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Abstract— Ensemble based Anomaly Detection Systems 

(ADSs), using Boolean combination, have been shown to reduce 
the false alarm rate over that of a single detector. However, the 
existing Boolean combination methods rely on an exponential 
number of combinations making them impractical, even for a 
small number of detectors. In this paper, we propose weighted 
pruning based Boolean combination, an efficient approach for 
selecting and combining accurate and diverse anomaly detectors. 
It works in three phases. The first phase selects a subset of the 
available base diverse soft detectors by pruning all the redundant 
soft detectors based on a weighted version of Cohen’s kappa 
measure of agreement. The second phase selects a subset of 
diverse and accurate crisp detectors from the base soft detectors 
(selected in Phase1) based on the unweighted kappa measure. 
The selected complementary crisp detectors are then combined in 
the final phase using Boolean combinations. The results on two 
large scale datasets show that the proposed weighted pruning 
approach is able to maintain and even improve the accuracy of 
existing Boolean combination techniques, while significantly 
reducing the combination time and the number of detectors 
selected for combination.  
 

Index Terms—Anomaly Detection Systems, Ensemble 
Methods, Multiple-Detector Systems, Weighted Kappa, Software 
Reliability and Security. 
 

ACRONYMS AND ABBREVIATIONS 
 
5FCV    5-Fold Cross Validation 
ADFA-LD   ADFA Linux Dataset 
ADS     Anomaly Detection System 
AUC     Area Under the Curve 
BBC2    Pair-wise Brute-force Boolean Combination 
BW     Baum-Welc 
CANALI-WD CANALI Windows Dataset 
EM     Expectation-Maximization 
FB     Forward-Backward 
HIDS    Host-based Intrusion Detection System 
HMM    Hidden Markov Model 
IBC     Iterative Boolean Combination 
NIDS    Network Intrusion Detection System 
OC-SVM   One-Class Support Vector Machine 
PBC     Pruning Boolean Combination 
ROC     Receiver Operating Characteristics 
ROCCH   Receiver Operating Characteristics Convex Hull 
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STIDE       Sequence Time-Delay Embedding 
WPBC2    Pair-wise Weighted Pruning Boolean Combination 
WPIBC    Weighted Pruning Iterative Boolean Combination 
 

NOTATIONS 
 

avg     average value on 5-Fold Cross Validation results 
fpr     false positive rate outputted by a crisp detector 
kp-fpr    kappa versus false positive rate plotting diagram 
kp-tpr    kappa versus true positive rate plotting diagram 
max     maximum value on 5-Fold Cross Validation results 
min     minimum value on 5-Fold Cross Validation results 
std     standard deviation on 5-Fold Cross Validation 
tpr      true positive rate outputted by a crisp detector 

I. INTRODUCTION 
ntrusion Detection Systems (IDS) are divided into two 
categories: Network Intrusion Detection Systems (NIDS) 

and Host-based Intrusion Detection Systems (HIDS). A NIDS 
monitors and analyzes network traffic. It is transparent (i.e., it 
can move in different locations) and independent (i.e., it can 
work in different network topologies). An HIDS works on a 
host computer and monitors user activities to detect 
unauthorized access, illegitimate modification of configuration 
files, and other unwanted behaviors. IDS can be further 
classified into two categories: Signature-based (or misuse) 
IDS and Anomaly Detection Systems (ADS). The former can 
only detect known attacks [30], whereas the latter, the focus of 
this paper, is capable of detecting novel attacks by analyzing 
deviations from the normal behavior of a system. 

Anomaly detection methods often vary in their design 
depending on the application domain [62], but the common 
practice is to train a model that characterizes the normal 
behavior of a system. The model is used later as a baseline to 
detect deviations (anomalies) from normalcy. When a trained 
model produces scores instead of a decision (i.e., normal or 
anomalous), it is called a soft detector. When it produces a 
decision instead of scores, it is called a crisp detector. A soft 
detector can be converted into one or more crisp detectors by 
setting different thresholds on the output scores. A single crisp 
detector, however, is known to generate an excessive number 
of false alarms, which is one the main reasons that limits 
deployment of ADS in commercial settings [20]. 

Training an anomaly detector is a one-class classification 
problem that depends on the normal (or healthy) data. The 
detector, which in our case is based on HMM, is trained using 
the normal traces and expected to represent the normal 
behavior of the system. It should be noted that we used HMM 
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because of it has been shown to provide best accuracy [41] 
compared to other classification techniques. Our approach, 
however, can be used with any other one-class classification 
method. The combination of several soft or crisp detectors 
requires a labeled dataset including both normal and 
anomalous traces to be able to select the best crisp detectors 
and the Boolean combination functions to optimize the 
performance (i.e., minimize the fpr and maximize the tpr). In 
practice, the evaluation of an anomaly detection system 
requires a labeled validation set to select the operating 
thresholds (e.g., tolerable fpr). Our approach takes further 
advantage of this validation set to select the operating 
thresholds and Boolean functions that yield the most accurate 
and concise ensemble of detectors, which will be used during 
system operation. 

In this paper, we propose a weighted pruning of Boolean 
combinations that selects the best subset of diverse base soft 
detectors by pruning all the redundant ones. Each diverse base 
soft detector is then used independently to select the 
complementary crisp detectors instead of brute-force search 
like in PBC. The complementary crisp detectors are then 
combined by leveraging both Pair-wise Brute-force Boolean 
Combination (BBC2) and Iterative Boolean Combination 
(IBC) [1] [21], which shows that the pruning approach can be 
used with any Boolean combination approach. 

We leverage both weighted and unweighted Cohen’s kappa 
[46][58] in order to select the best subset of diverse base soft 
detectors. Weighted Cohen’s kappa is a special case of simple 
kappa (unweighted kappa) that is particularly used when the 
agreements between two detectors are ordinal instead of 
nominal. In our case, the scores of a soft detector are ordinal 
and the decision of a crisp detector based on a given threshold 
is nominal. Our weighted pruning approach prunes both soft 
and crisp detectors based on the ordinal agreements and the 
nominal agreements between two detectors. The selected 
diverse and accurate crisp detectors are then used for Boolean 
combination. During combination, we leverage both the pair-
wise and iterative Boolean combinations introduced by 
Barreno et al. [1] and Khreich et al. [21], respectively. The 
proposed Pair-wise Weighted Pruning Boolean Combination 
(namely called WPBC2) fuses and combines all possible pairs 
of crisp detectors generated from the selected diverse base soft 
detectors. Whereas, the Weighted Pruning Iterative Boolean 
Combination (namely called WPIBC) fuses and combines the 
selected diverse base soft detectors sequentially until no 
significant improvement is possible. Another major 
contribution of this paper is the evaluation of our approach for 
detecting anomalies at the system call levels. We compare the 
performance of WPBC2 and WPIBC to that achieved with the 
original BBC2 and IBC techniques. In addition, we compare 
the performance of our approaches to Pruning Boolean 
Combination (PBC) [45]. 

In sum, the main contributions of this paper are: 
1. We propose an anomaly detection approach that 

enforces the diversities among the combined soft and 
crisp detectors using weighted and unweighted Cohen’s 
kappa [46]. 

2. The approach can be used with both pair-wise and 
iterative Boolean combination techniques [1][21], and 
easily adaptable to other Boolean combination 
methods. 

3. We evaluate our approach on two large publicly 
available system call datasets: ADFA Linux Dataset 
(ADFA-LD) [6] and CANALI Windows Dataset 
(CANALI-WD) [47].  

4. We show that our approach outperforms BBC2, IBC, 
and PBC by achieving lower false positive rate, while 
maintaining and improving the detection accuracy, 
measured using AUC.  

The organization of this paper is as follows. The related 
anomaly detection approaches are discussed in Section II. 
HMM based anomaly detection systems using system call 
sequences are discussed in Section III. The convex hull under 
the ROC space and related Boolean combination techniques 
are explained in Section IV. The proposed weighted pruning 
based Boolean combination techniques are discussed in 
Section V. Section VI presents the proposed method for 
pruning the Boolean combination as well as the results of the 
experiments that are carried out on two benchmarks datasets 
of system call sequences. The effects of pruning based 
Boolean combination are discussed in Section VII. The 
limitations of our approach are discussed in Section VIII. The 
conclusion and future work are reported in Section IX. 

II. RELATED RESEARCH 
Anomaly detection is an important component used to 

enhance system reliability and security in a variety of 
domains. In their detailed survey, Chandola et al. [62] showed 
that anomaly detection is used in a wide variety of 
applications such as fraud detection for credit cards, insurance 
or health care, intrusion detection for cyber-security, fault 
detection in safety critical systems, and military surveillance 
for enemy activities. Anomaly detection techniques have also 
been shown useful in enforcing the reliability of software and 
hardware systems. Shariyar et al. [67] presented an approach 
and a supporting tool to detect program functions that are 
likely to introduce faults in a software system by examining 
historical execution traces. Their approach can be used to 
enhance testing and other software verification methods. In a 
recent study, Sha et al. [68] proposed an approach based on 
anomaly detection to ensure the safety of cloud-based IT 
infrastructures. Bovenzi et al. [69] proposed an approach for 
revealing anomalies at the operating system level to support 
online diagnosis activities of complex software systems. Yang 
et al. [70] proposed an efficient method for detecting abnormal 
executions of Java programs using sequential pattern mining.  
Gizopoulos et al. [71] argued that the huge investment in the 
design and production of multicore processors may be put at 
risk because of reliability threats, mainly due to the existence 
of bugs and vulnerabilities, unless these systems are equipped 
with robust anomaly detection tools. They proposed multicore 
processor architectures that integrate solutions for online error 
detection, diagnosis, recovery, and repair during field 
operation. 
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Several studies (e.g., [11, 41]) showed that the temporal 
order of system calls issued by a process to request kernel 
services is effective in describing normal process behavior. 
This has led to a considerable amount of research studies that 
investigated various techniques for detecting anomalies at the 
system call level (see survey in [12]).  Among these, sequence 
time-delay embedding (STIDE) and Hidden Markov Models 
(HMMs) are the most commonly used [41]. Ensemble 
methods have been proposed to improve the overall ADS 
accuracy by combining the outputs of several accurate and 
diverse models [7] [23] [25] [44]. In particular, combining the 
outputs from multiple crisp HMM (Hidden Markov Model) 
detectors generated from multiple soft HMM detectors, each 
trained with a different number of states, in the Receiver 
Operating Characteristics (ROC) space, has been shown to 
provide a significant improvement in the detection accuracy of 
system call anomalies [11][21][41]. 

Among existing combination approaches, the Pair-wise 
Brute-force Boolean Combination (BBC2) combines all 
possible pairs of crisp detectors by fusing all types of Boolean 
functions [1]. BBC2 reported a significant improvement in 
reducing false alarms as compared to a single learned model 
[1]. However, an exhaustive brute-force search to determine 
optimal combinations leads to an exponential number of 
combinations, which is prohibitive even for a small number of 
detectors [1]. To address this, Khreich et al. [21] proposed an 
Iterative Boolean Combination (IBC) approach for combining 
relatively a large number of soft HMM detectors while 
avoiding the exponential explosion of BBC2. However, IBC 
produces a sequence of combination rules that grows linearly 
with both the number of soft HMM detectors and the number 
of iterations, which is difficult to analyze and understand. 
Furthermore, the algorithm is sensitive to the order of the 
combined crisp HMM detectors, making it challenging to find 
the best subset for combination operations. 

