
A Systematic Literature Review on Automated Log Abstraction Techniques

Diana El-Masria,∗, Fabio Petrillob,, Yann-Gaël Guéhéneucc, Abdelwahab Hamou-Lhadjc, Anas Bouzianea

aDépartement de génie informatique et génie logiciel, Polytechnique Montréal, Montréal, QC, Canada
E-mail: {diana.el-masri,anas.bouziane}@polymtl.ca

bDépartment d’Informatique et Mathématique, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
E-mail: fabio@petrillo.com

cDepartment of Computer Science & Software Engineering, Concordia University, Montréal, QC, Canada
E-mail: {yann-gael.gueheneuc, wahab.hamou-lhadj}@concordia.ca

Abstract

Context: Logs are often the first and only information available to software engineers to understand and debug their
systems. Automated log-analysis techniques help software engineers gain insights into large log data. These techniques
have several steps, among which log abstraction is the most important because it transforms raw log-data into high-
level information. Thus, log abstraction allows software engineers to perform further analyses. Existing log-abstraction
techniques vary significantly in their designs and performances. To the best of our knowledge, there is no study that
examines the performances of these techniques with respect to the following seven quality aspects concurrently: mode,
coverage, delimiter independence, efficiency, scalability, system knowledge independence, and parameter tuning effort.
Objectives: We want (1) to build a quality model for evaluating automated log-abstraction techniques and (2) to
evaluate and recommend existing automated log-abstraction techniques using this quality model.
Method: We perform a systematic literature review (SLR) of automated log-abstraction techniques. We review 89
research papers out of 2,864 initial papers.
Results: Through this SLR, we (1) identify 17 automated log-abstraction techniques, (2) build a quality model com-
posed of seven desirable aspects: coverage, delimiter independence, efficiency, system knowledge independence, mode,
parameter tuning effort required, and scalability, and (3) make recommendations for researchers on future research
directions.
Conclusion: Our quality model and recommendations help researchers learn about the state-of-the-art automated log-
abstraction techniques, identify research gaps to enhance existing techniques, and develop new ones. We also support
software engineers in understanding the advantages and limitations of existing techniques and in choosing the suitable
technique to their unique use cases.

Keywords: Log Abstraction Techniques, Log Analysis, Log Mining, Log Parsing, Software Analysis, Software Log,
Systematic literature review, Systematic survey.

1. Introduction

Logs contain a wealth of data that can help software en-
gineers understand a software system run-time properties
[1, 2]. However, modern systems have become so large and
complex, especially with the emergence of the Internet of
Things (IoT) and Cloud computing, that they produce too
huge amounts of log data for software engineers to handle
manually. Google systems, for example, generate hundreds
of millions of new log entries every month, which account
for tens of terabytes of log data daily [3, 4]. Also, logs
come in different formats, hindering the analyses of their
content and making their uses yet more complex [4, 3].

To tackle these problems, software engineers have at
their disposable a wide range of Automated Log Abstrac-
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tion Techniques (ALATs) that they can use to reduce the
amount of data to process. These techniques implement
different log-abstraction algorithms, designed for various
purposes, e.g., performance optimization, information se-
curity, anomaly detection, business reporting, resource uti-
lization, or users’ profiling [1].

However, there is a gap between industry and acad-
emia. First, software engineers are not aware of all exist-
ing ALATs developed in academia and the characteristics
of their algorithms. To the best of our knowledge, there
is no work that presents a comprehensive view on state-
of-the-art ALATs and software engineers cannot afford to
undertake the cumbersome and time-consuming task of
searching through the large body of literature to identify
the best suited ALAT. Second, software engineers do not
have the time and resources to study and understand the
characteristics of each ALAT. The gap is further spread
because researchers focus on enhancing accuracy (defined
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in Section 6) when proposing new ALATs whereas software
engineers are also interested in comparing the ALATs in
terms of other useful aspects.

To reduce this gap, this paper helps researchers and
software engineers as follows:

• It provides a SLR to inform software engineers of
existing state-of-the-art ALATs in Section 5

• It collates and combines ALATs’ characteristics iden-
tified through the SLR into seven desirable quality
aspects on which it builds a quality model to evalu-
ate ALATs, explained in Section 6

• It presents a comparison of 17 ALATs according to
our quality model, identifies research gaps, and makes
recommendations for researchers on future research
directions, in Section 7.

• It helps software engineers understand the advan-
tages and limitations of existing ALATs and select
the most suitable for their use cases, in Section 7.

We review 89 research papers out of 2,864 initial pa-
pers, identified using a SLR, following the guidelines pro-
posed by Kitchenham et al. [5, 6]. We selected these pa-
pers after searching all the papers related to log analysis
in the digital resource Engineering Village. Two authors
independently read and evaluated the papers. We per-
formed backward and forward snowballing through SCO-
PUS. Based on our inclusion/exclusion criteria and quality
assessment, we obtained 89 papers, in which we identified
17 unique ALATs.

We evaluated these ALATs and showed that (1) re-
searchers worked on improving the efficiency of ALATs
by adopting diverse algorithms, while distributed archi-
tectures seem most promising; (2) parameter tuning for
large-scale log data is challenging and requires major ef-
fort and time from software engineers, researchers should
consider techniques for automatic and dynamic parame-
ters tuning; (3) due to confidentiality issues, log datasets
are rare in the community while all existing unsupervised
ALATs depend on these datasets for training, so we rec-
ommend researchers to investigate new ALATs that do not
rely on training data; (4) practitioners must make compro-
mises when selecting an ALAT because there is not one
ALAT that can satisfy all quality aspects even if online
ALATs (e.g., Spell, Drain) or ALATs based on heuristic
clustering approaches and implementing a parallelization
mechanism (e.g., POP, LogMine) satisfy most combina-
tions of quality aspects; (5) supervised ALATs based on
Natural Language Processing techniques (NLP) are accu-
rate if the models are trained on large amounts of data and
researchers should build and share their logs to benefit the
research community.

He et al. [7] provided an ad-hoc comparison of four
ALATs using accuracy and efficiency as quality aspects.
Also, parallel to this work, Zhu et al. [8] measured the
performance 13 ALATs on 16 log datasets and reported
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Figure 1: Log Mining Pipeline

interesting results in terms of accuracy, robustness, and ef-
ficiency. Differently, we conduct a systematic literature re-
view (SLR) from which we identify, study, summarize, and
compare 17 ALATs based on seven desirable quality as-
pects identified from the literature: mode, coverage, delim-
iter independence, efficiency, scalability, system knowledge
independence, and parameter tuning effort.(defined in Sec-
tion 6). Furthermore, we provide practitioners with direct
references and summarize/group the researchers’ findings,
so practitioners benefit from their experience with ALATs.
Our results are based on a thorough review of ALAT devel-
opment contexts and algorithmic characteristics, detailed
in Section 5 and Table 1, and on the results of empirical
experiments and experiences shared in the literature. Our
results are not based on review of any source code released.

The remainder of the paper is as follows. Section 2 pro-
vides a background on log abstraction. Section 3 motivates
the use of ALATs by practitioners and researchers. Section
4 describes our study design. Section 5 groups and sum-
marizes the 17 state-of-the-art ALATs identified through
a SLR. Section 6 presents the ALATs quality model based
on seven quality aspects identified in literature. Sections
7 provides the results of our study and promising direc-
tions for researchers and software engineers, respectively.
Section 8 discusses threats to the validity of our results.
Section 9 concludes the paper with future work.

2. Log Mining Process

To perform log-mining tasks, such as failure diagnosis,
performance diagnosis, security, prediction, and profiling
[1], a typical log-mining process is composed of three steps:
log-collection, log-abstraction, and log-analysis (Figure 1).

The raw log data collected during the log-collection
step contains log entries describing system states and run-
time information. Each log entry includes a message con-
taining a free-form natural-language text describing some
event. Based on the log-mining task at hand, the log-
analysis step implements the most suitable automated log-
analysis technique (i.e., anomaly detection, model infer-
ence, etc.), which usually requires structured input-data
that can be encoded into numerical feature vectors. As
shown in Figure 2, during the log-abstraction step, ALATs
transform the raw log-data into structured events lists re-
quired by the automated log-analysis techniques. Thus,
ALATs are essential in the pre-processing step for efficient
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log-mining (e.g., searching, grouping, etc.), a foremost step
for most automatic log-analysis techniques and a useful
step for managing logs in a log management system [9].

2.1. Log Format
Logs are generated by logging statements inserted by

software engineers in source code to record particular events
and track run-time information. For example, in the log-
ging statement:

logger.info("Time taken to scan block pool {} on
{} {}", map.get("pool"), path, executionTime )}

logger is the logging object for the system, info is the
chosen verbosity level, Time taken to scan block pool
and on are static messages fixed in the code, which remain
the same at runtime, and poor, path, and executionTime
are dynamic parameters varying each time this statement
is executed, which can thus generate different log entries,
such as the example in Figure 3.

Each log entry in a raw log-file represents a specific
event. As shown in Figure 3, a log entry is generally com-
posed of a log header and a log message containing run-
time information associated with the logged event. The
logging-framework configuration determines the fields of
the log-header. Usually, they include data such as a time-
stamp, a severity level, and a software component [10, 11].
Therefore, these fields are structured and can easily be
parsed and abstracted.

As illustrated in Figure 4, the log message of a log
entry is written in a free-form text in the source code,
typically as a concatenation of different strings and–or a
format string, which is difficult to abstract because it does
not have a “standard”, structured format. Log messages
are composed of static fields and dynamic fields. Dynamic

017-09-26 12:40:15, INFO impl.FsDatasetImpl - Time taken to scan block pool BP-805143380 on /home/data3/current 30ms

Timestamp Verbosity Component

Log Header Log Message

Figure 3: Log Entry Sample

Time taken to scan block pool BP-805143380 on /home/data3/current 30ms

Log Message

Static Field Dynamic Field Dynamic Field Dynamic FieldStatic Field

Figure 4: Log Message Fields

fields are the variables assigned at run-time. Static fields
are text messages that do not change from one event oc-
currence to another and denote the event type of the log
message. Log fields can be separated by any delimiter e.g.,
white-space, brackets, comma, semicolon, etc.

2.2. Log Abstraction
Log-abstraction structures and reduces the amount of

log entries in the raw log-file while keeping the provided
information. The goal of ALATs is to separate the static
fields from the dynamically-changing fields, to mask the
dynamic fields (usually by an asterisk *), and to abstract
each raw log message into a unique event type that is the
same for all occurrences of the same event. For example,
the log message in Figure 4 could be abstracted by the
following event type:

Time taken to scan block pool * on * *
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2017-09-2611:57:25 INFOdelegation.TokenSecretManager- Creating password for identifier: 

owner=auser, maxDate=1506513445163,sequenceNumber=1355, masterKeyId=2, currentKey: 2

2017-09-2611:57:25 INFOdelegation.TokenSecretManager - Creating password for identifier: 

owner=auser, maxDate=1506513445163, sequenceNumber=1356,masterKeyId=3, currentKey: 3

2017-09-2611:58:04 INFOdatanode.DataNode - Opened streaming server at /127.0.0.1:36574

2017-09-2611:58:10 INFOimpl.FsDatasetImpl - Time taken to scan block pool BP-1846194586 on 

/home/ hadoop/ hadoop-hdfs/target /data1/current: 12ms

2017-09-2611:58:10 INFOimpl.FsDatasetImpl - Time taken to scan block pool BP-1846194586 on 

/home/hadoop /hadoop-hdfs/target /data2/current: 5ms

2017-09-2611:58:11 INFOdatanode.DataNode - Opened streaming server at /127.0.0.1:38510

2017-09-2611:58:13 INFOdatanode.DataNode - Opened streaming server at /127.0.0.1:41576

2017-09-2611:58:23 INFOimpl.FsDatasetImpl - Time taken to scan block pool BP-1846194586 on 

/home/hadoop /hadoop-hdfs/target /data3/current: 4ms

Input raw logs
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event type1  Creating password for identifier: owner *
maxDate * sequenceNumber * masterKeyId * currentKey *

event type2 Opened streaming server at *

event type3 Time taken to scan block * on * *

Structured Event list

Event Types

Discovery Phase

Matching Phase

ALAT

ALAT

Figure 5: Log-Abstraction Phases

ALATs include two phases: discovery andmatching.
As shown in Figure 5, during the discovery phase, ALATs
take as input a batch of training raw log entries and output
the abstracted event types for all log entries of the same
event. Once the event types are generated, they serve as
a basis for matching new log entries in batch or stream
processing.

