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Abstract

Context: The constant evolution of the Android platform and its applications

have imposed significant challenges both to understanding and securing the

Android ecosystem. Yet, despite the growing body of relevant research, it

remains unclear how Android apps evolve in terms of their run-time behaviors

in ways that impede our gaining consistent empirical knowledge about the

workings of the ecosystem and developing effective technical solutions to

defending it against security threats. Intuitively, an essential step towards

addressing these challenges is to first understand the evolution itself. Among

others, one avenue to examining a program’s run-time behavior is to dissect

the program’s execution in terms of its syntactic and semantic structure.

Objective: In this paper, we study how benign Android apps execute

differently from malware over time, in terms of their execution structures

measured by the distribution and interaction among functionality scopes, app

components, and callbacks. In doing so, we attempt to reveal how relevant app

execution structure is to app security orientation (i.e., benign or malicious).

Method: By tracing the method calls and inter-component communications

(ICCs) of 15,451 benign apps and 15,183 malware developed during eight years

(2010–2017), we systematically characterized the execution structure of malware
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versus benign apps and revealed similarities and disparities between them that

are not previously known.

Results: Our results show, among other findings, that (1) despite their

similarity in execution distribution over functionality scopes, malware accessed

framework functionalities mainly through third-party libraries, while benign

apps were dominated by calls within the framework; (2) use of Activity

component had been rising in malware while benign apps saw continuous drop

in such uses; (3) malware invoked significantly more Services but less Content

Providers than benign apps during the evolution of both groups; (4) malware

carried ICC data significantly less often via standard data fields than benign

apps, albeit both groups did not carry any data in most ICCs; and (5) newer

malware tended to have more even distribution of callbacks among

event-handler categories, while the distribution remained constant in benign

apps over time.

Conclusion: We discussed how these findings inform understanding app

behaviors, optimizing static and dynamic code analysis of Android apps, and

developing sustainable app security defense solutions.

Keywords: Android apps, security, execution, evolution, longitudinal study

1. Introduction

Android as the dominant mobile operating system continues to gain in its

momentum both on the traditional smart device market [1] and beyond [2].

Accompanying this trend is the unceasing surge of mobile malware, a market

that is also predominated by Android [3]. Numerous defense solutions have5

been developed for securing the Android ecosystem [4, 5], yet many of them

quickly became outdated due to the fast evolution of both the Android platform

and its user applications (known as apps), according to recent studies of our

own [6, 7, 8] and others [9].

A peculiar evidence of Android evolution perplexing security defense is the10

relatively short-span capability of learning-based classification
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techniques [10, 11, 12, 13, 14]. Typically these techniques work by extracting

certain sets of features from samples of benign and malicious apps based on,

for instance, how apps use permissions [15, 16, 17] and/or

APIs [18, 19, 20, 21, 22, 23]. A classifier can be then trained on these samples15

to classify unknown apps. The evolution of Android itself and that of app

development paradigms, however, may largely impede or even render almost

unusable the classifier in identifying new samples [24]. Note that retraining

may not always be a solution there since new samples may not be as soon

available as needed (e.g., for recognizing zero-day malware). As an example, a20

state-of-the-art learning-based app classifier, which focused on long-span

classification, achieved highly competitive performance (over 96% accuracy)

only for one year [6]. Its classification accuracy degenerated to merely a

random prediction (50%) when working on apps over two years newer than

training samples [7]. Since feature engineering is a key to learning-based app25

classification, knowing how benign and malicious apps evolve would inform

design of security solutions for Android that works effectively for a longer

span. For instance, the study on the evolution of run-time behavioral

differences between benign apps and malware may reveal app characteristics

that can consistently separate these two groups over time; metrics of such30

characteristics can then be used as features for training a machine learning

classifier to develop a dynamic malware detector that sustains its classification

performance for a longer time than would a classifier built on features that

differentiate the two app groups for a short period of time (e.g., only

differentiating malware from benign apps developed in a particular year).35

The constant evolution of Android also poses significant challenges for app

development and testing. The Android platform evolves to harness the full

potential of new-generation hardware capabilities of the host device, while

apps evolve to accommodate the platform evolution. This justifiable symbiosis

has resulted in fragmentation and various other complicated app/device40

compatibility issues [25, 26, 27, 28, 29] which have become immediate barriers

for app development, understanding, and testing. Developing well-informed
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app development and testing strategies would also require an understanding of

the evolution dynamics of benign apps and malware (part of the Android

ecosystem). For instance, leveraging the behavioral differences between benign45

apps and malware in terms of code-level execution structures, especially the

evolutionary patterns of the differences, would facilitate more precise detection

and even repair of run-time incompatibilities in Android apps [28]. For

example, since many of these compatibility issues are closely relevant to

callbacks, ICCs, and other APIs, patterns in the use of these APIs in50

incompatible apps may be used for incompatibility detection. Thus, the

differences between malware and benign apps in the use of these APIs, as

revealed from the evolution dynamics between these two app groups, would

help develop detection techniques that are able to pinpoint compatibility

issues differently in benign apps from those in malware, hence to achieve55

higher detection precision.

The need for those evolution-wise understandings has been recognized in

prior works, with varying focuses on the particular aspect of the evolution

dynamics (e.g., permission [30] and API [31]). Researchers also have studied

the evolution of Android apps in terms of antipatterns in their code to assess60

app quality changes over time. These prior studies exclusively target a static

characterization by examining the code or assets in app packages (i.e., APKs),

not concerning the actual run-time behaviors of these apps. Their results, with

respect to all possible app executions, can be overly conservative hence

potentially highly imprecise. Results based on static code analysis may further65

suffer unsoundness due to common code traits in apps that impede the

analysis (e.g., obfuscation and dynamic language constructs) [32, 4]. Also,

previous evolution studies for Android were conducted either on a few samples

only (a few hundreds) while focusing on the evolution of particular apps (i.e.,

the multiple versions of an app) without differentiating benign and malicious70

apps [33, 34, 35] or on benign apps [36] or malware only [37, 38]. Most of these

studies looked at the high-level external behaviors (e.g., data leaks, permission

uses, network traffic, etc.) [39, 34, 35], instead of looking into the internal code
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structure from a software engineering perspective, and/or spanned a relatively

short period of time (e.g., one year only [39]).75

As it stands, it remains unclear how Android apps evolve in their dynamic

behaviors as a population over a long period of time. In particular,

understanding how malware evolves differently from benign apps is essential

for long-term security defense of the Android ecosystem (e.g., for developing a

long-span, sustainable malware detector [40]). Our recent effort on evaluating80

the sustainability (i.e., the ability to sustain high accuracy) of state-of-the-art

malware detectors [7, 6, 8] preliminarily showed that more sustainable

approaches tended to have used features that differentiated benign and

malicious apps more resiliently against the evolution of both groups. Yet, a

principled discovery of such features has yet to be explored.85

In this context, we investigate the run-time behavioral evolution of benign

apps versus malware in Android with a focus on app execution structure.

