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Abstract 

On the Use of Software Tracing and Boolean Combination of Ensemble 

Classifiers to Support Software Reliability and Security Tasks 

Md. Shariful Islam, Ph.D. Candidate 

Concordia University, 2020 

In this thesis, we propose an approach that relies on Boolean combination of multiple one-

class classification methods based on Hidden Markov Models (HMMs), which are pruned using 

weighted Kappa coefficient to select and combine accurate and diverse classifiers. Our approach, 

called WPIBC (Weighted Pruning Iterative Boolean Combination) works in three phases. The first 

phase selects a subset of the available base diverse soft classifiers by pruning all the redundant soft 

classifiers based on a weighted version of Cohen’s kappa measure of agreement. The second phase 

selects a subset of diverse and accurate crisp classifiers from the base soft classifiers (selected in 

Phase1) based on the unweighted kappa measure. The selected complementary crisp classifiers are 

then combined in the final phase using Boolean combinations. We apply the proposed approach to 

two important problems in software security and reliability: The detection of system anomalies 

and the prediction of the reassignment of bug report fields.  

Detecting system anomalies at run-time is a critical component of system reliability and 

security. Studies in this area focus mainly on the effectiveness of the proposed approaches -the 

ability to detect anomalies with high accuracy. Less attention was given to false alarm and 

efficiency. Although ensemble approaches for the detection of anomalies that use Boolean 
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combination of classifier decisions have been shown to be useful in reducing the false alarm rate 

over that of a single classifier, existing methods rely on an exponential number of combinations 

making them impractical even for a small number of classifiers. Our approach is not only able to 

maintain and even improve the accuracy of existing Boolean combination techniques, but also 

significantly reduce the combination time and the number of classifiers selected for combination.  

The second application domain of our approach is the prediction of the reassignment of bug 

report fields. Bug reports contain a wealth of information that is used by triaging and development 

teams to understand the causes of bugs in order to provide fixes. The problem is that, for various 

reasons, it is common to have bug reports with missing or incorrect information, hindering the bug 

resolution process. To address this problem. researchers have turned to machine learning 

techniques. The common practice is to build models that leverage historical bug reports to 

automatically predict when a given bug report field should be reassigned. Existing approaches 

have mainly relied upon classifiers that make use of natural language in the title and description 

of the bug reports. They fail to take advantage of the richly detailed sequential information that is 

present in stack traces included in bug reports. To address this, we propose an approach called 

EnHMM which uses WPIBC and stack traces to predict the reassignment of bug report fields.  

Another contribution of this thesis is an approach to improve the efficiency of WPIBC by 

leveraging the Hadoop framework and the MapReduce programming model.  We also show how 

WPIBC can be extended to support heterogenous classifiers.  
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Chapter 1. Introduction 

1.1 Anomaly Detection Systems 

Intrusion Detection Systems (IDS) are divided into two categories: Network Intrusion 

Detection Systems (NIDS) and Host-based Intrusion Detection Systems (HIDS). A NIDS monitors 

and analyzes network traffic. It is transparent (i.e., it can move in different locations) and 

independent (i.e., it can work in different network topologies). An HIDS works on a host computer 

and monitors user activities to detect unauthorized access, illegitimate modification of 

configuration files, and other unwanted behaviors. IDS can be further classified into two 

categories: Signature-based (or misuse) IDS and Anomaly Detection Systems (ADS). The former 

can only detect known attacks [1], whereas the latter, the focus of this thesis, is capable of detecting 

novel attacks by analyzing deviations from the normal behavior of a system.  

An ADS is trained offline in a safe environment using data collected from running the system 

in a normal threat-free environment.  The resulting model is put in operation. When the ADS 

notices an abnormal activity that deviates from the trained model, it raises an alert of a possible 

attack on the system.  

Anomaly detection refers to the problem of finding unexpected patterns of system or user 

generated data that do not conform to a preestablished normal behavior [2]. The last two decades 

have seen an increase in attention to the field of anomaly detection with the emergence of several 

approaches using a panoply of methods including statistical methods, machine learning, and data 

mining (e.g., [3] [4] [5] [6]). Although these techniques vary in their design, the common practice 

is to build a model that represents the normal behavior of a system, which can later be used to 
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detect deviations from normalcy. 

In software security, system anomalies may be due to attacks or misuse of resources. To detect 

these attacks,  most anomaly detection techniques use the temporal order of system calls generated 

by processes at the kernel level as features to train an anomaly detection model [3] [7] [8] [9]. In 

recent years, ensemble approaches that combine the decisions of multiple crisp classifiers1 using 

Boolean combination rules have been shown to improve significantly the prediction accuracy, 

while reducing the false alarms rate, hence increasing the general adoption of anomaly detection 

techniques in practice [10] [11]. However, an exhaustive brute-force search to determine optimal 

combinations leads to an exponential number of combinations, which is prohibitive even for a 

small number of classifiers [10]. To address this issue, Khreich et al. [11] proposed an Iterative 

Boolean Combination (IBC) approach for combining relatively a large number of soft Hidden 

Markov Model (HMM) classifiers while avoiding the exponential explosion of a Pair-wise Brute-

force Boolean Combination (BBC2) [10]. The problem is that IBC produces a sequence of 

combination rules that grows linearly with both the number of soft HMM classifiers and the 

number of iterations, hindering it difficult to analyze and understand. Furthermore, the algorithm 

is sensitive to the order of the combined crisp HMM classifiers, making it challenging to find the 

best subset for combination operations. 

To reduce the computation time and complexity of BBC2, Soudi et al. [12] proposed a Pruning 

Boolean Combination (PBC) approach. In short, PBC prunes all trivial (a crisp classifier that 

produces always either positive or negative) and redundant crisp classifiers and then selects 

                                                 
1A crisp classifier is the one that gives a decision (e.g., positive or negative) instead of scores (i.e., likelihood probability or 

similarity). This is contrasted with a soft classifier, which produces scores instead of a decision. A soft classifier can be converted 

into one or more crisp anomaly classifiers by setting different thresholds on the output scores [6][7]. 
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complementary crisp classifiers based on the Kappa agreements between each crisp classifier’s 

decisions and the true labels (ground truth) on the validation set. PBC improves the efficiency of 

BBC2, however, it cannot ensure the diversity among soft HMM classifiers. For example, if the 

scores of a subset of available soft HMM classifiers on a validation set are almost the same, the 

responses of the crisp HMM classifiers at a decision threshold of these redundant soft HMM 

classifiers will probably be the same. Particularly, the computed kappa values for each crisp HMM 

classifiers generated from these redundant soft HMM classifiers will probably be almost equal. 

So, if the kappa value of one of these redundant crisps HMM classifiers is close to Min or Max, 

the chances of selecting the remaining redundant crisp HMM classifiers are very high. Therefore, 

only one soft HMM classifier from this subset of redundant soft HMM classifiers should be used 

while the rest of the redundant soft HMM classifiers should be pruned before converting them into 

crisp HMM classifiers. 

In addition, although PBC reduces the computation time and complexity of BBC2, it cannot 

ensure the diversity among the combined soft classifiers, despite the fact that the performance of 

an ensemble method has been shown to be highly dependent on the diversity of the combined 

classifiers [13] [14]. 

Thesis Statement: 

In this thesis, we propose a weighted Kappa-pruned ensemble approach, called Weighted 

Pruning Iterative Boolean Combination (WPIBC). WPIBC selects the most diverse classifiers 

from a set of candidate classifiers while pruning the redundant ones. Then, we leverage Boolean 

combination techniques ( [10] [11]) to combine the decisions produced by each selected diverse 

classifier. We compare our approach with the existing BBC2 [10], IBC [11], and PBC [12] Boolean 
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combination techniques. The results show that WPIBC outperforms BBC2, IBC, and PBC by 

achieving better accuracy with lower false positive rate and also significantly reducing the 

computation time as well. First, we evaluate WPIBC by applying it to the detection of system 

anomalies using datasets of traces of system calls. Further, we evaluate WPIBC by applying it to 

the prediction of the reassignments of bug report fields using datasets of traces of function calls 

datasets. Another contribution of this thesis is an approach that improves the efficiency of WPIBC 

using the MapReduce programming model.  

1.2 Thesis Contributions 

We organize this thesis in three contributions that are depicted in Figure 1.1.  

 

Figure 1.1. Research Contributions 

Contribution 1: A weighted pruning ensemble of HMMs for detecting system anomalies 

In this work, we propose weighted pruning-based Boolean combination approach for selecting 

and combining accurate and diverse anomaly classifiers. Our approach works in three phases. The 
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first phase selects a subset of the available base diverse soft classifiers by pruning all the redundant 

soft classifiers based on a weighted version of Cohen's kappa measure of agreement. The second 

phase selects a subset of diverse and accurate crisp classifiers from the base soft classifiers 

(selected in Phase1) based on the unweighted kappa measure. The selected complementary crisp 

classifiers are then combined in the final phase using Boolean combinations. The results on two 

large scale datasets show that the proposed weighted pruning approach is able to maintain and 

even improve the accuracy of existing Boolean combination techniques, while significantly 

reducing the combination time and the number of classifiers selected for combination. 

Contribution 2: A weighted pruning ensemble of HMMs for predicting the reassignment of 

bug report fields 

In this work, we leverage our ensemble HMMs for predicting the reassignment of Bug Report 

(BR) fields, another important problem in software reliability. Our approach, called EnHMM, is 

based on WPIBC by leveraging the natural ability of HMMs to represent sequential data to model 

the temporal order of function calls in BR stack traces. When applied to Eclipse and Gnome BR 

repositories, EnHMM achieves an average precision, recall, and F-measure of 54%, 76%, and 60% 

on Eclipse dataset and 41%, 69%, and 51% on Gnome dataset. We also found that EnHMM 

improves over the best single HMM by 36% for Eclipse and 76% for Gnome. Finally, a 

comparative study shows that EnHMM outperforms leading BR field reassignment prediction 

methods. 

Contribution 3: A MapReduce solution for the ensemble of heterogeneous classifiers 

In this contribution, we leverage heterogeneous machine learning techniques and big data 

platform for improving both the accuracy and the efficiency of the propose weighted pruning 
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ensemble approach. The propose MapReduce Solution for the Kappa-pruned Ensemble based 

Anomaly Detection System (MASKED) profiles the heterogeneous features from large-scale 

traces of system calls and processes them by heterogeneous anomaly classifiers which are 

Sequence-Time Delay Embedding (STIDE), Hidden Markov Models (HMMs), and One-class 

Support Vector Machine (OCSVM). We deployed MASKED on a Hadoop cluster using the 

MapReduce programming model. We compared their efficiency and scalability by varying the size 

of the cluster. We assessed the performance of the proposed approach using the CANALI-WD 

dataset which consists of 180 GB of execution traces, collected from 10 different machines. 

Experimental results show that MASKED becomes more efficient and scalable as the file size is 

increased (e.g., 6-node cluster is 8 times faster than the 2-node cluster). Moreover, the throughput 

achieved on a 6-node solution is up to 5 times better than a 2-node solution. 

1.3 Thesis Organization 

The rest of the thesis is organized as follows. Chapter 2 surveys the state of the art in ensemble-

based anomaly detection approaches and predicting the reassignment of bug report fields. Chapter 

3, 4, and 5 explains the three contributions in this thesis we reported in Section 1.3.  The closing 

Chapter 6 highlights the thesis and gives the future directions and concluding remarks. 

1.4 Related Publications 

1. M. S. Islam, W. Khreich and A. Hamou-Lhadj, "Anomaly Detection Techniques Based on 

Kappa-Pruned Ensembles," IEEE Transactions on Reliability, vol. 67, no. 1, pp. 212-229, 

2018. [15] 

2. M. S. Islam, K. K. Sabor, A. Hamou-Lhadj, A. Trabelsi and L. Alawneh, "MASKED: A 
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Fields, (in preparation). [17] 
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Proc. of the IBM 26th Annual International Conference on Computer Science and 

Software Engineering (CASCON’16), 2016. [19]  
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Chapter 2. Background and Literature Review 

2.1 ROC-Based Boolean Combination of Multiple Classifiers 

Ensemble methods have been proposed to improve the overall accuracy by combining the 

outputs of several accurate and diverse models [8] [20] [21] [22]. In particular, combining the 

outputs from multiple crisp HMM (Hidden Markov Model) classifiers generated from multiple 

soft HMM classifiers, each trained with a different number of states, in the ROC space, has been 

shown to provide a significant improvement in the detection accuracy of system call anomalies 

[11] [23] [24]. The following sub-sections addressed existing Boolean combination techniques on 

the ROC space such as BBC2 [10], IBC [11] and one recent pruning based PBC [12] with their 

limitations. 

2.1.1 The ROC Convex Hull (ROCCH)  

All the points in a ROC space can be classified into two groups superior and inferior based on 

their tpr and fpr. Suppose a and b are two operating points in the ROC space, a is defined as 

superior to b, if 𝑓𝑝𝑟𝑎 ≤ 𝑓𝑝𝑟𝑏 and 𝑡𝑝𝑟𝑎 ≤ 𝑡𝑝𝑟𝑏. If a ROC curve has 𝑡𝑝𝑟(∗) > 𝑓𝑝𝑟(∗) for all its 

points (∗), then it is a proper ROC curve. The ROC convex hull (ROCCH) is therefore the piece-

wise outer envelope connecting only its superior points [10] [25]. The linear interpolation is used 

to connect the two adjacent superior points so that, no points in a ROC space lies out of the final 

ROCCH curve. The accuracy of a ROCCH curve is measured by the Area Under the Curve (AUC). 