2.2.1. Challenges
Abstracting logs for complex and evolving systems re-

quires ALATs to tackle several challenging issues. We now
summarise these challenges.

Heterogeneity of Log Data. Log messages have various for-
mats. They are produced by different software layers/com-
ponents and can be written by hundreds of developers all
over the world [3, 9]. Therefore, practitioners may have
limited domain knowledge and may not be aware of the
original purpose and characteristics of the log-data [3].

Updating of Event Types. Log messages change frequently
(e.g., hundreds of logging statements are added in Google
systems each month [3]). Practitioners must update event
types periodically via the discovery phase to ensure ab-
straction accuracy for the matching phase [12, 13].

Manual Parameter Tuning. During the discovery phase,
practitioners must manually tune ALATs parameters, which
is challenging: (1) some are not intuitive and impact the
ALATs internal algorithms; (2) others must change accord-
ing to the systems because each system has different log-
data characteristics; and, (3) tuning ALATs parameters on
large data is time-consuming. Usually, practitioners tune
parameters on a small sample [14], hoping to obtain the
same accuracy on large log-files [3].

Log Entries Lengths. Some ALATs, such as Drain, IPLOM,
or POP, assume that log messages of the same event type
have the same lengths (i.e., number of tokens in their mes-
sages). However, log messages of a same type may have
different lengths, e.g., User John connected (length: 3)
vs. User John David connected (length: 4) for the type
User * connected.

2.3. Log-Analysis
Log-analysis is a rich research field. We give a brief

overview of some its purposes and their influences on ALATs.
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2.3.1. Anomaly Detection
Anomaly Detection analyzes log data (e.g., system logs,

security logs) to identify in a timely manner abnormal be-
haviors that deviate from typical, good behaviors to diag-
nose failures [15] or security [16] and performance issues
[17] and, thus, mitigate their effects [1, 18, 19, 20].

Anomaly detection typically uses machine-learning tech-
niques (supervised, such as SVM and decision tree or unsu-
pervised methods, such as PCA, clustering, and invariant
mining), which use as input a numerical feature vector for
each event sequence generated from the structured events
list provided by an ALAT. Therefore, ALATs are a pre-
requisite for anomaly detection to provide the structured
event lists needed to train the anomaly-detection model
and to abstract log entries during the detection [21].

2.3.2. Model Inference
Model inference mines systems logs (e.g., execution

logs, transaction logs, events logs) to infer a model of the
system behavior (e.g., finite sate machines). The model is
then used to detect deviation from the expected behavior
and infer the faults that produced the abnormal behaviour.
Model inference is useful for understanding complex and
concurrent behaviour and predict failures. For example,
Beschastnikh et al. [22] generated finite state machines to
provide insights into concurrent systems. Salfner et al. [23]
generated Markov models for failure prediction. Therefore,
ALATs are a prerequisite for model inference (1) to ab-
stract log messages into structured event lists from which
to generate numerical feature vectors and (2) to remove log
messages that are irrelevant and–or too frequent, keeping
only messages useful to build a model [24, 25].

3. Motivation

Organisations, regardless of their sizes, find log data to
be invaluable. They use this data in various ways. How-
ever, the log-abstraction components offered in off-the-
shelf automated log-analysis tools (e.g., Loggly, Prelert,
or Splunk) and open-source automated log-analysis tools
(e.g., GrayLog, Logstash) do not satisfy the challenges of
modern systems, because they abstract log messages using
domain-expert predefined regular expressions and, thus,
depend on human knowledge and manual encoding, which
are error-prone, non-scalable, and non-evolutive.

In organisations adopting Cloud technology, practition-
ers have logs coming from logic-tiered servers, multiple
Web servers, and database servers. They also have logs
generated by Docker containers and other virtual machines.
They must treat all these logs as a whole and aggregate
them via a log shipper (e.g., Logstash or Apache Flume) to
a centralized server where an ALAT and a log-analysis tool
are installed. Practitioners managing centralized logs need
an ALAT with a strong focus on efficiency, heterogeneity,

scalability, and independence from the servers. Further-
more, in organisations adopting continuous software de-
livery (e.g., Facebook pushes tens to hundreds of commits
every few hours), practitioners face streams of log state-
ments being continuously added and updated (e.g., Google
systems introduce tens of thousands of new logging state-
ments every month, independent of the development stage
[26]). Therefore, they require an ALAT updating its pa-
rameters automatically without the need to retrain/retest.

There is a wide range of ALATs among which to choose
in the literature. Practitioners should select the ALAT
with quality aspects that best suite their unique use cases
and–or address the prerequisites of their log-analysis tech-
niques. For example, for anomaly detection, an ALAT
must have a high coverage and abstract rare events to
avoid false positive [16]. The ALAT should handle the
evolving nature of logs and discover/refine event types
dynamically without interrupting the anomaly detection
process by an offline discovery phase [16, 9]. In contrast,
for model inference, an ALAT must allow practitioners to
perform a pre-processing step to remove irregular/irrele-
vant log messages to make their analysis more effective
[25, 1, 27]. Furthermore, predictions depend on whether
the log granularity used to create the model matches the
decision-making granularity and the ALAT must allow
practitioners to change it as they see fit [1, 27].

4. Study Design

We follow the guidelines by Kitchenham et al. [5, 6]
for an SLR. We divide our research method into five main
steps: (1) research questions (RQs), (2) search strategy,
(3) selection procedure and quality assessment, (4) report-
ing of the results and answers to the RQs in Section 5 and
Section 6, and (5) comparing ALATs to guide software
engineers in Section 7.

4.1. Research Questions
We want to answer the following RQs to understand

the current state of automated log-abstraction techniques
along with the existing challenges. We use the answers to
these questions to propose a quality model for evaluating
existing techniques and tools.

• RQ1. What are the state-of-the-art automated tech-
niques for log abstraction analysis?

• RQ2. What are these techniques’ quality aspects in
addition to accuracy?

4.2. Search Strategy
We used papers from conferences and journals, writ-

ten in English, and published between 20001 to 2018. We

1We chose to start at the year 2000 because the ALAT SLCT
proposed by Vaarandi et al. in 2003 represents one of the first log
data clustering algorithms [28]. We decided upon a tolerance of 3
years before 2003
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conducted the literature search through the digital meta-
library Engineering Village2 that offers access to 12 engi-
neering literature and patent databases and provides cov-
erage from a wide range of engineering sources including:
ACM library; EI Compendex; IEEE library; Inspec-IET;
and, Springer.

We conducted the snowballing using Scopus, the largest
database of abstracts and citations of peer-reviewed liter-
ature3. We used Scopus to cover a larger range of pa-
pers, combining seed papers from Engineering Village and
snowballing papers from Scopus. We searched in the titles,
abstracts, and keywords of the papers with the following
queries4:

(("log analysis") WN ALL)
and:

(("log parsing" OR (log AND "message type")
OR (log AND "message formats") OR "log message"
OR ("signature extraction" AND logs)
OR ("log format") OR "log template"
OR "log event type") WN ALL).

4.3. Literature Selection Procedure
We passed the papers through three stages of screening.

The filtering steps are (1) general criteria (language, pa-
per type, time frame, domain category), (2) inclusion and
exclusion criteria, and (3) overall quality of the papers.

Inclusion criteria are:

• Paper must be in conference proceeding or journal.
• Paper must be published between 2000 and 2018.
• Paper must be written in English.
• Paper must be on log analysis, log abstraction, log

mining, or log parsing.
• Paper must pertain to software engineering.
• Paper must propose, explain, or implement an auto-

mated log-analysis technique.

Exclusion criteria are:

• Papers with identical or similar contributions (du-
plicates).

• Papers not publicly available.
• Papers focusing on end-user experience.
• Papers focusing on logging practices (i.e., how to

write logs).
• Papers using off-the-shelf tools (e.g., ElasticSearch,

Logstash, Kibana stack (ELK)).
• Papers focusing on log-analysis component architec-

ture (i.e., logging pipeline-architecture).
• Papers requiring access to source code of the system.

Quality assessment answers the following questions:

• Is the paper based on research?

2https://blog.engineeringvillage.com/about
3https://www.elsevier.com/solutions/scopus
4The full queries are available in the replication package at http:

//www.ptidej.net/downloads/replications/ist19a/.

• Is the research method clear enough?
• Is there a description of the context in which the

research was carried out?
• Does the proposed method address the objectives set

by the researchers?
• Is there an evaluation of the proposed method?

Figure 6 shows our search and selection process, which
we detail in the following.

Seed papers. We first performed an automatic search by
running our search queries through Engineering Village.
The initial search returned 2,864 papers. After filtering
these papers based on the inclusion and exclusion criteria,
we obtained 121 papers. Then, two of the authors reviewed
the titles and abstracts of these papers independently and
classified each paper as “include” or “exclude”. We collated
the results: any papers in disagreement was discussed with
all the authors until an agreement was reached. We ob-
tained 31 seed papers.

Candidate papers. We then obtained a set of 738 papers by
merging the sets of paper obtained (1) by running the sec-
ond search string in Engineering Village and (2) by search-
ing in SCOPUS for all papers referencing the 31 seed pa-
pers (forward snowballing) and all references in the seed
papers (backward snowballing). Two of the authors re-
viewed independently the titles and abstracts of each of
the 738 papers and kept 106 papers. Finally, we grouped
these 106 papers and the 31 seed papers into the set of 137
candidate papers.

Selected papers. Independently, two authors read in de-
tails the 137 candidate papers. They evaluated each paper
based on our inclusion/exclusion criteria and our quality
assessment. Again, we collated both authors’ decisions
and obtained the set of 89 selected papers.

4.4. Data Extraction and Synthesis

Data extraction. Independently, two authors reviewed in
detail the 89 selected papers and extracted data regarding:

• State-of-the-art ALATs approaches, algorithms, and
techniques.

• Desired ALATs’ characteristics/quality aspects, their
definitions and classification criteria.

First, the authors compared the data and resolved dis-
agreements by consensus. Then, they collated the data
extracted on ALATs characteristics/quality aspects, which
they consolidated into seven industry desired quality as-
pects (i.e., unified the naming, typical question, definition,
and classification criteria) to compose our quality model.
They also extracted the main results and evaluations of
the ALATs in terms of the identified quality aspects.
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Data Synthesis. We summarized and collated the extracted
data. We did not identify inconsistencies within the data.
We present the data synthesis and our findings in Section 2
with a catalogue of state-of-the-art ALATs, in Section 6 for
their quality aspects, and in Section 7 for their evaluations
in terms of the identified quality aspects.