While dynamic characterization is generally subject to limited code coverage,

it reveals the real behaviors actually observed hence complements static

characterization. Specifically, we characterize the execution structure in terms90

of various app functionality scopes (user code, Android framework, and

third-party libraries) and their interaction, distribution of component types

and communication between components, and callback use extent and

categorization. All these dynamic measures are computed via the full scope of

method calls and inter-component communication (ICC) exercised during app95

executions. We chose these specific measures as motivated by our previous

study [36] that found them to well capture behavioral differences between

benign apps and malware of a particular year. Also, concerning that capturing

explicit malicious behaviors (e.g., sensitive data flows [41]) is not always

feasible because sophisticated malware may hide their true behaviors at100

runtime [42] to evade detection, we chose the structural measures which are

not explicitly associated with obvious, known malicious behaviors.

By examining the execution traces of 30,634 apps, including 15,451 benign

apps and 15,183 malware as group samples (rather than evolved versions of
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the same apps), throughout the past eight years, we performed in-depth105

investigations of how malware evolves differently from benign apps in terms of

various measures of execution structure. Through this extensive dynamic

evolution study, we address the following research questions, with

corresponding major findings summarized below. These questions are integral

parts of an umbrella question of how does malware behave differently from110

benign apps in terms of code-level execution structures?, consistent with our

goal with this study of understanding the run-time behavioral differences

between the two app groups in terms of such structural traits.

• How does malware exercise its functionalities in varied

functionality scopes differently from benign apps? We found that115

generally the execution of benign apps is similarly distributed over the

three high-level functionality scopes (user code, third-party libraries, and

the Android SDK), with similarly little yet still shrinking portion of user

code exercised, to malware. However, malware made calls to SDK mainly

via third-party libraries, as opposed to benign apps making such calls from120

within the SDK.

• How does malware execute different types of components

differently from benign apps? Our results reveal that while the

execution of both benign apps and malware was dominated by

user-interface (Activity) components, the use of such components was125

steadily shrinking in benign apps whereas in malware the use was on rise

after two periods of declination. Compared to benign apps, malware

executed significantly larger portions of Services, but smaller portions of

Content Providers. Also, malware made larger portions of ICCs connecting

to external (built-in) apps. Although both groups did not carry any data in130

most ICCs, data-carrying ICCs in malware transferred data via

standard-data fields significantly less often than benign apps.

• How does malware use callbacks of various categories differently

from benign apps? We found opposite trends in overall callback usage
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between benign apps and malware during their evolution. In particular,135

compared to the gradual reduction in their run-time invocation of callback

in benign apps, malware has seen drastic growth in executing callbacks, as

mainly attributed to the rise in using lifecycle callbacks. Meanwhile, rankings

of callback categories were similar and generally stable over time between

benign apps and malware, yet rank differences were shrinking in malware.140

We also discussed implications of our findings to app testing and security

analysis. To the best of our knowledge, this is the first, longest-spanning study

focusing on the evolution of dynamic behaviors of benign apps versus malware

in terms of code-level execution structures. Our study dataset and utilities have

been made publicly available (as found here [43]) to the community to facilitate145

replication and support further studies. The toolkit for the study has been made

publicly earlier [44], with detailed usage documentation available as well [45].

The dataset comes with necessary details for obtaining the apps themselves,

and the toolkit is accompanied by informative usage documentation.

2. Background150

This section gives background on the Android framework and its applications

to facilitate understanding our study.

Android framework and callbacks. The middle layer between the

Android OS (a customized Linux kernel) and its user applications constitutes

the Android framework. This framework provides the implementation of155

application programming interface (API) methods through which user apps

can receive system services and invoke common functionalities associated with

mobile devices. The API is typically part of the Android software development

kit (i.e., SDK) which also includes tools to support app development. The user

apps are event-driven and interact with the framework often via callbacks160

implemented in their user code, including those dealing with various events

(i.e., event handlers) and those for the framework to manager app lifecycles

(i.e., lifecycle methods).
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App components and ICC. Under the framework-based development

paradigm, Android apps usually comprise building blocks called components of165

four types: Activity forming the basis of user interface, Service performing

background tasks, Broadcast Receiver responding to system-wide broadcasts,

and Content Provider offering database capabilities. The Android framework

defines a set of lifecycle methods for each top-level class corresponding to each

of these component types and additionally for the class170

android.app.Application. Inter-component communication (i.e., ICC) is the

primary means for components within (i.e., internal ICC) the same app and

across apps (i.e., external ICC) to exchange messages via message objects

called Intents. The target of ICC may be explicitly specified (i.e., explicit ICC)

or left unspecified for the framework to resolve at runtime (i.e., implicit ICC).175

3. Scope and Research Questions

Our overarching aim is to understand how the execution structure of

malware evolves differently from that of benign apps. Importantly, we focus on

the differences that have security relevance and implications. Thus, we

compare benign apps and malware as two large groups, disregarding (1)180

functional differences (e.g., between game apps and musical apps) and (2)

differences within each group (e.g., among benign apps of different

kinds/categories or among malware of varied families). In particular, we

examine the execution structure of apps by profiling all method calls during

their executions. Further, we express the structure in terms of the following185

three groups of dynamic measures.

• Functionality scopes (code layers). In general, an Android

application package (APK) may contain three high-level scopes (layers)

of app functionalities at runtime: user code (userCode, i.e., any code the

app developer actually wrote), Android libraries (SDK, i.e., framework190

APIs), and third-party libraries (3rdLib, i.e., any libraries other than the

SDK used by the app). We measure execution structure through the
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distribution of executed methods over these three code layers according

to which layer each of these methods is defined in. We further measure

calls across layers.195

• Components. Android apps follow a general modular design,

implementing four high-level categories of functionalities (user interface,

background service, system communication, and data management) in

the four different types of components (Activity, Service,

BroadcastReceiver, and ContentProvider, respectively). In addition to200

code layer distribution and interaction, we examine app execution

structure also through how apps execute code in each of these types of

components and how app components communicate through ICC of

varied types (implicit versus explicit and internal versus external). We

further looked into the data fields in the Intent of exercised ICCs,205

concerning the three ways an ICC may carry data: only via standard

URI (the data field of the Intent), only via bundle (the extras field of

the Intent), or both (two Intent fields carrying data).