The ROCCH can be used for the combination of two or more crisp classifiers in a ROC space [10] 

[11]. However, ROCCH combination rules discard the inferior points without verifying their 

combination in order to improve the system performance. 
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2.1.2 The Boolean Combination of ROC Curves  

The very first Boolean combination approach, proposed by Daugman [26], used only the 

conjunction (AND) and disjunction (OR) rules and fused on all the responses in a ROC space. The 

author applied these rules in a biometric test and concluded that the new composite ROCCH may 

increase the AUC of the ROC curve. As a consequence, other researchers also applied the AND 

or OR combination to combine soft classifiers [27] [28]. For example, consider a pair of soft 

classifiers (𝑆𝑎, 𝑆𝑏) and the various decision thresholds are Ta and Tb, respectively. In a pair-wise 

combination, the AND or OR rules are fused between each pair of converted crisp classifiers 

(𝐶𝑖
𝑎 , 𝐶𝑗

𝑏). The optimum thresholds are then selected based on the Neyman-Person test2 [29]. 

Finally, the selected optimum thresholds along with the corresponding Boolean functions are 

stored and used during operation. 

However, the AND and OR combinations cannot provide optimal thresholds when the training 

and validation datasets are limited and imbalanced [11]. Because, the resulting ROC curves using 

the limited and imbalance data may lead to the appearance of large concavities [30]. In particular, 

the false alarm may be increased, if we fuse the best classifier and the worst classifier. But, the 

diversity among the combined classifiers is an important factor in order to improve the 

performance while reducing the false alarm rate [14]. Therefore, further improvement is possible 

by including the other Boolean rules, in addition to the AND and OR rules. The following sub-

sections introduce the three most common combination techniques using all Boolean rules: Pair-

wise Brute-force Boolean Combination (BBC2) [10], Iterative Boolean Combination (IBC) [11] 

and Pruning Boolean Combination (PBC) [12]. We also report on the limitations and complexities 

                                                 
2 The point (tpropt, fpropt) of a crisp classifier in a ROC space, is optimum, if all the other points for the same value of fpropt, the 

value of tpropt is maximum. 
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of these techniques. 

2.1.3 The Pair-wise Brute-force Boolean Combination (BBC2)  

The Pair-wise Brute-force Boolean Combination (BBC2) fuses all possible pairs of crisp 

classifiers generated from all the available soft classifiers using all Boolean functions. For 

example, Figure 2.1 shows two soft HMM classifiers, D1 and D2, which have four corresponding 

crisp classifiers (i.e., single points on the ROC curve), obtained by setting four different thresholds 

on scores computed by D1 and D2. The two soft classifiers, D1 and D2, produced two ROC curves 

where each has four candidate crisp classifiers: D1(c1, c2, c3, and c4) and D2(p1, p2, p3, and p4). 

The Area Under the Curve (AUC) of the ROC curve produced by the soft classifier D1 is 0.82, 

and D2 is 0.62, meaning that D1 performs better than D2. 

 

Figure 2.1. An example of Boolean combination of HMMs 
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Since BBC2 uses all possible combination pairs among all the available candidate crisp 

classifiers, the eight candidate crisp classifiers (in Figure 2.1, c1 to c4 and p1 to p4) produce 66 

combination pairs. Each pair is then combined by ten different Boolean functions (a∧b, ¬a∧b, 

a∧¬b, ¬(a∧b),  a∨b, ¬a∨b, a∨¬b, ¬(a∨b), a⊕b, a≡b). Therefore, it produces 66x10=660 emerging 

responses on the ROC space, which are then turned into 660 emerging points (e) on the ROC 

space. The points that have the highest AUC are then selected to compute the target composite 

ROC curve. In this example, two emerging points, e1 and e2 are used to compute the final 

composite ROC curve that improves the AUC. 

As BBC2 uses all Boolean functions, it implicitly combines responses of both accurate and 

diverse crisp classifiers at both superior and inferior points in the ROC space. However, the pair-

wise brute-force strategy is computationally expensive due to the high number of permutations. 

For example, if the number of crisp classifiers is N, there are N2 possible combinations for only 

one Boolean function. Barreno et al. [10] reported that exploiting all Boolean functions using an 

exhaustive brute-force search to determine optimum points leads to an exponential number of 

combinations. 

2.1.4 The Iterative Boolean Combination (IBC)  

IBC avoids the impractical exponential explosion associated with the BBC2 by combining the 

emerging responses on a composite ROCCH sequentially. It first combines the first two ROC 

curves of the first two soft classifiers. Then, the combined ROCCH, particularly, the emerging 

points are combined with the next ROC curve, and so on until the Kth ROC curve is combined. 

IBC repeats these sequential combinations iteratively until there are no further improvements or it 

reaches to a predefined maximum number of iterations. However, in practice, IBC requires a 
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sequence of combinations of 11 to 20 crisp classifiers to reach a final point on the final composite 

ROCCH [12]. In fact, it grows linearly with the increase of the number of iterations. Because of 

this sequence of combination rules, IBC is more complex to analyze and understand during testing 

time. Moreover, the order of combined crisp classifiers makes the IBC algorithm more sensitive 

to finding the best subset. 

It is evident that the computation time and complexity increase exponentially for BBC2 and 

linearly for IBC with the increase of the number of combined soft classifiers (K), and thus making 

them inefficient. 

2.1.5 The Pruning Boolean Combination (PBC)  

To reduce the computational complexity, Soudi et al. [12] proposed a Pruning Boolean 

Combination (PBC) approach. In short, PBC prunes all trivial (a crisp classifier that produces 

always either negative or positive) and redundant crisp classifiers and, then, selects complementary 

crisp classifiers based on the kappa agreements between each crisp classifier’s decisions and the 

true labels (ground truth) on the validation set. The MinMax-Kappa (a pruning technique of PBC) 

computes the kappa values for all possible crisp HMM classifiers, and then sets Min (Minimum 

kappa value) and Max (Maximum kappa value) boundaries with sorting them in ascending order. 

After that, MinMax-Kappa selects m complementary crisp classifiers where 50% or m/2 crisp 

HMM classifiers whose kappa values are close to Min and another 50% or m/2 crisp HMM 

classifiers whose kappa values are close to Max. 

However, PBC uses the kappa coefficients between two crisp HMM classifiers, it cannot 

ensure the diversity among soft HMM classifiers. For example, if the scores of a subset of available 

soft HMM classifiers on a validation set are almost the same, the responses of the crisp HMM 
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classifiers at a decision threshold of these redundant soft HMM classifiers will probably be the 

same. Particularly, the computed kappa values for each crisp HMM classifiers generated from 

these redundant softs HMM classifiers will probably be almost equal. So, if the kappa value of one 

of these redundant crisp HMM classifiers is close to Min or Max, the chances of selecting the rest 

of the redundant crisp HMM classifiers are very high. Therefore, only one soft HMM classifier 

from this subset of redundant soft HMM classifiers should be used while the rest of the redundant 

soft HMM classifiers should be pruned before converting them into crisp HMM classifiers. 

To ensure the diversities among the combined crisp classifiers, we proposed a more 

sophisticated pruning technique that selects the smallest and most diverse subset of classifiers 

(among all available ones), which does not only reduce the computation time and complexity for 

Boolean combinations but also maintains or improves the detection accuracy (while reducing the 

false alarm rate) using the smallest number of Boolean combinations. We validated the proposed 

pruning-based ensemble approach by applying on two diverse applications: anomaly detection 

systems and predicting the bug report fields reassignments. 

2.2 Review on Anomaly Detections Systems (ADS) 

2.2.1 Introduction  

Anomaly detection refers to the problem of finding unexpected patterns of system or user 

generated data that do not conform to the normal behavior. In data mining, anomalies are the things 

that do not conform to any normal events or items or observations in a normal dataset. Generally, 

we can say any unexpected patterns of data that do not conform any right of normal behavior 

referred to as anomalies, outliers, attacks, novelties, noises, deviations and exceptions. Chandola 

et al., [2] defines an anomaly is a pattern that does not fit to a well-defined manner of normal 
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behavior. However, a well-trained anomaly classifier may also have an incomplete view of the 

original normal process behaviors due to the limitation of training samples. This kind of 

incomplete view of the actual normal process behavior leads to misclassifying rare normal events, 

and thus, raises the false alarms. For example, in Figure 2.2, the points N1 and N3 are correctly 

classified but a rare normal event, N2 is misclassified.  

 

Therefore, modeling a precise normal behavior using a limited normal dataset is very difficult 

due to the following key challenges: 

• Defining a normal region for every possible normal behavior is very difficult.  

• The border between normal and anomalous behavior is often not precise. 

• Normal behavior can be changed over time. 

• The degree of an anomaly is application specific (e.g., in medical, a very small deviation 

reports an anomaly, but this might be considered normal in stock) 

• Difficult to overcome ambiguous anomaly due to the uncertain noises in data 

• The availability of labeled data for training/validation of models  

 

 

Figure 2.2. A simple example of anomalies 
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Anomalies can be classified into three types: point anomalies, contextual anomalies, and 

collective anomalies [2]. 

Point anomalies-in which an individual instance can be considered as an anomaly with respect 

to one or more normal behaviors. For example, in Figure 2.2, points N2 and N3 are an anomaly 

with respect to normal regions. In that case, vector data instances can be handy for detecting point 

anomalies [31]. 

Contextual anomalies-in which an individual instance can be considered as an anomaly with 

respect to a specific context, not otherwise [32]. For example, in a testing sequence A B A B where 

at third and fourth positions, A calls to B, which does not appear in normal behavior for that 

specific positions, although it is appear for other positions in the rest of the normal sequences. 

However, in most cases, using a single specific context raises the false alarms. In fact, using two 

or more specific contexts and integrating their outputs also increase the computation time and 

complexities. 

Collective anomalies-in which a collection of targeted data instances is anomalous with 

respect to the entire data set. When the individual data instances may be considered as normal, but 

their appearance together as a collection is anomalous [33]. For example, in a human 

electrocardiogram output, the presence of a same low value for a while is reported as an anomaly 

with respect to a long time-series input data instance.  

Based on the availability of data labels (normal/anomaly), the whole ADS techniques can be 

classified into three different models [2]: 

Supervised ADS: Techniques that train the models using both available labeled normal and 
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anomalous classes of data instances are called supervised ADS. Although supervised ADS show 

lower false alarms, the major challenge is the use of imbalanced training dataset [34].  Particularly, 

the ratio of anomalous instances is far lower than the normal instances in the training data. Another 

major drawback is that supervised ADS models cannot detect novel attacks. 

Semi-Supervised ADS: Techniques that train the models using only the available labeled 

normal class of data instances are called semi-supervised ADS. Since they do not use the 

anomalous class, they are more widely acceptable than the supervised ADS techniques [2]. In fact, 

they can detect even novel attacks. We also reviewed so far, some best semi-supervised ADS 

techniques, in fact, the contributions of this proposal are also an integration these techniques only. 

Unsupervised ADS: Techniques that define the models with the assumption that the class 

labels for all the available data instances are unknown. Particularly, instead of using a training 

dataset, they use all data instances and implicitly assume that the normal class are far more 

common than anomalous class. When this assumption is true such models are the best choice, 

otherwise they may account a high false alarm rate. 

Detecting anomaly is a binary classification problem. Based on the outputs of anomaly 

classifiers, the classifiers can be further classified into soft and crisp classifiers. Classifiers that 

produce scores instead of a decision (i.e., normal or anomaly) for a new test instance are called 

soft anomaly classifiers. On the other hand, classifiers that produce decisions (i.e., normal or 

anomaly) are called crisp anomaly classifiers. We can convert a soft anomaly classifier to one or 

more crisp anomaly classifiers by setting one or more thresholds (𝜃) on the output scores produced 

by a soft classifier. A crisp classifier always gives a decision whether the testing sample is normal 

(𝑠𝑐𝑜𝑟𝑒 ≥ 𝜃) or anomalous (𝑠𝑐𝑜𝑟𝑒 < 𝜃) based on a predefined threshold, 𝜃.  
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The ROC curve is a commonly used metric for evaluation of classifiers’ performance. It plots 

the performances of a binary classifier in a 2-D space [25], where, y-axis represents the true 

positive rate (tpr) and x-axis represents the false positive rate (fpr) for every possible crisp 

classifier. The tpr is the proportion of correctly classified positive responses over the total number 

of positive samples tested by a crisp classifier. The fpr is the proportion of incorrectly classified 

negative responses over the total number of negative samples tested by a crisp classifier. Therefore, 

a single crisp classifier plots a single point (fpr, tpr) in a ROC space, while a soft classifier produces 

a ROC curve by connecting all the possible crisp classifier’s points at various decision thresholds. 

2.2.2 Background 

Anomaly detection is used in a wide variety of applications such as fraud detection for credit 

cards, insurance or health care, intrusion detection for cyber-security, etc. [2]. The last two decades 

have seen an increase in attention to the field of anomaly detection. Several approaches have 

emerged using panoply of methods including statistical methods, machine learning, and data 

mining (e.g., [3] [4] [5] [6]). Although these techniques vary in their design, the common practice 

is to build a model that represents the normal behavior of a system, which can later be used to 

detect deviations from normalcy. Most anomaly detection techniques use the temporal order of 

system calls, generated by a process at the kernel level, as features [3] [7] [8] [9]. In security, 

system anomalies may be due to attacks. Detecting them is therefore an important task that can 

enhance system reliability. Shariyar et al. [35] presented an approach and a supporting tool to 

detect program functions that are likely to introduce faults in a software system by examining 

historical execution traces. Their approach can be used to enhance testing and other software 

verification methods. In a recent study, Sha et al. [36] proposed an approach based on anomaly 

detection to ensure the safety of cloud-based IT infrastructures. Bovenzi et al. [37] proposed an 
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approach for revealing anomalies at the operating system level to support online diagnosis 

activities of complex software systems. Yang et al. [38] proposed an efficient method for detecting 

abnormal executions of Java programs using sequential pattern mining.  Gizopoulos et al. [39] 

argued that large investment in the design and production of multicore processors may be put at 

risk because of reliability threats, mainly due to the existence of bugs and vulnerabilities, unless 

these systems are equipped with robust anomaly detection tools. They proposed multicore 

processor architectures that integrate solutions for online error detection, diagnosis, recovery, and 

repair during field operation. 

