatkar, A. Chaturvedi, and R. Sekar, “Dataflow anomaly detection,”
in IEEE Symposium on Security and Privacy, 2006.

[4] Y.-S. Chen and Y.-M. Chen, “Combining incremental hidden Markov
model and Adaboost algorithm for anomaly intrusion detection,” in CSI-
KDD ’09: Proceedings of the ACM SIGKDD Workshop on Cyber Se-
curity and Intelligence Informatics, (New York, NY, USA), pp. 3–9,
ACM, 2009.

[5] W. W. Cohen, “Fast effective rule induction,” in Proc. of the 12th Inter-
national Conference on Machine Learning (A. Prieditis and S. Russell,
eds.), (Tahoe City, CA), pp. 115–123, Morgan Kaufmann, July 1995.

[6] G. Creech and J. Hu, “Generation of a new ids test dataset: Time to
retire the kdd collection,” in Wireless Communications and Networking
Conference (WCNC), 2013 IEEE, (Shanghai, China), pp. 4487–4492,
Apr. 2013.

[7] T. G. Dietterich, “Ensemble methods in machine learning,” in MCS ’00:
Proceedings of the First International Workshop on Multiple Classifier
Systems, (London, UK), pp. 1–15, Springer-Verlag, 2000.

[8] Y. Du, H. Wang, and Y. Pang, “A hidden Markov models-based
anomaly intrusion detection method,” Proceedings of the World
Congress on Intelligent Control and Automation (WCICA), vol. 5, pp.
4348–4351, 2004.

[9] T. Fawcett, “An introduction to ROC analysis,” Pattern Recogn. Lett.,
vol. 27, no. 8, pp. 861–874, 2006.

TR-2017-042.R2

17

[10] H. Feng, O. Kolesnikov, P. Fogla, W. Lee, and W. Gong, “Anomaly
detection using call stack information,” in Security and Privacy, 2003.
Proceedings. 2003 Symposium on, pp. 62–75, 2003.

[11] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A sense
of self for Unix processes,” in Proceedings of the 1996 IEEE
Symposium on Research in Security and Privacy, pp. 120–128, 1996.

[12] S. Forrest, S. Hofmeyr, and A. Somayaji, “The evolution of system- call
monitoring,” in Computer Security Applications Conference, 2008.
ACSAC 2008. Annual, pp. 418–430, Dec. 2008.

[13] B. Gao, H.-Y. Ma, and Y.-H. Yang, “HMMs (Hidden Markov Models)
based on anomaly intrusion detection method,” Proceedings of 2002
International Conference on Machine Learning and Cybernetics, vol. 1,
pp. 381–385, 2002.

[14] F. Gao, J. Sun, and Z. Wei, “The prediction role of hidden Markov
model in intrusion detection,” in Canadian Conference on Electrical and
Computer Engineering, vol. 2, (Montreal, Canada), pp. 893–896,
Institute of Electrical and Electronics Engineers Inc., 2003.

[15] A. K. Ghosh, A. Schwartzbard, and M. Schatz, “Learning program be-
havior profiles for intrusion detection,” in Proceedings of the Workshop
on Intrusion Detection and Network Monitoring, (Berkeley, CA, USA),
pp. 51–62, USENIX Association, 1999.

[16] A. Hamou-Lhadj, “The Concept of Trace Summarization,” in Program
Comprehension through Dynamic Analysis (PCODA), 2005, Proceed-
ings of the 1st International Workshop on, pp. 43–47, 2005.

[17] X. Hoang and J. Hu, “An efficient hidden Markov model training
scheme for anomaly intrusion detection of server applications based on
system calls,” in IEEE International Conference on Networks, ICON,
vol. 2, (Singapore), pp. 470–474, 2004.

[18] J. Hu, “Host-based anomaly intrusion detection,” in Handbook of In-
formation and Communication Security (P. Stavroulakis and M. Stamp,
eds.), pp. 235–255, Springer Berlin Heidelberg, 2010.

[19] S. Jha, K. Tan, and R. Maxion, “Markov chains, classifiers, and intru-
sion detection,” in Proceedings of the Computer Security Foundations
Workshop, pp. 206–219, 2001.