• Callbacks. Due to their event-driven programming paradigm, Android

apps feature common use of callbacks through which apps leverage the210

SDK capabilities and the Android platform communicates with apps.

We thus measure the overall callback usage and distribution of such

usage over the two major kinds of callbacks: lifecycle methods and event

handlers. We further examine the use of each kind over its major

categories. Specifically, we categorize lifecycle methods according to the215

five top-level enclosing classes defined in the SDK: Activity, Service,

BroadcastReceiver, ContentProvider, Application. A lifecycle method is

categorized into one of these categories based on the rationale that the

method is one of those that the framework uses to manage the lifecycle

of the corresponding type of component or the entire app. For event220

handler callbacks, we consider five types of user interfaces (UIs)

associated with (App bar, Media control, View, Widget, Dialog), and five
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types of system events handled (App management, System status,

Location status, Hardware management, and network management). An

event handler is categorized into one of these categories as it is the225

callback that the framework invokes when the UI or system event occurs.

Our choice of these types of events is informed by a previous study that

found them as the top five most-frequently exercised UI/system

events [36].

The above measures define the execution structure that we characterize in230

our evolution study of Android app behaviors. With this definition, we approach

our overarching question through the following three specific research questions.

• RQ1: How does malware exercise its functionalities in varied functionality

scopes differently from benign apps?

• RQ2: How does malware execute different types of components differently235

from benign apps?

• RQ3: How does malware use callbacks of various categories differently

from benign apps?

Note that these three questions are essentially three integral parts of our

central (umbrella) question that guides the study in this paper—how does240

malware behave differently from benign apps in terms of code-level execution

structures? We look into run-time behaviors of malware and benign apps as

embodied by the execution structures of apps from three aspects: functionality

scope, communication among app components, and callbacks. Accordingly,

each of the three questions focuses on one of these closely related aspects of245

app behaviors. Thus, the three questions are tightly connected, addressing the

umbrella question consistently.

4. Methodology

This section describes our experimental methodology, including datasets

used and study procedure followed.250
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Table 1: Number of benchmarks used in our study

Year 2010 2011 2012 2013 2014 2015 2016 2017

# benign apps 1,530 2,019 2,053 1,748 3,127 1,333 1,548 2,093

# malware 2,029 2,431 2,225 1,230 1,493 1,667 2,171 1,937

4.1. Benchmarks

To investigate how execution structure in benign and malicious Android apps

evolve, we collected real-world app samples from varied sources throughout the

past eight years (2010–2017). Table 1 gives an overview of the app samples

used in our study. Most of the samples were obtained from AndroZoo [46],255

except for that malware of years 2013 through 2016 was from VirusShare [47]

and benign apps of year 2017 were from Google Play [48] to diversify the data

sources for possibly better sample representativeness. The year of each sample

was determined based on the DEX date and versionCode extracted from the

app’s APK [49]. For each year, we begun with a larger pool of samples and260

discarded those that did not meet our two selection criteria: (1) the app is

dynamically analyzable—apps corrupted or with missing assets were dismissed,

so were those that cannot be instrumented or launched, (2) exercising the app

with random inputs generated by the Monkey tool [50] for 10 minutes did not

cover at least 60% user code of the app (in terms of line coverage).265

For our dynamic study, applying a coverage criteria is necessary. We set

the 60% threshold in an attempt to cover a majority of the app such that the

app executions we analyzed in the study represent a reasonable portion of the

common operational profile of the app. It is important to note that this

representativeness is essential: since we aim to understand the behavioral270

differences of malware from benign apps, exercising the benign and malicious

behaviours is a key to the validity of our study results. On the other hand, we

could not automatically check if these behaviors (especially those of malware)

are sufficiently exercised—automatically capturing and validating the

exhibition of malicious behaviors is still an open research problem in275

general [42]. Nevertheless, a relatively high code line coverage as our threshold
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enforces should give enough confidence about the behaviors we need to

characterize being covered.

A few research prototypes of automated input generation techniques exist,

which may reach the threshold coverage faster or higher coverage in 10 minutes.280

Our choice of using Monkey over research prototypes [51, 52] was made primarily

due to the much greater robustness and usability of this industry-strength tool

and its relative small shortage of coverage compared to the prototypes. Also,

main relevant research prototypes only support relatively old Android (e.g.,

Dynodroid [51] and Sapienz [52] work for Android 4.4 or earlier versions), with285

which many of our samples cannot be installed/executed. Two recent studies

further justified the use of Monkey [53, 54].

The numbers of Table 1 were the actual numbers of apps used in our study,

after applying the two selection criteria. In total, we analyzed the execution

of 30,634 apps, including 15,451 benign apps and 15,183 malware. We did not290

intentionally select an equal number of apps for all the eight years to respect the

uneven distribution of the total app populations over the years. We also had

removed redundant apps within and across years whenever applicable, such that

only unique samples were considered and any two of our yearly benign/malware

datasets are disjoint. Each sample was confirmed as malware or benign using295

the VirusTotal [55] service—the app was considered malware if at least ten of

the anti-virus tools on VirusTotal identified it as so, otherwise it was considered

benign. For all the samples eventually used in our study, the profiling with

random inputs had line coverage ranging from 60% to 100% (mean 74.85%,

standard deviation 11.97%).300

4.2. Execution Profiling

To profile each benign and malware sample, we performed purely

application-level instrumentation to trace method calls and ICC Intents. Our

scope of tracing includes all method and ICC calls, including those made

through exceptional control flows and reflection. The 10-minute per-app trace305

was produced by running the instrumented APK on a Google Nexus One
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emulator with the Android SDK 6.0 (API level 23), 2G RAM, and 1G SD

storage, with inputs fed by Monkey. The emulator itself ran on a Ubuntu

15.04 host with 8G memory and a dual-core 2.6GHz processor. We utilized

our Android app characterization toolkit [44] for these profiling tasks. In the310

end, 30,634 traces, each for a sample, formed the basis of our evolution study.

To avoid possible side effects of inconsistent emulator settings, we started the

installation and execution of each app in a fresh clean environment of the

emulator (with respect to built-in apps, user data, and system settings, etc.).