2.2.3 Simple Sequence Matching Techniques using System Call Sequences 

To our knowledge, the very first approaches for anomaly detection are based on sequence 

matching [36] [40] [41] [42]. During training, these approach builds the normal profile by 

segmenting the full-length sequences of system calls into a fixed-length contiguous sub-sequences 

using a fixed-size sliding window, shifted one by one symbol. An example with window size four 

is shown in Figure 2.3 (a). In testing, an unknown sequence of system calls is also segmented into 

sub-sequences (as in training) and classified as normal if all sub-sequences are present in the 

normal profile. Otherwise, it is classified as an attack.  

We introduced two early simple techniques: time-delay embedding (tide) [33] and Sequence 

Time Delay Embedding (STIDE) [41]. The former one uses lookahead pairs to construct the normal 

database, whereas the later one uses continuous sub-sequences with a fixed window size. An 

example of tide and STIDE is illustrated in Figure 2.3. Let say, there are five distinct system calls: 

open, read, mmap, getrlimit, and close; and a sample sequence with length of eight. If the size of 

sliding window is k=4, we get five continuous sub-sequences, given in Figure 2.3 (a). The 
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lookahead pairs expends each sliding window (sw#) and records each call that follows at positions 

1, 2, up to k-1. An expended lookahead table for sw#1 is shown in Figure 2.3 (b), where three call# 

are made by three open, read, and mmap system calls. For each call# (i.e., system call), the 

following system call(s) with their respected position(s) are then recorded into a normal database. 

Figure 2.3 (c) shows the final normal database constructed using five expended sliding windows 

(sw#) respectively. Similarly, instead of using lookahead pair, STIDE uses all unique sliding 

windows (sw#) or unique sub-sequences with a fixed window size to construct the normal 

database. Another key difference of STIDE is the storing technique. STIDE stores all unique sub-

sequences using tree data structure. Figure 2.3 (d) shows the constructed normal database where 

each system calls acts as a root for each tree. 

 

Figure 2.3. An example of construction of normal database for tide and STIDE 

 

Once the normal database is constructed, the next step is to detect the class label 

(normal/anomaly) of an unknown sequence. In matching measure, tide simply counts the number 
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of mismatches for all the sub-sequences generated from an unknown sequence. However, any 

mismatches are important as tide assumes the normal database covers most variations. But it is not 

wise to construct a normal database with all variations. Because rare anomalous could be detected 

as normal and thus false alarm will be increased. The solution is to use a threshold that acts as a 

boundary for a normal behavior in a system. STIDE uses Hamming distance as a metric of 

matching measure between two sequences and computes a score instead of a decision. Let say, an 

unknown sequence with m sub-sequences and a normal database with n sub-sequences. First they 

compute the minimum distances 𝑚𝑖𝑛𝑖 for each sub-sequences i{i=1,…m} to a set of n normal sub-

sequences {j=1,…n}. Then, they compute the maximum of the minimum distances as a score (s) 

for an unknown sequence using equation (2.1). Finally, they normalized the score 𝑠̂ = 𝑠/𝐿, in 

order to make it independent over the sequence length L. 

𝑠 =
𝑚

𝑚𝑎𝑥
𝑖 = 1

{

𝑛
𝑚𝑖𝑛𝑖

𝑗 = 1
{𝑑(𝑖, 𝑗)}}                                                 (2.1) 

In comparison, STIDE requires less in-memory and thus faster, because sub-sequences are 

stored as tree. In fact, STIDE accounts more discrimination and compact. However, using a single 

threshold on scores 𝑠 generates an excessive number of false alarms that limits its deployment in 

commercial settings [33]. Moreover, typically, one complete trace generates a long sequence of 

system calls that increases the computation time due to a large number of sub-sequences. We also 

use STIDE as one of the heterogeneous soft classifiers and optimize these issues. We set different 

thresholds on the scores of STIDE to transform it into all possible crisp classifiers. Then these 

crisp classifiers are fed as an input. 

2.2.4 Hidden Markov Models (HMMs) using System Call Sequences 
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HMM has been shown to be a very effective method to model a system’s behavior over time 

[43]. Particularly, in detecting system anomalies using traces of system calls, HMMs outperforms 

the other approaches [24]. We also use HMMs as the base models in our proposed ensemble 

approach. An HMM is a stochastic model for sequential data determined by the two interrelated 

mechanisms–a latent Markov chain having a finite number of states and a set of observation 

probability distributions, each one associated with a state. An HMM is typically determined by 

three parameters λ = (A, B, π), which represent the states and transition probability distribution 

(A) of a system in a Markov process, the observation probability distribution (B) of observation 

sequences that come from the temporal order of executions of a system, and the initial state 

probability distribution (π) of each hidden state in a Markov process. The first parameter, A, is 

usually hidden in an HMM. The only physical events are the observation sequence (B) that is 

associated with the hidden states of a Markov process. Figure 2.4 illustrates a generic topology of 

an HMM, λ = (A, B, π) [40]. 

 

                       Figure 2.4. A general topology for an HMM model 

 

Number of Hidden States (N): To learn an HMM, we have to set the number of hidden states 
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(N) in a Markov process. Let the distinct states be 𝑆𝑖 , 𝑖 = {0,1, … , 𝑁 − 1}. The notation 𝑋𝑡 = 𝑆𝑖 

represents the hidden state sequence at time t. 

Number of Observation Symbols (M): To learn an HMM, we have to set the number of 

observation symbols (M). Let the distinct observation symbols be 𝑅𝑘, 𝑘 = {0,1, … , 𝑀 − 1}. The 

notation 𝑂𝑡 = 𝑅𝑘 represents the observed symbol 𝑅𝑘 at time t for the given observation sequence 

𝒪 − (𝒪0, 𝒪1, . . . , 𝒪𝑇−1), where T is the length of the observation sequence. 

State Transition Distribution (A): The first-row stochastic process is the hidden state transition 

probability distribution matrix 𝐴 = {𝑎𝑖𝑗}. 𝐴 is an 𝑁 ×  𝑁 square matrix and the probability of each 

element {𝑎𝑖𝑗} is denoted in equation (2.8) as: 

𝑎𝑖𝑗 = 𝑃(𝑠𝑡𝑎𝑡𝑒 𝑆𝑗  𝑎𝑡 𝑡 + 1|𝑠𝑡𝑎𝑡𝑒 𝑆𝑖 𝑎𝑡 𝑡),                                (2.8) 

𝑖, 𝑗 = {0,1, … , 𝑁 − 1} 

The transition from one state to the next is a Markov process of order one [44]. This means 

the next state depends only on the current state and its probability value. As the original states are 

“hidden” in HMM, we cannot directly compute the probability values in the past. But we are able 

to observe the observation symbols for the current state 𝑆𝑖 at time 𝑡 from a given observation 

sequence 𝒪 to learn an HMM model. 

Observation Symbol Distribution (B): The second-row stochastic process is the observation 

symbol probability distribution matrix 𝐵 = {𝑏𝑗(𝑅𝑘)}. 𝐵 is an 𝑁 ×  𝑀 dimensional matrix that is 

computed based on the observation sequences (i.e., the temporal order of executions of a system). 

The probability of each element 𝑏𝑗(𝑅𝑘) is denoted in equation (2.9) as: 
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𝑏𝑗(𝑅𝑘) = 𝑃(𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑠𝑦𝑚𝑏𝑜𝑙 𝑅𝑘 𝑎𝑡 𝑡|𝑠𝑡𝑎𝑡𝑒 𝑆𝑗  𝑎𝑡 𝑡)                            (2.9) 

Initial State Distribution (𝜋): The third-row stochastic process is the initial state probability 

distribution 𝜋 = {𝜋𝑖}. 𝜋 is a 1× 𝑁 row matrix and the probability of each element {𝜋𝑗} is denoted 

in equation (2.10) as: 

𝜋𝑖 = 𝑃(𝑠𝑡𝑎𝑡𝑒 𝑆𝑖 𝑎𝑡 𝑡 = 0)                                                           (2.10) 

Training an Ergodic HMM: The behavior of a system can be discrete (e.g., symbols from a 

finite alphabet) or continuous (e.g., signals from a speech, music, etc.). In our case, the behavior 

of a process in UNIX or Windows system can be represented as a discrete sequence of system 

calls. Since a discrete HMM is a stochastic process for sequential data [43] [45], we can use it to 

learn the behavior of a process. A well-trained HMM model using the discrete normal sequences 

of system calls can be used as a potential model for detecting anomalies. Practically, training an 

HMM using a discrete sequence of observation 𝒪-(𝒪0, 𝒪1, . . . , 𝒪𝑇−1) aims at maximizing the 

likelihood function 𝑃(𝒪| 𝜆) over the parameter space represented by 𝐴, 𝐵, and 𝜋. The Baum-

Welch (BW) algorithm is one of the most commonly used Expectation-Maximization (EM) 

algorithm for learning the HMM parameters [4]. The BW algorithm is an iterative procedure to 

estimate the HMM parameters. It uses a Forward-Backward (FB) algorithm [45] at each iteration 

to efficiently evaluate the likelihood function 𝑃(𝒪| 𝜆), and then updates the model parameters until 

the likelihood function stops improving or a maximum number of iterations is reached. In our 

experiments, we have chosen the BW algorithm to train all HMMs using the system calls datasets. 

The user-defined three initial distributions of 𝐴, 𝐵, and 𝜋, and two fixed-value parameters of 

𝑀 and 𝑁 have an impact on the performance of HMM. The common solution for the initial 
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distributions of 𝐴, 𝐵 and 𝜋 is the random initialization and the use of validation set to select the 

best parameters [40]. We have also initialized the distributions of 𝐴, 𝐵 and 𝜋 randomly and 

repeated the training process ten times. The initial distributions for which we obtain the highest 

AUC on the validation set are selected. The alphabet size 𝑀 is defined by the number of distinct 

system calls in a system. However, it is difficult to define the number of states 𝑁 in advance. 

Because, a single HMM trained with a predefined number of states 𝑁 may have limited chances 

to fit the underlying structure of the data [43]. In fact, the underlying distribution of sequences of 

system calls at different states varies according to the architectural complexity of a system and 

results in many local maxima of the log-likelihood function [46]. 

To tackle the variations in the underlying distribution of the sequences of system calls, 

ensemble HMMs have shown to be a better choice than a single HMM [9] [47]. The ensemble 

methods have been reported that the diversity among the ensemble classifiers is an essential factor 

in increasing the accuracy. In particular, Khreich et al., [11] showed that the Iterative Boolean 

Combination (IBC) of the responses of several accurate and diverse HMM classifiers significantly 

increase the accuracy while reducing the number of false alarms. We have also trained different 

discrete-time ergodic HMMs with various 𝑁 using the BW algorithm. These ergodic HMMs are 

the primary inputs to the proposed weighted pruning approach for Boolean combination.  

2.2.5 One-class Support Vector Machine (OCSVM) 

The standard machine learning techniques such as SVM use fixed-size vectors as input 

features instead of sequential features to model ADS. The bag of system calls, a very effective 

technique to encode a sequence of system calls into fixed-size vectors [48] [49], adopted from text 

mining or information retrieval [50] where each unique system call acts as a term or symbol of 
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alphabet ∑  and the number of unique system calls is equal to the size of vectors. We have 𝑚 =

| ∑ | unique system calls ∑ = {𝑣1, … 𝑣𝑚} and a dataset (𝒯) with 𝑁 labeled sequences 𝒯 =

{< 𝑇𝑖 , 𝑦𝑖 > |𝑇𝑖 ∈ ∑  ∗ , 𝑦𝑖 ∈ {0,1};  𝑖 = 1, … 𝑁}, where 𝑦𝑖 is a corresponding class of labels such that 

0 means “normal” and 1 means “anomaly”. Each sequence 𝑇𝑖 is then encoded into a term vector 

𝓥𝒊 of size 𝑚, where each element or system call 𝑣𝑗 ∈ ∑  is computed as: 

𝓥𝒊(𝑣𝑗) = Φ(𝑣𝑗 , 𝑇𝑖) = {
1, 𝑖𝑓 𝑜𝑗 ∈ 𝑇𝑖

0, 𝑖𝑓 𝑜𝑗 ∉ 𝑇𝑖
 ;                                   (2.11)    

𝑖 = 1, … 𝑁  𝑎𝑛𝑑  𝑗 = 1, … 𝑚 

The term vector 𝓥𝒊 can also be weighted by term frequency (tf) as: 

𝓥𝒊(𝑣𝑗) = Φ𝑡𝑓(𝑣𝑗 , 𝑇𝑖) = 𝑓𝑟𝑒𝑞(𝑣𝑗);      𝑗 = 1, … 𝑚                   (2.12) 

where 𝑓𝑟𝑒𝑞 is the number of times system call 𝑣𝑗  appears in 𝑇𝑖, normalized with the length 

𝐿 = |𝑇𝑖| of sequence 𝑇𝑖. However, Φ𝑡𝑓 accounts the discrimination ratio for each term related to 

only a single sequence. To account for the discrimination ratio for each term over the whole N 

sequences, document frequency (df) is proposed. Moreover, the terms that are less frequent across 

the whole sequences, i.e., the terms with less df values are more uncertain, and thus, more 

informative. Therefore, instead of df, they use inverse document frequency (idf) as a weighting 

measure, in order to compute the term vector 𝓥𝒊 as: 

𝓥𝒊(𝑣𝑗) = Φ𝑖𝑑𝑓(𝑣𝑗 , 𝑇𝑖, 𝒯) =
𝑁

𝑑𝑓(𝑣𝑗)
𝑓𝑟𝑒𝑞(𝑣𝑗);                        (2.13)  

j = 1, … 𝑚 
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Once a sequential dataset is transformed into a fixed-size (m) vector dataset 𝒯(𝑇𝑖, 𝑦𝑖) →

𝒳(𝓥𝒊, 𝑦𝑖) using a weighting function Φ𝑡𝑓 or Φ𝑖𝑑𝑓. The fixed-size vector-based dataset 𝒳(𝓥𝒊, 𝑦𝑖) 

is then used to train the OCSVM model for anomaly detection. 