[20] W. Khreich, E. Granger, R. Sabourin, and A. Miri, “Combining Hidden
Markov Models for anomaly detection,” in International Conference on
Communications (ICC), (Dresden, Germany), pp. 1–6, June 2009.

[21] W. Khreich, E. Granger, A. Miri, and R. Sabourin, “Boolean combina-
tion of classifiers in the ROC space,” in 20th International Conference
on Pattern Recognition, (Istanbul, Turkey), pp. 4299–4303, Aug. 23–26
2010.

[22] W. Khreich, E. Granger, A. Miri, and R. Sabourin, “A survey of
techniques for incremental learning of HMM parameters,” Information
Sciences, vol. 197, pp. 105–130, Feb. 2012.

[23] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas, “On combining
classifiers,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 3, pp.
226–239, 1998.

[24] C. Kruegel, D. Mutz, W. Robertson, and F. Valeur, “Bayesian event
classification for intrusion detection,” in Proceedings of the 19th Annual
Computer Security Applications Conference, ACSAC ’03, (Washington,
DC, USA), IEEE Computer Society, 2003.

[25] L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algo-
rithms. Hoboken, NJ: Wiley, 2004.

[26] L. Kuncheva, “That elusive diversity in classifier ensembles,” Pattern
Recognition and Image Analysis, vol. 2652, pp. 1126–1138, 2003.

[27] L. I. Kuncheva, “A bound on kappa-error diagrams for analysis of
classifier ensembles,” IEEE Trans. Knowl. Data Eng., vol. 25, no. 3, pp.
494–501, 2013.

[28] U. Larson, D. Nilsson, E. Jonsson, and S. Lindskog, “Using system call
information to reveal hidden attack manifestations,” in Security and
Communication Networks (IWSCN), 2009 Proceedings of the 1st
International Workshop on, pp. 1–8, May 2009.

[29] Y. Liao and V. R. Vemuri, “Use of k-nearest neighbor classifier for
intrusion detection,” Computers & Security, vol. 21, no. 5, pp. 439– 448,
2002.

[30] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion detection
system: A comprehensive review,” Journal of Network and Computer
Applications, vol. 36, no. 1, pp. 16–24, 2013.

[31] C. Marceau, “Characterizing the behavior of a program using multiple-
length n-grams,” in NSPW ’00: Proceedings of the 2000 workshop on
New security paradigms, (New York, NY, USA), pp. 101–110, ACM
Press, 2000.

[32] D. D. Margineantu and T. G. Dietterich, “Pruning adaptive boosting,” in
ICML, pp. 211–218, 1997.

[33] S. S. Murtaza, A. Sultana, A. Hamou-Lhadj, M. Couture, “On the
Comparison of User Space and Kernel Space Traces in Identification of
Software Anomalies,” in Software Maintenance and Reengineering
(CSMR), 2012, Proceedings of the 16th European Conference on, pp.
127–136, 2012.

[34] S. S. Murtaza, W. Khreich, A. Hamou-Lhadj, M. Couture, “A Host-
based Anomaly Detection Approach by Representing System Calls as
States of Kernel Modules,” in Software Reliability Engineering
(ISSRE), 2013, Proceedings of the 24th IEEE International Symposium
on, pp. 431–440, 2013.

[35] S. S. Murtaza, A. Hamou-Lhadj, W. Khreich, M. Couture, “TotalADS:
Automated Software Anomaly Detection System,” in Source Code
Analysis and Manipulation (SCAM), 2014, Proceedings of the 14th
IEEE International Working Conference on, pp. 83–88, 2014.

[36] L. Rabiner, “A tutorial on Hidden Markov Models and selected appli-
cations in speech recognition,” Proceedings of the IEEE, vol. 77, no. 2,
pp. 257–286, 1989.

[37] A. Sultana, A. Hamou-Lhadj, M. Couture, “An Improved Hidden
Markov Model for Anomaly Detection Using Frequent Common Pat-
terns,” in Communications, The Communication and Information Sys-
tems Security Symposium, 2012 Proceedings of the IEEE International
Conference on, pp. 1113–1117, 2012.