4.3. Characterization315

To characterize the execution structure of apps and their evolution over the

eight-year span, we computed the dynamic measures (Section 3) for each app

separately from its trace. More specifically, we first build a dynamic call graph

from the trace, where each node represents a method/ICC call and each edge

represents a dynamic call which is annotated with the frequency (i.e., number320

of instances) of that call. For an ICC call, the corresponding node contains

additionally the Intent field values. Based on this call graph, our dynamic

measures were mostly computed as a percentage (of certain kind of calls over

the calls in a larger class). The only exception was for callback categorization,

for which we rank the categories for each app according to the percentage of325

callback invocations belonging to each category and report for each category

the mean rank across all benchmarks in a dataset. The categories of lifecycle

callbacks were decided through a class hierarchy analysis, and those of the event

handlers were recognized in reference to the callback interface categorization we

developed earlier. More implementation details can be found in [44].330

4.4. Metrics and Measurements

It is important to note that, given the goal of our study, we focus on

evolutionary trends of apps’ execution structure rather than the absolute

values of our measures—these absolute values would vary with different

samples studied. To compare malware with benign apps, we adopted an335
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average-case analysis. Thus, with respect to each measure, we typically

compute the average over all apps in the benign or malware group of a

particular year, and then compare the two groups in terms of the averages.

Beyond these average-case comparisons, we also computed the statistical

significance of differences between benign-app and malware groups with340

respect to each structural trait of apps (e.g., percentage of external implicit

ICC) involved in our studies. We used the paired Wilcoxon signed-rank

tests [56] to assess the significance at the 0.95 confidence level (i.e., α = .05).

To understand the magnitude of those differences, we further computed

corresponding effect sizes in terms of Cliff‘s Delta [57] (in a paired setting with345

α = .05). In both analyses, the two groups compared were the average-case

metric values of the two app groups across the eight years (i.e., each group has

eight values). Both analyses are nonparametric, making no assumption about

the normality of the distribution of underlying data points. For each app trait

(i.e., dynamic measure used in the characterization), we typically compare350

benign apps against malware regarding that trait first in a plot, followed by

the Wilcoxon p values (noted as p) and Cliff’s Delta (noted as ∆) presented in

a table. Given a Cliff’s Delta value d, we interpret the effect size as

follows [58]: effect size is negligible if |d|≤0.147, small if 0.147<|d|≤0.33,

medium if 0.33<|d|≤0.474, and large if |d|>0.474.355

5. Major Findings

In this section, we present and discuss our study results, as guided by the

three main research questions.

5.1. RQ1: Functionality Scope Distribution and Interaction

This research question examines how benign and malicious apps exercise360

their behaviors in the three layers of functionality (i.e., UserCode, SDK, and

3rdLib), as well as how these layers collaborate (interact) in order to fulfill the

app functionalities.
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5.1.1. Execution Composition

The composition of an app’s execution is characterized through the365

percentage distribution of all method call instances over the three code layers.

This is essentially done by uplifting each node of the app’s dynamic call graph

to its enclosing code layer and then computing the code-layer distribution by

counting nodes in each layer.

Figure 1 shows the distribution of these layers between benign apps and370

malware across the eight-year span. In both benign and malware apps, the

vast majority (over 80%) of methods called were defined in the SDK, and this

dominance remained almost constant in the past eight years. It is known that

most of methods invoked by benign apps are Android SDK APIs [36]. Our

results here revealed largely the same role of the Android framework in malware375

executions.

A closer look reveals that the average percentage of benign-app execution

in SDK had an overall slight growth while the percentage slightly declined in

malware (especially since year 2013). As a result of this trend, third-party

libraries were increasingly (albeit also in small increments) used in malware380

and decreasingly in benign apps. On the other hand, the fluctuations were at

best unsubstantial, resulting in the generally stable dominance of the Android

framework during the executions of both app groups.

A relatively clear trend was that user code kept shrinking in app executions,

despite the security of the apps, although the magnitude of decrease over the385

entire eight-year span was slightly greater in benign apps. This trend implies

that developers of Android apps, benign or malicious, tend to write less and

less code for building an app, possibly because of the continuous enrichment of

features offered by the Android platform.

Overall, functionality scope distribution in malware was not significantly390

different from that in benign apps, as our statistics (St) showed (bottom of

Figure 1).
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Figure 1: Functionality scope distribution (y axis) of benign apps (top plot) and malware

(bottom plot).
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Finding 1: Benign apps and malware had very similar functionality distribu-

tion over user code, third-party libraries, and the Android SDK, which was also

consistent over time. In both app groups, user code accounted decreasingly, and

SDK stably, for exercised app functionalities.

5.1.2. Cross-Scope Collaboration

The method-level calling relationships we profiled reveal collaboration395

among the three functionality layers/scopes, when we uplift each node of the

dynamic call graph to its enclosing scope/layer and then count the edges. This

collaboration within each app indicates the internal dynamics of the app with

respect to its use of library functionalities through the user code. We

characterize the cross-scope collaboration via the distribution of the dynamic400

calls (i.e., edges) on the graph over the nine possible calling relationships

among the three scopes. Note that we focus on characterizing call pairs (i.e., a

caller and a direct callee), rather than call chains (e.g., a user-code method

calls a third-party library method which then calls back to user code)—with

respect to direct calling relationships, the call chains are subsumed by the call405

pairs we characterize.

Figure 2 depicts the percentage distribution of all instances of calls over the

nine cross-scope calling relationships in benign apps versus malware. In terms

of general evolutionary trends, both benign apps and malware share the overall

decrease in calls within user code and the overall increase in calls within the SDK.410

These increases and decreases essentially changed the dominating cross-scope

calls from user code to SDK (in year 2010) to within the SDK (in year 2017)

in benign apps, and dominance of 3rdlib→SDK calls to calls within the SDK

in malware. In both groups, calls within the SDK gradually gained dominance,

but even more abruptly in the malware group. Some minor calling relationships415

were not quite visible on the chart because of their negligible portion in the

distribution (e.g., SDK→UserCode calls in both benign apps and malware).

Moreover, benign apps saw steady decrease in calls to the SDK launched

from user code, yet this change experienced much greater variations in malware.
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Figure 2: Cross-scope calling relationship distribution (y axis) of benign apps (top plot) and

malware (bottom plot).
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Also, there were always much greater portions of 3rdlib→SDK calls, but always420

much smaller portions of SDK→SDK in malware than in benign apps. This

observation was consolidated by our p and ∆ statistics that showed significant

and large differences (highlighted in boldface) between benign and malware apps

with respect to these two types of cross-scope interaction. Along with the results

on functionality scope distribution, these differences imply that, although both425

groups were similarly dominated by calls targeting SDK APIs, malware tended

to make such calls more via third-party libraries while benign apps tended to do

so more within the Android framework. Our statistical analysis revealed that

percentages of calls from SDK to user code were significantly and largely higher

in benign apps than in malware.430

Finding 2: Over time, both benign apps and malware had decreasing calls

within user code and increasing calls within the SDK, yet malware had

significantly less calls to user code from SDK. Constantly, malware had more

calls to SDK from third-party libraries than did benign apps, yet benign apps

had more such calls within the Android framework.