We use the term vectors 𝓥𝒊, weighted by Φ𝑖𝑑𝑓 as input features for OCSVM. To train the 

OCSVM model, we use LIBSVM [51], a library for different types of SVM classifiers. We train 

the OCSVM using the Gaussian or RBS (radial basis function) kernel function given in Equation 

(8): 

K(𝑣𝑖 , 𝑣𝑗
′) = exp (−

‖𝑣𝑖, −𝑣𝑗
′‖

2

2𝜎2
)      𝑖, 𝑗 = 1, … 𝑚                   (2.14) 

2.3 Review of Techniques for Detecting the Reassignments of Bug Report 

Fields 

According to ANSI, the definition of Software Reliability is the probability of bug-free 

software operation for a specified period of time in a specified environment [52].. We cannot 

expect a software system with 100% bug free because of the inability to exhaustively test the 

system. Improving the process of handling bugs by reducing the lead time of fixing bugs 

contributes to making the system more reliable. In this thesis, we focus on techniques that 

automatically predict the fields of but reports with the objective of speeding up the bug resolution 

process.  

 

2.3.1 Reassignments of Bug Report Fields 
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Bug reports (BRs) contain a wealth of information that is used by triaging and development 

teams to understand the causes of bugs and provide fixes. The problem is that, for various reasons, 

it is common to have BRs with missing or incorrect information, hindering the bug resolution 

process [53] [54] [55]. Xia et al. [56] showed that 80% of the BRs they analyzed (190,558 BRs in 

total) have their fields reassigned. Figure 2.5 shows an example of a BR (from Eclipse project) 

with the reassignments of Product, Component, Assignee, and Status fields. Guo et al. [55] argued 

that the BR field reassignment problem is due to various factors including the difficulty to identify 

the root cause of a bug, ambiguous ownership of BR components, poor BR quality, difficulty to 

determine the proper fix, and workload balancing. 
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Figure 2.5. Reassigned and refined Bug Report of Eclipse Project with BugID 221068 [56]. 

 

2.3.2 Background  

To address the BR field reassignment problem, researchers (e.g., [53] [56] [19]) have turned 

to machine learning techniques. The common practice is to design predictive models that leverage 

historical BRs (the ground truth) to automatically predict whether a field of an incoming BR would 

most likely get reassigned or not. Existing approaches rely mainly on traditional classification 

algorithms such as SVM, KNN, decision trees, and the combination of these. For example, Xia et 
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al. [56] trained a multi-label imbalanced KNN model (Im-ML.KNN) that combines three multi-

label classifiers built using BR field metadata, BR descriptions and summaries, and a mix of both. 

Other methods include the use Naïve Bayes [53], ML.KNN [57], and HOMER [58].  

Although these approaches have been shown to be successful at varying degrees, they do not 

take full advantage of the sequential order of information in BR data such as function call 

sequences in stack traces, which may lead to improved prediction accuracy. To enable the 

modeling of sequential data, in Chapter 4, we propose an approach, called EnHMM, which 

leverages the power of HMMs to predict the reassignment of BR fields. An HMM is a 

classification technique (more precisely a stochastic process) that is designed specifically to model 

sequential data [59]. HMMs are widely used in other areas such as intrusion detection [15], DNA 

processing [60], speech recognition [44], and image processing [61]. EnHMM combines multiple 

HMMs (trained by varying the number of hidden states) using our proposed WPIBC Boolean 

combination technique [17]. This design choice is inspired by studies in the field of anomaly 

detection (e.g., [15] [24] [11]), which showed evidence that the combination of multiple HMMs 

increases accuracy over a single HMM. 

We use stack traces as the main features for our EnHMM approach. A stack trace contains a 

sequence of function calls that are in memory when a bug occurs, which we believe is a better 

characterization of the bug as opposed to BR descriptions, entered by end users. We conjecture 

that a best-fit ensemble HMM model, trained on stack traces of reassigned and not reassigned BRs, 

would help predict the probability of an unknown BR field. 

2.3.3 Related Work  

The closest work to our study is that of Xia et al. [56]. They built a model to predict 
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reassignment of BR fields using multi-label learning algorithm (ML.KNN). Their method (im-

ML.KNN) combines three different classifiers based on BR field metadata, BR descriptions and 

summaries, and a combination of these features. Their approach achieved an accuracy (F-measure) 

ranging from 56% to 62%. 

Bettenburg et al. [54] conducted a survey among developers and users of Apache, Eclipse, 

and Mozilla to understand what makes a good BR. They showed that since users are not primarily 

technical domain experts, they cannot choose BR fields correctly. They found that the steps to 

reproduce and stack traces are the most useful fields in BRs. Incomplete information in BRs 

appears to be one of the problems encountered by developers to fix the bugs.  

Guo et al. [55] [62] showed that there are five main reasons for BR field reassignment: Finding 

the root cause, determining ownership, identifying the root cause (proper fix determination), poor 

BR quality (incorrect or incomplete BRs), and workload balance. They showed that imprecise BR 

fields lead to the BR being transferred between development teams. They referred to this fact as 

the bug pong concept. They also showed that the incorrect selection of BR fields, increases the 

bug fixing time. Breu et al. [62] [63] showed that BR questions can be categorized into eight 

groups: Missing information, clarification of information provided, information for triaging, 

information needed for debugging, information on how to provide corrections, status inquiry, 

resolution, and administration questions. They also showed that incorrect information is the main 

cause of triaging uncertainties.  

Shihab et al. [63] [64] showed that BRs that are reassigned take in average two times longer 

to be fixed. Sureka [65] showed that the Assignee field is the most reassigned field in the bug 

repositories. He applied a probabilistic model to the title and description of BRs to predict faulty 
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component fields. The approach could be used to predict faulty component field of BRs with 42% 

accuracy. Lamkanfi et al. [53] showed that faulty component field of Eclipse and Mozilla BRs are 

frequently reassigned. They trained a Naïve base classifier to predict reassignment of the 

component field of BRs in Eclipse and Mozilla based on BR component, reporter, operating 

system, version, severity, and summary. They showed that their approach achieves an accuracy of 

44% for predicting if a bug will be reassigned and 83% if a bug will not be reassigned. 

Several studies focused on using stack traces to detect duplicate BRs [19] [66] [67]. These 

studies build feature vectors based on the functions in stack traces. They showed that predictive 

models built based on stack traces can detect duplicate BRs with an accuracy of up to 90%. Other 

studies focused on using stack traces to predict BR fields. Sabor et al. [68] [69] [70] [71] built 

feature vectors based on the functions in stack traces. They showed that traces and BR categorical 

feature provide good accuracy. 

2.4 Review on Detecting System Anomalies Using Big Data Platform 

2.4.1 MapReduce Programming Model and Hodoop  

The MapReduce programming model uses split-apply-combine strategy for processing and 

generating Big Data with commodity hardware [72] [73]. A MapReduce job is composed of two 

functions: Mapper and Reducer. The Mapper function reads each line of record from an input file, 

performs some operations, and produces a list of key-value pairs as output. The Reducer function 

takes all the intermediate values associated with a particular key, applies defined actions, and 

writes the results into the output files. Both Mapper and Reducer functions are designed to run 

simultaneously and independently on each node in a cluster. 

Apache Hadoop [74] implements the MapReduce programming model with the distributed 
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file system, known as Hadoop Distributed File System (HDFS). Hadoop splits a file into large 

blocks (typically, 64MB) and distributes them across several parallel nodes. Each node only 

accesses and processes the assigned data locally, which yields greater efficiency [75]. Moreover, 

Hadoop is scalable, fault tolerant, cost effective and flexible. As a result, it has become the industry 

standard for handling Big Data. A small Hadoop cluster has one master and multiple worker nodes. 

The master node contains JobTracker, TaskTracker, Name Node, and Data Node whereas the slave 

or worker node contains only TaskTracker and Data Node. The JobTracker initializes a 

MapReduce job and manages the TaskTracker on each node. The TaskTracker on each node 

executes the Mapper and Reducer tasks assigned by the JobTracker. 

2.4.2 Background  

Most reported approaches [15] [11] [48] [49] for anomaly detection were based on sequence 

matching. During training, these approaches built the normal profile by filtering and transforming 

the large-scale traces of system calls into numerical sequences of system calls, and then, treating 

them to profile heterogeneous features for heterogeneous anomaly classifiers. For example, 

OCSVM [48] [49] uses the fixed-size vector-based features while IBC [11] and WPIBC [15] use 

fixed-size sliding window-based short sequences of system calls. 

Therefore, the very first step for any ensemble of heterogeneous anomaly classifiers is to 

profile the heterogeneous features for the heterogeneous anomaly classifiers. Two important tasks 

are needed to profile the heterogeneous features: preprocess the large-scale traces of semi-

structured data and then, extract the target features from that preprocessed sequential data. 

However, it is difficult for a single machine to handle such huge compute incentive tasks. So far, 

the smart solution is leveraging the power of existing parallel computation frameworks, such as 
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HDFS (Hadoop Distributed File System) and the MapReduce programming model. 

However, Hadoop with its original parallel computation model is technically not suitable for 

profiling sequential data due to dependencies on the temporal information or the orders of a 

sequence [76]. For example, when HDFS splits a large trace file into two or more fixed-size blocks, 

Hadoop fails to keep track of the order or temporal information of large sequences within the trace 

file. Therefore, we need a MapReduce solution that profile the heterogeneous features such as 

fixed-size sliding windows for short sequences-based anomaly classifiers (e.g., HMMs and 

STIDE) and fixed-size feature vectors for the traditional machine learning based anomaly 

classifiers (e.g., OCSVM). 

2.4.3 Related Work  

Several studies have been proposed in the literature to deal with the system anomalies 

detection problem using Big Data platforms, particularly, Hadoop and MapReduce programming 

model [76] [77] [78] [79]. Among them, Matthews et al. [77] have recently proposed a MapReduce 

solution for detecting real-time anomalous behaviors in SCADA systems. They analyzed both the 

voltage and current phasors, as well as a set of frequency measurements to detect any deviations 

from the true value. However, this solution is technically not suitable for utilizing the power of 

MapReduce and Hadoop to profile short sub-sequences or time slice windows from a large-scale 

temporal data. This is due to the fact that the latter assume that the data should be preprocessed 

and stored in a CSV file before being used. Moreover, traditional machine learning approaches 

[80] [81], use fixed-size feature vector instead of short sub-sequences. Therefore, this solution [77] 

is suitable for a single-based anomaly classifier with a preprocessed time slice data and not 

appropriate for ensemble-based anomaly detection systems. 
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Zhenlong Li et al., [78] proposed a spatiotemporal indexing approach that can be used by a 

MapReduce job for retrieving and processing spatiotemporal climate data. They used the proposed 

index data structure as a global grid, which is accessed by each node for re-assembling the features 

from a block of data. However, the size of the global indexing grid increases exponentially with 

the increase of the spatiotemporal resolution (or time slice) size. Therefore, the spatiotemporal 

indexing is reliable when the time slice is large (e.g., daily basis). For a small window, however, 

the size of each global grid may reach several gigabytes which reduces the computational 

efficiency.  

Kim et al., [79] proposed a host-based anomaly detection method by leveraging the Hadoop 

MapReduce parallel computation model in the era of host-generated Big Data. They reported that 

the behavior of malicious codes is logged basically on the host. They analyze the host log 

information which includes various log data such as enormous amounts of security logs, network 

and host information, and application transactions. This approach is also limited to profile only 

vector-based features. In that case, our proposed MapReduce solution, MASKED takes a full of 

advantage of the parallel computation framework, Hadoop, by profiling heterogeneous features 

and processing them using a pre-constructed ensemble-based BICKER Boolean combination 

rules. 
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Chapter 3. Anomaly Detection Techniques Based on 

Weighted Kappa-Pruned Ensemble of HMMs 

In this chapter, we propose weighted pruning based Boolean combination, an efficient 

approach for selecting and combining accurate and diverse anomaly classifiers. It works in three 

phases. The first phase selects a subset of the available base diverse soft classifiers by pruning all 

the redundant soft classifiers based on a weighted version of Cohen’s kappa measure of agreement. 

The second phase selects a subset of diverse and accurate crisp classifiers from the base soft 

classifiers (selected in Phase1) based on the unweighted kappa measure. The selected 

complementary crisp classifiers are then combined in the final phase using Boolean combinations. 

The results on two large scale datasets show that the proposed weighted pruning approach is able 

to maintain and even improve the accuracy of existing Boolean combination techniques, while 

significantly reducing the combination time and the number of classifiers selected for combination.  

3.1  Introduction 

In this work, we propose a weighted pruning of Boolean combinations that selects the best 

subset of diverse base soft classifiers by pruning all the redundant ones. Each diverse base soft 

classifier is then used independently to select the complementary crisp classifiers instead of brute-

force search like in PBC. The complementary crisp classifiers are then combined by leveraging 

both Pair-wise Brute-force Boolean Combination (BBC2) and Iterative Boolean Combination 

(IBC) [10] [11], which shows that the pruning approach can be used with any Boolean combination 

approach. 

We leverage both weighted and unweighted Cohen’s kappa [82] [83] in order to select the 

best subset of diverse base soft classifiers. Weighted Cohen’s kappa is a special case of simple 
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kappa (unweighted kappa) that is particularly used when the agreements between two classifiers 

are ordinal instead of nominal. In our case, the scores of a soft classifier are ordinal and the decision 

of a crisp classifier based on a given threshold is nominal. Our weighted pruning approach prunes 

both soft and crisp classifiers based on the ordinal agreements and the nominal agreements 

between two classifiers. The selected diverse and accurate crisp classifiers are then used for 

Boolean combination. During combination, we leverage both the pair-wise and iterative Boolean 

combinations introduced by Barreno et al. [10] and Khreich et al. [11], respectively. The proposed 

Pair-wise Weighted Pruning Boolean Combination (namely called WPBC2) fuses and combines 

all possible pairs of crisp classifiers generated from the selected diverse base soft classifiers. 