It is clear that if the number of combined crisp detectors (K) 
increases, the computation time and complexity also increase 
linearly for IBC and exponentially for BBC2. Moreover, we 
also know that the performance of an ensemble method is 
highly dependent on the diversity of combined detectors [27] 
[53]. The question is: how can we select the smallest and most 
diverse subset of detectors (among all the available ones) that 
can maintain or improve the detection accuracy (while 
reducing the false alarm rate) using the smallest number of 
Boolean combinations? 

In previous work [45], we proposed an effective Pruning 
Boolean Combination (PBC) method based on Cohen’s kappa 
[5] coefficient (a statistical measure of the degree of 
agreement between two classifiers). MinMax-Kappa, a 
pruning technique of PBC, selects a small subset of diverse 
and accurate crisp HMM detectors based on measuring the 
kappa coefficients between each crisp HMM detector’s 
decision and the true decision labels (or ground truth), 
provided by the validation set (comprising both normal and 
attack traces). MinMax-Kappa computes the kappa values for 
all possible crisp HMM detectors, and then sets Min 
(Minimum kappa value) and Max (Maximum kappa value) 

boundaries with sorting them in ascending order. After that, 
MinMax-Kappa selects 50% crisp HMM detectors whose 
kappa values are close to Min and another 50% crisp HMM 
detectors whose kappa values are close to Max. However, 
PBC uses the kappa coefficients between two crisp HMM 
detectors, it cannot ensure the diversity among soft HMM 
detectors. For example, if the scores of a subset of available 
soft HMM detectors on a validation set are almost the same, 
the responses of the crisp HMM detectors at a decision 
threshold of these redundant soft HMM detectors will 
probably be the same. Particularly, the computed kappa values 
for each crisp HMM detectors generated from these redundant 
soft HMM detectors will probably be almost equal. So, if the 
kappa value of one of these redundant crisp HMM detectors is 
close to Min or Max, the chances of selecting the rest of the 
redundant crisp HMM detectors are very high. Therefore, only 
one soft HMM detector from this subset of redundant soft 
HMM detectors should be used while the rest of the redundant 
soft HMM detectors should be pruned before converting them 
into crisp HMM detectors. 

III. HIDDEN MARKOV MODELS FOR ANOMALY DETECTION 
USING SYSTEM CALL SEQUENCES 

The sequences of system calls collected from the system 
call traces are known to provide a stable signature of normal 
behavior of a process [11] [41] [47]. There are two properties 
of system call sequences that make them potential features for 
anomaly detection. The first property is uniqueness where 
different processes generate different patterns of system call 
sequences. The second one is the matching probability, tends 
to be low when an intruder is attempting to alter the normal 
sequential pattern of system calls of a process. Researchers 
from diverse disciplines use these two important properties of 
system call sequence, which have been proposed in a large 
number of anomaly detection techniques such as neural 
network [15], k-nearest neighbors [29], Markov models [19] 
[31], and Bayesian models [24].  

To our knowledge, the very first approach for anomaly 
detection is based on sequence matching [11] [41]. During 
training, this approach builds the normal profile by 
segmenting the full-length sequences of system calls into a 
fixed-length contiguous sub-sequences using a fixed-size 
sliding window, shifted one by one symbol. In testing, an 
unknown sequence of system calls is also segmented into sub-
sequences (as in training) and classified as normal if all sub-
sequences are present in the normal profile. Otherwise, it is 
classified as an attack.  

HMM has been shown to be a very effective method to 
model a system’s behavior over time [36]. An HMM is a 
stochastic model for sequential data determined by the two 
interrelated mechanisms –a latent Markov chain having a 
finite number of states and a set of observation probability 
distributions, each one associated with a state. An HMM is 
typically determined by three parameters λ = (A, B, π), which 
represent the states and transition probability distribution (A) 
of a system in a Markov process, the observation probability 
distribution (B) of observation sequences that come from the 
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temporal order of executions of a system, and the initial state 
probability distribution (π) of each hidden state in a Markov 
process. The first parameter, A, is usually hidden in an HMM. 
The only physical events are the observation sequence (B) that 
is associated with the hidden states of a Markov process. Fig. 
1 illustrates a generic topology of an HMM, λ = (A, B, π) [48]. 

Number of Hidden States (N): To learn an HMM, we have 
to set the number of hidden states (N) in a Markov process. 
Let the distinct states be 𝑆", 𝑖 = {0,1, … , 𝑁 − 1}. The notation 
𝑋. = 𝑆" represents the hidden state sequence  at time t. 

Number of Observation Symbols (M): To learn an HMM, 
we have to set the number of observation symbols (M). Let the 
distinct observation symbols be 𝑅0, 𝑘 = {0,1, … ,𝑀 − 1}. The 
notation 𝑂. = 𝑅0 represents the observed symbol 𝑅0 at time t 
for the given observation sequence 𝒪 − (𝒪6, 𝒪7, . . . , 𝒪9:7), 
where T is the length of the observation sequence. 

State Transition Distribution (A): The first row stochastic 
process is the hidden state transition probability distribution 
matrix 𝐴 = {𝑎">}. 𝐴 is an 𝑁	×	𝑁 square matrix and the 
probability of each element {𝑎">} is denoted in Equation (1) 
as: 

 
𝑎"> = 𝑃 𝑠𝑡𝑎𝑡𝑒	𝑆>	𝑎𝑡	𝑡 + 1 𝑠𝑡𝑎𝑡𝑒	𝑆"	𝑎𝑡	𝑡 ,																																(1) 
𝑖, 𝑗 = 0,1, … , 𝑁 − 1  

 
The transition from one state to the next is a Markov 

process of order one [36]. This means the next state depends 
only on the current state and its probability value. As the 
original states are “hidden” in HMM, we cannot directly 
compute the probability values in the past. But we are able to 
observe the observation symbols for the current state 𝑆" at time 
𝑡 from a given observation sequence 𝒪 to learn an HMM 
model. 

Observation Symbol Distribution (B): The second row 
stochastic process is the observation symbol probability 
distribution matrix 𝐵 = {𝑏>(𝑅0)}. 𝐵 is an 𝑁	×	𝑀 dimensional 
matrix that is computed based on the observation sequences 
(i.e., the temporal order of executions of a system). The 
probability of each element 𝑏>(𝑅0) is denoted in Equation (2) 
as: 

 
𝑏> 𝑅0 = 𝑃 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛	𝑠𝑦𝑚𝑏𝑜𝑙	𝑅0	𝑎𝑡	𝑡 𝑠𝑡𝑎𝑡𝑒	𝑆>	𝑎𝑡	𝑡 		(2) 

 
Initial State Distribution (𝜋): The third row stochastic 

process is the initial state probability distribution	𝜋 = {𝜋"}. 𝜋 
is a  1×𝑁 row matrix and  the probability of each element {𝜋>} 
is denoted in Equation (3) as: 

 
𝜋" = 𝑃 𝑠𝑡𝑎𝑡𝑒	𝑆"	𝑎𝑡	𝑡 = 0 																																																											(3) 

A. Training an Ergodic HMM 
The behavior of a system can be discrete (e.g., symbols 

from a finite alphabet) or continuous (e.g., signals from a 
speech, music, etc.). In our case, the behavior of a process in 
UNIX or Windows system can be represented as a discrete 
sequence of system calls. Since a discrete HMM is a stochastic 

process for sequential data [36] [48], we can use it to learn the 
behavior of a process. A well-trained HMM model using the 
discrete normal sequences of system calls can be used as a 
potential model for detecting anomalies. Practically, training 
an  HMM using a discrete sequence of observation 𝒪-
(𝒪6, 𝒪7, . . . , 𝒪9:7) aims at  maximizing the likelihood function 
𝑃(𝒪|	𝜆) over  the parameter space represented by 𝐴, 𝐵, and 𝜋. 
The Baum-Welch (BW) algorithm is one of the most 
commonly used Expectation-Maximization (EM) algorithm 
for learning the HMM parameters [2]. The BW algorithm is an 
iterative procedure to estimate the HMM parameters. It uses a 
Forward-Backward (FB) algorithm [48] at each iteration to 
efficiently evaluate the likelihood function 𝑃(𝒪|	𝜆), and then 
updates the model parameters until the likelihood function 
stops improving or a maximum number of iterations is 
reached. In our experiments, we have chosen the BW 
algorithm to train all HMMs using the system calls datasets. 

The user-defined three initial distributions of 𝐴, 𝐵, and 𝜋, 
and two fixed-value parameters of 𝑀 and 𝑁 have an impact on 
the performance of HMM. The common solution for the initial 
distributions of 𝐴, 𝐵 and 𝜋 is the random initialization and the 
use of validation set to select the best parameters [49]. We 
have also initialized the distributions of 𝐴, 𝐵 and 𝜋 randomly 
and repeated the training process ten times. The initial 
distributions for which we obtain the highest AUC on the 
validation set are selected. The alphabet size 𝑀 is defined by 
the number of distinct system calls in a system. However, it is 
difficult to define the number of states 𝑁 in advance. The 
reason for that is a single HMM trained with a predefined 
number of states 𝑁 may have limited chances to fit the 
underlying structure of the data [36]. In fact, the underlying 
distribution of sequences of system calls at different states 
varies according to the architectural complexity of a system 
and results in many local maxima of the log-likelihood 
function [20]. 

To tackle the variations in the underlying distribution of the 
sequences of system calls, ensemble HMMs have shown to be 
a better choice than a single HMM [7] [23]. The ensemble 
methods have been reported that the diversity among the 
ensemble classifiers is an essential factor in increasing the 
accuracy. In particular, Khreich et al., [21] showed that the 
Iterative Boolean Combination (IBC) of the responses of 
several accurate and diverse HMM detectors significantly 
increases the accuracy while reducing the number of false 
alarms. We have also trained different discrete-time ergotic 
HMMs with various 𝑁 using the BW algorithm. These ergodic 
HMMs are the primary inputs to the proposed weighted 

 
 

Fig. 1. A general topology for an HMM model. 
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pruning approach for Boolean combination. 

B. Soft and Crisp HMM Detectors 
In a binary classification problem, any trained model that 

produces a score instead of a decision (i.e., positive or 
negative) is called a soft detector. During operation, a trained 
HMM (𝜆) outputs a score computed by the FB algorithm. The 
score is the likelihood or the probability 𝑃(𝒪7:9|	𝜆) for a given 
new observation sequence 𝒪7:9. Normally, the score provided 
by 𝜆 should be significantly high, if the new observation 
sequence 𝒪7:9 is normal; otherwise, it is considered as an 
anomaly if the score is comparatively low. Since the output of 
a trained HMM is a score instead of a decision (normal or 
anomalous), then this model 𝜆 is a soft detector. 