[38] D. Wagner and P. Soto, “Mimicry attacks on host-based intrusion
detection systems,” in CCS ’02: Proceedings of the 9th ACM conference
on Computer and communications security, (Washington, DC, United
States), pp. 255–264, 2002.

[39] W. Wang, X.-H. Guan, and X.-L. Zhang, “Modeling program behaviors
by hidden Markov models for intrusion detection,” Proceedings of 2004
International Conference on Machine Learning and Cybernetics, vol. 5,
pp. 2830–2835, 2004.

[40] P. Wang, L. Shi, B. Wang, Y. Wu, and Y. Liu, “Survey on HMM based
anomaly intrusion detection using system calls,” in Computer Science
and Education (ICCSE), 2010 5th International Conference on, pp. 102–
105, Aug. 2010.

[41] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting intrusions
using system calls: alternative data models,” in Proceedings of the IEEE
Computer Society Symposium on Research in Security and Privacy,
(Oakland, CA, USA), pp. 133–45, 1999.

[42] D. Y. Yeung and Y. Ding, “Host-based intrusion detection using dy-
namic and static behavioral models,” Pattern Recognition, vol. 36, no. 1,
pp. 229–243, 2003.

[43] X. Zhang, P. Fan, and Z. Zhu, “A new anomaly detection method based
on hierarchical HMM,” in Parallel and Distributed Computing,
Applications and Technologies, 2003. PDCAT’2003. Proceedings of the
Fourth International Conference on, pp. 249–252, 2003.

[44] Z. H. Zhou, Ensemble Methods: Foundations and Algorithms. Chapman
& Hall/CRC, 1st ed., 2012.

[45] A. Soudi, W. Khreich, and A. Hamou-Lhadj, “An Anomaly Detection
System based on Ensemble of Detectors with Effective Pruning
Techniques”, 2015 IEEE International Conference on Software Quality,
Reliability and Security, pp. 109-118, Aug. 2015.

[46] C.A.M. Valiquette, A.D. Lesage, and C. Mireille, “Computing Cohen's
Kappa coefficients using SPSS MATRIX”, Behavior Research Methods,
Instruments, & Computers, 26(1), 60-61, 1994.

[47] D. Canali, A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu, E.
Kirda, A quantitative study of accuracy in system call-based malware
detection, in: Proceedings of the 2012 International Symposium on Soft-
ware Testing and Analysis, ISSTA 2012, ACM, New York, NY, USA,
2012, pp. 122 132. doi:10.1145/2338965.2336768.

[48] M. Stamp, A Revealing Introduction to Hidden Markov Models, Dec 11,
2015.

[49] A. P. Dempster, N. M. Laird, and D. B. Rubin. “Maximum likelihood
from incomplete data via the EM algorithm,” Journal of the Royal
Statistical Society. Series B (Methodological) 39 (1), pp. 1-38, 1977.

[50] Foster Provost and Tom Fawcett. Robust classification for imprecise
environments. Machine Learning Journal, 42(3):203–231, March 2001.

[51] M. J. J. Scott, M. Niranjan, and R. W. Prager, “Realisable classifiers:
Improving operating performance on variable cost problems,” in Proc.
9th British Machine Vision Conf., P. H. Lewis and M. S. Nixon, Eds.,
vol. 1, University of Southampton, UK, 1998, pp. 304–315.

[52] J. Neyman and E. S. Pearson, “On the problem of the most efficient tests
of statistical hypotheses,” Phil. Trans. Royal Society of London A, vol.
231, pp. 289–337, 1933.

TR-2017-042.R2

18

[53] M. A. Black and B. A. Craig, “Estimating disease prevalence in the
absence of a gold standard,” Statistics in Medicine, vol. 21, no. 18, pp.
2653–2669, 2002.

[54] J. Daugman, “Biometric decision landscapes,” Cambridge U., UK, Tech.
Rep. UCAM-CL-TR-482, 2000.

[55] Q. Tao and R. Veldhuis, “Threshold-optimized decision-level fusion and
its application to biometrics,” Pattern Recognition, vol. 41, no. 5, pp.
852–867, 2008.