Whereas, the Weighted Pruning Iterative Boolean Combination (namely called WPIBC) fuses and 

combines the selected diverse base soft classifiers sequentially until no significant improvement is 

possible. Another major contribution of this paper is the evaluation of our approach for detecting 

anomalies at the system call levels. We compare the performance of WPBC2 and WPIBC to that 

achieved with the original BBC2 and IBC techniques. In addition, we compare the performance of 

our approaches to Pruning Boolean Combination (PBC) [12]. 

The main contributions of this work are: 

1. We propose an anomaly detection approach that enforces the diversities among the combined 

soft and crisp classifiers using weighted and unweighted Cohen’s kappa [82]. 

2. The approach can be used with both pair-wise and iterative Boolean combination techniques 

[10] [11], and easily adaptable to other Boolean combination methods. 

3. We evaluate our approach on two large publicly available system call datasets: ADFA Linux 

Dataset (ADFA-LD) [7] and CANALI Windows Dataset (CANALI-WD) [84].  
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4. We show that our approach outperforms BBC2, IBC, and PBC by achieving lower false 

positive rate, while maintaining and improving the detection accuracy, measured using AUC.  

3.2 Proposed Weighted Pruning Technique 

The proposed weighted pruning based Boolean combination approach leverages both 

weighted and unweighted kappa measures of (dis)agreement. The main novelty of this work is to 

ensure that the diversity among the scores of all the available ensemble of soft classifiers by 

pruning the redundant soft classifiers using weighted kappa. Then, our approach applies the 

unweighted kappa based MinMax-Kappa pruning technique (one of the pruning techniques of 

PBC) individually on each selected diverse base soft classifiers and selects the complementary 

crisp classifiers. At the end, we merge all the selected complementary crisp classifiers from each 

selected diverse base soft classifiers and use them for Boolean combination. 

3.2.1 Kappa Measure of (Dis)Agreement 

Cohen’s kappa or simply called kappa is a statistical tool that is widely used for measuring 

the inter-rater reliability or (dis)agreement between raters [6]. There are two types of kappa 

coefficients that can be used in computing the inter-rater reliability. The unweighted kappa 

coefficient is the simplest version of kappa [83] that is used only for nominal category. The 

weighted kappa coefficient is an extended version of kappa [83] that is used when the category is 

ordinal [85]. Our pruning techniques leverage both kappa coefficients. The weighted kappa 

coefficient is used to prune the redundant soft classifiers when the level of scores is ordinal 

(thresholds). And the unweighted kappa coefficient is used to prune the trivial and redundant crisp 

classifiers when the decision is nominal (anomaly/normal). 

The contingency matrix for both kappa coefficients of (dis)agreement is defined on two 
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classifiers. Let the two classifiers be D1 and D2 and the contingency matrix is 𝐶𝑛×𝑛. Here, n is the 

order of levels. For unweighted kappa coefficient, n is fixed to two that is either positive or 

negative. For weighted kappa coefficient, n is equal to the number of levels or thresholds with the 

assumption that both classifiers have the same number of constant levels or thresholds. An example 

of a contingency table 𝐶2×2 for n=2, is given in Table I. Where, each element 𝑎𝑖𝑗 represents the 

number of instances on which classifier D1 and classifier D2 agree at leveli and levelj. The sum of 

all elements in Table I is equal to the size of the validation set. 

 

For the weighted kappa coefficient, we need to define the weighted matrix 𝑊 in addition to 

the contingency matrix 𝐶. Among the many possible weighting schemes, the linear weighting 

scheme is effective when one order is important than the next one [60]. We also use linear weight 

when the order is the number of thresholds and the distance between two thresholds is important 

to define whether two soft classifiers are similar or diverse. We can compute the linear weighting 

matrix 𝑊 using equation (3.1). 

𝑊 = 𝑤𝑖𝑗 = 1 −
𝑎𝑏𝑠(𝑖 − 𝑗)

𝑛 − 1
                                                         (3.1) 

When 𝐶 and 𝑊 are the same dimensional square matrices, the kappa coefficient for both 

unweighted and weighted kappa can be computed based on the Hadamard product (𝜊) [82] or 

element-wise product of matrices according to the equation (3.2): 

Table I: Contingency Matrix 

D1 

D2 

 Positive/level1 Negative/level2 

Positive/level1 a11 a12
 

Negative/level2 a21 a22 
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𝑘𝑝 =
𝑝𝑎 − 𝑝𝜀

1 − 𝑝𝜀
                                                                                  (3.2) 

where 𝑝𝑎 = 𝑠𝑢𝑚(𝐶𝜊𝑊) is the proportion of weighted agreement (for unweighted kappa, 

𝑊 = 𝐼 means complete agreement). The parameter 𝑝𝜀 is the proportion of agreement due to chance 

and computed using equation (3.3) as: 

𝑝𝜀 = (𝑐𝑛×1 × 𝑟1×𝑛)𝜊𝑊                                                                   (3.3) 

 

Here, 𝑐𝑛×1 denotes a column matrix in which each element is the sum of each row of 𝐶. 

Similarly, 𝑟1×𝑛 is a row matrix in which each element is the sum of each column of 𝐶. The kappa 

coefficient 𝑘𝑝 computes the inter-rater reliability based on the proportion of agreement (𝑝𝑎) and 

 

 

Figure 3.1. A simple example of weighted and unweighted kappa for pruning redundant 

soft and crisp classifiers  
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agreement due to chance (𝑝𝜀), where the degrees of disagreement are controlled by the weight 

matrix 𝑊 (𝑊 = 𝐼 for unweighted kappa that means no degrees of disagreement). Therefore, 𝑘𝑝 =

1 indicates perfect agreement (i.e., both classifiers agree at the same level for every instances) and 

𝑘𝑝 = 0 indicates that any agreement is totally due to chance. The value of 𝑘𝑝 might also be 

negative. Negative values indicate both classifiers are negatively correlated, and such 

complementary classifiers are important in the combination of ensemble techniques [13] [14]. 

In the rest of this work, we use the running example shown in Figure 3.1 to describe the phases 

of our approach. In this example, we have selected three HMM-based classifiers, D1, D2, and D3 

by varying the number of hidden states. Figure 3.1 (a) shows the scores of each classifier. 

Phase1-Pruning Using Weighted Kappa: The first phase of Algorithm 1 describes the steps 

for pruning the redundant soft classifiers using weighted kappa coefficient 𝑘𝑝. Suppose, we have 

𝐾 soft classifiers and they produce 𝑆𝑘{𝑘 = 1 … 𝐾} score vectors using a validation set 𝑉. In the 

example of Figure 3.1, K = 3 and the scores for each classifier are shown in Figure 3.1 (a). Let the 

number of thresholds of each soft classifier be 𝑛𝑘. In the example of Figure 3.1, 𝑛𝑘 = 4. Therefore, 

we have 𝐾 ROC curves (𝑆𝑘, 𝑛𝑘) with probably K different AUC values. In each iteration (lines 7-

18 in Algorithm 1), we select one out of 𝐾 available soft classifiers for which the AUC is maximum 

and use it as a base soft classifier 𝑆𝑏. We store 𝑆𝑏 onto B (line 9 in Algorithm 1) for the next 

Phase2. Now, we compute the weighted kappa coefficients 𝑘𝑝 between 𝑆𝑏 and each of the rest 

𝐾 ← 𝐾 − 𝑆𝑏 soft classifiers where the thresholds 𝑛𝑘 of 𝑆𝑏 are used as an order or levels.  Then, 

the soft classifiers among the 𝐾 − 𝑆𝑏 soft classifiers which perfectly agree (0.8 < 𝑘𝑝 ≤ 1) with 

𝑆𝑏 based on the computed weighted kappa kp, are pruned as a redundant copy of 𝑆𝑏. Let say, the 

number of redundant classifiers we found in each iteration is 0 ≤ 𝐾′ ≤ 𝐾 − 1, and then we remove 
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them from the available 𝐾 classifiers as: 𝐾 ← 𝐾 − 𝐾′.  We repeat this process until 𝐾 is zero. 

 

Using the example shown in Figure 3.1, we have 𝑆𝑏 = 𝐷1 because the AUC of D1 is 

maximum. We then store 𝐷1in B as a base soft classifier.  Suppose, 𝑛𝑘 of 𝐷1 is equal to four 

different levels (𝑆 ≥ 3;  3 > 𝑆 ≥ 2; 2 > 𝑆 ≥ 1;  𝑎𝑛𝑑 1 > 𝑆 ≥ 0) of scores 𝑆(𝐷1). First, we have 

to compute the contingency and weighted matrices between base (𝑆𝑏 = 𝐷1) and each of the rest 

two (𝐾 ← 𝐾 − 𝑆𝑏) soft classifiers 𝐷2 and 𝐷3. Figure 3.1 (b) shows the contingency tables (𝐶4×4) 

Algorithm 1: 𝑃𝑆𝐶𝐷𝑠(𝑆1, … 𝑆𝐾 , 𝑇1, … 𝑇𝐾 , 𝑙𝑎𝑏): Pruning Soft and Crisp Classifiers 

input: scores of K soft classifiers {𝑆1, … 𝑆𝐾} on a validation set along with their thresholds {𝑇1, … 𝑇𝐾}, and true 

labels 𝑙𝑎𝑏 of size |𝑙𝑎𝑏|. 
output: selected 𝐿 ≪ 𝐾 diverse base soft classifiers {𝐵1, … 𝐵𝐿} along with their complementary crisp classifiers or 

thresholds {𝜃1 , … 𝜃𝐿} where 𝜃𝑙 ≪ 𝑇𝑙 ( 𝜃𝑙 = 12 and 𝑇𝑙 = 100 on average) 

 

1 // Phase1-pruning soft classifiers using weighted kappa 

2 allocate an array 𝐴𝑈𝐶𝑎𝑙𝑙[1: 𝐾]   // temporary store auc of each Sk 

3 for k ← 1 to K do 

4  compute auc of ROC(Sk,Tk) 

5  push auc onto 𝐴𝑈𝐶𝑎𝑙𝑙 

6 allocate an empty array B = []   //store selected diverse soft classifiers 

7 while (K) 

8  select base soft classifier: 𝑆𝑏 ← 𝑚𝑎𝑥𝑘[𝐴𝑈𝐶𝑎𝑙𝑙(𝑘)] 
9  store 𝑆𝑏onto B   // store 𝑺𝒃 as a base soft classifier 

10  let 𝑛𝑏 ← number of order/levels/thresholds in 𝑇𝑏 

11  update K ← K - 𝑆𝑏                         // remove 𝑺𝒃 from K soft classifiers 

12  update 𝐴𝑈𝐶𝑎𝑙𝑙 ← 𝐴𝑈𝐶𝑎𝑙𝑙 - 𝐴𝑈𝐶𝑎𝑙𝑙(𝑆𝑏)               // remove auc for 𝑺𝒃 

13  let n ← the size of | K | 

14  for k ← 1 to n do 

15   compute linear weighted kappa kp between 𝑆𝑘 and 𝑆𝑏 using 𝑛𝑏 

16   if  0.80 < kp <=1    

17    update K ← K - 𝑆𝑘   // remove 𝑺𝒌 as a redundant copy of 𝑺𝒃 

18    update 𝐴𝑈𝐶𝑎𝑙𝑙 ← 𝐴𝑈𝐶𝑎𝑙𝑙 - 𝐴𝑈𝐶𝑎𝑙𝑙(𝑆𝑘)    // remove auc for 𝑺𝒌 

19 // -----Phase2- pruning crisp classifiers using unweighted kappa----------- 

20 let 𝐿 ← number of selected diverse base soft classifiers in 𝐵 

21 let 𝑚 ← number of selected complementary crisp classifiers from 𝑆𝑏 ∈ 𝐵 

22 allocate an empty array 𝜃 = []  //store thresholds of each complementary crisp      //classifiers 

23 for b← 1 to 𝐿 do 

24  let 𝑛𝑏 ← number of crisp classifiers or thresholds in 𝑇𝑏 ∈ 𝑆𝑏 

25  allocate an array 𝑈[1: 𝑛𝑏]    // store temporary kappa coefficients 

26  allocate an array 𝑉[|𝑙𝑎𝑏|: 𝑛𝑏] //store temporary responses 

27  for j ← 1 to 𝑛𝑏 do 

28   𝑟 ← 𝑆𝑏 ≥ 𝑡𝑗  //temporary responses at decision threshold 𝒕𝒋 ∈ 𝑻𝒃 

29   compute unweighted kappa kp between r and 𝑙𝑎𝑏 

30   push kp onto U and r onto V 

31  filter U and 𝑉 by removing trivial classifiers 

32  select 𝑚 complementary crisp classifiers using 𝑀𝑖𝑛𝑀𝑎𝑥𝐾𝑎𝑝𝑝𝑎(𝑈, 𝑉) pruning technique 

33  map 𝑚 selected complementary crisp classifiers into 𝜃𝑏  thresholds 

34  store 𝜃𝑏  thresholds onto 𝜃// store 𝜽𝒃 complementary crisp classifiers of 𝑺𝒃 

35 return  𝐵 < 𝑆1, … 𝑆𝐿 > and 𝜃 < 𝜃1 , … , 𝜃𝐿 > 
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for four different levels. Since the dimension of the contingency and weighted matrices are the 

same, we put them together, where, each cell 𝑐𝑖𝑗(#_#_𝑤𝑖𝑗) in Figure 3.1 (b)  represents three 

values: The first and second values represent the number of samples agreed at levels 𝑖 and 𝑗 of the 

two contingency tables between 𝐷1 and 𝐷2 and between 𝐷1 and 𝐷3, respectively. The third value 

is the linear weight, computed using Equation (3.1). 