Study Scope. We considered open- and closed-source ALATs
used in industry and prototype techniques and tools re-
leased by researchers. Only three articles briefly described
the matching phase of their proposed ALATs. Therefore,
we focused on the discovery phase. Finally, we do not
check the source code of the tools to assess the correctness
of their implementations, which would require access to
all of their source code and extensive resources out of the
scope of this paper.

5. Automated Log Abstraction Tools

We now discuss the 17 ALATs that we identified through
our SLR explained in Section 4.4. We group these tech-
niques according to the approaches and the algorithms
that they adopt for abstracting raw log messages. Fig-
ure 7 categorizes the 17 ALATs and Table 1 summarizes
key characteristics of their algorithms.

5.1. Online ALATs
Online ALATs abstract raw log entries one after an-

other from streams of entries without any requirement of
doing offline processing first [9]. This approach is particu-
larly important for Web services management and system
on-line monitoring and processing [4], for which the vol-
umes of logs increase constantly and model training is time
consuming using some existing logs [4].

Drain [4] abstracts log messages into event types us-
ing a fixed depth parse-tree to guide the log event analy-
sis process, which avoids constructing a profound and un-
balanced tree and encodes specially-designed parsing rules
in the parse tree nodes. Drain algorithm consists of five
steps. During the first step, Drain pre-processes raw log
messages using user-defined regular expressions based on
domain knowledge to identify and remove trivial dynamic
fields (e.g., IP addresses, numbers, and memory). In a sec-
ond step, Drain assumes that logs with the same event type
have the same length (number of tokens) and selects the
node corresponding to the log length. For example, with
the pre-processed log message User John connected, Drain
selects a path to a first layer node length: 3. In the third
step, Drain assumes that tokens in the beginning positions
of a log message are more likely to be static fields. It selects
the leaf node linked to the second layer node User. Dur-
ing the fourth step, Drain calculates the similarity between
the log message and the event type of each log group in
the leaf node and adds the logID of the log message to the
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most suitable log group. Finally, Drain updates the parse-
tree by scanning the tokens in the same position of the log
message and the event type. He et al. enhanced Drain
[13] with a new algorithm based on a Directed Acyclic
Graph (DAG) to guide the log event analysis process. The
DAG also encodes specially-designed heuristic rules and its
depth is also fixed to accelerate the parsing process. An-
other enhancement is the implementation of an automated
parameter-tuning mechanism. Drain-DAG can initialize
and update its parameters automatically and dynamically
according to the incoming log messages. Drain provides
an optional mechanism to merge similar log event types
in a post-processing step to address the “variable log en-
try length” cases (detailed in section 2.2) that invalidate
the event-size-heuristic assumed in step(2). The time com-
plexity of Drain for the event type search process is O(n)
where n is the number of log messages. Its complexity
for calculating the similarity between a log message and a
candidate event type is O(m1+m2) where m1 and m2 are
their respective numbers of tokens.

Spell (Streaming Parser for Event Logs using an LCS)

[9] is an online streaming ALAT, which convert log mes-
sages into event types and parameters. It uses an approach
based on the longest common subsequence (LCS). Spell
view the output of the logging print statements in the
source code as a sequence containing a majority of static
fields, and assumes that when two sequences are produced
by the same logging print statement, their longest com-
mon sequence represents their event type. Therefore, the
LCS of the two sequences is likely to be static fields rep-
resenting an event type. Thus, Spell starts with an empty
LCSMap and transforms each incoming log message into
a “token” sequence using user-defined delimiters. Then,
Spell compares the new token sequence with the LCSseq
of all LCSObjects in the LCSMap and adds its ID to the
corresponding LCSObjects or creates a new LCSObject
if it cannot find a suitable LCSObject. Spell uses a pre-
filtering step, with a prefix tree to find if the event type
already exists and to prune away candidates. The time
complexity of Spell is O(n) where n is the number of raw
log messages [13].

SHISO (Scalable Handler for Incremental System log)
[12] performs online classification and incremental mining
of event types and their parameters. The algorithm builds
on the fly a structured tree with a user-defined number of
children. First, SHISO splits the new log message into a
word list W using common delimiters (e.g., blank charac-
ters, “=”, “;”, etc.) without separating Web addresses and
file paths. Second, SHISO creates a new node that has the
word list W and puts it in a tree structure. During the
third step, SHISO searches for a log format for W. Finally,
SHISO adjusts and refines existing formats continuously in
real-time. SHISO conducts the search phase for each log
entry. It conducts the adjustment phase when it creates a
new format or updates an existing format. The time com-
plexity of SHISO is O(n) where n is the number of raw log
messages [13]. However, SHISO algorithm only limits the
number of children for each node and, thus, might build
a very deep and unbalanced tree, which might increase its
running time and impact its ability to handle system logs
with lots of event types [13].
5.2. Offline ALATs - Discovery Phase

The following offline ALATs use batch processing and
need all the log data to be available during discovery [9].

5.2.1. Clone Detection
AEL (Abstracting Execution Logs) [29] assumes that

log messages generated by a same event have textual simi-
larities. Thus, abstracting log messages consists of detect-
ing and grouping similar log messages. To abstract log
messages, AEL uses clone detection based on a similarity
measure. AEL divides in four steps. The anonymization
step uses hard-coded heuristics based on system knowl-
edge to identify dynamic fields in the log messages (e.g.,
IP addresses, numbers, memory) and replaces them with
a generic token ($V). Then, the tokenization step divides
the anonymized log message into different bins according
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to their numbers of words and estimated parameters. For
example, the log message creating password, user is
John, masterKeyid=2 and the heuristics word=value and
is-are-was-were value lead AEL to transform the log
message into:

creating password, user is $V, masterKeyid=$V

and to put it in the bin (7, 2). Next, the categorization
step compares log messages in each bin and abstracts them
into execution event. The anonymization step may miss
some dynamic fields because it relies on heuristics, e.g.,
creating password for user John. The reconciliation
step mitigates these cases by re-examining the event types
and merging similar ones. AEL does not require any user-
given parameters but uses a heuristic to merge event types,
which users may have to re-define for different logs. The
time complexity of the AEL algorithm is O(n) where n in
the number of raw log messages. However, in the catego-
rization step, the algorithm compares each log message in
a bin with all the existing execution events in the same
bin. Therefore, its running time depends on the format of
the log dataset, which might generate a large bin size.

5.2.2. Evolutionary Search-based
MolFi (Multi-objective Log message Format Identi-

fication) [3] is based on the observation that any ALAT
should meet two conflicting objectives: (1) abstract event
types that match as many log messages as possible (high
frequency in matching log messages) and (2) abstract event
types that correspond to particular events types (high speci-
ficity). These objectives conflict: event types may be too
generic or match only a few log messages. Therefore,
MolFi uses multi-objective optimization, with frequency
and specificity as its objectives. MolFI includes a pre-
processing step to filter duplicated log messages, identify
trivial dynamic fields using regular expressions (as Drain),
tokenize the log messages, and group messages of same
lengths. Then, MoLFi generates log event types that meet
the two objectives based on the evolutionary search-based
approach NSGA-II and a trade-off analysis. MolFi does
not require any parameters tuning. The time complexity
of Molfi evolutionary search-based algorithm NSGA-II is
O(mn2) where m is the number of objectives and n is the
number of raw log messages.

5.2.3. Classification - Frequent Itemsets Mining
LogHound [30, 31] considers event logs as transac-

tion databases and views each log message as a transac-
tion that consists of items. For example, it views the log
message Password created for User John as a trans-
action with the items (Password,1), (for,2), (User,3),
(John,4), (created,5). Then, it recasts the task of iden-
tifying event types as a task of mining frequent itemsets. It
implements a breadth-first algorithm similar to the Apri-
ori algorithm, with heuristics to control memory usage and
itemsets sizes. First, it identifies frequent items (words) in

the log file based on a user-given “support threshold”. Sec-
ond, it considers rare items as dynamic fields. It keeps an
itemset containing only frequent items from each transac-
tion. For example, the itemset above is (Password,1),
(for,2), (User,3), (created,5). Third, it stores the
frequent itemsets in a cache trie using a “cache trie sup-
port”. Fourth, it builds a reduced itemset trie using corre-
lations among frequent items. Finally, it abstracts event
types from the frequent itemsets in the itemset-trie node.
The example above corresponds to the event type Password
created for * John. It is lightweight and requires little
resource.

5.2.4. Classification - Clustering
LKE (Log Key Extraction) [32] assumes that log mes-

sages printed by the same logging statements in the source
code tend to be very similar to one another, while log
messages printed by different statements are often quite
different. Therefore, it uses clustering techniques to group
log messages from the same statements and considers their
common part as event types. Similar to AEL, LKE is a
mixture of heuristic rules-based approach and hierarchical
clustering. Furthermore, LKE algorithm is designed to al-
low for easy implementation in parallel mode. It consists
of four steps. The first step is to mitigate the problem of
having clusters of log messages based on similar dynamic
fields, it erases trivial dynamic parameters (e.g., URL, IP
addresses, etc.) from raw log messages according to pre-
defined empirical rules and obtains raw log key. The sec-
ond step is to cluster similar raw log key according to a
weighted edit-distance, giving more weight to words at the
beginning of raw log key and using space as word delim-
iters. The third step is to repeatedly split the clusters
until each raw log key in the same cluster belongs to the
same log key. Finally, LKE extracts the common parts of
the raw log key from each cluster to generate event types.
The time complexity of LKE algorithm in O(n2) where n
is the number of raw log messages [14].

SLCT (Simple Logfile Clustering Tool) [30, 33] views
each log message as a data point with words as categor-
ical attributes. It formulates the log-abstraction task as
a data clustering task and. It processes log datasets at
the word level abd it clusters log data with common fre-
quent words. It does not use a traditional distance-based
clustering approach (e.g., LKE) but a density-based clus-
tering algorithm. It differs from LogHound by considering
only one word when creating frequent itemsets. SLCT is
a three-step process and makes two passes over the data.
It makes the first pass over the log file and builds a word
vocabulary. It considers the words positions in the log mes-
sages and uses user-given threshold s, ”support threshold”.
It then makes a second pass over the log file and, with
every log message containing frequent words, it builds a
cluster candidate. For example, if the log message is Pass-
word for User John created and the words (Password) (for)
(User) (created) are frequent, then the cluster candidate
is Password for User * created . If the cluster candidate
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already exists, then it increments its ”support”. In a last
step, SLCT selects the cluster candidates containing more
log messages than s and abstracts them as event types.
Log messages outside clusters are outliers reported dur-
ing an optional data pass. SLCT requires the user-given
parameter s. It is prone to overfitting with low ”support
threshold” values. The time complexity of SLCT is O(n)
where n is the number of raw log messages [12, 14].

LFA (Log File Abstraction) [34] is built on the obser-
vation that SLCT does not report the event types of all
the log messages in the data but report the event types of
frequently occurring log messages. The SLCT algorithm
discovers dynamic parts in log messages by relying on word
frequency across all log lines in the log file, whereas LFA
finds clusters within log lines. Hence, LFA can find all
event types, not just the ones that occur more than the
supported thresholds required by SLCT. LFA also makes
two passes over the data. In the first pass, it builds a
frequency table that has the number of times a particular
word occurs in a particular position in the log line and,
in the second pass, it extracts the frequency of each word
at each position. Then, LFA determines the frequency
threshold and consider constant words in a log message if
their frequency is not less than this frequency threshold.
The time complexity of LFA algorithm is O(n) where n is
the number of words when considering all log messages in
the log dataset [34].