On the other hand, in a binary classification problem, any 
trained model that produces a decision (i.e., positive or 
negative) instead of a score is called a crisp detector. We can 
convert a soft detector to one or more crisp detectors by 
setting one or more thresholds 𝜃 on the output scores produced 
by a soft detector. A crisp detector always gives a decision 
whether the testing sequence is normal (𝑠𝑐𝑜𝑟𝑒 ≥ 𝜃) or 
anomalous (𝑠𝑐𝑜𝑟𝑒 < 𝜃) based on a predefined threshold, 𝜃. 

However, because of the limited amount of representative 
data, complex behavior of a system, imbalanced distributions 
of classes, it is difficult to determine a threshold on the scores 
that will always separate the normal and anomalous sequences 
during operation [21]. Therefore, a single crisp HMM detector 
may generate a large number of false alarms. The Boolean 
combination of responses of multiple crisp HMM detectors 
(crisp-HMMs) in the ROC space have been shown to decrease 
the false alarm rate [21]. The crisp-HMMs are produced by 
setting various thresholds on the scores of the multiple soft 
HMM detectors (soft-HMMs). The following section 
introduces the two most useful Boolean combination 
techniques BBC2 and IBC for combining crisp-HMMs and 
also reports on their limitations. 

IV. ROC-BASED BOOLEAN COMBINATION TECHNIQUES 
The ROC curve is a commonly used metric for evaluation 

of detectors’ performance. It plots the performances of a 
binary classifier in a 2-D space [9], where, y-axis represents 
the true positive rate (tpr) and x-axis represents the false 
positive rate (fpr) for every possible crisp detector. The tpr is 
the proportion of correctly classified positive responses over 
the total number of positive samples tested by a crisp detector. 
The fpr is the proportion of incorrectly classified negative 
responses over the total number of negative samples tested by 
a crisp detector. Therefore, a single crisp detector plots a 
single point (fpr, tpr) in a ROC space, while a soft detector 
produces a ROC curve by connecting all the possible crisp 
detector’s points at various decision thresholds.  

A. The ROC Convex Hull (ROCCH) 
All the points in a ROC space can be classified into two 

groups superior and inferior based on their tpr and fpr. 
Suppose a and b are two operating points in the ROC space, a 
is defined as superior to b, if 𝑓𝑝𝑟\ ≤ 𝑓𝑝𝑟  and 𝑡𝑝𝑟\ ≥ 𝑡𝑝𝑟 . If 

a ROC curve has 𝑡𝑝𝑟 ∗ > 𝑓𝑝𝑟 ∗  for all its points ∗ , then it 
is a proper ROC curve. The ROC convex hull (ROCCH) is 
therefore the piece-wise outer envelope connecting only its 
superior points [6] [9] [52]. The linear interpolation is used to 
connect the two adjacent superior points so that, no points in a 
ROC space lies out of the final ROCCH curve. The accuracy 
of a ROCCH curve is measured by the Area Under the Curve 
(AUC).  

The ROCCH can be used for the combination of two or 
more crisp classifiers in a ROC space [50] [51]. However, 
ROCCH combination rules discard the inferior points without 
verifying their combination in order to improve the system 
performance. The following sub-section B introduces the 
Boolean combination approaches [1] [21] [54] of multiple 
ROC curves and showed that the new composite ROCCH 
improves the AUC as compared to the original ROCCH. 

B. The Boolean Combination of ROC Curves 
The very first Boolean combination approach, proposed by 

Daugman [54], used only the conjunction (AND) and 
disjunction (OR) rules and fused on all the responses in a ROC 
space. The author applied these rules in a biometric test and 
concluded that the new composite ROCCH may increase the 
AUC of the ROC curve. As a consequence, other researchers 
also applied the AND or OR combination to combine soft 
detectors [55] [56]. 

For example, consider a pair of soft detectors (𝑆\, 𝑆^) and 
the various decision thresholds are Ta and Tb, respectively. In a 
pair-wise combination, the AND or OR rules are fused 
between each pair of converted crisp detectors 𝐶"\, 𝐶>^ . The 
optimum thresholds are then selected based on the Neyman-
Person test1 [52]. Finally, the selected optimum thresholds 
along with the corresponding Boolean functions are stored and 
used during operation. 

However, the AND and OR combinations cannot provide 
optimal thresholds when the training and validation datasets 
are limited and imbalanced [21]. The reason for the limited 
and imbalance data may lead to the appearance of large 
concavities in the resulting ROC curves [57]. In particular, the 
false alarm may be increased, if we fuse the best detector and 
the worst detector. But, the diversity among the combined 
detectors is an important factor in order to improve the 
performance while reducing the false alarm rate [53]. 

Therefore, further improvement is possible by including the 
other Boolean rules, in addition to the AND and OR rules. The 
following sub-sections introduce the two most common 
combination techniques using all Boolean rules: Pair-wise 
Brute-force Boolean Combination (BBC2) [1] and Iterative 
Boolean Combination (IBC) [21]. We also report on the 
limitations and complexities of these techniques. 

C. Pair-wise Brute-force Boolean Combination (BBC2) 
The Pair-wise Brute-force Boolean Combination (BBC2) 

fuses all possible pairs of crisp detectors generated from all 
the available soft detectors using all Boolean functions. As 
 

1 The point (tpropt, fpropt) of a crisp detector in a ROC space, is optimum, if 
all the other points for the same value of fpropt, the value of tpropt is maximum. 
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BBC2 uses all Boolean functions, it implicitly combines 
responses of both accurate and diverse crisp detectors at both 
superior and inferior points in the ROC space. However, the 
pair-wise brute-force strategy is computationally expensive 
due to the high number of permutations. For example, if the 
number of crisp detectors is N, there are N2 possible 
combinations for only one Boolean function. Barreno et al. [1] 
reported that exploiting all Boolean functions using an 
exhaustive brute-force search to determine optimum points 
leads to an exponential number of combinations. 

D. The Iterative Boolean Combination (IBC) 
IBC avoids the impractical exponential explosion associated 

with the BBC2 by combining the emerging responses on a 
composite ROCCH sequentially. It first combines the first two 
ROC curves of the first two soft detectors. Then, the combined 
ROCCH, particularly, the emerging points are combined with 
the next ROC curve, and so on until the Kth ROC curve is 
combined. IBC repeats these sequential combinations 
iteratively until there are no further improvements or it reaches 
to a predefined maximum number of iterations. However, in 
practice, IBC requires a sequence of combinations of 11 to 20 
crisp detectors to reach a final point on the final composite 
ROCCH [45]. In fact, it grows linearly with the increase of the 
number of iterations. Tracking and analyzing such a long 
sequence of combination rules during testing time increase the 
complexity of IBC. Moreover, the order of combined crisp 
detectors makes the IBC algorithm more sensitive to finding 
the best subset. 

It is evident that the computation time and complexity 
increase exponentially for BBC2 and linearly for IBC with the 
increase of the number of combined soft detectors (K), and 
thus making them inefficient. Our proposed pruning approach 
select the smallest and most diverse subset of detectors 
(among all available ones), which does not only reduce the 
computation time and complexity for Boolean combinations 
but also maintains or improves the detection accuracy (while 
reducing the false alarm rate) using the smallest number of 
Boolean combinations. 

V. PROPOSED WEIGHTED PRUNING TECHNIQUE 
The proposed weighted pruning based Boolean combination 

approach leverages both weighted and unweighted kappa 
measures of (dis)agreement. The main novelty of this work is 
to ensure that the diversity among the scores of all the 
available ensemble of soft detectors by pruning the redundant 
soft detectors using weighted kappa. Then, our approach 
applies the unweighted kappa based MinMax-Kappa pruning 
technique (one of the pruning techniques of PBC) individually 
on each selected diverse base soft detectors and selects the 
complementary crisp detectors. At the end, we merge all the 
selected complementary crisp detectors from each selected 
diverse base soft detectors and use them for Boolean 
combination. 

A. Kappa Measure of (Dis)Agreement 
Cohen’s kappa or simply called kappa is a statistical tool 

that is widely used for measuring the inter-rater reliability or 
(dis)agreement between raters [5]. There are two types of 
kappa coefficients that can be used in computing the inter-
rater reliability. The unweighted kappa coefficient is the 
simplest version of kappa [58] that is used only for nominal 
category. The weighted kappa coefficient is an extended 
version of kappa [46] that is used when the category is ordinal 
[59]. Our pruning techniques leverage both kappa coefficients. 
The weighted kappa coefficient is used to prune the redundant 
soft detectors when the level of scores is ordinal (thresholds). 
And the unweighted kappa coefficient is used to prune the 
trivial and redundant crisp detectors when the decision is 
nominal (anomaly/normal). 

The contingency matrix for both kappa coefficients of 
(dis)agreement is defined on two detectors. Let the two 
detectors be D1 and D2 and the contingency matrix is 𝐶b×b. 
Here, n is the order of levels. For unweighted kappa 
coefficient, n is fixed to two that is either positive or negative. 
For weighted kappa coefficient, n is equal to the number of 
levels or thresholds with the assumption that both detectors 
have the same number of constant levels or thresholds. An 
example of a contingency table 𝐶c×c for n=2, is given in Table 
I. Where, each element 𝑎"> represents the number of instances 
on which detector D1 and detector D2 agree at leveli and 
levelj. The sum of all elements in Table I is equal to the size of 
the validation set. 

For the weighted kappa coefficient, we need to define the 
weighted matrix 𝑊 in addition to the contingency matrix 𝐶. 
Among the many possible weighting schemes, the linear 
weighting scheme is effective when one order is important 
than the next one [60]. We also use linear weight when the 
order is the number of thresholds and the distance between 
two thresholds is important to define whether two soft 
detectors are similar or diverse. We can compute the linear 
weighting matrix 𝑊 using (4). 

 

𝑊 = 𝑤"> = 1 −
𝑎𝑏𝑠 𝑖 − 𝑗
𝑛 − 1

																																																									(4) 

 
When 𝐶 and 𝑊 are the same dimensional square matrices, 

the kappa coefficient for both unweighted and weighted kappa 
can be computed based on the Hadamard product (𝜊) [46] or 
element-wise product of matrices according to (5): 

 

𝑘𝑝 =
𝑝\ − 𝑝i
1 − 𝑝i

																																																																																		(5) 

 
where 𝑝\ = 𝑠𝑢𝑚(𝐶𝜊𝑊) is the proportion of weighted 

agreement (for unweighted kappa, 𝑊 = 𝐼 means complete 
agreement). The parameter 𝑝i is the proportion of agreement 
due to chance and computed using (6) as: 

TABLE I 
CONTINGENCY MATRIX 

D1 

D2 
 Positive/level1 Negative/level2 
Positive/level1 a11 a12

 

Negative/level2 a21 a22 
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𝑝i = (𝑐b×7×𝑟7×b)𝜊𝑊																																																																			(6)  

 
Here, 𝑐b×7 denotes a column matrix in which each element 

is the sum of each row of 𝐶. Similarly, 𝑟7×b is a row matrix in 
which each element is the sum of each column of 𝐶. The 
kappa coefficient 𝑘𝑝 computes the inter-rater reliability based 
on the proportion of agreement (𝑝\) and agreement due to 
chance (𝑝i), where the degrees of disagreement are controlled 
by the weight matrix 𝑊 (𝑊 = 𝐼 for unweighted kappa that 
means no degrees of disagreement). Therefore, 𝑘𝑝 = 1 
indicates perfect agreement (i.e., both detectors agree at the 
same level for every instances) and 𝑘𝑝 = 0 indicates that any 
agreement is totally due to chance. The value of 𝑘𝑝 might also 
be negative. Negative values indicate both detectors are 
negatively correlated, and such complementary detectors are 
important in the combination of ensemble techniques [27] 
[53]. 