Based on the contingency and weighted matrices between two classifiers, we can compute the 

weighted kappa (𝑘𝑝) coefficients using Equation (3.2). The weighted kappa 𝑘𝑝 between 𝐷1 and 

𝐷2 is 1, meaning that both are in perfect agreement (i.e., 𝑘𝑝 ∈ 0.8 < 𝑘𝑝 ≤ 1) at the same level 

for every instance, and thus 𝐷2 should be pruned (lines 15 to 18 in Algorithm 1).  However, the 

weighted kappa 𝑘𝑝 between 𝐷1 and 𝐷3 is 45.65, meaning poor agreement (i.e., 𝑘𝑝 ∉ 0.8 < 𝑘𝑝 ≤

1) at the same level for every instance, and therefore 𝐷3 is more likely to diverse from D1 and 

should be selected for combination. At the end of the first iteration, we only keep D3 (i.e., K=1), 

while D2 is pruned because it is redundant of the base classifier, D1. The final results of this phase 

consist of two diverse base soft classifiers D1 and D3. The diversities at the response level for four 

different thresholds are presented in Figure 3.1 (c). We can see that the responses of the two 

selected base soft classifiers, D1 and D3, diverse at various instances (see Figure 3.1 (c)) for all 

threshold points, except for 𝑆 ≥ 0. 

In Figure 3.2 (a), we show a more realistic example, using the ADFA-LD dataset with 20 soft 

HMM classifiers. In this figure, we have eight base soft diverse classifiers (green solid ROC 

curves) and 12 pruned redundant soft classifiers (black dotted ROC curves). Similarly, Figure 3.2 

(b) shows the experiment on CANALI-WD dataset, where we have only three base soft diverse 

classifiers and 17 pruned redundant soft classifiers. At the end of Phase1, all the selected base soft 
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diverse classifiers 𝐿 ≪ 𝐾 (stored in B) are then fed into Phase 2 of Algorithm 1. 
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(a) Diverse and redundant soft classifiers on ADFA-LD dataset 

 

 

 

(b) Diverse and redundant soft classifiers on CANALI-WD dataset  

 

Figure 3.2. Example of selected base soft classifiers (green solid lines) with pruning redundant soft classifiers 

(doted black lines) under the ROC space using weighted kappa (Phase1 in Algorithm 1) on ADFA-LD dataset 

(a) and CANALI-WD dataset (b). 



45 

 

 

 

 

(a) kp-fpr diagram 

 

 

 

(b) kp-tpr diagram 

 

Figure 3.3. Example of selected complementary crisp classifiers (red bold points) under the simple kappa versus 

true positive rate (kp-tpr) diagram (a) and kappa versus false positive rate (kp-fpr) diagram (b) with pruning 

trivial and redundant crisp classifiers (small black points) from the L base soft classifiers (selected by Phase1 in 

Algorithm 1) using MinMax-Kappa pruning technique (Phase2 in Algorithm 1) on ADFA-LD dataset. 
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Phase2-Pruning Using Unweighted Kappa: The second phase of Algorithm 1 leverages the 

MinMax-Kappa pruning method [12], one of the two pruning methods of PBC using unweighted 

kappa, to select the complementary crisp classifiers. Since the base soft classifiers selected in 

Phase1 are diverse, we apply the MinMax-Kappa pruning method on each base soft classifier 

individually instead of brute-force search like in PBC. We compute the unweighted kappa 

coefficient 𝑘𝑝 between a base soft classifier’s decision vector (or crisp classifier) and the true 

decision labels (or ground truth), same as in PBC.  If 𝑛𝑏 is the number of decision levels on a base 

classifier’s scores vector 𝑆𝑏, then we obtain 𝑛𝑏 crisp classifiers. Now, we compute unweighted 

kappa coefficients of 𝑛𝑏 crisp classifiers and sorted them in ascending order. According to 

MinMax-Kappa, the accurate crisp classifiers should reside close to 𝑘𝑝 ≈ 𝑘𝑝𝑚𝑎𝑥 and their 

complementary crisp classifiers should reside close to 𝑘𝑝 ≈ 𝑘𝑝𝑚𝑖𝑛. However, we have to set the 

number of crisp classifiers and the ratio of them to be selected close to 𝑘𝑝𝑚𝑎𝑥 and 𝑘𝑝𝑚𝑖𝑛. We set 

the ratio is 50%, same as in MinMax-Kappa. Moreover, before selecting the complementary crisp 

classifiers, we have to filter out the trivial crisp classifiers (giving always either positive or negative 

responses) whose 𝑘𝑝 is close to zero. 

In the running example shown in Figure 3.1, Phase2 selects two diverse base soft classifiers 

𝐷1 and 𝐷3 with four different thresholds. Therefore, each base soft classifier produces four crisp 

classifiers at four different levels or thresholds. The responses 𝑅(𝐷(𝑆) ≥ 𝜃) of each crisp classifier 

for 25 instances and their corresponding true labels (ground truth) are shown in Figure 3.1(c). 

Figure 3.1(d) shows the unweighted kappa values sorted in ascending order for each crisp classifier 

of two base soft classifiers 𝐷1 and 𝐷3. 

Consider a ratio of 50% and the number of crisp classifiers to be selected to be two. Therefore, 
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from Figure 3.1(d), we obtain, 𝑘𝑝𝑚𝑎𝑥 ≈ 0.62 and 𝑘𝑝𝑚𝑖𝑛 ≈ 0 for 𝐷1. Similarly, for 𝐷3, 𝑘𝑝𝑚𝑎𝑥 ≈

0.59 and 𝑘𝑝𝑚𝑖𝑛 ≈ 0. However, the trivial crisp classifiers, one for 𝐷1: 𝑅(𝑆 ≥ 0); and two for 𝐷3: 

𝑅(𝑆 ≥ 1) & 𝑅(𝑆 ≥ 0) should be filtered out first. Figure 3.1(d) shows the filtered trivial crisp 

classifiers (large diagonal marker with cross sign). Since the ratio is 50%, from each base soft 

classifier, one crisp classifier should be selected close to 𝑘𝑝𝑚𝑎𝑥 and another one should be selected 

close to 𝑘𝑝𝑚𝑖𝑛. Figure 3.1(d) shows the four selected complementary crisp classifiers (two from 

each base soft classifier, marked with large circle marker). 

In general, if the number of selected complementary crisp classifiers from a selected base soft 

classifier is m (i.e., m/2 close to 𝑘𝑝𝑚𝑎𝑥 and m/2 close to 𝑘𝑝𝑚𝑖𝑛), then the total number of selected 

crisp classifiers will be 𝑀 = 𝑚 ∗ 𝐿, where L is number of selected base soft classifiers (selected 

from Phase1). We tested m with different setting (l=4, 8, 12, 16, and 20) and obtained best results 

for m = 12. 

In Figure 3.3, we show a more realistic example, using ADFA-LD dataset. In this figure, we 

have 𝑀 complementary crisp classifiers (red bold points) selected from L diverse base soft 

classifiers (selected in Phase1) using unweighted kappa-based MinMax-Kappa pruning technique. 

Figure 3.3 (a) shows the results under the space of kp-fpr and Figure 3.3 (b) shows the results 

under the space of kp-tpr. Figure 3.4 also shows the selected total 𝑀 = 96 complementary crisp 

classifiers from the 𝐿 = 8 diverse base soft classifiers under the ROC space. 
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Phase3-Boolean Combination Techniques: The third phase combines the selected 

complementary crisp classifiers using Boolean functions. The first combination approach called 

Weighted Pruning Pair-wise Boolean Combination (WPBC2), shown in Algorithm 2, combines 

all possible pairs of complementary crisp classifiers (selected from Phase1 and Phase2) same as in 

BBC2. In contrast with BBC2, WPBC2 fuses only the complementary crisp classifiers instead of 

using Brute-force (i.e., all available crisp classifiers).  The second approach called Weighted 

Pruning Iterative Boolean Combination (WPIBC), shown in Algorithm 3, combines the 

complementary crisp classifiers of each diverse base soft classifiers sequentially same as in IBC. 

The difference is that WPIBC only combines the most diverse base soft classifiers after pruning 

all the redundant soft classifiers. As we will show in the evaluation section, both WPBC2 and 

WPIBC Boolean combination approaches using only 𝑀 ≪ 𝑁 complementary crisp classifiers of 

 

 

Figure 3.4. Example of selected complementary crisp classifiers (red bold points) under the ROC space 

with pruning trivial and redundant crisp classifiers (small black points) from the L base soft classifiers 

(selected by Phase1 in Algorithm 1) using MinMax-Kappa pruning technique (Phase2 in Algorithm 1) on 

ADFA-LD dataset 
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𝐿 ≪ 𝐾 diverse base soft classifiers improved the true positive rate when the false tolerance is 

almost close to zero. 

 

Algorithm 2: 𝑊𝑃𝐵𝐶2(𝑆1, … 𝑆𝐾 , 𝑇1, … 𝑇𝐾 , 𝑙𝑎𝑏): Weighted Pruning Pair-wise Boolean Combination 

input: scores of K soft classifiers {𝑆1, … 𝑆𝐾} on a validation set along with their thresholds {𝑇1, … 𝑇𝐾}, and true 

labels 𝑙𝑎𝑏  of size |𝑙𝑎𝑏|. 
output: a new composite 𝑅𝑂𝐶𝐶𝐻⎯consturcted by |𝑃𝑒| (size of  𝑃𝑒) combination responses or |𝑃𝑒| emerging 

points. Each point is a combination of two crisp classifiers using only one Boolean function. 

 

1 prune redundant soft and crisp classifiers 

 (𝐵 < 𝑆1, … 𝑆𝐿 >, 𝜃 < 𝜃1, … , 𝜃𝐿 >) ← 𝑃𝑆𝐶𝐷𝑠(𝑆1, … 𝑆𝐾 , 𝑇1, … 𝑇𝐾 , 𝑙𝑎𝑏)   

// where 𝑳 ≪ 𝑲 is the number of selected diverse base soft classifiers 

2 set BooleanFunctions ← {a∧b,¬a∧b,a∧¬b,¬(a∧b), 

  a∨b,¬a∨b,a∨¬b,¬(a∨b),a⊕b,a≡b} 

3 let 𝐹 ← number of Boolean functions in BooleanFunctions 

4 let 𝑚𝑖 ← number of decision thresholds in 𝜃𝑖  

5 let 𝑀 ← ∑ 𝑚𝑖
𝐿
𝑖=1   total number of crisp classifiers 

5 allocate an array 𝐶[|𝑙𝑎𝑏|, 𝑀] 
6 // convert soft classifiers to crisp classifiers 

7 for i ← 1 to L do    

8  for j ← 1 to 𝑚𝑖 do 

9   r ← Si ≥ tj  //temporary responses at decision threshold 𝒕𝒋 ∈ 𝜽𝒊 

10   push r onto 𝐶 

11 allocate an array 𝑃[2, 𝐶2 × 𝐹]  
// temporary store points (fpr, tpr) of fused responses 

12 foreach bf ∈ BooleanFunctions do 

13  for i ← 1 to M do 

14   for j ← 1 to M do 

15    𝑟 ← 𝑏𝑓(𝐶[𝑖], 𝐶[𝑗])          // combine  responses 

16    compute p ← (tpr, fpr) using 𝑟 and lab 

17    push p onto P 

18 compute composite 𝑅𝑂𝐶𝐶𝐻 of all ROC points in P 

19 map each emerging points 𝑃𝑒 on 𝑅𝑂𝐶𝐶𝐻 into a 3-tuples: 

 𝑃𝑒 ← < (𝑆𝑖 , 𝑡𝑗), (𝑆𝑖 , 𝑡𝑗), bf > //where 𝒊 = {𝟏, … , 𝑳} and 𝒕𝒋 ∈ 𝜽𝒊 

20 return ROCCH along with all emerging points {𝑃1, … , 𝑃𝑒} 
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Algorithm 3: 𝑊𝑃𝐼𝐵𝐶(𝑆1, … 𝑆𝐾 , 𝑇1, … 𝑇𝐾 , 𝑙𝑎𝑏): Weighted Pruning Iterative Boolean Combination 

input: scores of K soft classifiers {𝑆1, … 𝑆𝐾} on a validation set along with their thresholds {𝑇1, … 𝑇𝐾}, and true labels 𝑙𝑎𝑏  of 

size |𝑙𝑎𝑏|. 
output: a new composite 𝑅𝑂𝐶𝐶𝐻⎯consturcted by |𝑅𝑖𝑡𝑒𝑟| (size of  𝑅𝑖𝑡𝑒𝑟) combination responses  or |𝑅𝑖𝑡𝑒𝑟| emerging points. 

Each point is a sequential combination on average of five crisp classifiers using four Boolean functions.  