LogCluster [15] is a new version of the SLCT algo-
rithm. It addresses two shortcomings of SLCT. First, the
SLCT algorithm cannot detect dynamic variables after the
last word in an event type. For example, if we have the log
message password for user John authenticated and pass-
word for user Sam rejected with a support threshold set
to 2. Then SLCT would report the cluster (password,1),
(for,2), (user,3) as the event type password for user al-
though users might prefer password for user * *. Second,
SLCT is sensitive to word position and delimiter noise. For
example, if we have the log message User John Micheal
authenticated SLCT reports the event type User * * au-
thenticated, although users would prefer to have the event
type User * authenticated. Similar to SLCT, LogClus-
ter makes the first pass over the data to identify frequent
words based on user-given support threshold s. However,
it does not consider the word position in the log message
in the first pass. During the second pass, LogCluster ex-
tracts all frequent words from the log message and arranges
them into a tuple then splits the log file into clusters that
contain at least s log messages. Now, all log messages
in the same cluster match the same pattern of frequent
words and wildcards. Each wildcard has the form *m,n
and matches at least m and at most n words. For example,
if we have the log messages User John authenticated and
User John Micheal authenticated with a support threshold
of 2. Then, LogCluster will create the cluster candidate
(User, authenticated) and report the event type User *
1,2 authenticated. Similar to SLCT, log messages without
a cluster are regarded outliers and reported during an op-

tional data pass. Both SLCT and LogCluster make two
passes over the data and their time complexity is O(n)
where n is the number of raw log messages. However,
Logcluster is slower than SLCT due to the simpler cluster
candidate generation procedure of SLCT [15].

IPLOM (Iterative Partitioning Log Mining) [31, 35]
finds all event types in the log file, not only the frequent
ones and it clusters log messages as an entity starting with
the entire log data as a single partition. It employs a
heuristic-based hierarchical clustering algorithm and dis-
covers event types using a 4-steps iterative partitioning;
First, IPLOM assumes that all log messages correspond-
ing to the same event have the same length and then par-
titions all log messages using an event-size heuristics. Sec-
ond, it splits each partition using a token position with
the highest number of similar words. Third, it uses a bi-
jective relationship considering strong correlation between
two tokens at the same position. Finally, it considers the
leaf nodes of the hierarchical partitioning as clusters and
event type. Finally, IPLOM partitioning of the database is
practically a decomposition of the log abstraction problem,
which makes IPLOM a good candidate for using parallel
processing. The time complexity of IPLOM is O(n) where
n is the number of raw log messages [4].

LogSig [36] assumes that the words present in a log-
ging statement are fixed in the source code and do not
change. It considers them as signatures of event types.
It also assumes that the positions of the fixed words can
change because the length of dynamic parameters may
vary for a same event (see Section 2.2). LogSig uses a
message signature-based algorithm to identify event types
using a set of message signatures. LogSig has three steps
and requires a number of clusters k. First, it converts log
messages into pairs of terms while preserving the order of
terms. For example, logSig converts User John authen-
ticated to the pairs (User, John), (User, authenticated),
(John, authenticated). Second, it creates k random log-
message clusters. Then, it iterates and moves log messages
among clusters using a local search-strategy. It stops when
no log message is moved. Third, it scans every log message
in each of the k clusters and selects the terms appearing in
more than half of all the log messages in a cluster. Finally,
it builds the event types using the most frequent common
term pairs. LogSig has an optional domain-specific pre-
processing step to improve its performance. LogSig scales
linearly with the number of raw log messages O(n). How-
ever, its running time also increases linearly with the num-
ber of events, which can lead to relatively longer parsing
time [7]. Although the time complexity of LogSig is O(n),
it must convert each log message into a set of term pairs,
which can be time consuming.

HLAer (Heterogeneous Log Analyzer) [28] HLAer as-
sists log abstraction based on a hierarchical clustering ap-
proach and pattern recognition. HLAer does not require
any specific knowledge about the analyzed system, it does
not make any assumption on the word delimiter used in
the log entry, and it does not require users to specify these
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delimiters. Instead, HLAer tokenizes all the words and
special symbols in the log entry by adding the space as
the delimiter between them. For example, HLAer tok-
enizes the log message Password created, user=john to
Password created , user = john. Then, it performs a hier-
archical clustering of heterogeneous logs messages based on
a pair-wise similarity using the density-based clustering al-
gorithm OPTICS [37]. After finding all the clusters, it per-
forms a bottom-up log pattern recognition within the hier-
archical structure to find a pattern that represents the log
messages in each cluster. HLAer uses Smith–Waterman
algorithm for pattern generation from pairs and the UP-
GMA [38] to generate a pattern from a set of patterns, thus
the event types. HLAer has a O(n2) memory requirement
because it implements OPTICS, an expensive clustering
algorithm for large datasets, which calculates the MinPts-
nearest neighbors for each object, requiring O(n2) pair-
wise distance calculations for n raw log messages. Also,
with HLAer, the time complexity of running UPGMA is
0(n2×l2) where n is the number of log messages and l is the
average number of fields in each log message [39]. Ning et
al. indicate that HLAer might be a good candidate for par-
allel processing because the OPTICS algorithm can easily
be made parallel and the alignment task for each cluster
is fully decoupled and thus can run in parallel.

LogMine [39] overcomes some limitations of HLAer.
Hamooni et al. found HLAer robust to heterogeneity but
not efficient enough when abstracting large log files, due
to its memory requirement and communication overhead.
LogMine uses MapReduce and does not require user input
and does not assume any property of the log messages.
Similar to HLAer, LogMine can abstract heterogeneous
log messages generated from various systems and its algo-
rithm also consists of a hierarchical clustering module and
pattern recognition module with one pass over log mes-
sages. First, LogMine is similar to HLAer: it tokenizes
every word and symbols by adding spaces (or a given de-
limiter). Then, it applies an optional (yet recommended)
pre-processing step to improve efficiency. It uses regular
expressions based on domain knowledge to detect a set
of user-defined types (e.g., date, time, IP, and numbers).
Then, it replaces the real value of each field with its name.
For example, it replaces 2018-04-25 with Date). Third,
it clusters similar log messages using a one-pass version
of the friends-of-friends clustering algorithm and exploits
several optimization techniques to improve performance.
Fourth, it uses a hybrid version of UPGMA [38] to merge
log messages in clusters and identify one event type per
cluster. Finally, it iterates through Steps 3 and 4 until it
reaches the Max Pattern Limit provided by the user or un-
til it encounters the event type containing only wildcards.
The time complextiy of LogMine is O(n) where n is the
number of raw log messages and its memory complexity is
O(numberofclusters).

POP (Parallel Log Parsing) [14] observes that most
ALATs fail to complete in a reasonable time (less than 1
hour) when log data grows to production levels (around

200 million log messages). ALATs are limited by the com-
puting power and memory of a single computer. POP uses
a parallel ALAT implemented on top of SPARK. POP
is similar to IPLOM. It uses both heuristic rules and a
clustering algorithm. POP abstracts log messages in a
three-step process with one pass over log messages. First,
it pre-processes log messages with pre-defined regular ex-
pressions, based on domain knowledge. The second step
is similar to IPLOM, POP clusters the log messages based
on the event size heuristic. In the third step, POP re-
cursively partitions the clusters based on token position
heuristic. This heuristic assumes that if log messages in
a same cluster have a same event type then the tokens in
the same positions should be similar. Fourth, it leverages
log messages in each cluster and generates an event type
from each cluster. Finally, to avoid over-parsing (i.e., sub-
optimal parameter settings) and to mitigate the event size
heuristics in Step 2, POP clusters similar groups based on
their event types using hierarchical clustering. It merges
the groups in the same cluster and generates event types
by calculating the Longest Common Subsequence. The
time complexity of POP is O(n) where n is the number of
raw log messages.

5.2.5. Supervised classification
NLP-LTG (Natural Language Processing–Log Tem-

plate Generation) [40] considers event template extraction
from log messages as a problem of labeling sequential data
in natural language. It uses Conditional Random Fields
(CRF) [41] to classify words as a static/dynamic part of
the log messages. The training data consists of log mes-
sages. To construct the labeled data (the ground truth), it
uses human knowledge in the form of regular expressions.

NLM-FSE (Neural language Model-For Signature Ex-
traction) [42] trains a character-based neural network to
classify static/dynamic part of log messages. It constructs
the training model through four layers. (1) The embed-
ding layer transforms the categorical character input into
a feature vector. (2) The Bidirectional-LSTM layer [43]
allows each prediction to be conditioned on the complete
past and future context of a sequence. (3) The dropout
layer avoids over-fitting by concatenating the results of the
bi-LSTM layer, and (4) the fully connected, feed-forward
neural network layer predicts the event template using the
Softmax activation function.

6. ALATs Quality Model

Deissenboeck et al. [44] state that, in an Assessment
Quality Model (AQM), the assessment of the quality as-
pects (QAs) is either qualitative or quantitative and as-
pects not directly measurable are described qualitatively.
Following our SLR’s methodology detailed in Section 4.4,
we identified, grouped, and combined characteristics of
the ALATs in the literature into seven desirable quality
aspects. For example, we identified that Hamooni et al.
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Table 1: Characteristics of ALATs Discovery Phase Algorithm (“NA” means that the algorithm does not require this characteristic, “NS”
means that the ALAT does not specify a solution to efficiently update event types, “MI” means missing information, text in italic highlights
information deduced to the best of our understanding and not specifically specified in the reviewed papers.)
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yp
es
up
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MolFi y n o(n2) re-train, offline (batch mode)
AEL y n o(n) re-train, offline (batch mode)
IPLOM n n(parallel mode ready) o(n) re-train, offline (batch mode)
POP y y o(n) re-train, offline (batch mode). Offers solution for new logs detection
HLAer n n(parallel mode ready) o(n2) online
LogMine optional y o(n) re-train, offline (batch mode)
LKE y n o(n2) incremental; generates new event type
LogSig optional n o(n) re-train, offline (batch mode)
LogHound n n MI re-train, offline (batch mode)
LogCluster n n o(n) re-train, offline (batch mode)
LFA n n o(n) re-train, offline (batch mode)
SLCT n n o(n) re-train, offline (batch mode)
Drain y NA o(n) online
Spell n NA o(n) online
SHISO n NA o(n) online
nlp-ltg y NA o(n) require re-labelling and re-training
nlm-fse n NA o(n) incremental re-training

[39] defined four desirable properties that ALATs should
have: no-supervision, heterogeneity, efficiency, and scala-
bility. While, Jiang et al. [29] defined four aspects re-
garding ALATs: interpretability, system knowledge, effort,
and coverage. He et al. [4] addressed challenges in tuning
the ALATs parameters and the importance of considering
the parameters tuning effort. Furthermore, He et al. [14]
indicated that, although an ALAT might have high accu-
racy, it also must be robust in handling large log datasets.
Mizutani et al. [12] indicated the importance of abstract-
ing log message immediately for troubleshooting. Finally,
Makanju et al. [35] conveyed the importance of having
high coverage and discovering rare events.