5.2. RQ2: Component Distribution and Communication

This research question concerns the distribution of app executions over the

four types of components. In essence, these four component types represent435

separation of concerns in app design. Thus, this question investigates the

composition of app executions from a semantic perspective (e.g., how much

code dealing with user interface was executed versus code for data

management), which is complementary to studying the execution composition

with respect to the three functionality scopes/layers in RQ1.440

5.2.1. Component Distribution

Figure 3 compares benign apps with malware concerning how an app’s

execution is structured with respect to the four component types. Both benign

apps and malware had rich user interface exercised via Activity components,

which constantly dominated over other types of components over the years. At445
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Figure 3: Distribution of execution over the four component types (y axis) in benign apps

(top) versus malware (bottom).
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least 70% of all exercised components were Activities. Also common to both

groups was overall growing portions of Content Provider and Broadcast

Receiver components, albeit not monotonically.

Compared to the steady decrease in the use of Activity components in

benign apps, the trend in malware was more of a zigzag shape—the use of450

Activities in malware had continuous drop during the years 2010–2012 and

years 2013–2015 periods, followed a steady growth since 2015. Meanwhile, use

of Content Providers was constantly more prevalent, and also growing faster,

in benign apps, whereas Service components were used more substantially in

malware. The p and ∆ values highlighted that these two differences were455

significant and large statistically. One plausible explanation for these

differences is that Service components effectively provide a latent,

collaborative environment for committing malicious behaviors as they perform

long-running operations in the background (i.e., without user interface); thus

they are preferably exploited by malware to launch attacks in an unnoticeable460

and reliable manner. Content Provider components are more prevalently used

in benign apps than in malware, likely because legitimate functionalities tend

to more rely on dedicated data management than do malicious behaviors.

Finding 3: For the execution of Activity components, malware experienced

two diminishing periods, followed by a recent rise, as opposed to a continuous

reduction in benign apps. Over time, malware used significantly more Services,

but less Content Providers, than benign apps.

5.2.2. Component Communication465

Communication between app components informs about the internal

dynamics of apps with respect to how semantically different code regions

interact. Since the component-level communication in apps is realized through

ICC APIs, we characterize such communications through a particular kind of

method calls—calls targeting ICC APIs. Given our focus on app execution470

structure, we study how components connect within individual apps and how

components interact across apps. We limited our study focus not to include
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Figure 4: Percentage of ICC calls over all method calls in benign apps versus malware.

(p=0.742, ∆=0.250)

inter-app communication, yet there were built-in apps in Android (e.g.,

Camera, Photo Viewer, etc.) which may communicate with our sample apps

when they were exercised. Thus, external ICCs did present in our app475

executions. We are also concerned about the messages transferred between

components—the data carried by the ICC Intents.

Counting all ICC API calls during app executions, Figure 4 reveals that

despite the varying absolute numbers of such calls, ICC calls were only a tiny

portion of all method calls. In both benign app and malware, the percentage480

of ICCs of any types was at most 1.7% across the past eight years. What is

also noteworthy is that total use of ICCs in both benign apps and malware

experienced a rise in the period of year 2010 to 2011, and dropped

continuously ever since. This can be explained by the possible movement that

newer apps, regardless of their security orientation, tend to enhance their485

maintainability/changeability by improving their cohesion while reducing

coupling, at least at component level; thus, individual components are

increasingly independent of other components to fulfill their functionalities,

resulting in less needs for ICCs. Also, in absolute terms, malware exercised

ICCs more frequently than benign apps did. However, the differences between490

the two groups were not significant at all, as per the p and ∆ values.

Figure 5 shows how ICCs in benign apps and malware were distributed
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over the four ICC types (noted in the legend). This result reveals that

malware mostly had greater use of external explicit ICCs, but lesser use of

external implicit and internal explicit ones, than benign apps. This implies495

that when communicating with built-in apps, malware tended to do so more

often explicitly while benign apps more often implicitly. Yet, none of these

differences were significantly large as the p and ∆ values indicated. In both

malware and benign apps, components within apps rarely communicated

implicitly, hence the negligible portion of internal implicit ICCs.500

Finding 4: Overall use of ICCs has been steadily dropping, but always with

similarly small portions of all method calls, in both malware and benign apps.

Over the years, malware used mostly larger portions of explicit, but lesser of

implicit, external ICCs than benign apps did.

We further characterize component communication by looking into the ways

ICCs carried data, if any. In particular, we examine the total percentage of

ICCs that carried data, and among data-carrying ICCs the distribution over

the three ways (see Section 3) of doing so. Figure 6 shows the overall reduction505

(albeit slow) in carrying data in ICC Intents by any means, in both benign and

malicious apps. Among the ICCs that did carry any data, bundle data has been

consistently the primary means, in both groups. Very few ICCs carried data in

both the data and extras fields of their Intent objects, though. Our p and ∆

values show that the evolution of the two groups on ICC data transfer was only510

significantly different in carrying standard data only.

Finding 5: Like benign apps, malware did not transfer any data in most of

their ICCs, and if doing so bundles were always the preferred means. Over the

years, benign apps had significantly larger portions of data-carrying ICCs that

contain standard data than did malware; yet both groups had seen decreasing

total invocation of data-carrying ICCs.

5.3. RQ3: Callback Use and Categorization

Through this research question, we intended to investigate how Android

apps invoke callbacks of various kinds during their execution, and in particular515
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Figure 7: Overall run-time invocation of callbacks (y axis) in benign apps (top) versus malware

(bottom).

attempted to characterize the evolution of callback use in malware versus in

benign apps.

5.3.1. Extent of Use

Figure 7 depicts the overall use of callbacks in benign apps and malware,

measured as the total percentage of exercised callbacks over all methods called520

during app executions. The changes in the callback use over the years were

plotted separately for the two kinds of callbacks: lifecycle methods and event

handlers. The result shows the overall small portion of callbacks among all

method calls (at most 7.2%) in any of the eight years studied, despite the

security groups of the apps. This indicates that relative to the total amount of525
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method calls, callbacks were not so frequently exercised, albeit more than ICC

calls (see Figure 4). This is consistent with our prior observations on the

execution composition in terms of functionality scopes (of Figure 2): the

portion of calls from SDK to user code, which correspond to callback

invocations, was almost negligible. Comparatively, however, benign apps530

exercised callbacks more prevalently than malware, which is again consistent

with the significant larger portions of SDK→UserCode calls in benign apps

seen in Figure 2.