1 call pruning function //prune redundant soft and crisp classifiers 

 (𝐵 < 𝑆1, … 𝑆𝐿 >, 𝜃 < 𝜃1, … , 𝜃𝐿 >)  ← 𝑃𝑆𝐶𝐷𝑠(𝑆1, … 𝑆𝐾 , 𝑇1, … 𝑇𝐾 , 𝑙𝑎𝑏)  

 // where 𝑳 ≪ 𝑲 is the number of selected diverse base soft classifiers  

2 set BooleanFunctions ← {a∧b,¬a∧b,a∧¬b,¬(a∧b), 

  a∨b,¬a∨b,a∨¬b,¬(a∨b),a⊕b,a≡b} 

3 iter ←1  

// combine the first two ROC curves of the first two diverse base soft classifiers 

4 let 𝑚1 ← number of points in first curve 𝑅𝑂𝐶(𝑆1, 𝜃1) 

5 let 𝑚2 ← number of points in second curve 𝑅𝑂𝐶(𝑆2, 𝜃2) 

6 allocate an array 𝑃[2, 𝑚1 × 𝑚2] //temporary store the points of fused responses 

7 foreach bf ∈ BooleanFunctions do   

8  for i ← 1 to 𝑚1 do 

9   𝑟1 ← 𝑆1 ≥ 𝑡𝑖 // temporary responses at decision threshold 𝒕𝒊 ∈ 𝜽𝟏 

10   for j ← 1 to 𝑚2 do 

11    𝑟2 ← 𝑆2 ≥ 𝑡𝑗  //temporary responses at decision threshold 𝒕𝒋 ∈ 𝜽𝟐 

12    𝑟12 ← 𝑏𝑓(𝑟1, 𝑟2)  // fuse responses 

13    compute 𝑝 ← (𝑡𝑝𝑟, 𝑓𝑝𝑟) using 𝑟12 and lab 

14    push 𝑝 onto 𝑃 

15 compute 𝑅𝑂𝐶𝐶𝐻𝑖𝑡𝑒𝑟 of all combination ROC points in 𝑃 

16 map each emerging points 𝑝𝑒 on 𝑅𝑂𝐶𝐶𝐻𝑖𝑡𝑒𝑟 into a 3-tuples: 

 𝑝𝑒 ← < (𝑆1, 𝑡𝑖), (𝑆2, 𝑡𝑗), bf > 

17 store all emerging points 𝑝𝑒 on 𝑅𝑂𝐶𝐶𝐻𝑖𝑡𝑒𝑟 onto 𝑅1:2 

18 // combine rest of the ROC curves of rest of the  L-2 diverse base soft classifiers 

19 for 𝑏 ← 3 to 𝐿 do 

20  let 𝑛𝑒 ← number of emerging points in 𝑅1:𝑏−1 

21  let 𝑚𝑏 ← number of points in 𝑙 𝑅𝑂𝐶𝑏(𝑆𝑏 , 𝜃𝑏) curve 

22  allocate an array 𝑃[2, 𝑛𝑒 × 𝑚𝑏] //temporary storage of fused responses 

23  foreach bf ∈ BooleanFunctions do   

24   for i ← 1 to 𝑛𝑒 do 

25    𝑟1 ← 𝑅1:𝑏−1(𝑖)   // responses from immediate previous combinations 

26    for j ← 1 to 𝑚𝑏 do 

27     𝑟2 ← 𝑆𝑏 ≥ 𝑡𝑗 //temporary responses at decision threshold 𝒕𝒋 ∈ 𝜽𝒃 

28     𝑟12 ← 𝑏𝑓(𝑟1, 𝑟2)  // fuse responses 

29     compute 𝑝 ← (𝑡𝑝𝑟, 𝑓𝑝𝑟) using 𝑟12 and lab 

30     push 𝑝 onto 𝑃 

31  update 𝑅𝑂𝐶𝐶𝐻𝑖𝑡𝑒𝑟 of all combination ROC points in P 

32  map each emerging points 𝑝𝑒 on 𝑅𝑂𝐶𝐶𝐻𝑖𝑡𝑒𝑟 into a 3-tuples: 

 𝑝𝑒 ← < 𝑅1:𝑏−1(𝑖), (𝑆𝑏, 𝑡𝑗), bf > 

33  store all emerging points 𝑝𝑒 on 𝑅𝑂𝐶𝐶𝐻𝑖𝑡𝑒𝑟  onto 𝑅1:𝑏 

34 store all the emerging points to reach on the final 𝑅𝑂𝐶𝐶𝐻𝑖𝑡𝑒𝑟 onto  𝑅𝑖𝑡𝑒𝑟 ← R1:𝐿   
35 set maxiter and tol  // maximum number of iterations and tolerance 

36 iter ←2 to maxiter  

37  repeat steps 2 to 33 with 𝐿 + 1 ROC curves: 𝑅𝑂𝐶(𝑅𝑖𝑡𝑒𝑟−1) 𝑎𝑛𝑑 𝑅𝑂𝐶(𝑆1, 𝜃1), … , 𝑅𝑂𝐶(𝑆𝐿, 𝜃𝐿) 

38  if (𝐴𝑈𝐶𝐻𝑖𝑡𝑒𝑟 ≤ 𝐴𝑈𝐶𝐻𝑖𝑡𝑒𝑟−1 + 𝑡𝑜𝑙) then 

39   break         // stop further iteration 

40 return 𝑅𝑂𝐶𝐶𝐻𝑖𝑡𝑒𝑟 and 𝑅𝑖𝑡𝑒𝑟 
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3.2.2 Complexity Analysis 

Suppose, we have 𝐾 soft classifiers with 𝑆𝑘{𝑘 = 1 … 𝐾} scores using a validation set 𝑉. Let 

the number of decision thresholds on the scores 𝑆𝑘 of each soft classifier is constant and the size 

is 𝑇. And let  𝑁 = 𝐾 ∗ 𝑇 be the total number of crisp classifiers. 

The brute-force search for optimal combination is infeasible in practice due to the doubly 

exponential combinations. In fact, for N crisp classifiers there are 2𝑁 possible outcomes that can 

be combined in 22𝑁
 ways, which makes the brute-force combination impractical even for small N 

values [10] [47]. The worst-case time complexities of the proposed and existing Boolean 

combination methods are given in Table II. The pairwise combination of N crisp classifiers 

employed in BBC2, which requires 𝒪(𝑁2) Boolean operations, may not be feasible in practice for 

large N values. The sequential combination of the IBC algorithm reduces its worst-case time 

complexity to 𝒪(𝑇2 + 𝑁) Boolean operations.  

 

The recent pruning approach [12] used the kappa-error diagrams or simply called unweighted 

kappa coefficient to decide which ensemble members can be pruned with maintaining a similar 

overall accuracy. Although 𝑃𝐵𝐶 reduces the impractical exponential computation time for BBC2 

to 𝒪(𝑁(log 𝑁 + 1)), the performance at low false alarm values is also decreased (details in Section 

Table II: The Worst-Case Time Complexity of Pruning and Without 

Pruning based Boolean Combination Methods 

Methods Pruning  Boolean 

Combination  

BBC2 NA 𝒪(𝑁2) 

IBC NA 𝒪(𝑇2 + 𝑁) 

PBC 𝒪(𝑁(log 𝑁 + 1)) 𝒪(𝑈2) 

WPBC2 Phase1: 𝒪(𝐾2) 

Phase2: 𝒪(𝐾 ∗ (𝑇(log 𝑇 +
1))) 

𝒪(𝑀2) 

WPIBC 𝒪(𝑚2 + 𝑀) 
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3.3). This is because PBC selects 𝑈 ≪ 𝑁 complementary crisp classifiers over the whole 𝑁 

converted crisp classifiers, it cannot consider the diversity among the individual soft classifiers. 

The proposed pruning technique is more general as it ensures the diversity among both of the 

individual soft and crisp classifiers instead of using 𝑁 crisp classifiers. As shown above, the total 

number of crisp classifiers, N, depends on two important parameters K and T. Phase1 in the 

proposed weighted pruning technique reduces the size of the ensemble from K to L diverse soft 

classifiers, by pruning the redundant ones. As shown in Figure 3.2 (a), out of K=20 soft HMM 

classifiers, Phase1 selects only L=8 HMMs for ADFA-LD dataset and only L=3 HMMs for 

CANALI-LD dataset (Figure 3.2 (b)). Then, Phase2 optimizes the size of T of each selected base 

diverse soft classifier (L) to m<<T by pruning all the trivial and redundant crisp classifiers. Here, 

𝑚 is a user defined parameter and set based on the experimental results using validation set (e.g., 

in this experiment, 𝑚 = 12 gives the best result for both datasets). At the end, the proposed 

pruning methods always selects 𝑀 = 𝐿 ∗ 𝑚 complementary crisp classifiers. 

Therefore, the worst-case time complexity required by the proposed pruning technique to 

select 𝑀 complementary crisp classifiers is 𝒪(𝐾2 + 𝐾 ∗ (𝑇(log𝑇 + 1))); where, Phase1 requires 

about 𝐾2 operations for computing and sorting the AUC and the weighted kappa of K soft 

classifiers, in order to select 𝐿 diverse base soft classifiers. And in Phase2, each base diverse soft 

classifier (𝐿) requires about 𝑇(log 𝑇 + 1) operations for computing and sorting the unweighted 

kappa for 𝑇 crisp classifiers, in order to select 𝑚 ≪ 𝑇 complementary crisp classifiers. Therefore, 

in case of worst-case, Phase1 selects all K soft classifiers (i.e., 𝐿 = 𝐾). So, the worst-case time 

complexity for Phase2 requires about (𝐾 ∗ (𝑇(log 𝑇 + 1))) operations, in order to select a total of 

𝑀 = 𝐾 ∗ 𝑚 complementary crisp classifiers. At the end of pruning Phases, Phase3 combines the 
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decisions of 𝑀 complementary crisp classifiers. In Phase 3, the worst-case time complexity for the 

proposed weighted pruning pairwise Boolean combination (WPBC2) is about 𝒪(𝑀2) Boolean 

operations and for the proposed weighted pruning iterative Boolean combination (WPIBC) is 

about 𝒪(𝑚2 + 𝑀) Boolean operations, where 𝑀 ≪ 𝑁 and 𝑚 ≪ 𝑇. 

3.3 Experiments and Comparison 

We experimented with the proposed pruning approach on two system call datasets: ADFA 

Linux Dataset (ADFA-LD) [7] and CANALI Window Dataset (CANALI-WD) [84]. The 

experimental results are compared with BBC2 [10] and IBC [11] without pruning. We also 

compared our approach to PBC that we proposed in previous work [12]. 

ADFA-LD dataset: ADFA-LD consists of normal and anomalous sequences of system calls 

collected from Ubuntu [7]. A normal sequence of system calls of a process is collected from the 

system call traces while it is executed under the normal conditions. An anomalous sequence of 

system calls of an attack is collected from the system call traces while it is executed against the 

system. There are in total 5,206 normal traces collected from various normal Unix-based processes 

such as web browsing and Latex document preparations. The dataset contains 60 attack traces by 

exercising six different types of attacks: web-based exploitation, simulated social engineering, 

poisoned executable, remotely triggered vulnerabilities, remote password brute-force attacks, and 

system manipulation. In training, we use the 833 normal traces same as in [7] to train the 20 

discrete-time ergodic HMMs (i.e., K=20 soft classifiers) with various values. The rest of the 4373 

normal traces and the 60 anomalous traces are used for evaluation. 

CANALI-WD dataset: CANALI-WD consists of two normal datasets called goodware and 

anubis-good and two malware datasets called malware and malware-test [84]. The goodware 
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dataset contains a massive amount of 180 GB execution traces of normal day-to-day operations 

which are collected from 10 different machines. The anubis-good dataset contains the traces of 36 

benign applications executed under Anubis [86]. The malware dataset is a collection of execution 

traces of 6,000 malware samples including a mix of all the existing categories (botnets, worms, 

dropper, Trojan horses, etc.), which are randomly extracted from Anubis [86]. The final malware-

test dataset is a collection of execution traces of 1,200 malware samples which are collected from 

a different machine than the normal ones used for Anubis. In training, we use the anubis-good 

dataset and the traces for nine out of 10 machines in the goodware dataset (same as in [84]) to train 

20 soft HMMs classifiers with various values. In contrast to [84], however, where the malware 

dataset was also used to train the models, we only use malware for testing. This is because an 

anomaly classifier mainly models the normal behavior of a system. Therefore, the rest of the 23 

traces of the tenth machine in the goodware dataset, 5,855 traces from malware dataset, and 1,133 

traces from malware-test dataset are used for evaluation. 

3.3.1 Experimental Setup 

We use a stratified 5-Fold Cross Validation (5FCV) technique, same as in [47], on the testing 

set for the evaluation of the proposed pruning approach. Since the ratio between the normal and 

anomalous traces in both datasets is not balanced, we applied stratified 5FCV to partition the 

normal and anomalous sets separately. This is because we want to keep the same ratio (normal to 

anomalous) to guarantee that all folds include the normal and anomalies traces. Therefore, for 

ADFA-LD dataset, each fold contains 874 traces selected randomly from the 4373 normal traces 

and 12 attacks traces selected randomly from the 60 attack traces. Similarly, for CANALI-WD 

dataset, each fold contains four traces selected randomly from the 23 normal traces and 1,397 

traces selected randomly from the 6,988 anomalous traces. However, as we followed the same 
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setting as in PBC [12] instead the way of standard cross validation, we also used one fold for 

validation and the remaining four folds for testing on the both ADFA-LD and CANALI-WD 

datasets. 

As described at Section 2.6 in Chapter 2, we apply the BW algorithm on the validation set to 

learn the parameters of an HMM with setting the random initialization of 𝐴, 𝐵 and 𝜋, and M = 340 

distinct system call symbols for ADFA-LD dataset and M = 89 distinct symbols for CANALI-WD 

dataset. Since a single HMM with a predefined number of states N may have limited chances to fit 

the underlying structure of the data (as noted in Section III), 20 different discrete-time ergodic 

HMMs (i.e., 20 soft classifiers) are trained with various 𝑁 =  10, 20 … 200 values. For each state 

value 𝑁, we repeated the training process ten times with a different random initialization of 𝐴, 𝐵 

and 𝜋 to avoid the local minima, and the HMM that gives the highest AUC value on the validation 

set is selected for Boolean combination.  

3.3.2 Results and Comparisons 

We mainly focus on how the proposed pruning based Boolean combination approaches can 

reduce the computation time (as discussed in Section V) of the BBC2 and IBC techniques while 

maintaining or improving the detection accuracy and reducing the false alarm rate. 

Figure 3.5 and Figure 3.6 show the AUC results in the ROC space for the proposed weighted 

pruning techniques on ADFA-LD and CANALI-WD datasets. We can see that the ROC curve of 

the proposed pruning based WPIBC shows slightly better AUC than IBC. In particularly, WPIBC 

is able to ensure the diversity among the fused crisp classifiers (selected using unweighted kappa 

at Phase 2 in Algorithm 1) where each crisp classifier comes from the selected diverse base soft 

classifiers (selected using weighted kappa at Phase 1 in Algorithm 1). Therefore, in contrast to 
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IBC, where the order of combination responses in each iteration is the order of all the available 

soft and crisps classifiers, WPIBC maintains the order of combination responses in each iteration 

among the selected diverse soft and crisp classifiers (see details in Algorithm 1 and Algorithm 3). 