We now propose an AQM for evaluating the discov-
ery phase of ALATs. Our AQM defines seven desirable
quality aspects identified and collated through our SLR:
mode, coverage, delimiter dependence, efficiency, scalabil-
ity, system knowledge dependence, and parameter tuning
effort. We provide a typical question, a definition, and
classification criteria.

Accuracy determines the capacity of an ALAT to iden-
tify correctly the static and dynamic fields of a log message
and abstract it to correct event type during the discovery
phase [3]. The accuracy of a same ALAT varies according
to the log formats and origins. For example, He et al. and
Zhu et al. evaluated various ALATs in terms of their accu-
racy (F-measure) across the same log datasets generated
from 16 systems and showed that some ALATs have high
accuracy on certain files but low on others [7, 8]. Prac-
titioners obtain insights from the accuracy values in the

literature but must evaluate it on their own log datasets.

6.1. Mode
Typical Question: Can the ALAT dynamically abstract
incoming log messages into event types without prior knowl-
edge obtained from an offline discovery phase?
Definition: Existing studies [9, 4, 13, 12] define two modes
for ALATs: offline and online. Offline ALATs require batch
processing (collect logs for a certain time) before abstract-
ing log messages into event types, i.e., applying an offline
discovery phase. Then, they use the previously discov-
ered events types to match new incoming logs in batch or
stream. Online ALATs abstract log messages into event
types on the fly, dynamically updating discovered event
types. Online ALATs do not need a batch mode discovery
phase.
Classification Criteria: We study the algorithm of each
ALAT. If an ALAT does not require a batch discovery
phase then we classify it as “online”. Otherwise, we classify
it as “offline”.
Domain: Offline, online.

6.2. Coverage
Typical Question: Can the ALAT abstract all input log
messages?
Definition: Coverage indicates the ability of an ALAT
to abstract each log message to an appropriate event type
[29]. Log entries of event types for troubleshooting and
anomaly detection are rare and there is a risk that the
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ALAT removes them during the discovery phase if occur-
ring below a threshold. For example, Jiang et al. [29]
found that many log entries are not abstracted to any event
type by SLCT because they do not occur often enough for
a frequent pattern to emerge.
Classification Criteria: We study the algorithm of each
ALAT, if its algorithm presents a solution to abstract all
input log messages, then we classify it as “all messages”
coverage, else as “frequent messages” coverage.
Domain: All messages, frequent messages.

6.3. Efficiency
Typical Question: Does the ALAT execute the discovery
phase in a reasonable running time and reasonable resource
utilization?
Definition: SquaRE [45] defines performance efficiency
as the degree to which a system can complete its functions
with a running time and resource utilization that meet
requirements. Correspondingly, most of the reviewed ar-
ticles (e.g., [14, 36, 39]) evaluated the efficiency of ALATs
by measuring the running time for completing the discov-
ery phase on different log datasets (different formats and
sizes). Only few articles, e.g., [39, 35, 30], measured the
memory requirement of their proposed ALATs.
Classification Criteria: We reviewed the experiments
conducted on each ALAT in the selected articles and ex-
tracted the recorded efficiency (running time/memory re-
quirements) of the ALAT wrt. a specific log dataset. We
classified an ALAT as having low efficiency if it fails to
complete the discovery phase on a given log dataset in a
reasonable time. We classified an ALAT as having high
efficiency if it completes the discovery phase on a dataset
in a reasonable time. We considered the time that a dis-
covery phase takes as being reasonable if it runs in less
than one hour as shown by He et al. in [14].
Domain: High efficiency, low efficiency

6.4. Scalability
Typical Question:Can the ALAT discovery phase handle
an increasing large volume of log messages?
Definition: Scalability is defined in ISTQB [46] as the
capability of a software product to be upgraded to accom-
modate increasing loads. Similarly, Hamooni et al. [39]
defined the scalability of ALATs as the ability to process
increasing large batches of log messages without incur-
ring CPU and memory bottlenecks. Typically, researchers
evaluate the performance of their ALATs on small sam-
ple log datasets. However, ALATs deployed in production
must scale and complete their discovery phase on large
log datasets (approximately 200 million log messages [47])
in a reasonable time. For example, IPLOM scaled lin-
early with the number of log messages on BGL2K and
HDFS2k. However, its memory requirement and running
time rapidly increased when abstracting larger log datasets
(HDFS30m and BGL30m), and it even failed to complete

on HDFS(100m) [13]. Consequently, He et al. [7, 14] con-
cluded that offline ALATs must implement a paralleliza-
tion mechanism not to be limited by the computing power
and memory of a single computer.
Classification Criteria: We study the algorithm of each
ALAT, and we classify an ALAT as “scalable” to produc-
tion log dataset if it accelerates the discovery process by
implementing a parallelization mechanism, or if it is an on-
line ALAT (process log messages one after another). We
classify an ALAT as potentially scalable if the authors ex-
plicitly specify that their algorithm can be easily imple-
mented in parallel mode.
Domain: Scalable, potentially scalable, not scalable.

6.5. System Knowledge Independence
Typical Question: Does the ALAT require any prior
manual hard-coded rules, regexps, heuristics based on ex-
perts’ domain knowledge?
Definition: Jiang et al. specifies that this QA pertains
to the amount of knowledge needed about a system for an
ALAT to work [29]. Some ALATs require a domain expert
to encode rules/regexps based on their experiences. For
example, the first step of AEL extracts the dynamic fields
in raw log messages based on rules hard-coded by a domain
expert (e.g., textttword=value and is-are-was-were value).
Similarly, the first step of LKE prunes the obvious dynamic
fields in raw log messages (e.g., numbers, URIs, IP ad-
dresses) based on regexps hard-coded by a domain expert
to describe those parameter values. Even though these
rules/regexps are simple, they make ALATs infrastructure-
dependent, require further manual configuration, and could
be difficult to maintain and evolve [28, 48]. In the liter-
ature, this QA is also referred to as no-supervision [39],
domain knowledge [36, 28, 14], needed system knowledge
[29], or infrastructure-dependency [48].
Classification Criteria: We study the algorithm of each
ALAT, and we classify it as dependent of system knowl-
edge if it explicitly specifies that (1) it requires users to
define hard-coded rules and/or (2) it requires users to set
empirical regular expressions manually.
Domain: Independent of system knowledge, dependant
of system knowledge.

6.6. Delimiter Independence
Typical Question: Can the ALAT abstract various for-
mats of raw log datasets with different delimiters?
Definition: Heterogeneous log datasets are generated from
different systems and components and have a different for-
mats and, thus, different delimiters (e.g., “:”, “|”, “=”, “;”,
etc.). Ning et al. [28] reported that using pre-defined, pop-
ular delimiters on heterogeneous log datasets might lead
to incorrect abstractions.

For example, IPLOM [35] assumes that spaces delimits
words. It abstracts “creating password: user = (John)”,
“creating password: user =(John)”, “creating password:
user= (John)”, “creating password: user = (John)”,
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etc. into “creating password: *” while the correct abstrac-
tion is “creating password: user *”. Conversely, HLAer
algorithm does not assume any predefined delimiters and
separates all special symbols and words in a log message.
Consequently, all the examples above have the same tok-
enization: “creating password : user = ( John )”.
Classification Criteria: We study the algorithm of each
ALAT and report an ALAT as pre-defined if its algorithm
explicitly specifies that it uses a predefined/popular set
of delimiters. We classify an ALAT as user-defined if it
explicitly allows users to modify its set of delimiters. We
classify an ALAT as independent if its algorithm does not
rely on any predefined/popular delimiters.
Domain: Pre-defined, user-defined, idndependent.

6.7. Parameters Tuning Effort
Typical Question: Does the ALAT require user-defined
parameters?
Definition: Most ALATs require users to fine-tune their
parameters, usually following a trial-and-error process [3].
If the parameters are not tuned correctly, then the per-
formance of the ALATs are sub-optimal [3]. Parameter-
tuning effort reflects the knowledge required to set and
update the parameters of an ALAT [47].
Classification Criteria: We study the algorithm of each
ALAT and present the parameter(s).
Domain: The set of parameters.

7. ALATs Comparison

We revisit the ALATs presented in Section 5, according
to the aspects of our quality model described in Section 6.

Our results are based on a thorough review of ALAT
development contexts and algorithmic characteristics, de-
tailed in Section 5 and Table 1, and on the results of empir-
ical experiments and experiences shared in the literature
(see Section 4.4).

Table 2 resume the results and present references to
the papers that evaluated the ALATs in terms of the QAs.
We provide practitioners with direct references and sum-
marize/group the findings so practitioners benefit from the
researchers’ experience with ALATs.

In the following, we discuss our findings and provide
brief conclusions and promising research directions. De-
tailed summary of each ALATs algorithm and character-
istics is presented in section 5 and Table 1

7.1. Mode
Table 2 shows that Drain, SHISO, and Spell are online

ALATs. Online ALATs adjust their event types gradually,
they do not need access to all the log data, and they do not
require an offline discovery phase. Empirical experiments
conducted by Du et al. [9] and He et al. [13], which
compared the accuracy and efficiency of online ALATs to
offline ALATs (e.g., LKE, LogSig, IPLOM) on several log
files showed that online ALATs are competitive with offline
techniques in terms of accuracy and efficiency.

Observation. ALATs can be online without compromising
accuracy and efficiency.

Promising Direction. There are few instances of online
ALATs in the literature and researchers could investigate
further online ALATs. While offline ALATs are desir-
able to work with a previously-known set of abstracted
event types, online ALATs are useful for Web services
and systems online monitoring and processing, in which
the volumes of logs increase and evolve rapidly, making
batch event types discovery time-consuming [9, 13]. On-
line ALATs could be a valuable addition to modern log-
management systems (e.g., ElasticSearch or Splunk), which
collect logs in streams.

7.2. Coverage
Jiang et al. [29] reported that ALATs based on frequent

itemsets accurately extract frequently occurring events but
might fail to identify rare events. Further, Zhu et al. [8]
found that SLCT and LogCluster cannot recognise low
repetition events while ALATs based on iterative partition-
ing, clone detection, or clustering techniques enjoyed high
coverage. Nagappan et al. [34] indicated that LogHound,
LogCluster, and SLCT are designed to abstract frequent
log messages and may not abstract log messages that oc-
cur less than a user-given threshold. For example, Na-
gappan et al. [34] showed that with thresholds of 50%,
25%, 10%, 5% and even 1%, SLCT could not abstract
all log-messages. Zhu et al. [8] found that LFA is based
on frequent-pattern clustering and has a high coverage be-
cause it identifies event types by generating clusters within
each log message, unlike LogCluster, LogHond, and SLCT
that find clusters within the whole log dataset [34].

Observation. ALATs based on frequent-itemset mining (e.g.,
LogCluster) tend to have low coverage. ALATs with low
coverage might be inadequate for troubleshooting or anomaly
detection because, during the analysis phase, they would
produce false positives [29].

Promising Direction. ALATs based on frequent mining
(i.e., LogCluster, LogHound, and SLCT) are simple, com-
mand-based tools that can be easily integrated with other
systems and pipelines. They help users to build a model
of their log files. A promising direction would be to com-
bine these ALATs with anomaly detection techniques to
provide full-scale log-analysis capability.