In terms of the evolution differences between the two groups, the generally

steady decrease in both kinds of callbacks in benign apps is opposed to the535

overall drastic increase in the invocation of lifecycle callbacks in malware, till

year 2016. Event-handling callbacks in malware were exercised decreasingly

over the eight-year span, and consistently less than in benign apps—the gap

was significant and large as per the p and ∆ values. In terms of total amount

of callback usage, malware saw general growth while benign apps saw gradual540

declination.

Finding 6: Callbacks were not very frequently invoked in malware, nor in

benign apps. Consistently, malware executed event handlers significantly less

often than did benign apps. Overall, total callback execution was on the decline

in benign apps, but generally on the rise in malware.

5.3.2. Callback Distribution

For a closer look into callback usage, we further examine the distribution of

invoked callbacks over the major callback categories, for lifecycle methods and545

event handlers separately (Section 3).

Figure 8 presents the ranks of the top-five lifecycle callback categories in

benign apps and malware. One clear observation is that in both app groups,

Activity was constantly the top category, meaning the highest percentage of

lifecycle callbacks were always attributed to managing the lifecycle of Activity550

components. This is not surprising given our observation from Figure 3 that

this type of components constantly dominated in the component distribution
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28



of app executions. The second highest percentage of lifecycle callbacks were

invoked due to the framework’s management of the app as a whole. The top

two ranks were always taken by Activity and Application, in any given year555

and in both benign apps and malware. The ranking of other three categories,

however, varied slightly across years in both groups, with Content Providers

being the least frequently exercised lifecycle callback type in most years. Also,

the differences in the ranks of these three categories were generally small in

absolute terms.560

Overall, the evolutionary pattern of lifecycle categorization was similar

between benign apps and malware. Our statistical analysis results (p and ∆)

pinpointed that, during the eight-year evolution, invocation of callbacks

associated with Content Providers in malware was significantly and largely

lesser (ranked lower) than in benign apps (greater rank value means lower565

rank). This is consistent with, and can be explained by, the finding from our

results on component distribution (Figure 3) that the malware samples

executed lower percentages of components of this type than did benign apps

with statistical significance and large effect sizes. However, although the

malware executed significantly higher percentages of Services, callbacks for570

managing these components’ lifecycle were not significantly different between

malware and benign-app executions. The reason was that many of the

exercised methods in Service components were not lifecycle callbacks.

Finding 7: Lifecycle callback distribution was largely similar between malware

and benign apps, with Activity callbacks constantly dominating and the overall

category ranking being consistent over time. Yet malware invoked significantly

less Content Provider callbacks than benign apps.

The distribution of event-handling callbacks over the five selected categories575

of UI events and five selected categories of system events is depicted in Figure 9

in a similar format to Figure 8. Except for the first two years of the studied

span, View was generally the most handled UI events, followed by AppBar and

then by Dialog, in both benign app and malware. Among system events, System

status was consistently the top category, also in both groups. Other categories580
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were not as consistently distinguishable with noticeable rank differences.

In terms of evolution, the ranking of these event-handling callback categories

was largely stable over time in benign apps. In malware, however, the rank

differences among the categories were generally decreasing over time. Overall,

the difference in the ranking evolution between benign apps and malware was585

mostly very small for most categories. For the top system and UI events (i.e.,

System status and View, respectively), the ranks were significantly lower in

benign apps than in malware, as per relevant p and ∆ values. (For ease of

presentation, we abbreviated in the table the category names with the first two

or three letters of each word in the full names as shown in the legend of Figure 9.)590

Finding 8: Event-handling callback ranking was generally stable over time in

both groups. While the rank differences among event-handler categories were

largely constant in benign apps, the ranks had become hardly differentiable in

malware. Also, malware had significantly higher ranks than benign apps for

the top system- and UI-event callbacks.

6. Lessons Learned

In this section, we discuss the implications of our major empirical findings

to both app testing and security analysis.595

On functionality scope. Our evolution study on app execution distribution

over functionality scopes revealed that benign apps and malware were largely

the same (without significant differences) in both the distribution and the

evolutionary patterns over the eight-year span. This similarity (Finding 1)

suggests that learning-based malware detector may not benefit much from600

using features that characterize how apps execute user code relative to the

execution of library code. Thus, relevant features (e.g., the percentage of

user-code or third-party-library calls over all method calls) should be avoided in

learning-based malware classification as they would confuse the classifier hence

downgrade its malware detection performance. Meanwhile, the steady drop in605

user-code involvement in app executions indicates the promise of prioritizing
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user code in app testing and security defense (for better cost-effectiveness),

assuming that the framework itself is more secure and less defective.

Moreover, this prioritization strategy can be increasingly justifiable given the

increasing portion of app executions being carried out through calls within the610

SDK and shrinking interaction between user code and libraries (e.g., calls from

user code to SDK). However, run-time activities within third-party libraries

remain a standing, substantial portion of app executions, confirming the

necessity of security screening of third-party libraries for a holistic app security

defense solution.615

In contrast to benign apps, malware tended to make calls to the SDK via

third-party libraries much more substantially than benign apps did (Finding

2), likely due to malware intention of impeding detection based on

framework-based characteristics (e.g., features based on usage of APIs). In

contrast, benign apps’ execution of framework functionalities was mostly620

bounded within the framework. Thus, securing benign apps relies more on the

security of the framework itself, while malicious behaviors of malware are more

likely to be rooted in the insecurity of third-party libraries. Accordingly,

third-party libraries’ traits (e.g., percentage of method calls originated and

targeting these libraries over all method calls) can be modeled as features for625

more effective malware detection.

On app components. Despite the general declination in exercising Activities

in both benign app and malware executions (possibly due to the increasing use

of web content in newer apps), Activity components remain the dominant type

among all exercised components. Thus, user interfaces are still, and likely630

continue to be in the future, a major attack surface in Android apps. In

particular, the fact that Activity execution in malware rose again in recent

years after experiencing two decreasing periods (Finding 3) implies that

securing users against attacks via user interfaces need to be emphatically

attended. More (less) intensive use of Content Providers (Services) in benign635

apps than in malware, as well as that of associated callbacks, could be
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sustaining differentiators to be leveraged by dynamic malware detectors, given

the significant and large differences in the use of these components (Finding 3)

and the use of associated callbacks (Finding 7) between malware and benign

apps. Accordingly, app features that characterize the use of these components640

(e.g., the percentage distribution of executed components over varied

component types) may be used by the detectors based on supervised learning.