In the rest of this paper, we use the running example shown 
in Fig. 2 to describe the phases of our approach. In this 
example, we have selected three HMM-based detectors, D1, 
D2, and D3 by varying the number of hidden states. Fig. 2 (a) 
shows the scores of each detector. 

Phase1-Pruning Using Weighted Kappa: The first phase of 
Algorithm 1 describes the steps for pruning the redundant soft 
detectors using weighted kappa coefficient 𝑘𝑝. Suppose, we 
have 𝐾 soft detectors and they produce 𝑆0{𝑘 = 1…𝐾} score 
vectors using a validation set 𝑉. In the example of Fig. 2, K = 
3 and the scores for each detector are shown in Fig. 2 (a). Let 
the number of thresholds of each soft detector be 𝑛0. In the 
example of Fig. 2, 𝑛0 = 4. Therefore, we have 𝐾 ROC curves 
𝑆0, 𝑛0  with probably K different AUC values. In each 

iteration (lines 7-18 in Algorithm 1), we select one out of 𝐾 
available soft detectors for which the AUC is maximum and 

use it as a base soft detector 𝑆^. We store 𝑆^ onto B (line 9 in 
Algorithm 1) for the next Phase2. Now, we compute the 
weighted kappa coefficients 𝑘𝑝 between 𝑆^ and each of the 
rest 𝐾 ← 𝐾 − 𝑆^ soft detectors where the thresholds 𝑛0 of 𝑆^ 
are used as an order or levels.  Then, the soft detectors among 
the 𝐾 − 𝑆^ soft detectors which perfectly agree (0.8 < 𝑘𝑝 ≤
1) with 𝑆^ based on the computed weighted kappa kp, are 
pruned as a redundant copy of 𝑆^. Let say, the number of 
redundant detectors we found in each iteration is 0 ≤ 𝐾q ≤
𝐾 − 1, and then we remove them from the available 𝐾 
detectors as: 𝐾 ← 𝐾 − 𝐾q.  We repeat this process until 𝐾 is 
zero.  

Using the example shown in Fig. 2, we have 𝑆^ = 𝐷7 
because the AUC of D1 is maximum. We then store 𝐷7in B as 
a base soft detector.  Suppose, 𝑛0 of 𝐷1 is equal to four 
different levels (𝑆 ≥ 3; 	3 > 𝑆 ≥ 2; 2 > 𝑆 ≥ 1; 	𝑎𝑛𝑑	1 > 𝑆 ≥
0) of scores 𝑆(𝐷7). First, we have to compute the contingency 
and weighted matrices between base (𝑆^ = 𝐷7) and each of the 
rest two (𝐾 ← 𝐾 − 𝑆^) soft detectors 𝐷c and 𝐷u. Fig. 2(b) 
shows the contingency tables (𝐶v×v) for four different levels. 

Algorithm 1: 𝑃𝑆𝐶𝐷𝑠(𝑆7,… 𝑆w, 𝑇7 ,… 𝑇w, 𝑙𝑎𝑏): Pruning Soft and Crisp 
Detectors 

input: scores of K soft detectors {𝑆7,… 𝑆w} on a validation set along with 
their thresholds {𝑇7 ,… 𝑇w}, and true labels 𝑙𝑎𝑏 of size |𝑙𝑎𝑏|. 
output: selected 𝐿 ≪ 𝐾 diverse base soft detectors {𝐵7 ,… 𝐵{} along with 
their complementary crisp detectors or thresholds {𝜃7, …𝜃{} where 𝜃| ≪ 𝑇|  
( 𝜃| = 12 and 𝑇| = 100 on average) 
 

1 // Phase1-pruning soft detectors using weighted kappa 

2 allocate an array 𝐴𝑈𝐶\||[1: 𝐾]   // temporary store auc of each Sk 
3 for k ← 1 to K do 
4  compute auc of ROC(Sk,Tk) 
5  push auc onto 𝐴𝑈𝐶\||  
6 allocate an empty array B = []   //store selected diverse soft detectors 
7 while (K) 
8  select base soft detector: 𝑆^ ← 𝑚𝑎𝑥0[𝐴𝑈𝐶\||(𝑘)] 
9  store 𝑆^onto B   // store 𝑺𝒃  as a base soft detector 

10  let 𝑛^  ← number of order/levels/thresholds in 𝑇  
11  update K ← K - 𝑆^                          // remove 𝑺𝒃  from K soft detectors 
12  update 𝐴𝑈𝐶\||  ← 𝐴𝑈𝐶\||  - 𝐴𝑈𝐶\||(𝑆^)               // remove auc for 𝑺𝒃 
13  let n ← the size of | K | 
14  for k ← 1 to n do 
15   compute linear weighted kappa kp between 𝑆0  and 𝑆^  using 𝑛^  
16   if  0.80 < kp <=1    
17    update K ← K - 𝑆0    // remove 𝑺𝒌 as a redundant copy of 𝑺𝒃 
18    update 𝐴𝑈𝐶\||  ← 𝐴𝑈𝐶\||  - 𝐴𝑈𝐶\||(𝑆0)    // remove auc for 𝑺𝒌 
19 // -----Phase2- pruning crisp detectors using unweighted kappa----------- 

20 let 𝐿 ← number of selected diverse base soft detectors in 𝐵 
21 let 𝑚 ← number of selected complementary crisp detectors from 𝑆^ ∈ 𝐵 
22 allocate an empty array 𝜃 = []  //store thresholds of each complementary crisp      

//detectors 
23 for b← 1 to 𝐿 do 
24  let 𝑛^  ← number of crisp detectors or thresholds in 𝑇 ∈ 𝑆^  
25  allocate an array 𝑈[1: 𝑛^]    // store temporary kappa coefficients 
26  allocate an array 𝑉[|𝑙𝑎𝑏|: 𝑛^] //store temporary responses 
27  for j ← 1 to 𝑛^  do 
28   𝑟 ← 𝑆^ ≥ 𝑡>   //temporary responses at decision threshold 𝒕𝒋 ∈ 𝑻𝒃 
29   compute unweighted kappa kp between r and 𝑙𝑎𝑏 
30   push kp onto U and r onto V 
31  filter U and 𝑉 by removing trivial detectors 
32  select 𝑚 complementary crisp detectors using 𝑀𝑖𝑛𝑀𝑎𝑥𝐾𝑎𝑝𝑝𝑎(𝑈, 𝑉) 

pruning technique 
33  map 𝑚 selected complementary crisp detectors into 𝜃^ thresholds 
34  store 𝜃^ thresholds onto 𝜃// store 𝜽𝒃 complementary crisp detectors of 𝑺𝒃 
35 return  𝐵 < 𝑆7,… 𝑆{ > and 𝜃 < 𝜃7,… , 𝜃{ > 

      
 

 
 
Fig. 2. A simple example of weighted and unweighted kappa for pruning 
redundant soft and crisp detectors  
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Since the dimension of the contingency and weighted matrices 
are the same, we put them together, where, each cell 
𝑐">(#_#_𝑤">) in Fig. 2(b)  represents three values: The first 
and second values represent the number of samples agreed at 
levels 𝑖 and 𝑗 of the two contingency tables between 𝐷7 and 𝐷c 
and between 𝐷7 and 𝐷u, respectively. The third value is the 
linear weight, computed using Equation (4).  

Based on the contingency and weighted matrices between 

two detectors, we can compute the weighted kappa (𝑘𝑝) 
coefficients using Equation (5). The weighted kappa 𝑘𝑝 
between 𝐷7 and 𝐷c is 1, meaning that both are in perfect 
agreement (i.e., 𝑘𝑝	 ∈ 0.8 < 𝑘𝑝 ≤ 1) at the same level for 
every instances, and thus 𝐷c should be pruned (lines 15 to 18 
in Algorithm 1).  However, the weighted kappa 𝑘𝑝 between 
𝐷7 and 𝐷u is 45.65, meaning poor agreement (i.e., 𝑘𝑝	 ∉

 
 

(a) kp-fpr diagram 
 

 
 

(b) kp-tpr diagram 
 
Fig. 4. Example of selected complementary crisp detectors (red bold points) 
under the simple kappa versus true positive rate (kp-tpr) diagram (a) and 
kappa versus false positive rate (kp-fpr) diagram (b) with pruning trivial and 
redundant crisp detectors (small black points) from the L base soft detectors 
(selected by Phase1 in Algorithm 1) using MinMax-Kappa pruning 
technique (Phase2 in Algorithm 1) on ADFA-LD dataset. 
  

 
 

(a) Diverse and redundant soft detectors on ADFA-LD dataset 
 

 
 

(b) Diverse and redundant soft detectors on CANALI-WD dataset  
 
Fig. 3. Example of selected base soft detectors (green solid lines) with 
pruning redundant soft detectors (doted black lines) under the ROC space 
using weighted kappa (Phase1 in Algorithm 1) on ADFA-LD dataset (a) and 
CANALI-WD dataset (b). 
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0.8 < 𝑘𝑝 ≤ 1) at the same level for every instances, and 
therefore 𝐷u is more likely to diverse from D1 and should be 
selected for combination. At the end of the first iteration, we 

only keep D3 (i.e., K=1), while D2 is pruned because it is 
redundant of the base detector, D1. The final results of this 
phase consist of two diverse base soft detectors D1 and D3. 
The diversities at the response level for four different 
thresholds are presented in Fig. 2(c). We can see that the 
responses of the two selected base soft detectors, D1 and D3, 
diverse at various instances (see Fig. 2(c)) for all threshold 
points, except for 𝑆 ≥ 0. 