7.3. Efficiency
Researchers conducted case studies and empirical ex-

periments to evaluate and compare their ALATs with oth-
ers. We group and report their findings and shared expe-
riences on the efficiency of each ALAT. In the following,
we only report on ALAT’s efficiency as reported in the re-
viewed papers and do not measure the ALAT’s efficiency
ourselves. Also, we do not study the worst-case scenario
of each ALAT, which we leave for future work.
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Table 2: Automated Log Abstraction Techniques Aspects (“System Independence” and “Tuning” correspond to “System knowledge indepen-
dence” and “Parameter tuning effort”. “Off.” and “On.” means “Offline” and “Online”. “PR” means Proprietary, “PX” means Proxifier, and
“Zk” means Zookeeper. “MI” means missing information “ Training” means that it depends on the training data. ∗ The effort is for labeling
the data.)
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Class Datasets
MolFi Evolutionary Search Off. All Low Android, BGL, HDFS, HPC,

Zk, PX
7[3] 3[3] 7

pre-
defined
[3]

NA [3]

AEL Clone detection Off. All High Android, HDFS 7[29] 7
[48, 29]

NA
(rules)
[48, 34]

merge threshold
[29]

Low BGL(1GB)
IPLOM Iterative Partition Off. All High: HPC, Thunderbird, Zk,

Hadoop, Spark, Windows,
Linux, Apache, PX, SysLog,
Access, Error, System, Rewrite

potentially
[28, 4, 13]

3
[35, 31]

7
pre-
defined
[29, 35]

FS, PS, UB,
LB, CG [31]

POP Iterative Partition Off. All High BGL, HDFS, HPC, PX, Zk 3[14] 7[14] 7
pre-
defined
[14]

GS, splitAbs,
splitRel,
maxDist [14]

HLAer Hierarchical Cluster-
ing + PR

Off. All Low PR(10m) potentially
[39]

3[28] 3[39] MinPts, ε [28]

LogMine Hierarchical Cluster-
ing + PR

Off. All High PR(10m) 3[39] 3optional
[39]

3[39] maxPatternLimit
(optional) [39]

LKE Hierarchical Cluster-
ing

Off. All Low BGL, HDFS, HPC, Zk, PX 7[14, 49, 3] 7
[48, 32]

7
pre-
defined
[48, 32]

ν, %, ζ (op-
tional) [32]

LogSig Clustering Off. All High Thunderbird, Zk, Hadoop,
Spark, Windows, Linux,
Apache, PX

7[14, 49,
13]

3optional
[36]

MI k [36, 14]

Low HDFS, BGL, HPC
LogHound Frequent itemsets

mining
Off. Freq. High SysLog, Windows, Access, Er-

ror, System, Rewrite
7[31, 35] 3[30] 7

user-
defined
[30]

s [31]

Low HPC(11.4MB)
LogCluster Frequent pattern clus-

tering
Off. Freq. High Nagios, Unix deamon, Mail

server
7[15] 3[15] 7

user-
defined
[15]

s [30]

Low Authorization, Network device,
application, Web Porxy(16GB)

LFA Frequent pattern clus-
tering

Off. All MI 7[34] 3[34] MI NA [34]

SLCT Frequent pattern clus-
tering

Off. Freq. High BGL, HDFS, HPC, Zk, PX, Sys-
Log, Windows, Access, Error,
System, Rewrite

3[14, 29] 3[30] 7
user-
defined
[30]

s [31, 14]

Drain DAG On. All High BGL, HPC, Thunderbird,
HDFS, Zk, Hadoop, Spark,
Windows, Linux, Apache, PX

3[13, 4] 7[13, 4] 7
pre-
defined
[13]

NA [13, 4]

Spell LCS On. All High BGL, HPC, Thunderbird,
HDFS, Zk, Hadoop, Spark,
Windows, Linux, Apache, PX

3[13] 3[9] 7
user-
defined
[9]

τ (optional) [9]

SHISO Parse tree On. All High HPC, Thunderbird, Zk,
Hadoop, Spark, Windows,
Linux, Apache, PX

7[13] 3[12] 3[12] c, ts, tm, tr [12,
9]

Low BGL, HDFS
NLP-LTG Conditional Random

Fields
Off. All Training 3 7 NA

(manually
labeled)

High∗

NLM-FSE bi-LSTM (character-
based)

Off. All Training 3 7 NA
(Character
based)

High∗
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MolFi: Messaoudi et al. [3] compared the running time
of MolFi to Drain and IPLOM on a benchmark composed
of BGL (2K le 5), BGL (100K le), HDFS (2K le), HDFS
(60K le), HPC (2K le), Proxifier (2K le), and Zookeeper
(2K le). They reported that (1) MolFi surpassed Drain
on BGL (100K le) and (2) it was the slowest on all the
other log datasets. Zhu et al. [8] evaluated the running
time of MolFi on Android, BGL, and HDFS. They showed
that (1) MolFi failed to abstract BGL (500MB) and An-
droid (100MB) in a reasonable time (i.e., 6+ hours); (2)
it could abstract HDFS (1GB) because HDFS log dataset
has a low number of events. They attributed the low ef-
ficiency of MolFi to its iterative algorithm NSGA-II, in
O(n2), because a larger population size requires more fit-
ness computations [3] and execution time increases rapidly
as size grows.

LKE: Du et al. [9] found that LKE is significantly slower
than IPLoM and Spell on BGL and HPC and that it failed
to complete on BGL (5m le) and HPC (1.5K le). He et
al. [14, 7, 4] found that LKE failed to complete on sev-
eral log datasets, such as BGL (40K le), HDFS (100K le),
HPC (75K le), Proxifier (9600 le), and Zookeeper (32K le).
They attributed the low efficiency of LKE to its quadratic
time complexity.

HLAer and LogMine:Hamooni et al. [39] compared HLAer
and LogMine on three proprietary and three public log
datasets. They showed that (1) HLAer memory consump-
tion is approximately five times higher than LogMine due
to its OPTICS algorithm quadratic memory consumption
(2) LogMine running time is 500 times faster than HLAer,
(3) HLAer failed to complete on an industrial-proprietary
log dataset (10GB), and (4) LogMine pattern-recognition
running time stays constant for different log datasets of the
same size because its algorithm scans the data once, irre-
spective of how many event types exist in the dataset. In
contrast, HLAer pattern-recognition algorithm UPGMA
has a quadratic time complexity.

AEL: Zhu et al. [8] measured the running time of AEL
on Android (1GB), BGL (1GB), and HDFS (1GB). The
results show that AEL is very efficient (i.e., approximately
tens of minutes) on Android and HDFS log datasets. Yet,
its running time increased rapidly on BGL. They attributed
the low efficiency of AEL on BGL to the fact that AEL
compares each log-message in a cluster with all the event
types in the same cluster. Therefore, AEL running time in-
creases on log datasets that yield large clusters, e.g., BGL.

LogHound: LogHound entails high computational cost
during candidate generation on datasets containing log-
messages of high length (e.g., HPC, BGL). For instance,
Makanju et al. [35] evaluated the running time and the
memory consumption of LogHound on seven log datasets

5“le” stands for log entries in opposition to sizes in bytes.

Access, Error, HPC, Rewrite, SysLog, System, and Win-
dows. Although LogHound performed well on six datasets,
it crashed and could not complete on HPC (11.4MB). They
attributed the low efficiency of LogHound on HPC to the
large number of itemsets generated for each log message.

LogSig: He et al. [14, 7, 4, 13] found that LogSig com-
pleted the discovery phase on Proxifier (9,600 le), Windows
(2K le), Zookeeper (64K le), Thunderbird (2K le), Hadoop
(2K le), Spark (2K le), Linux (2K le), and Apache (2K le)
but was slower than SLCT and/or IPLOM. LogSig failed
to complete in a reasonable time on HDFS (10m le) (i.e.,
days), HPC (375K le) (i.e., 16+ hours), and BGL(4m le)
(i.e., days). They attributed the low efficiency of LogSig,
particularly on dataset containing lengthy log messages,
to its slow clustering iterations in which LogSig converts
each log-message to a set of term pairs.

IPLOM: Makanju et al. [35] compared the efficiency of
IPLOM to SLCT and LogHound on seven log datasets
HPC, SysLog, Windows, Access, Error, System, and Rewrite.
The results show that IPLOM is efficient in terms of run-
ning time and memory utilization on all datasets. He et
al. [14, 4] evaluated the running time of IPLOM on HPC
(375K le), BGL (4m le), HDFS (10m le), Zookeeper (64K
le), Proxifier (9600 le), Thunderbird (2K le), Hadoop (2K
le), Spark (2K le), Windows (2k le), Linux (2K le), and
Apache (2K le) and they reported that IPLOM is efficient
on all datasets (e.g., HDFS (10m le) in 5 min). Du et
al. [9] compared IPLOM to Spell on HPC and BGL log
datasets and reported that IPLOM was the fastest on HPC
and slightly slower than Spell on BGL. They attributed
the efficiency of IPLOM to the fact that it is not affected
by long patterns and low support threshold because of its
partitioning algorithm.

SLCT: Makanju et al. [35] evaluated the running time and
the memory consumption of SLCT on seven datasets HPC,
SysLog, Windows, Access, Error, System, and Rewrite.
Although LogHound crashed on HPC, SLCT was not af-
fected by the long log-message lengths in HPC because it
only generates 1-itemsets. He et al. [14, 7] evaluated the
running time of SLCT on HPC, BGL, HDFS, Zookeeper,
and Proxifier and showed that SLCT is faster than POP
and IPLOM on all datasets and that its running time scales
linearly with the number of log messages. Mizutani et al.
[12] compared SLCT, IPLOM, and SHISO on a public se-
curity log dataset (60K le)) and showed that SLCT out-
performed IPLOM and was slightly slower than SHISO.

LogCluster: Although LogCluster is an improved im-
plementation of SLCT, Vaarandi et al. [15] found that
SLCT completed faster than LogCluster on seven differ-
ent log datasets: UNIX daemon (740MB)), Web proxy
(16GB), Authorization messages (3GB), Nagios (391MB),
Mail server (246MB), Network device (4GB), and applica-
tion messages (9GB) due to its simpler candidate genera-
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tion procedure. LogCluster failed to complete in a reason-
able time (i.e., 2+ hours) on Web proxy messages of 16GB.

POP: He et al. [14] evaluated the running time of POP
on HPC, BGL, HDFS, Zookeeper, and Proxifier: (1) POP
is efficient on all datasets; (2) POP is slower than SLCT
and IPLOM because Pop parallelization mechanism en-
tails more running time for setting up the nodes and for
communications among nodes; (3) POP enjoys an almost
constant running time as the log size grows; and, (4) POP
becomes even faster than IPLoM on HDFS (10m le).

SHISO: Mizutani [12] evaluated SHISO on Public Secu-
rity Log (670K le) and found that SHISO was faster than
SLCT and IPLOM. Yet, He et al. [4, 13] found that SHISO
was the slowest between IPLOM, Spell, and Drain on HPC
(375K le), Zookeeper (64K le), Proxifier (9600 le), Hadoop
(2K le), Windows (2K le), Spark (2K le), Linux (2K le),
and Apache (2K le) and failed to complete in reasonable
time on BGL (4m le) (i.e., days) and HDFS (10m le) (i.e.,
18+ hours). They attributed the low efficiency of SHISO
to its tree construction algorithm that may create an un-
balanced tree.