[56] S. Haker, W. M. Wells, S. K. Warfield, I.-F. Talos, J. G. Bhagwat, D.
Goldberg-Zimring, A. Mian, L. Ohno-Machado, and K. H. Zou,
“Combining classifiers using their receiver operating characteristics and
maximum likelihood estimation,” Medical Image Computing and
Computer-Assisted Intervention, vol. 3749, pp. 506–514, 2005.

[57] P. A. Flach and S. Wu, “Repairing concavities in ROC curves,” in Proc.
19th Int’l Joint Conf. on Artificial Intelligence, Edinburgh, Scotland,
2005, pp. 702–707.

[58] Cohen, J. (1960). A coefficient of agreement for nominal scales,
Educational & Psychological Measurement, 20, 37–46.

[59] Agresti, A (1990). Categorical Data Analysis. New York: Wiley. (p.
367)

[60] Fleiss JL, Levin B, Paik MC (2003) Statistical methods for rates and
proportions, 3rd ed. Hoboken: John Wiley & Sons.

[61] http://anubis.iseclab.org, 2011.
[62] V. Chandola, A. Banerjee, V. Kumar, “Anomaly Detection: A Survey”

ACM Computing Surveys, vol. 41, no. 3, pp. 1-58, 2009.
[63] A. Pramod, T. Krishnaprasad, M. Surendra, S. Amit, and B. Tanvi,

“Understanding City Traffic Dynamics Utilizing Sensor and Textual
Observations,” in Proc. of the 13th AAAI Conf. on Artificial
Intelligence, pp. 3793–3799, 2016.

[64] S. Hangal and M.S. Lam, “Tracking down software bugs using
automatic anomaly detection,” In Proc. of the 24th Int. Conf. on
Software Engineering (ICSE), pp. 291-301 ACM, NY, USA, 2002.

[65] A.L. Goel,K. Okumoto, “Time-Dependent Error-Detection Rate Model
for Software Reliability and Other Performance Measures,”IEEE
Transactions on Reliability, vol. R-28, no. 3, August 1979.

[66] L.D. Fosdick, L.J. Osterweil “Data Flow Analysis in Software
Reliability,” ACM Computing Surveys, vol. 8 no. 3, pp. 305-330 Sept.
1976.

[67] S.S. Murtaza, N.H. Madhavji, A. Hamou-Lhadj, M. Gittens, "Identifying
Recurring Faulty Functions in Field Traces of a Large Industrial
Software System," IEEE Transactions on Reliability, 64(1), pp. 269-283,
2014.

[68] W. Sha, Y. Zhu, M. Chen, T. Huang, “Statistical Learning for Anomaly
Detection in Cloud Server Systems: A Multi-Order Markov Chain
Framework”, IEEE Transactions on Cloud Computing, vol. PP, issue:
99, May 2017.

[69] A. Bovenzi, F. Brancati, S. Russo, A. Bondavalli, “An OS-level
Framework for Anomaly Detection in Complex Software Systems”,
IEEE Transactions on Dependable and Secure Computing, vol. 12, no. 3,
pp. 366 - 372, 2015.

[70] J. Yang, X. Du, L. Zhou, S. Shan, B. Cui, “Research on the
Identification of Software Behavior in Anomaly Detection”, 10th Int.
Conf. on Innovative Mobile and Internet Services in Ubiquitous
Computing (IMIS), pp. 295 - 298, 2016.

[71] D. Gizopoulos, M. Psarakis, S.V. Adve, P. Ramachandran, S.K.S. Hari,
D. Sorin, A. Meixner, A. Biswas, Xa. Vera, Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2011, pp. 1–6, IEEE,
2011.

[72] W-H. Chen, S-H. Hsu, and H-P. Shen, “Application of SVM and ANN
for intrusion detection”, Computers & Operation Research, vol. 32, no.
10, pp. 2617-2634, October 2005.

[73] W. Khreich, S.S. Murtazaa, A. Hamou-Lhadja, and C. Talhi,
“Combining heterogeneous anomaly detectors for improved software
security”, Journal of Systems and Software, February, 2017.

[74] Apache Hadoop. [Online]. Available: http://hadoop.apache.org/
[75] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on

Large Clusters”, Communications of the ACM. Vol. 51(1), pp. 107–113,
2008.