ICC is the primary communication channel within and across Android

apps, hence has been considered a major attack surface in Android. However,

our observations on ICC use during app executions indicate its continuous645

decrease in both benign apps and malware (Finding 4). A potential

consequence of this trend is that securing ICC as the major means of security

apps [59] is likely to have a diminishing return. Meanwhile, app testing

focusing on covering ICCs might suffer from relatively low overall coverage.

The finding that both newer benign apps and newer malware tended to650

exercise less ICCs than before implies that major attack surface might have

been shifted to other points of the apps. On the other hand, malware had

noticeably higher frequency of exercising ICCs than benign apps did,

suggesting ICCs might not be entirely dismissed as an attack surface in

security defense in the near future. In addition, ICC-based malware detector655

should pay more attention to the possible manipulation of built-in apps by

malware, given the steadily substantial portion of ICCs being external ones.

However, since there were no consistent and substantial differences between

benign app and malware in terms of data payloads in ICCs (Finding 5),

whether the ICCs carry data or not might not be a good indicator of malicious660

behaviors. Meanwhile, the observation that data-carrying ICCs delivering the

data less often via standard data fields can be utilized as a promising

differentiator between benign apps and malware that has not yet been

leveraged for malware detection. Thus, features characterizing such preferences

(e.g., the percentage of ICCs that carry standard data over all exercised ICCs)665

can be part of the feature embeddings for apps in dynamic malware detector.

Note that these ICC-based features are relative statistics (i.e., percentages),
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clearly different from those used in prior work that are based on concrete ICC

Intent fields (e.g., [59]). Also, prior work in this line typically uses static

approaches (e.g., parsing the Intent information from apps’ manifest files670

and/or source code), as opposed our ICC-based features being purely dynamic.

On callbacks. Analysis of callbacks in Android apps has proven to be highly

expensive [41, 60]. However, our dynamic evolution study revealed that

callbacks were not very frequently invoked, neither in benign apps nor in

malware (Finding 6). Thus, it would be cost-beneficial to fully track callback675

data/control flows for fine-grained security analyses and app testing. On the

other hand, our finding that malware had increasing (while benign apps had

decreasing) use of callbacks, especially significantly less frequent invocation of

event handlers than in benign apps, suggest potential additional means for

differentiating malware from benign apps. Thus, relevant features (e.g., the680

frequency of event-handling callbacks relative to total method calls) would

strengthen the performance of a dynamic malware detector. Meanwhile, with

fewer callback executions in benign apps, precise taint analysis is expected to

scale better to newer benign apps than to old ones, given that callback

analysis was known to be a major performance barrier in such analyses.685

The steady dominance of callbacks for managing Activities among all

lifecycle callbacks (Finding 7) implies the lasting merits of focusing on Activity

callbacks in callback control flow analysis [60]. However, lifecycle callback

distribution over varied categories may not be useful for detecting malware,

given the consistently similar ranking between the two groups over time.690

Therefore, relevant features characterizing this distribution should be avoided

in the design of a dynamic malware detector. However, a much lower

percentage of invocation of Content Provider callbacks could point to malware

behaviors. Another good indicator of malware is the great closeness of ranks

among all event-handler categories, and/or significantly higher ranks of695

callbacks for handling View and System status events (Finding 8).

Importantly, as we discuss the security implications of our empirical findings,
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there are two caveats to keep in mind. First, how effective the features learned

from the study would be for sustainable malware analysis depends on how stable

the evolutionary patterns in malware behaviors and their differences from benign700

behaviors will be in the future. Only when the patterns are reasonably stable,

would the features effectively contribute to the long-span capabilities of the

techniques built on those features. Second, the motivation of this paper is not

to identify features once for all that can work for future effective security defense

solutions forever, but rather to explore and demonstrate how to discover such705

features. Realistically, these features, albeit relatively more sustainable (than,

for instance, features extracted from a set of apps in a time-agonistic manner),

would expectedly become outdated after some time. Yet, the methodology

might still be valid and applicable for discovering other, more discriminatory

features for future newer malware and benign apps.710

7. Threats to Validity

Threats to internal validity. We used our toolkit to trace the sample apps

studied and compute the dynamic measures that define the execution

structure we focus on in this study. While it handles reflective calls and calls

via exceptional control flows, this toolkit does not monitor native calls or calls715

buried in dynamically loaded code. Thus, the method calls and ICCs we

analyzed could be incomplete. Moreover, although we have applied a

non-trivial coverage threshold when selecting sample apps to make sure the

app executions we studied reasonably represent a major portion of common

app behaviors, the random test inputs from Monkey we used might have720

missed representative app execution paths. As a result, our characterization

might have not always captured the typical execution structure of some

sample apps, which could be more concerning for malware samples since

malware is known to be able to hide their behaviors especially when being

executed on an emulator. With a small set of malware, we performed our725

comparative study with a real device versus the emulator and did not see
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significant differences in terms of our dynamic measures.

Notably, our study focuses on structural characteristics of malware (and

benign apps), rather than explicit security traits (e.g., access of sensitive data,

known malicious instances/sequences of calls to suspicious functions, etc.).730

The metrics used in our characterization have shown to be able to capture the

behavioral differences between malware and benign apps [36, 61], despite the

known evasiveness of malware and the impediments of varied obfuscation

schemes adopted in both malware and benign apps. This implies that our

metrics can implicitly capture the essence of app behaviors. Yet, to more735

convincingly reduce this threat, a more extensive verification would be

required.

Threats to external validity. While we purposely managed to choose a

sizable dataset for benign apps and malware for each year, our yearly benchmark

suite size is small relative to the entire app population of each year. More740

importantly, it is not clear how our chosen benchmarks are representative of

respective populations. Consequently, our evolution study results may not be

generalizable to other apps, nor to the entire app population per year. Thus,

the presented observations and findings are best interpretable with respect to

the particular apps we chose and studied. Particularly, an additional threat to745

external validity comes from the uneven distribution of our yearly benign-app

and malware set. We used substantially more samples of certain years (e.g.,

benign apps of year 2014) than others. Our rationale was that the total app

population in the real-world more likely than not varies in size year by year as

well, thus choosing the same numbers of samples for different years may not750

respect the reality. Meanwhile, this poses a validity threat because we do not

know the accurate sheer totals of apps in each year, thus the unevenness of the

distribution of our yearly datasets may not represent the plausible unevenness

of the distribution of actual app population sizes across years in reality.