Spell: Du et al. [9] compared Spell and IPLOM on BGL5m
and HPC400K. They found that Spell completed in 9 sec-
onds on HPC, slightly slower than IPLOM, and outper-
formed IPLOM on BGL. He et al. [4] evaluated Spell on
BGL (4m le), HPC (375K le), HDFS (10m le), Zookeeper
(64K le) and Proxifier (9600 le). The results showed that
Spell is faster than SHISO on all datasets and tends to
become as fast as Drain and IPLOM on large log datasets
(i.e., BGL and HDFS). The authors attributed the in-
crease of Spell efficiency as the log dataset size grows to
the fact that most log messages directly find an event type
match in the prefix tree. The computation cost of calcu-
lating the LCS between two log-messages is considerably
reduced.

Drain: He et al. [13] compared its proposed ALAT,
Drain, to IPLOM, SHISO, and Spell on 11 log datasets
HPC(375K le), BGL (4m le), HDFS (10m le), Zookeeper
(64 le), Proxifier (9600 le), Thunderbird (2K le), Hadoop
(2K le), Spark (2K le), Windows (2K le), Linux (2K le),
and Apache (2K le). The results showed that Drain re-
quired the least running time on all datasets (e.g., BGL
(4m le) in 2 min and HDFS (11m le) in 7 min) and had sim-
ilar running time compared with the offline ALAT IPLoM.
Messaoudi et al. [3] reported that Drain is efficient on
BGL, HDFS, HPC, and Zookeeper, but Drain crashed on
a proprietary dataset (300K le).

Observation. We observe that: (1) some ALATs are highly
efficient on certain types of log datasets, but fail to com-
plete on others; (2) the ALATs efficiency depends on the
characteristics of the log datasets [47] (e.g., numbers of
event types, length of log-messages, length of patterns,

number of log-messages, etc.); and, (3) few articles mea-
sured/reported the memory consumption of the ALATs
during their empirical experiments.

Promising Direction. (1) Researchers could investigate no-
vel ways to enhance efficiency, such as the use of dis-
tributed architecture, e.g., installing ALATs on several
nodes rather than on a unique computer [13]; (2) Re-
searchers could establish a “common” log dataset on which
all ALATs should be evaluated, which would ease their
comparison; (3) resource utilization is an important as-
pect of evaluating the efficiency of a system and stud-
ies should evaluate and report the memory consumption
of their proposed ALATs; and (4) practitioners can ob-
tain insights from the reported efficiency of each ALAT
but should evaluate the ALATs efficiency on their own log
datasets. With respect to (2), we recommend researchers
to test their ALATs on datasets with many event types
and long log message lengths, BGL and HPC, to validate
their efficiency.

7.4. Scalability
The running time of sequential, offline ALATs with

time complexity O(n) scales linearly with log size. How-
ever, He et al. [14] showed that such ALATs can have
a steep gradient and, thus, an long running time on pro-
duction logs. They evaluated three such ALATs, LogSig,
SLCT, and IPLOM, on two large, synthetic log datasets:
BGL (200m le) and HDFS (200m le). They showed that
(1) LogSig could not complete HDFS10m and BGL10m
in a reasonable time; (2) SLCT completed HDFS200m in
about 30 min and BGL200m in about 18 min; and, (3)
IPLOM failed to complete on HDFS150m and incurred
16+GBmemory consumption for BGL30m and HDFS30m.
However, SLCT running time increased rapidly due to
a single thread of control and IPLOM memory require-
ment and running time increases because IPLOM is lim-
ited by the memory of a single computer and loads all
log-messages into memory. Makanju et al. [35] reported
that LogHound crashed on HPC (11.4MB) as the virtual
memory had raised to 4GB and the resident memory con-
sumption became 1.6GB. Also, Zhu et al. [8] reported
that AEL running time increased rapidly on a large BGL
dataset.

LogMine and POP implement parallel computing architec-
tures and stay efficient when handling large-scale data. In
particular, POP is built on top of Apache Spark, and Log-
Mine scans log-messages only once using a MapReduce-
based mechanism. He et al. [14] found that; (1) POP
abstracts large-scale log dataset HDFS200m in about 7
min and BGL200m in about 20 min; (2) POP is faster
than SLCT on HDFS (200m le); (3) POP is slower than
SLCT on BGL but POP enjoys the slowest increase in
its running time which becomes similar to SLCT as log
size increases to 200m log entries. Hamooni et al. [39]
compared the running times of sequential and MapReduce
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implementations of LogMine and found that the MapRe-
duce implementation runs up to five times faster than the
sequential implementation and can abstract millions of log
messages in a few minutes.

As detailed in Section 5, authors [35, 28] specified that
IPLOM and HLAer algorithms are designed to be easily
parallelized to handle large-scale data which make them
potentially scalable.

Online ALATs, Drain, SHISO, and Spell are not limited
by the memory of a single computer and abstract log-
messages one at a time. He et al. [13] found that Drain
and Spell are suitable for large-scale log datasets (e.g.,
Spell completed HDFS (10m le) in approximately 11 min).
However, SHISO was not scalable and took 3 hours to com-
plete BGL (4m le) and approximately 2 hours to complete
on HDFS (10m le). This mainly because SHISO uses deep
parse trees while Drain uses a fixed DAG with a cache
mechanism and Spell uses prefix trees.

Observation. (1) Most of the sequential, offline ALATs are
efficient on sample log datasets and their running times
increase linearly wrt. the number of log messages [12, 7,
9]. (2) Efficient sequential, offline ALATs may not handle
large log datasets because they are limited by the memory
and the computing power of a single computer. (3) Offline
ALATs that implement parallel computing architectures
(i.e., LogMine and POP) stay efficient when handling large
log datasets. (4) Online ALATs might not complete in a
reasonable time if their data structure construction algo-
rithm builds a deep and unbalanced data structure of log
messages (e.g., SHISO).

Promising Direction. In production, ALATs must scale to
abstract large log files in reasonable times. Researchers
could propose algorithms that implement parallelization
algorithms and–or that decouple individual tasks. Another
direction is to add data/task parallelization algorithms to
existing ALATs, such as IPLOM and HLAer.

7.5. Independence of System Knowledge
AEL algorithm relies on domain experts hard-coded rules
(e.g., “is-are-was value”) to identify dynamic fields in raw
log messages (e.g., IP addresses, numbers, memory) and
replaces them with a generic token ($V) then divides log
messages into different bins according to their numbers of
words and generic token ($V) [29].

LKE reduces the influence of the dynamic fields in raw
log messages on its clustering algorithm by pruning typi-
cal dynamic fields according to empirical regexps provided
by a domain expert [32].

MolFi enhances the accuracy of its algorithm by replacing
typical dynamic fields with a special token #spec# using
regexps hard-coded by a domain expert. In later stages of

the search, MolFi ignores the special tokens #spec# [3].

POP and Drain algorithms implement a “pre-processing
by domain knowledge” step to enhance their accuracy.
Thus, they require experts to write regexps based on their
domain knowledge. The algorithm uses these regexps to
prune the dynamic fields in raw log messages. POP also
allows users to optionally provide regexps to specify the
characteristics of relevant log events [14].

LogSig [36] algorithm does not require domain experts
to hard-code rules or regexps manually. However, Tang
et al. [36] presented two optional approaches to improve
the accuracy of LogSig algorithm by relying on domain
experts’ regexps or constraints.

LogMine [39] implements a type detection step to en-
hance the performance of LogMine, which requires experts
to write a set of regexps to pre-define types such as date,
time, IP, and number. Then LogMine replaces the real
value of each field with the name of the field. For example,
LogMine replaces 2019/10/25 with date and 192.168.10.15
with IP. This step is not mandatory.

HLAer, IPLOM, LFA, LogCluster, LogHound, SLCT, SHISO,
and Spell do not rely on rules or regexps for their algorithm
to work.

Observation. (1) There is a trade-off between indepen-
dence of system knowledge and performance. (2) Modern
systems are more and more complex, which makes ade-
quate and up-to-date detailed domain knowledge difficult
to obtain [28]. (3) ALATs that rely on domain experts’
manual effort may not be flexible, heterogeneous, and evo-
lutive.

Promising Direction. Researchers should investigate ALATs
that do not rely on domain knowledge, such as ALATs
that dynamically updates their rules. If not possible, they
should propose ALATs that allow experts to use their do-
main knowledge but without requiring it.

7.6. Delimiters Independence
To determine the log-messages lengths (i.e., number of

words) during the first partitioning of log messages, Drain,
IPLOM, and POP assume that tokens/words are delimited
by white spaces. However, as detailed in Section 6.6, this
assumption is incorrect and may produce inaccurate par-
titions.

To tokenize log messages, LKE uses the pre-defined de-
limiter white space and MolFi white space, parentheses,
and punctuation characters. Ning et al. [28] indicated
that pre-defined delimiters limit the analysis of log datsets
with different delimiters.
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To identify frequent words in the log dataset, LogClus-
ter, LogHound, and SLCT use customizable delimiters us-
ing the –separator option for LogCluster and -d option
for LogHound and SLCT (white space by default). Spell
uses a customizable set of delimiters but Mi et al. [47]
found that user-defined delimiters may not be applicable
across systems and users should redefine them for each log
dataset format.

HLAer, LogMine, SHISO do not rely on pre-defined or
user-defined delimiters to identify tokens/words in the log
entry. They consider each word, number, and symbol in
the log entry as a token and separate them by a white
space. For example 017-09-26 12:40:15, INFO impl.Fs-
DatasetImpl - Time taken to scan block pool BP-80514-
3380 on /home/data3/current 30ms is tokenized into 017
- 09 - 26 12 : 40 : 15 , INFO impl . FsDataset-
Impl - Time taken to scan block pool BP - 805143-
380 on / home / data3 / current 30 ms. Therefore,
these ALATs can tokenize heterogeneous log datasets with-
out any delimiter definition from the user.

Observation. Supporting multiple log formats is challeng-
ing but required for the industrial adoption of ALATs. In
the absence of a standard and common log format, ALATs
must support new formats and thus be independent of de-
limiters or allow user-defined delimiters.

Promising Direction. Most ALATs depend on token de-
limiters and predefined rules. A standard and common
log format would promote sharing of data and synergy
among ALATs. Such log format could draw inspiration
from the attempts to develop a standard language for exe-
cution traces (a structured form of logs) [50, 51], in which
meta-modeling techniques allow scalable and expressive
trace formats.

7.7. Parameters Tuning Effort
We now present the user-given parameters required by

each ALAT and the experience shared by researchers when
tuning them.

Drain initializes automatically and updates dynamically
its parameters for each log file. [13].

LFA and MolFi do not require the user to set any pa-
rameter and use internal heuristics to set the threshold(s)
of their algorithms automatically. For example, LFA sets
its word-frequency threshold to the lowest word frequency
in the cluster with the most number of words.

Spell has one parameter message type threshold τ to com-
pare a new log message sequence with existing LCSseq in
LCSMap (as detailed in Section 2). Users can optionally
set this parameter; otherwise, Spell sets τ to a default
value of half the length of the new sequence [9].

LogMine has one parameter Max Pattern Limit to deter-
mine the desired level in the hierarchy of patterns. Users
can set this parameter, else LogMine iterates until it reaches
the most generic pattern (i.e., the event type containing
only wildcards [39].

AEL does not explicitly specify that it requires users to
set a parameter. However, Jiang et al. [29] used a thresh-
old of 5 to prevent merging of similar yet different event
types. This value was adequate for their case study but
users must adjust this threshold based on the content of
their log datasets.

LogCuster, LogHound, and SLCT require users to set
a support threshold s. They identify itemsets/words that
occur more frequently than s in the log datasets and gener-
ate cluster candidates from these frequent itemsets. They
only output clusters with a support value equal to or greater
thans. Vaarandi et al. [30] found that setting s to an
appropriate value is a challenging task because the iden-
tification of runtime parameters depends on it. Empirical
experiments [15, 33, 48, 35] showed that a high support
threshold value generates generic event types and anoma-
lous messages could go undetected while a low threshold
yields too specific event types.