In Fig. 3 (a), we show a more realistic example, using the 
ADFA-LD dataset with 20 soft HMM detectors. In this figure, 
we have eight base soft diverse detectors (green solid ROC 

 
 
Fig. 5. Example of selected complementary crisp detectors (red bold points) 
under the ROC space with pruning trivial and redundant crisp detectors 
(small black points) from the L base soft detectors (selected by Phase1 in 
Algorithm 1) using MinMax-Kappa pruning technique (Phase2 in Algorithm 
1) on ADFA-LD dataset 

Algorithm 2: 𝑊𝑃𝐵𝐶2(𝑆7,… 𝑆w, 𝑇7, …𝑇w, 𝑙𝑎𝑏): Weighted Pruning Pair-wise 
Boolean Combination 

input: scores of K soft detectors {𝑆7,… 𝑆w} on a validation set along with 
their thresholds {𝑇7 ,… 𝑇w}, and true labels 𝑙𝑎𝑏  of size |𝑙𝑎𝑏|. 
output: a new composite 𝑅𝑂𝐶𝐶𝐻⎯consturcted by |𝑃� | (size of  𝑃�) 
combination responses  or |𝑃�| emerging points. Each point is a 
combination of two crisp detectors using only one Boolean function. 
 

1 prune redundant soft and crisp detectors 
 (𝐵 < 𝑆7,… 𝑆{ >, 𝜃 < 𝜃7,… , 𝜃{ >) ← 𝑃𝑆𝐶𝐷𝑠(𝑆7,… 𝑆w, 𝑇7, …𝑇w, 𝑙𝑎𝑏)   
// where 𝑳 ≪ 𝑲 is the number of selected diverse base soft detectors 

2 set BooleanFunctions ← {a∧b,¬a∧b,a∧¬b,¬(a∧b), 
  a∨b,¬a∨b,a∨¬b,¬(a∨b),a⊕b,a≡b} 

3 let 𝐹 ← number of Boolean functions in BooleanFunctions 
4 let 𝑚" ← number of decision thresholds in 𝜃" 
5 let 𝑀 ← ∑ 𝑚"

{
"�7   total number of crisp detectors 

5 allocate an array 𝐶[|𝑙𝑎𝑏|,𝑀] 
6 // convert soft detectors to crisp detectors 

7 for i ← 1 to L do    
8  for j ← 1 to 𝑚" do 
9   r ← Si ≥ tj  //temporary responses at decision threshold 𝒕𝒋 ∈ 𝜽𝒊 

10   push r onto 𝐶 
11 allocate an array 𝑃[2, 𝐶c×𝐹]  

// temporary store points (fpr, tpr) of fused responses 
12 foreach bf ∈ BooleanFunctions do 
13  for i ← 1 to M do 
14   for j ← 1 to M do 
15    𝑟 ← 𝑏𝑓(𝐶[𝑖], 𝐶[𝑗])          // combine  responses 
16    compute p ← (tpr, fpr) using 𝑟 and lab 
17    push p onto P 
18 compute composite 𝑅𝑂𝐶𝐶𝐻 of all ROC points in P 
19 map each emerging points 𝑃�  on 𝑅𝑂𝐶𝐶𝐻 into a 3-tuples: 

 𝑃� ←	< (𝑆", 𝑡>), (𝑆" , 𝑡>), bf > //where 𝒊 = {𝟏,… , 𝑳} and 𝒕𝒋 ∈ 𝜽𝒊 
20 return ROCCH along with all emerging points {𝑃7 ,… , 𝑃� } 
 

Algorithm 3: 𝑊𝑃𝐼𝐵𝐶(𝑆7,… 𝑆w, 𝑇7 ,… 𝑇w, 𝑙𝑎𝑏): Weighted Pruning Iterative 
Boolean Combination 

input: scores of K soft detectors {𝑆7,… 𝑆w} on a validation set along with 
their thresholds {𝑇7 ,… 𝑇w}, and true labels 𝑙𝑎𝑏  of size |𝑙𝑎𝑏|. 
output: a new composite 𝑅𝑂𝐶𝐶𝐻⎯consturcted by |𝑅".�� | (size of  𝑅".��) 
combination responses  or |𝑅".�� | emerging points. Each point is a 
sequential combination on average of five crisp detectors using four 
Boolean functions.  

1 call pruning function //prune redundant soft and crisp detectors 
 (𝐵 < 𝑆7,… 𝑆{ >, 𝜃 < 𝜃7,… , 𝜃{ >) 	← 𝑃𝑆𝐶𝐷𝑠(𝑆7, …𝑆w, 𝑇7 ,… 𝑇w, 𝑙𝑎𝑏)  
 // where 𝑳 ≪ 𝑲 is the number of selected diverse base soft detectors  

2 set BooleanFunctions ← {a∧b,¬a∧b,a∧¬b,¬(a∧b), 
  a∨b,¬a∨b,a∨¬b,¬(a∨b),a⊕b,a≡b} 

3 iter ←1  
// combine the first two ROC curves of the first two diverse base soft detectors 

4 let 𝑚7 ← number of points in first curve 𝑅𝑂𝐶(𝑆7, 𝜃7) 
5 let 𝑚c ← number of points in second curve 𝑅𝑂𝐶(𝑆c, 𝜃c) 
6 allocate an array 𝑃[2,𝑚7×𝑚c] //temporary store the points of fused responses 
7 foreach bf ∈ BooleanFunctions do   
8  for i ← 1 to 𝑚7 do 
9   𝑟7 ← 𝑆7 ≥ 𝑡" // temporary responses at decision threshold 𝒕𝒊 ∈ 𝜽𝟏 

10   for j ← 1 to 𝑚c do 
11    𝑟c ← 𝑆c ≥ 𝑡>  //temporary responses at decision threshold 𝒕𝒋 ∈ 𝜽𝟐 
12    𝑟7c ← 𝑏𝑓(𝑟7 , 𝑟c)  // fuse responses 
13    compute 𝑝 ← (𝑡𝑝𝑟, 𝑓𝑝𝑟) using 𝑟7c  and lab 
14    push 𝑝 onto 𝑃 
15 compute 𝑅𝑂𝐶𝐶𝐻".��  of all combination ROC points in 𝑃 
16 map each emerging points 𝑝�  on 𝑅𝑂𝐶𝐶𝐻".��  into a 3-tuples: 

 𝑝� ←	< (𝑆7, 𝑡"), (𝑆c, 𝑡>), bf > 
17 store all emerging points 𝑝�  on 𝑅𝑂𝐶𝐶𝐻".��  onto 𝑅7:c 
18 // combine rest of the ROC curves of rest of the  L-2 diverse base soft detectors 
19 for 𝑏 ← 3 to 𝐿 do 
20  let 𝑛�  ← number of emerging points in 𝑅7:^:7 
21  let 𝑚^  ← number of points in 𝑙 𝑅𝑂𝐶^(𝑆^, 𝜃^) curve 
22  allocate an array 𝑃[2, 𝑛�×𝑚^] //temporary storage of fused responses 
23  foreach bf ∈ BooleanFunctions do   
24   for i ← 1 to 𝑛�  do 
25    𝑟7 ← 𝑅7:^:7(𝑖)   // responses from immediate previous combinations 
26    for j ← 1 to 𝑚^  do 
27     𝑟c ← 𝑆^ ≥ 𝑡> //temporary responses at decision threshold 𝒕𝒋 ∈ 𝜽𝒃 
28     𝑟7c ← 𝑏𝑓(𝑟7 , 𝑟c)  // fuse responses 
29     compute 𝑝 ← (𝑡𝑝𝑟, 𝑓𝑝𝑟) using 𝑟7c  and lab 
30     push 𝑝 onto 𝑃 
31  update 𝑅𝑂𝐶𝐶𝐻".��  of all combination ROC points in P 
32  map each emerging points 𝑝�  on 𝑅𝑂𝐶𝐶𝐻".��  into a 3-tuples: 

 𝑝� ←	< 𝑅7:^:7(𝑖), (𝑆^, 𝑡>), bf > 
33  store all emerging points 𝑝�  on 𝑅𝑂𝐶𝐶𝐻".��   onto 𝑅7:^  
34 store all the emerging points to reach on the final 𝑅𝑂𝐶𝐶𝐻".��  onto  

𝑅".�� ← R7:{ 	 
35 set maxiter and tol  // maximum number of iterations and tolerance 
36 iter ←2 to maxiter  
37  repeat steps 2 to 33 with 𝐿 + 1 ROC curves: 

𝑅𝑂𝐶(𝑅".��:7)	𝑎𝑛𝑑	𝑅𝑂𝐶(𝑆7, 𝜃7),… , 𝑅𝑂𝐶(𝑆{, 𝜃{) 
38  if (𝐴𝑈𝐶𝐻".�� ≤ 𝐴𝑈𝐶𝐻".��:7 + 𝑡𝑜𝑙) then 
39   break         // stop further iteration 
40 return 𝑅𝑂𝐶𝐶𝐻".��  and 𝑅".�� 
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curves) and 12 pruned redundant soft detectors (black dotted 
ROC curves). Similarly, Fig. 3 (b) shows the experiment on 
CANALI-WD dataset, where we have only three base soft 
diverse detectors and 17 pruned redundant soft detectors. At 
the end of Phase1, all the selected base soft diverse detectors 
𝐿 ≪ 𝐾 (stored in B) are then fed into Phase 2 of Algorithm 1. 

Phase2-Pruning Using Unweighted Kappa: The second 
phase of Algorithm 1 leverages the MinMax-Kappa pruning 
method [45], one of the two pruning methods of PBC using 
unweighted kappa, to select the complementary crisp 
detectors. Since the base soft detectors selected in Phase1 are 
diverse, we apply the MinMax-Kappa pruning method on each 
base soft detector individually instead of brute-force search 
like in PBC. We compute the unweighted kappa coefficient 𝑘𝑝 
between a base soft detector’s decision vector (or crisp 
detector) and the true decision labels (or ground truth), same 
as in PBC.  If 𝑛^ is the number of decision levels on a base 
detector’s scores vector 𝑆^, then we obtain 𝑛^ crisp detectors. 
Now, we compute unweighted kappa coefficients of 𝑛^ crisp 
detectors and sorted them in ascending order. According to 
MinMax-Kappa, the accurate crisp detectors should reside 
close to 𝑘𝑝 ≈ 𝑘𝑝�\� and their complementary crisp detectors 
should reside close to 𝑘𝑝 ≈ 𝑘𝑝�"b. However, we have to set 
the number of crisp detectors and the ratio of them to be 
selected close to 𝑘𝑝�\� and 𝑘𝑝�"b. We set the ratio is 50%, 
same as in MinMax-Kappa. Moreover, before selecting the 
complementary crisp detectors, we have to filter out the trivial 
crisp detectors (giving always either positive or negative 
responses) whose 𝑘𝑝 is close to zero.  

In the running example shown in Fig. 2, Phase2 selects two 
diverse base soft detectors 𝐷7 and 𝐷u with four different 
thresholds. Therefore, each base soft detector produces four 
crisp detectors at four different levels or thresholds. The 
responses 𝑅(𝐷 𝑆 ≥ 𝜃) of each crisp detector for 25 instances 
and their corresponding true labels (ground truth) are shown in 
Fig. 2(c). Fig. 2(d) shows the unweighted kappa values sorted 
in ascending order for each crisp detector of two base soft 
detectors 𝐷7 and 𝐷u. 