Threats to construct validity. Given our focus on evolutionary patterns755

rather than absolute values of dynamic measures, we derived our findings
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mainly on an average-case basis—we compared benign apps and malware in

terms of the average values of the chosen dynamic measures. Although the

standard deviations (not reported in paper) were generally small relative to

the mean values, more thorough statistical analyses would be more desirable760

to corroborate our conclusions. In particular, the behaviors of malware (with

respect to certain metrics) may have considerably different distribution from

those of benign apps (with respect to the same metrics) while still having very

similar summary statistics (e.g., the average metric values). Thus, our current

study might have missed some behavioral differences between the two app765

groups. More in-depth data analysis (including that of data distribution) could

have revealed even more interesting and important findings. These further

examinations are indeed part of immediate future work following this study.

Threats to conclusion validity. To corroborate the practical usefulness of

our study findings, we discussed how the empirical results on the contrasts770

between benign apps and malware in their behavioral differences can be used

for sustainable malware detection. Such benefits of our results, however, are

limited to the behavioral characteristics we actually considered in this study.

Thus, for malicious behaviors that are not relevant to any of our

characterization metrics, our results would not be directly applicable for775

detection purposes. For instance, a ransomware working on SD cards would

not be detected by solely using the app features we studied since its

maliciousness is not exhibited through execution-structural differences from

benign apps. Similarly, our recommendations and lessons learned from the

empirical results for the optimizations/prioritizations of app analyses are also780

limited to those that are relevant to the app characteristics addressed in our

longitudinal study.

8. Related Work

Concerning the comparison between benign apps and malware in Android

and their characteristics or behaviors, our study presented in this paper is not785
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the first. Nevertheless, our study clearly distinguished itself from prior peer

work in multiple ways, including the nature of study, study scope, and study

perspectives; and it contributes to the understanding of applications in Android

in a distinct manner hence complements existing studies in this domain. In this

section, we elaborate how this paper is situated in the relevant literature, while790

highlighting the key differences between current similar studies and ours.

Nature of study. Previous characterization studies of Android apps mostly

focused on static characteristics of apps in terms of metrics extracted from the

apps’ code. For example, in [62], 1,100 popular apps were studied to

understand their use and misuse of private information of mobile phones and795

users through reverse engineering. For another example, in [63] the authors

studied code reuse in Android apps in varied ways, including reusing

individual classes (e.g., through inheritance) and framework-wise reuse. A

follow-up study further investigated how code obfuscation and the use of

third-party libraries can affect the results of code reuse studies for Android800

apps [64]. None of these studies examined the evolution of apps,

though, compared to our study featuring a longitudinal and

evolutionary lens into app characterization.

A few earlier studies did characterize the evolution of Android apps. The

study in [30] focused on the evolution of Android in terms of the permissions805

provided by the Android platform and their use by apps and third-party

libraries. In [31], the authors studied the updates of APIs during the Android

SDK evolution as well as API usage evolution in dependent apps, and

discovered update rate of Android APIs and lags in apps’ according update of

their use of those updated APIs thus characterized the API stability in the810

Android ecosystem. The study in [65] looked into the versioning, source size,

and third-party library usage of 20 sample apps to understand the differences

between Android apps and traditional software applications. Researchers have

also studied the evolution of apps in terms of the presence of

anti-patterns [33], by looking into a few thousands of versions of a hundred of815

38



sample apps. Yet these studies are still static in nature, compared to

our characterization being purely dynamic—instead of looking at static

artifacts (e.g., code, manifest files, etc.) of apps, we solely focus on examining

the run-time executions of apps.

Study scope. A few dynamic characterization studies exist, which concern820

the installation and activation methods of malware only [66] or execution

structure of benign apps only [67, 36]. Other examples include the dynamic

study [68] that profiles apps in terms of their inter-component communications

(ICC) and network traffic. CopperDroid [69] was used for characterizing

system calls in apps, and the toolkit in [44] serves both static and dynamic825

characterizations. Other recent studies [38, 19, 70, 37] are also related to ours

but they focused exclusively on malware only. In contrast to the prior work

studying either benign apps or malware only, our study looks into

both benign and malicious apps and, more importantly, examines

the differences between these two groups and implications of these830

differences. Our own latest empirical work on characterizing Android apps,

with a focus on compatibility issues [28, 29], is also limited to benign apps.

Study perspectives. The prior studies of different scope and nature from

ours as discussed above also did not study the execution structure at code

level and from a programming perspective (e.g., the callback835

mechanism, interactions among code layers, etc.) as we do in this paper.

The study in [34] characterized 50 or more releases of 235 different apps in

terms of their static (sensitive data leaks and permission uses) and dynamic

(network traffic) traits. Similarly, Ren et al. studied how 512 unique Android

apps (each with on average 15 versions) evolved over eight years in terms of their840

leakage of personal identifiable information (PII) [35]. Another study took a

close look into the use of dangerous permissions in multiple snapshots of Google

Play store within a year [39] to examine how permission uses evolved. Unlike

these prior studies which focus on a few particular and external behavioral

traits of apps (e.g., permission uses, network traffic, PII leaks), our study looked845
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into the internal structure of app executions from a programming point

of view with respect to the underlying dynamics within apps that may be

exhibited as a large variety of external behavioral traits.

Also, a focus of our study is to reveal the security relevance of evolutionary

traits (e.g., execution structure as we studied in this work) by separately looking850

at the characteristics of benign apps versus those of malware and contrasting

them with respect to the characteristics. In comparison, previous peer studies

tended to mostly conflate benign apps and malware in their study benchmark

suites, without differentiating malware and benign apps. The characterization

of evaluation datasets in [9] reveals the evolutionary characteristics of both855

malware and benign apps also, but it instead focuses exclusively on API calls

in apps and is static.

In summary: compared to peer prior work, our study (1) characterizes the

run-time behaviors of apps, (2) examining both benign and malicious apps, both

separately and comparatively, (3) in terms of code-level execution structures860

and from programming perspectives, while (4) applying a long-span

(eight-year), evolutionary lens at a relatively larger scale and with a broader

scope. These distinctions clearly differentiate this paper from the current

relevant literature. Also, with the unique combination of study nature, scope,

and perspectives as discussed above, our study complements to the existing865

body of work on characterizing user applications in Android.

9. Conclusion

We presented a longitudinal study of Android apps that characterizes the

behavioral evolution of benign apps versus malware in terms of execution

structures. By monitoring the method calls and ICC Intents of 30.634 apps870

developed throughout the past eight years, we measured the actually observed

behaviors of these apps to compare the dynamic traits and evolutionary

patterns between the two groups. Our study revealed a number of previously

unknown behaviors shared by both groups, as well as those that drastically
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differentiate malware from benign apps consistently over time. Our findings875

offer novel insights to enhancing future app testing and sustainable security

analysis techniques.
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