IPLOM requires users the set five parameters. (1) File
Support threshold (FS) controls the number of clusters
produced. Clusters that have a lower support value than
this threshold are discarded and increasing this value de-
creases the number of found event types. (2) Partition
Support threshold (PS) controls backtracking during the
partitioning step. Setting this threshold to 0 means that
no backtracking will be done. (3) Upper Bound (UB) and
Lower Bound (LB) controls the 1-to-M and M -to-1 re-
lationships during the partitioning by bijection to decide
if the M side represents constants or dynamic fields. (4)
Cluster Goodness threshold (CG) controls the partition-
ing level computed for each new cluster. IPLOM will not
partition a cluster if its cluster-goodness is higher than CG
[31]. Makanju et al. [35] found that IPLoM remains stable
when changing its parameters values and is mainly sensi-
tive to FS.

IPLOM FS is equivalent to LogHound and SLCT support
threshold. Unlike SLCT and LogHound, IPLOM does not
use its support threshold to identify frequent itemsets and
to generate clusters/partitions but removes the partitions
that fall below FS at the end of each partitioning. This
step is optional and setting FS to 0 indicates that no par-
tition pruning is done.

POP requires four parametersGroup Support (GS), splitAbs,
splitRel, and maxDistance. (1) GS is equivalent to IPLOM
cluster goodness and controls the partitioning level. Com-
plete clusters/partitions that have a cluster-goodness value
higher than GS avoid further partitioning. (2) splitAbs
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and splitRel are used to identify constant and dynamic
fields in log messages. A split token position with an abso-
lute threshold and relative threshold higher than splitAbs
and splitRel is considered to be a dynamic field. (3)maxDis-
tance is used to merge two clusters if their Manhattan dis-
tance is smaller than its value.

LogSig requires users to set one parameter, the number
of clusters k (i.e., number of event types to be generated).
The choice of an appropriate value for k depends on the
user’s domain knowledge to the log dataset [15].

LKE requires three parameters. (1) Edit distance weight
ν. LKE measures the similarity between log messages by
the weighted edit distance and ν controls the weight func-
tion that computes words weights at different positions
in a log message. (2) Private content threshold %. LKE
counts the number of different values at each token posi-
tion within the same cluster of log messages. If the num-
ber is less than %, then LKE considers this token position
a constant field and further split the cluster at this token
position. (3) Cluster threshold ζ. LKE automatically sets
this threshold via k-means clustering. Du et al. [9] found
that setting this threshold manually to a value calculated
for a smaller log dataset significantly improved the run-
time of LKE.

SHISO requires four user-given parameters: (1) the max-
imum number of children per node c; (2) the similarity
threshold ts to find the most suitable log group for each
new log message; (3) the format merge threshold tm; and,
(4) the format lookup threshold tr both used during the
adjustment phase. He et al. [13] indicated that tuning
SHISO parameters require a lot of effort because they must
be tuned for each log file.

HLAer requires two parameters: (1) the minimum num-
ber of event types in the final clusters, MinPts, and (2) the
maximum distance between any two event types in a clus-
ter, ε. Authors in [39, 28] found that HLAer parameters
must be set for each log dataset by an expert via empirical
experiments.

Observation. Parameters tuning is challenging and requires
effort, especially when the parameters are not intuitive [3].
Pre-defined parameters might become ineffective and limit
the robustness of ALATs against new logging statements
[13]. Using the same parameters for different log datasets
might lead to inaccuracy [13]. Drain mitigates these chal-
lenges by setting automatically and dynamically its pa-
rameters.

Tuning parameters for large log datasets is even more
challenging because a trial-and-error approach is impos-
sible. Practitioners may then tune parameters on small
log datasets and apply them to large log datasets. He et
al. [14] applied five offline ALATs (IPLOM, LKE, LogSig,

POP, and SLCT) on several log datasets and found that
only IPLOM and POP performed consistently on large log
datasets after parameter tuning on small log datasets.

Promising Directions. Researchers should invest into tech-
niques to tune dynamically the algorithms parameters.

7.8. Quality Aspects of Supervised ALATs
ALATs discussed in this section were all unsupervised.

We identified two supervised ALATs: NLP-LTG and NLM-
FSE. These ALATs face additional challenges that we briefly
discuss now. Supervised ALATs based on NLP have shown
to be accurate but have limitations, such as their ability
to generalize, the need for expert knowledge to label data,
and their dependence on training data. Due to the con-
fidential nature of industry log files, research suffers from
a lack of access to large, industrial log files to train and
evaluate their ALATs [42, 40].

Observation. The main limitation of these ALATs is the
need for large, industrial log files to train and test models.

Promising Direction. Researchers should build and share
log files to the benefit of the research community.

8. Threats To Validity

We now discuss the threats to the validity of our results
and recommendations.

Construct Validity. Construct validity threats concern the
accuracy of the observations with respect to the theory.
We considered a quality model that covers key aspects of
log abstraction tools. We extracted these aspects from the
literature through a systematic review of 89 papers. Thus,
we argue that there is no threat to the construct validity
of our results and recommendations besides the threat to
any systematic-literature review: we may have missed a
few relevant papers. We accepted this threat and followed
best practices to perform an SLR, e.g., [5], as well as our
experience with previous SLRs, e.g., [52].

Internal Validity. Internal validity threats concern the fac-
tors that might influence our results. The selection of
the research papers is one possible threat. We may have
missed relevant papers. We mitigated this threat by using
the Engineering Village, which is one of the main sources of
research papers in this field of study. In addition, we per-
formed a snowballing process to reduce the risk of missed
papers. Two of the authors also reviewed the selected pa-
pers thoroughly to ensure that they fit this study. Another
threat concerns the tools that we selected. We may have
missed some tools or misunderstood some of their aspects
described in the corresponding papers. We mitigated this
threat by following a systematic survey process. We also
made sure that at least two authors reviewed the tools and
their features. Another threat to internal validity is that
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our analysis of the characteristics of the ALATs is based on
the information provided in the selected research papers.
We did not check the source code of the tools to assess the
correctness of their implementation which would require
access to all of their source code and extensive resources
out of the scope of this paper.

Conclusion Validity. Conclusion validity threats correspond
to the correctness of the obtained results. We classified
the selected tools based on a detailed review of the liter-
ature that describes them and our own experience using
them. When a tool used an algorithm that was published
in other studies, we made every effort to review these stud-
ies to ensure that we properly interpret the tool aspects.
Table 2 shows the papers that describe how a given qual-
ity aspects is implemented in a tool. We strive to provide
as many details as possible to allow the assessment and
reproducibility of our results.

Reliability Validity. Reliability validity concerns possibil-
ity of replicating this study. We studied 17 ALATs but
we cannot claim that these are representative of all tools.
Based on the literature review that we conducted, we argue
that these tools are representative of existing log abstrac-
tion techniques. Moreover, we put on-line material to ease
assessing and reproducing our study.

External Validity. External validity is related to the gen-
eralizability of the results. We performed our study on
17 ALATs that cover a wide range of log abstraction tech-
niques. We do not claim that our results can be generalized
to all ALATs, in particular industrial, proprietary ALATs
to which we did not have access. They are, however, rep-
resentative of ALATs in the scientific literature. Besides,
the seven quality aspects of our quality model can be used
to classify any ALAT.

9. Conclusions and Future Work

Logs contain a wealth of data that can help software
engineers to understand a system’s run-time properties.
However, modern systems have become so large and com-
plex that they produce too huge amounts of log data to an-
alyze. Also, logs often come in different formats, hindering
the analyses of their content and making their uses even
more complex [4, 3]. To tackle these problems, software en-
gineers have at their disposable Automated Log Abstrac-
tion Techniques (ALATs) that they can use to reduce the
amount of data to process trough their log-abstraction al-
gorithms.

However, there is a gap between the industry and acad-
emia. First, software engineers are not aware of all existing
ALATs developed in academia and the characteristics of
their algorithms. Second, software engineers do not have
the time and resources to study and understand the char-
acteristics of each ALAT algorithm. To reduce this gap,

we conducted a thorough study in which we grouped, sum-
marized, and compared 17 ALATs based on seven quality
aspects identified from the literature: mode, coverage, effi-
ciency, scalability, independence of system knowledge, het-
erogeneity, and parameter tuning effort required.

In this paper, we reported on our systematic review
of the literature on ALATs. From 2,864 papers, we thor-
oughly reviewed 89 papers to identify unique ALATs and
quality aspects relevant to software engineers. Then, we
proposed a quality model with seven industry relevant
quality aspects for evaluating ALATs. We also identi-
fied, compared, and evaluated 17 ALATs using our quality
model. We observed that there is not one ALAT that
can address all requirements and practitioners must make
compromises. The results in Section 7 bridge the gap be-
tween industry and academia: practitioners do not have to
spend valuable time investigating state-of-the-art ALATs.
Instead, they can focus on experimenting with a subset of
candidate ALATs and decide which fits best with their par-
ticular use cases. To the best of our knowledge, this is the
first and only extensive study of ALATs and recommender
for ALATs based on a quality model.

Researchers can use our model and recommendations
to learn about the state-of-the-art ALATs, understand re-
search gaps, enhance existing ALATs, and–or develop new
ones. Software engineers can use our model and recom-
mendations to understand the advantages and limitations
of existing ALATs and to identify the ones that best fit
their need.

Future Work. During our study of all available ALATs,
we made several observations that could be the basis for
future works.

Salfner et al. [53] proposed a new log format to make
log datasets more expressive and comprehensive. They
recommended adding Event IDs in the log format to ease
automatic log analysis and accurate abstraction. Adding
information to logging statements could help in the anal-
ysis of complex modern systems. This information should
be outputted automatically for consistency. Some log-
ging frameworks (log4j, log4j2, and SL4J/logback) provide
(semi-)automatically this information each log entry. How-
ever, this feature is not yet available in all systems and,
sometimes, may dramatically and unnecessarily increase
the size of log datasets.

Moreover, the values of some dynamic variables may
be useful for log analyses. For example, they can serve as
identifiers for a particular execution, such as block-id in
an HDFS log and instance-id in an OpenStack log [16].
When matching new log entries, ALATs could allow soft-
ware engineers to keep or ignore dynamic variables.

Researchers evaluate their proposed ALAT on different
log datasets, which make them harder to compare. The
community should establish a “common” dataset on which
all ALATs should be compared. Moreover, most ALATs
depend on log datasets availability to train. Future work
include collecting and curating such a dataset.
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We also plan on measuring the efficiency of each ALATs
on various log datasets and reporting the worst-case sce-
nario for each ALAT.

Furthermore, we intend to study how different practi-
tioners use ALATs in practice through surveys and exper-
iments with practitioners from industry. Also, we want
to extend this work to catalogue log-analysis techniques,
another component of log mining and to investigate the
requirements for ALATs by different characteristics of log
input datasets and different log-mining goals. We thus
want to assist software engineers with log management.

Finally, there is a need to reconcile the areas of logging
and tracing. Logs are user-defined, whereas traces usually
contain executable code snippets, with function calls, etc.
Many techniques for trace abstraction and modeling ex-
ist, e.g., [50, 54, 55]. Researchers should study how these
techniques could apply to log datasets.
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