Consider a ratio of 50% and the number of crisp detectors to 
be selected to be two. Therefore, from Fig. 2 (d), we obtain, 
𝑘𝑝�\� ≈ 0.62 and 𝑘𝑝�"b ≈ 0 for 𝐷7. Similarly, for 𝐷u, 
𝑘𝑝�\� ≈ 0.59 and 𝑘𝑝�"b ≈ 0. However, the trivial crisp 
detectors, one for 𝐷7: 𝑅(𝑆 ≥ 0); and two for 𝐷u: 𝑅(𝑆 ≥ 1) & 
𝑅(𝑆 ≥ 0) should be filtered out first. Fig. 2 (d) shows the 
filtered trivial crisp detectors (large diagonal marker with 
cross sign). Since the ratio is 50%, from each base soft 
detector, one crisp detector should be selected close to 𝑘𝑝�\� 
and another one should be selected close to 𝑘𝑝�"b. Fig. 2 (d) 
shows the four selected complementary crisp detectors (two 
from each base soft detector, marked with large circle marker). 

In general, if the number of selected complementary crisp 
detectors from a selected base soft detector is m (i.e., m/2 
close to 𝑘𝑝�\� and m/2 close to 𝑘𝑝�"b), then the total number 
of selected crisp detectors will be 𝑀 = 𝑚 ∗ 𝐿, where L is 
number of selected base soft detectors (selected from Phase1). 
We tested m with different setting (l=4, 8, 12, 16, and 20) and 

obtained best results for m = 12. 
In Fig. 4, we show a more realistic example, using ADFA-

LD dataset. In this figure, we have 𝑀 complementary crisp 
detectors (red bold points) selected from L diverse base soft 
detectors (selected in Phase1) using unweighted kappa-based 
MinMax-Kappa pruning technique. Fig. 4 (a) shows the results 
under the space of kp-fpr and Fig. 4 (b) shows the results 
under the space of kp-tpr. Fig. 5 also shows the selected total 
𝑀 = 96 complementary crisp detectors from the 𝐿 = 8 
diverse base soft detectors under the ROC space. 

 
Phase3-Boolean Combination Techniques: The third 

phase combines the selected complementary crisp detectors 
using Boolean functions. The first combination approach 
called Weighted Pruning Pair-wise Boolean Combination 
(WPBC2), shown in Algorithm 2, combines all possible pairs 
of complementary crisp detectors (selected from Phase1 and 
Phase2) same as in BBC2. In contrast with BBC2, WPBC2 
fuses only the complementary crisp detectors instead of using 
Brute-force (i.e., all available crisp detectors).  The second 
approach called Weighted Pruning Iterative Boolean 
Combination (WPIBC), shown in Algorithm 3, combines the 
complementary crisp detectors of each diverse base soft 
detectors sequentially same as in IBC. The difference is that 
WPIBC only combines the most diverse base soft detectors 
after pruning all the redundant soft detectors. As we will show 
in the evaluation section, both WPBC2 and WPIBC Boolean 
combination approaches using only 𝑀 ≪ 𝑁 complementary 
crisp detectors of 𝐿 ≪ 𝐾 diverse base soft detectors improved 
the true positive rate when the false tolerance is almost close 
to zero. 

B. Complexity Analysis 
Suppose, we have 𝐾 soft detectors with 𝑆0{𝑘 = 1…𝐾} 

scores using a validation set 𝑉. Let the number of decision 
thresholds on the scores 𝑆0 of each soft detector is constant 
and the size is 𝑇. And let 	𝑁 = 𝐾 ∗ 𝑇	be the total number of 
crisp detectors. 

The brute-force search for optimal combination is infeasible 
in practice due to the doubly exponential combinations. In 
fact, for N crisp detectors there are 2� possible outcomes that 
can be combined in 2c� ways, which makes the brute-force 
combination impractical even for small N values [1] [43]. The 
worst-case time complexities of the proposed and existing 
Boolean combination methods are given in Table II. The 
pairwise combination of N crisp detectors employed in BBC2, 

TABLE II 
THE WORST-CASE TIME COMPLEXITY OF PRUNING AND WITHOUT 

PRUNING BASED BOOLEAN COMBINATION METHODS 
Methods Pruning  Boolean 

Combination  
BBC2 NA 𝒪(𝑁c) 

IBC NA 𝒪(𝑇c + 𝑁) 

PBC 𝒪(𝑁(log𝑁 + 1)) 𝒪(𝑈c) 

WPBC2 Phase1: 𝒪(𝐾c) 
Phase2: 𝒪(𝐾 ∗ (𝑇(log 𝑇 + 1))) 

𝒪(𝑀c) 

WPIBC 𝒪(𝑚c + 𝑀) 
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which requires 𝒪(𝑁c) Boolean operations, may not be 
feasible in practice for large N values. The sequential 
combination of the IBC algorithm reduces its worst-case time 
complexity to 𝒪(𝑇c + 𝑁) Boolean operations. 

Our recent pruning approach [43] used the kappa-error 
diagrams or simply called unweighted kappa coefficient to 
decide which ensemble members can be pruned with 
maintaining a similar overall accuracy. Although 𝑃𝐵𝐶 reduces 
the impractical exponential computation time for BBC2 to 
𝒪(𝑁(log𝑁 + 1)), the performance at low false alarm values 
is also decreased (details in Section VI). This is because PBC 
selects 𝑈 ≪ 𝑁 complementary crisp detectors over the whole 
𝑁 converted crisp detectors, it cannot consider the diversity 
among the individual soft detectors. 

The proposed pruning technique is more general as it 
ensures the diversity among both of the individual soft and 
crisp detectors instead of using 𝑁 crisp detectors. As shown 
above, the total number of crisp detectors, N, depends on two 
important parameters K and T. Phase1 in the proposed 
weighted pruning technique reduces the size of the ensemble 
from K to L diverse soft detectors, by pruning the redundant 
ones. As shown in Fig. 3 (a), out of K=20 soft HMM 
detectors, Phase1 selects only L=8 HMMs for ADFA-LD 
dataset and only L=3 HMMs for CANALI-LD dataset (Fig. 3 
(b)). Then, Phase2 optimizes the size of T of each selected 
base diverse soft detector (L) to m<<T by pruning all the 
trivial and redundant crisp detectors. Here, 𝑚 is a user defined 
parameter and set based on the experimental results using 
validation set (e.g., in this experiment, 𝑚 = 12 gives the best 
result for both datasets). At the end, the proposed pruning 
methods always selects 𝑀 = 𝐿 ∗ 𝑚 complementary crisp 
detectors. 

Therefore, the worst-case time complexity required by the 
proposed pruning technique to select 𝑀 complementary crisp 

detectors is	𝒪(𝐾c + 𝐾 ∗ (𝑇 log𝑇 + 1 )); where, Phase1 
requires about 𝐾c operations for computing and sorting the 
AUC and the weighted kappa of K soft detectors, in order to 
select 𝐿 diverse base soft detectors. And in Phase2, each base 
diverse soft detector (𝐿) requires about 𝑇 log 𝑇 + 1  
operations for computing and sorting the unweighted kappa 
for 𝑇 crisp detectors, in order to select 𝑚 ≪ 𝑇 complementary 
crisp detectors. Therefore, in case of worst-case, Phase1 
selects all K soft detectors (i.e., 𝐿 = 𝐾). So, the worst-case 
time complexity for Phase2 requires about (𝐾 ∗ 𝑇 log 𝑇 +
1 )  operations, in order to select a total of 𝑀 = 𝐾 ∗ 𝑚 
complementary crisp detectors. At the end of pruning Phases, 
Phase3 combines the decisions of 𝑀 complementary crisp 
detectors. In Phase 3, the worst-case time complexity for the 
proposed weighted pruning pairwise Boolean combination 
(WPBC2) is about 𝒪(𝑀c) Boolean operations and for the 
proposed weighted pruning iterative Boolean combination 
(WPIBC) is about 𝒪(𝑚c + 𝑀) Boolean operations, where 
𝑀 ≪ 𝑁 and 𝑚 ≪ 𝑇. 

VI. EXPERIMENTS AND COMPARISON 
We experimented with the proposed pruning approach on 

two system call datasets: ADFA Linux Dataset (ADFA-LD) 
[6] and CANALI Window Dataset (CANALI-WD) [47]. The 
experimental results are compared with BBC2 [1] and IBC 
[21] without pruning. We also compared our approach to PBC 
that we proposed in previous work [43]. 

ADFA-LD dataset: ADFA-LD consists of normal and 
anomalous sequences of system calls collected from Ubuntu 
[6]. A normal sequence of system calls of a process is 
collected from the system call traces while it is executed under 
the normal conditions. An anomalous sequence of system calls 
of an attack is collected from the system call traces while it is 
executed against the system. There are in total 5,206 normal 

 
Fig. 6. Algorithm comparisons on ADFA-LD dataset where one fold is used 
for validation and four folds are used for testing. 
  

 
Fig. 7. Algorithm comparisons on CANALI-WD dataset where one fold is 
used for validation and four folds are used for testing. 
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traces collected from various normal Unix-based processes 
such as web browsing and Latex document preparations. The 
dataset contains 60 attack traces by exercising six different 
types of attacks: web-based exploitation, simulated social 

engineering, poisoned executable, remotely triggered 
vulnerabilities, remote password brute-force attacks, and 
system manipulation. In training, we use the 833 normal traces 
same as in [6] to train the 20 discrete-time ergodic HMMs  

TABLE III 
AVERAGE (AVG), MAXIMUM (MAX), AND MINIMUM (MIN) AUC VALUES AND TRUE POSITIVE RATE (TPR) WITH FALSE POSITIVE RATE (FPR)<=0.002, AND THEIR 

STANDARD DEVIATIONS (STD) OVER THE 5FCV (TRAIN ON ONE FOLD AND TESTED ON FOUR FOLDS). 
  AUC values tpr with fpr<=0.002 

Datasets methods avg max min std avg max min std 
 without pruning methods 

ADFA-LD BBC2 0.98006 0.9852 0.9731 0.0044 0.38334 0.5 0.2292 0.1246 
IBC 0.979 0.983 0.972 0.0042 0.25414 0.4792 0.1665 0.1329 

CANALI-WD BBC2 0.96824 0.9726 0.9601 0.0049 0.36716 0.3739 0.3618 0.0046 
IBC 0.97156 0.9799 0.9612 0.0069 0.36716 0.3739 0.3618 0.0046 

 with pruning methods 
ADFA-LD PBC 0.96762 0.9766 0.9608 0.0078 0.09576 0.2297 0.0208 0.0877 

WPBC2 0.96604 0.9741 0.9602 0.0059 0.11886 0.246 0.054 0.0785 
WPIBC 0.97762 0.9788 0.9767 0.0007 0.37498 0.5208 0.2083 0.0474 

CANALI-WD PBC 0.96808 0.9726 0.9601 0.0049 0.24197 0.2639 0.2118 0.0046 
WPBC2 0.96816 0.9729 0.9601 0.0051 0.27716 0.3739 0.2218 0.0071 
WPIBC 0.96994 0.9808 0.9541 0.0021 0.34462 0.3739 0.3225 0.0034 

 
TABLE IV 

AVERAGE (AVG), MAXIMUM (MAX), AND MINIMUM (MIN) AUC VALUES AND TRUE POSITIVE RATE (TPR) WITH FALSE POSITIVE RATE (FPR)<=0.002, AND THEIR 
STANDARD DEVIATIONS (STD) OVER THE 5FCV (TRAIN ON FOUR FOLDS AND TESTED ON ONE FOLD). 

  AUC values tpr with fpr<=0.002 
Datasets methods avg max min std avg max min std 

 without pruning methods 
ADFA-LD BBC2 0.98918 0.99945 0.9829 0.0043 0.4500 0.5833 0.2500 0.1263 

IBC 0.99112 0.9939 0.9887 0.0021 0.41668 0.5000 0.3333 0.0589 
CANALI-WD BBC2 0.97288 0.9963 0.9469 0.0208 0.58648 0.9142 0.3591 0.2963 

IBC 0.98274 0.9981 0.9679 0.0127 0.60722 0.9142 0.3694 0.2798 
 with pruning methods 

ADFA-LD PBC 0.95648 0.9626 0.9533 0.0037 0.0000 0.0000 0.0000 0.0000 
WPBC2 0.9661 0.9703 0.9643 0.0024 0.16666 0.3333 0.0000 0.1317 
WPIBC 0.98724 0.992 0.9827 0.0033 0.49998 0.5833 0.3333 0.1020 

CANALI-WD PBC 0.97288 0.9963 0.9469 0.0208 0.58648 0.9142 0.3591 0.2963 
WPBC2 0.9736 0.998 0.9469 0.0217 0.58648 0.9142 0.3591 0.2963 
WPIBC 0.98028 0.9981 0.9647 0.0151 0.5981 0.9142 0.3591 0.2034 

 

 
Fig. 8. Algorithm comparisons on ADFA-LD dataset where four folds are 
used for validation and one fold is used for testing in 5FCV. 
  

 
Fig. 9. Algorithm comparisons on CANALI-WD dataset where four folds are 
used for validation and one fold is used for testing. 
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(i.e., K=20 soft detectors) with various values. The rest of the 
4373 normal traces and the 60 anomalous traces are used for 
evaluation.  

CANALI-WD dataset: CANALI-WD consists of two 
normal datasets called goodware and anubis-good and two 
malware datasets called malware and malware-test [47]. The 
goodware dataset contains a massive amount of 180 GB 
execution traces of normal day-to-day operations which are 
collected from 10 different machines. The anubis-good dataset 
contains the traces of 36 benign applications executed under 
Anubis [61]. The malware dataset is a collection of execution 
traces of 6,000 malware samples including a mix of all the 
existing categories (botnets, worms, dropper, Trojan horses, 
etc.), which are randomly extracted from Anubis [61]. The 
final malware-test dataset is a collection of execution traces of 
1,200 malware samples which are collected from a different 
machine than the normal ones used for Anubis. In training, we 
use the anubis-good dataset and the traces for nine out of 10 
machines in the goodware dataset (same as in [47]) to train 20 
soft HMMs detectors with various values. In contrast to [47], 
however, where the malware dataset was also used to train the 
models, we only use malware for testing. This is because an 
anomaly detector mainly models the normal behavior of a 
system. Therefore, the rest of the 23 traces of the tenth 
machine in the goodware dataset, 5,855 traces from malware 
dataset, and 1,133 traces from malware-test dataset are used 
for evaluation.  

A. Experimental Setup 
We use a stratified 5-Fold Cross Validation (5FCV) 

technique, same as in [43], on the testing set for the evaluation 
of the proposed pruning approach. Since the ratio between the 
normal and anomalous traces in both datasets is not balanced, 
we applied stratified 5FCV to partition the normal and 
anomalous sets separately. This is because we want to keep 
the same ratio (normal to anomalous) to guarantee that all 
folds include the normal and anomalies traces. Therefore, for 
ADFA-LD dataset, each fold contains 874 traces selected 
randomly from the 4373 normal traces and 12 attacks traces 
selected randomly from the 60 attack traces. Similarly, for 
CANALI-WD dataset, each fold contains four traces selected 
randomly from the 23 normal traces and 1,397 traces selected 
randomly from the 6,988 anomalous traces. However, as we 
followed the same setting as in PBC [43] instead the way of 
standard cross validation, we also used one fold for validation 
and the remaining four folds for testing on the both ADFA-LD 
and CANALI-WD datasets. 

As described in Section III, we apply the BW algorithm on 
the validation set to learn the parameters of an HMM with 
setting the random initialization of 𝐴, 𝐵 and 𝜋, and M = 340 
distinct system call symbols for ADFA-LD dataset and M = 
89 distinct symbols for CANALI-WD dataset. Since a single 
HMM with a predefined number of states N may have limited 
chances to fit the underlying structure of the data (as noted in 
Section III), 20 different discrete-time ergodic HMMs (i.e., 20 
soft detectors) are trained with various 𝑁 = 	10, 20… 200 
values. For each state value 𝑁, we repeated the training 

process ten times with a different random initialization of 𝐴, 𝐵 
and 𝜋 to avoid the local minima, and the HMM that gives the 
highest AUC value on the validation set is selected for 
Boolean combination. 

B. Results and Comparison 
We mainly focus on how the proposed pruning based 

Boolean combination approaches can reduce the computation 
time (as discussed in Section V) of the BBC2 and IBC 
techniques while maintaining or improving the detection 
accuracy and reducing the false alarm rate. 

Fig. 6 and 7 show the AUC results in the ROC space for the 
proposed weighted pruning techniques on ADFA-LD and 
CANALI-WD datasets. We can see that the ROC curve of the 
proposed pruning based WPIBC shows slightly better AUC 
than IBC. In particularly, WPIBC is able to ensure the 
diversity among the fused crisp detectors (selected using 
unweighted kappa at Phase 2 in Algorithm 1) where each crisp 
detector comes from the selected diverse base soft detectors 
(selected using weighted kappa at Phase 1 in Algorithm 1). 
Therefore, in contrast to IBC, where the order of combination 
responses in each iteration is the order of all the available soft 
and crisps detectors, WPIBC maintains the order of 
combination responses in each iteration among the selected 
diverse soft and crisp detectors (see details in Algorithm 1 and 
Algorithm 3). For instance, to achieve the final operating 
points denoted in Fig. 6 with a large pink circle, WPIBC uses 
only five selected complementary crisp detectors (red bold 
plus marker points) and four Boolean operations, whereas IBC 
uses 17 crisp detectors (black bold circle marker points) and 
16 Boolean operations.  

Compared to BBC2, although the AUC of WPBC2 is 
slightly low, WPBC2 maintains the same AUC of PBC shown 
in Fig. 6 and 7. However, WPBC2 overcomes the exponential 
time complexity problem of BBC2 by pruning the redundant 
and trivial crisp detectors, in fact, without pruning, BBC2’s 
time complexity is exponential with respect to the number of 
detectors (N^2) [1] [43].  

 Table III shows the maximum detection accuracy (tpr) 
achieved by each technique for a fixed (almost close to zero) 
fpr value of 0.002, all values are averaged over the 5FCV. 

For ADFA-LD dataset, although the AUC values of all 
pruning methods are almost equal, the tpr of PBC with 
MinMax-Kappa pruning technique is the worst. The tpr of 
WPIBC is almost equal to that of BBC2 method, and slightly 
better than that of IBC method. Moreover, the standard 
deviation of WPIBC is also good as compared to the other 
methods. For the CANALI-WD dataset, the tpr of WPIBC is 
still better than PBC and WPBC2 pruning techniques, and 
almost equal to BBC2 and IBC that do not use pruning 
techniques. Through this analysis, we observed that when the 
proposed weighted pruning technique combines the selected 
complementary crisp detectors iteratively (i.e., called 
WPIBC), it achieves similar results to that of IBC. 
Particularly, when we compared the results with the tpr where 
the maximum fpr is almost equal to zero (0.002), both WPIBC 
and WPBC2 outperform PBC. And the results demonstrate 
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that the proposed pruning approach is more general and 
applicable to either pair-wise Boolean combinations (WPBC2) 
and iterative Boolean combinations (WPIBC). 

Moreover, we tested the proposed pruning approach by 
using the standard way of 5FCV that is four folds are used in 
validation and one fold is used in testing. With this setting, the 
results of one fold of 5FCV are demonstrated in Fig. 8 for 
ADFA-LD dataset and in Fig. 9 for CANALI-WD dataset. 
Table IV shows the average results over the 5FCV with this 
standard setting of 5FCV. From Fig. 8 and Fig. 9, we can see 
that for both datasets our proposed pruning based Boolean 
combination approaches is able to achieve the same 
performance (in terms of AUC, fpr and tpr), while reducing 
the time complexity, the number of crisp detectors, and the 
number of Boolean combinations. For CANALI-WD dataset, 
we got almost equal results with the original approaches 
(which use all crisp detectors), and the highest value of tpr = 
0.91 when the false alarm rate is zero, given in Table IV. 
However, for ADFA-LD dataset, we observed a great 
difference between the proposed pruning approach and the 
PBC. When the average tpr = 0.49 for WPIBC (with the limit 
of maximum fpr is equal to 0.002), it is equal to zero for PBC 
and 0.17 for WPBC2. For example, from the Fig. 8, we got tpr 
=0.51 (when fpr<=0.002) for WPIBC, it is still zero for PBC. 

C. Cost Analysis 
Table V shows the cost that is the combination time and the 

number of Boolean operations are required by each method 
during the validation and testing phases. The values are 
averaged over the 5FCV on the ADFA-LD dataset. All 5FCV 
executions are performed on a 3.1 GHz Intel Core i7 CPU 
machine with 16 GB of RAM and a 17x5400 rpm hard disk.  

We can see that although the pruning time of the proposed 
approach is slightly more than the PBC, WPIBC reduced the 
combination time and the number of Boolean operations to 
almost half compared to IBC. The total computation time, 
including pruning and combination during validation of 
WPIBC was 7.9 seconds whereas PBC took 16.6 seconds. 
Furthermore, in testing, WPIBC also reduced the number of 
combined crisp detectors by almost half than the number 
required by IBC (5 instead of 11). We can see in Fig. 6 that 
WPIBC requires on average five crisp detectors while IBC 
requires 11 crisp detectors to achieve a single point on the 
final composite ROCCH.  Similarly, WPBC2 always requires 
only two crisp detectors similar to BBC2 and PBC to achieve 
a single point on the final ROCCH. Therefore, the proposed 
pruning approach is more general and it can be applicable to 
both pair-wise and iterative Boolean combinations. However, 
based on the computation time and the number of combined 
Boolean operations, WPIBC is more desirable in order to 
obtain better accuracy while reducing the false alarm rates (as 
shown in Table III and Table IV). 

From the worst-case time complexity given in Table II, we 
can see that the proposed pruning approach reduces the total 
number of crisp detectors i.e., 𝑁 = 𝐾 ∗ 𝑇 by optimizing two 
important parameters of 𝐾 and 𝑇 in Phase1 and Phase2 
respectively. For example, Phase1 of the proposed weighted 

pruning approach selects only 𝐿 = 3 diverse ensembles of 
HMM soft detectors out of 𝐾 = 20 HMM soft detectors 
(shown in Fig. 3b) for CANALI-WD dataset. As a result, 
Phase2 computes the unweighted kappa only for about 300 
(i.e., 𝐿 ∗ 𝑇 and let say	𝑇 = 100) crisp detectors, in order to 
select only 𝑀 = 36 (i.e., 𝑀 = 𝐿 ∗ 𝑚, where	𝑚 = 12) 
complementary crisp detectors.  Whereas, PBC always 
computes the unweighted kappa for about 𝑁 = 2000 
(i.e.,	𝑁 = 𝐾 ∗ 𝑇) crisp detectors, in order to select 𝑈 = 50 
complementary crisp detectors. Moreover, since PBC can not 
ensure the diversity among the ensembles of soft HMM 
detectors, the probability of selecting the redundant 
complementary crisp detectors or rejecting the other diverse 
crisp detectors is also high. In fact, it is reported in Table III 
and Table IV that PBC significantly reduced the tpr with a low 
false alarm as compared to the other approaches due to the 
rejection of some diverse complementary crisp detectors. 

VII. EFFECTS OF WEIGHTED PRUNING BASED BOOLEAN 
COMBINATION 

For any ensemble based Boolean combination algorithms, 
increasing the accuracy is highly dependent on the diversity 
among the fused soft/crisp detectors (i.e., the level of 
disagreement among the fused soft/crisp detectors should be 
high). Although the existing ensemble based BBC2 and IBC 
Boolean combination techniques implicitly fused such diverse 
soft/crisp detectors and showed higher accuracy, they face the 
challenges of computation time and complexity because of 
fusing all the possible pair of crisp detectors from all the 
available soft detectors (as discussed in Section IV and V; and 
reported in Table III). In addition, the accuracy of IBC is also 
dependent on the order of combinations. In fact, with the 
increase of number of soft detectors, the computation time and 
complexity increase exponentially for BBC2 and linearly for 
IBC (discussed in Section IV).  

To be clear, we tested the proposed approach using 50 
available soft HMM detectors (i.e., on average 5000 crisp 
detectors), trained with various 𝑁 = 	5, 10, … 250 values on 
CANALI-WD dataset. The results are shown in Fig. 10, where 
the values are transformed into a logarithmic scale. It is clear 
that when we apply the proposed weighted pruning approach 
(top one in Fig. 10), a noticeable improvement can be 
observed in the reduction of the number of Boolean 

TABLE V 
COST ANALYSIS (VALUES ARE AVERAGED OVER 5FCV) IN TERMS OF 

PRUNING AND COMBINATION TIME (S), AND NUMBER OF BOOLEAN 
OPERATIONS APPLIED DURING VALIDATION PHASE, AND THE NUMBER OF 
COMBINED CRISP DETECTORS REQUIRED TO ACHIEVE EACH VERTEX ON 

ROCCH DURING TESTING PHASE 
Methods Validation phase Testing 

phase 
 Pruning 

time (s) 
Combination 

time (s) 
# Boolean 
operations 

# combined 
crisp 

detectors 
BBC2 NA 16364 4,000,000 2 
IBC NA 11 11,000 11 

PBC 1.6 15 19, 701 2 

WPBC2 1.9 19 21,701 2 
WPIBC 1.9 6 5, 000 5 
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operations. Particularly, WIBC significantly reduces the 
number of Boolean operations as compared to other 
approaches. For example, BBC2 requires 25 million (7.4 in 
logarithmic scale) Boolean operations for 50 soft detectors, 
whereas, WPBC2 uses only 3,600 (3.4) operations. Similarly, 
when IBC requires 15 thousand (4.2 in logarithmic scale) 
Boolean operations, WIBC uses only 204 (2.3) operations. As 
a result, we can state that WPBC2 6944 times faster than 
BBC2 and WPIBC 73 times faster than IBC for 50 soft 
detectors. Moreover, from the 30 soft detectors, WPBC2 and 
WIBC always select five diverse soft detectors with the 
increase of the number of soft detectors, and thus, reach a 
constant number of Boolean operations.  

The bottom part of Fig. 10 compares the computation time 
(including pruning and combination time together for pruning 
based approaches). We can see that WPBC2 and WIBC 
reported the lowest computation times as compared to other 
approaches. For example, WPBC2 is ten thousand times 
(seconds) faster than BBC2 and WPIBC is two times faster 
than IBC during validation phase using 50 available soft 
detectors. Moreover, from the 30 soft detectors, although the 
pruning time for WPBC2 and WIBC increase slightly with the 
increase of number of soft detectors, the combination time 
remains same as both are always using only five selected 
diverse soft detectors. Compared to PBC pruning approach 
where the pruning and combination time both are increasing 
linearly with the increase of number of soft detectors. 

In fact, PBC shows worst result when the false alarm is 
almost zero for both ADFA-LD and CANALI-WD datasets 
(given in Table III and Table IV). On the other hand, the 
accuracy with almost zero false alarm is the desired expected 

solution for deploying a ADS in a real world application. The 
reason is that PBC also uses all the available soft detectors to 
select a subset of complementary crisp detectors without 
ensuring the diversities among the use of soft detectors. As a 
result, the redundant soft detectors produces redundant crisp 
detectors, and thus it increases the probability of selecting 
these redundant copies if anyone is selected as a 
complementary crisp detector by MinMax-Kappa pruning 
technique of PBC. 

The proposed WPBC2 and WPIBC weighted pruning 
techniques select the most diverse base soft detectors from the 
available soft detectors using weighted kappa. For instance, 
from the Fig. 3 (a), eight diverse base soft detectors are 
selected while 12 are pruned as for redundant copies for 
ADFA-LD dataset. Similarly, from the Fig. 3 (b), only three 
diverse base soft detectors are selected while 17 are pruned for 
CANALI-WD dataset. As the selected base soft detectors are 
diverse, the converted crisp detectors from them might also be 
diverse as well. Therefore, when we apply the MinMax-Kappa 
pruning technique on each selected diverse base soft detectors 
individually, there has no chance for the selection of 
redundant complementary crisp detectors. As a result, our 
proposed pruning technique shows better accuracy when the 
false alarm is close to zero compared to PBC for both datasets 
(given in Table III and Table IV). Moreover, the proposed 
weighted based pruning approach is more general as we can 
combine the selected diverse soft/crisp detectors either pair-
wise or iteratively same as in BBC2 or IBC Boolean 
combination techniques. 

Although the proposed approach is experimentally validated 
only on HIDS using system call data, it can be applied in other 

 

 
 

Fig. 10. Algorithm’s computation time and complexity analysis on the validation subset of CANALI-WD dataset 
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application domains particularly, where one model does not 
formulate the complex normal behaviors of a system. In that 
case, we can train ensemble detectors with considering various 
normal behaviors. Then, the proposed method may be a good 
one for pruning and combining the multiple detector’s 
decisions. For example, detecting programming errors (i.e., 
software bugs) and root causes in a complex computer 
programming system [64][65]. Fosdick et al. [66] reported that 
a computer program is strongly related to the computation 
patterns of input data and thus useful for detecting the data 
flow anomalies. The sequences of operations i.e., the flows of 
data are assumed to be consistent and used them to model 
ensembles classifiers. A social or cultural event or road 
accident can also be detected using sensor and user (e.g., users 
of twitter, Facebook, etc.) generated data. For example, 
Pramod et al. [63] trained several linear Markov models by 
segmenting the non-linear traffic data and used them to detect 
the city events.  

VIII. LIMITATIONS AND DISCUSSION 
Our approach is limited to ensemble of homogeneous soft 

anomaly detectors (i.e., multiple HMMs). However, the input 
can be ensemble of heterogeneous soft and crisp anomaly 
detectors (e.g., STIDE [11], SVM [72], etc.). In fact, having 
different types of detectors should further increase the 
diversity in the ensemble and allow for improved performance 
[73]. Heterogenous detectors use different learning techniques 
and may commit different (and potentially complementary) 
type of errors, which increases the diversity in the ensemble. 
For example, OC-SVM models the normal behavior of a 
system using fixed-size feature vectors instead of sequential 
features like HMM; STIDE uses the Hamming distance, 
whereas HMM uses likelihood probability as a matching 
measure.  

To adapt our approach to support heterogeneous detectors, 
we need to modify Phase1, which assumes the same 
thresholds of a base soft detector, which are the orders or 
levels for the weighted kappa for computing the diversity 
score. It may be more efficient to group them based on each 
modeling technique. Then, apply the Phase1 pruning 
technique on each group separately. For example, STIDE with 
various sliding window sizes can be used to produce many 
homogeneous soft detectors [11], which can then fed as input 
to Phase1.  

Although the proposed approach significantly reduces the 
Boolean combination time (see Fig. 10) by pruning the 
number of combined soft (K) and crisp detectors (N), the 
worst-case time complexity, particularly, for the pruning 
phases (given in Table II), will be increased exponentially 
(𝐾c) with the increase of K. Therefore, for large values of K, 
the pruning approach may suffer from scalability problems. To 
address this limitation, we need resort to parallel processing 
techniques and platforms such as the Hadoop ecosystem 
[74][75]. 

Moreover, the proposed approach is dependent on the ROC 
space for pruning and combining the decisions of the selected 
complementary crisp detectors. However, here, the used ROC 
curves is a binary classification problem. Therefore, to extend 
the approach for multiclass classification problems, we need to 

work with a ROC curve for more than two classes and then 
adapt the Boolean combination and pruning techniques to 
accommodate multiple classes. 

IX. CONCLUSION 
The proposed effective pruning-based Boolean combination 

techniques analyze the diversities among the available 
ensemble soft detectors (HMMs) using weighted kappa 
(measures the agreement/disagreement between two soft 
detectors). Based on the weighted kappa coefficients, it selects 
a best subset of diverse base soft detectors while pruned all the 
redundant soft detectors. Each selected base soft detector is 
then converted into all the possible crisp detectors (at various 
decision thresholds) and used them for selecting a subset of 
complementary crisp detectors using unweighted kappa-based 
MinMax-Kappa pruning technique. At the end, we merge all 
the selected complementary crisp detectors and use them for 
Boolean combinations. The experimental evaluation on the 
two benchmarking ADFA-LD and CANALI-WD system call 
datasets verified the validation of the proposed method. We 
achieved much better results than the recent PBC pruning 
technique, particularly, when the false alarm is almost close to 
zero.  

Our future plan is to investigate the proposed pruning 
approach using different diverse detectors and other datasets. 
Moreover, we also want to leverage Big Data platforms such 
as Hadoop and the MapReduce programming model in order 
to further improve the performance of our approach, especially 
when used with multiple heterogeneous ensemble soft 
detectors such as HMMs, One-class SVM, STIDE, and so on. 
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