For instance, to achieve the final operating points denoted in Figure 3.5 with a large pink circle, 

WPIBC uses only five selected complementary crisp classifiers (red bold plus marker points) and 

four Boolean operations, whereas IBC uses 17 crisp classifiers (black bold circle marker points) 

and 16 Boolean operations. 

 

 

Figure 3.5. Algorithm comparisons on ADFA-LD dataset where one-

fold is used for validation and four folds are used for testing. 
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Compared to BBC2, although the AUC of WPBC2 is slightly low, WPBC2 maintains the 

same AUC of PBC shown in Figure 3.5 and Figure 3.6. However, WPBC2 overcomes the 

exponential time complexity problem of BBC2 by pruning the redundant and trivial crisp 

classifiers, in fact, without pruning, BBC2’s time complexity is exponential with respect to the 

number of classifiers (N^2) [10] [ [47]. 

Table II shows the maximum detection accuracy (tpr) achieved by each technique for a fixed 

(almost close to zero) fpr value of 0.002, all values are averaged over the 5FCV. 

For ADFA-LD dataset, although the AUC values of all pruning methods are almost equal, the 

tpr of PBC with MinMax-Kappa pruning technique is the worst. The tpr of WPIBC is almost equal 

to that of BBC2 method, and slightly better than that of IBC method. Moreover, the standard 

deviation of WPIBC is also good as compared to the other methods. For the CANALI-WD dataset, 

the tpr of WPIBC is still better than PBC and WPBC2 pruning techniques, and almost equal to 

BBC2 and IBC that do not use pruning techniques. Through this analysis, we observed that 

 

Figure 3.6. Algorithm comparisons on CANALI-WD dataset where one-

fold is used for validation and four folds are used for testing. 
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the proposed weighted pruning technique combines the selected complementary crisp classifiers 

iteratively (i.e., called WPIBC), it achieves similar results to that of IBC. Particularly, when we 

compared the results with the tpr where the maximum fpr is almost equal to zero (0.002), both 

WPIBC and WPBC2 outperform PBC. And the results demonstrate that the proposed pruning 

approach is more general and applicable to either pair-wise Boolean combinations (WPBC2) and 

iterative Boolean combinations (WPIBC). 

Moreover, we tested the proposed pruning approach by using the standard way of 5FCV that 

is four folds are used in validation and one-fold is used in testing. With this setting, the results of 

one-fold of 5FCV are demonstrated in Figure 3.7 for ADFA-LD dataset and in Figure 3.8 for 

CANALI-WD dataset. Table IV shows the average results over the 5FCV with this standard setting 

Table III: Average (avg), maximum (max), and minimum (min) AUC values and true positive rate (tpr) with false positive 

rate (fpr)<=0.002, and their standard deviations (std) over the 5FCV (train on one-fold and tested on four folds). 

  AUC values tpr with fpr<=0.002 

Datasets methods avg max min std avg max min std 

 without pruning methods 

ADFA-LD BBC2 0.98006 0.9852 0.9731 0.0044 0.38334 0.5 0.2292 0.1246 

IBC 0.979 0.983 0.972 0.0042 0.25414 0.4792 0.1665 0.1329 

CANALI-WD BBC2 0.96824 0.9726 0.9601 0.0049 0.36716 0.3739 0.3618 0.0046 

IBC 0.97156 0.9799 0.9612 0.0069 0.36716 0.3739 0.3618 0.0046 

 with pruning methods 

ADFA-LD PBC 0.96762 0.9766 0.9608 0.0078 0.09576 0.2297 0.0208 0.0877 

WPBC2 0.96604 0.9741 0.9602 0.0059 0.11886 0.246 0.054 0.0785 

WPIBC 0.97762 0.9788 0.9767 0.0007 0.37498 0.5208 0.2083 0.0474 

CANALI-WD PBC 0.96808 0.9726 0.9601 0.0049 0.24197 0.2639 0.2118 0.0046 

WPBC2 0.96816 0.9729 0.9601 0.0051 0.27716 0.3739 0.2218 0.0071 

WPIBC 0.96994 0.9808 0.9541 0.0021 0.34462 0.3739 0.3225 0.0034 

 
Table IV: Average (avg), maximum (max), and minimum (min) AUC values and true positive rate (tpr) with false positive 

rate (fpr)<=0.002, and their standard deviations (std) over the 5FCV (train on four folds and tested on one-fold). 

  AUC values tpr with fpr<=0.002 

Datasets methods avg max min std avg max min std 

 without pruning methods 

ADFA-LD BBC2 0.98918 0.99945 0.9829 0.0043 0.4500 0.5833 0.2500 0.1263 

IBC 0.99112 0.9939 0.9887 0.0021 0.41668 0.5000 0.3333 0.0589 

CANALI-WD BBC2 0.97288 0.9963 0.9469 0.0208 0.58648 0.9142 0.3591 0.2963 

IBC 0.98274 0.9981 0.9679 0.0127 0.60722 0.9142 0.3694 0.2798 

 with pruning methods 

ADFA-LD PBC 0.95648 0.9626 0.9533 0.0037 0.0000 0.0000 0.0000 0.0000 

WPBC2 0.9661 0.9703 0.9643 0.0024 0.16666 0.3333 0.0000 0.1317 

WPIBC 0.98724 0.992 0.9827 0.0033 0.49998 0.5833 0.3333 0.1020 

CANALI-WD PBC 0.97288 0.9963 0.9469 0.0208 0.58648 0.9142 0.3591 0.2963 

WPBC2 0.9736 0.998 0.9469 0.0217 0.58648 0.9142 0.3591 0.2963 

WPIBC 0.98028 0.9981 0.9647 0.0151 0.5981 0.9142 0.3591 0.2034 
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of 5FCV.  

 

 

 

Figure 3.7. Algorithm comparisons on ADFA-LD dataset where four folds are used for 

validation and one-fold is used for testing in 5FCV. 

  

 

Figure 3.8. Algorithm comparisons on CANALI-WD dataset where four folds are used for 

validation and one-fold is used for testing. 
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From Figure 3.7 and Figure 3.8, we can see that for both datasets our proposed pruning based 

Boolean combination approaches is able to achieve the same performance (in terms of AUC, fpr 

and tpr), while reducing the time complexity, the number of crisp classifiers, and the number of 

Boolean combinations. For CANALI-WD dataset, we got almost equal results with the original 

approaches (which use all crisp classifiers), and the highest value of tpr = 0.91 when the false 

alarm rate is zero, given in Table IV. However, for ADFA-LD dataset, we observed a great 

difference between the proposed pruning approach and the PBC. When the average tpr = 0.49 for 

WPIBC (with the limit of maximum fpr is equal to 0.002), it is equal to zero for PBC and 0.17 for 

WPBC2. For example, from the Figure 3.7, we got tpr =0.51 (when fpr<=0.002) for WPIBC, it is 

still zero for PBC. 

3.3.3 Cost Aalysis 

Table V shows the cost that is the combination time and the number of Boolean operations is 

required by each method during the validation and testing phases. The values are averaged over  

 

the 5FCV on the ADFA-LD dataset. All 5FCV executions are performed on a 3.1 GHz Intel Core 

i7 CPU machine with 16 GB of RAM and a 17x5400 rpm hard disk.  

Table V: Cost Analysis (Values are Averaged Over 5FCV) in Terms of Pruning and Combination 

Time (s), and Number of Boolean Operations Applied during Validation Phase, and the Number of 

Combined Crisp Classifiers Required to Achieve each Vertex on ROCCH during Testing Phase 

Methods Validation phase Testing 

phase 

 Pruning 

time (s) 

Combination 

time (s) 

# Boolean 

operations 

# 

combined 

crisp 

classifiers 

BBC2 NA 16364 4,000,000 2 

IBC NA 11 11,000 11 

PBC 1.6 15 19, 701 2 

WPBC2 1.9 19 21,701 2 

WPIBC 1.9 6 5, 000 5 
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We can see that although the pruning time of the proposed approach is slightly more than the 

PBC, WPIBC reduced the combination time and the number of Boolean operations to almost half 

compared to IBC. The total computation time, including pruning and combination during 

validation of WPIBC was 7.9 seconds whereas PBC took 16.6 seconds. Furthermore, in testing, 

WPIBC also reduced the number of combined crisp classifiers by almost half than the number 

required by IBC (5 instead of 11). We can see in Figure 3.5 that WPIBC requires on average five 

crisp classifiers while IBC requires 11 crisp classifiers to achieve a single point on the final 

composite ROCCH.  Similarly, WPBC2 always requires only two crisp classifiers similar to BBC2 

and PBC to achieve a single point on the final ROCCH. Therefore, the proposed pruning approach 

is more general, and it can be applicable to both pair-wise and iterative Boolean combinations. 

However, based on the computation time and the number of combined Boolean operations, 

WPIBC is more desirable in order to obtain better accuracy while reducing the false alarm rates 

(as shown in Table III and Table IV). 

From the worst-case time complexity given in Table II, we can see that the proposed pruning 

approach reduces the total number of crisp classifiers i.e., 𝑁 = 𝐾 ∗ 𝑇 by optimizing two important 

parameters of 𝐾 and 𝑇 in Phase1 and Phase2 respectively. For example, Phase1 of the proposed 

weighted pruning approach selects only 𝐿 = 3 diverse ensembles of HMM soft classifiers out of 

𝐾 = 20 HMM soft classifiers (shown in Figure 3.2 (b)) for CANALI-WD dataset. As a result, 

Phase2 computes the unweighted kappa only for about 300 (i.e., 𝐿 ∗ 𝑇 and let say 𝑇 = 100) crisp 

classifiers, in order to select only 𝑀 = 36 (i.e., 𝑀 = 𝐿 ∗ 𝑚, where 𝑚 = 12) complementary crisp 

classifiers.  Whereas, PBC always computes the unweighted kappa for about 𝑁 = 2000 (i.e., 𝑁 =

𝐾 ∗ 𝑇) crisp classifiers, in order to select 𝑈 = 50 complementary crisp classifiers. Moreover, since 

PBC cannot ensure the diversity among the ensembles of soft HMM classifiers, the probability of 
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selecting the redundant complementary crisp classifiers or rejecting the other diverse crisp 

classifiers is also high. In fact, it is reported in Table III and Table IV that PBC significantly 

reduced the tpr with a low false alarm as compared to the other approaches due to the rejection of 

some diverse complementary crisp classifiers. 

3.4 Effects of Weighted Pruning Based Boolean Combination 

For any ensemble based Boolean combination algorithms, increasing the accuracy is highly 

dependent on the diversity among the fused soft/crisp classifiers (i.e., the level of disagreement 

among the fused soft/crisp classifiers should be high). Although the existing ensemble based BBC2 

and IBC Boolean combination techniques implicitly fused such diverse soft/crisp classifiers and 

showed higher accuracy, they face the challenges of computation time and complexity because of 

fusing all the possible pair of crisp classifiers from all the available soft classifiers (as discussed 

in Section 3.2; and reported in Table III). In addition, the accuracy of IBC is also dependent on the 

order of combinations. In fact, with the increase of number of soft classifiers, the computation time 

and complexity increase exponentially for BBC2 and linearly for IBC (discussed in Section 3.4).  

To be clear, we tested the proposed approach using 50 available soft HMM classifiers (i.e., on 

average 5000 crisp classifiers), trained with various 𝑁 =  5, 10, … 250 values on CANALI-WD 

dataset. The results are shown in Figure 3.9, where the values are transformed into a logarithmic 

scale. It is clear that when we apply the proposed weighted pruning approach (top one in Figure 

3.9), a noticeable improvement can be observed in the reduction of the number of Boolean 

operations. Particularly, WIBC significantly reduces the number of Boolean operations as 

compared to other approaches. For example, BBC2 requires 25 million (7.4 in logarithmic scale) 

Boolean operations for 50 soft classifiers, whereas, WPBC2 uses only 3,600 (3.4) operations. 
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Similarly, when IBC requires 15 thousand (4.2 in logarithmic scale) Boolean operations, WIBC 

uses only 204 (2.3) operations. As a result, we can state that WPBC2 6944 times faster than BBC2 

and WPIBC 73 times faster than IBC for 50 soft classifiers. Moreover, from the 30 soft classifiers, 

WPBC2 and WIBC always select five diverse soft classifiers with the increase of the number of 

soft classifiers, and thus, reach a constant number of Boolean operations. 

 

The bottom part of Figure 3.9 compares the computation time (including pruning and 

combination time together for pruning based approaches). We can see that WPBC2 and WIBC 

reported the lowest computation times as compared to other approaches. For example, WPBC2 is 

ten thousand times (seconds) faster than BBC2 and WPIBC is two times faster than IBC during 

 

 

 

Figure 3.9. Algorithm’s computation time and complexity analysis on the validation subset of CANALI-WD 

dataset 
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validation phase using 50 available soft classifiers. Moreover, from the 30 soft classifiers, although 

the pruning time for WPBC2 and WIBC increase slightly with the increase of number of soft 

classifiers, the combination time remains same as both are always using only five selected diverse 

soft classifiers. Compared to PBC pruning approach where the pruning and combination time both 

are increasing linearly with the increase of number of soft classifiers. 

In fact, PBC shows worst result when the false alarm is almost zero for both ADFA-LD and 

CANALI-WD datasets (given in Table III and Table IV). On the other hand, the accuracy with 

almost zero false alarm is the desired expected solution for deploying an ADS in a real-world 

application. The reason is that PBC also uses all the available soft classifiers to select a subset of 

complementary crisp classifiers without ensuring the diversities among the use of soft classifiers. 

As a result, the redundant soft classifiers produce redundant crisp classifiers, and thus it increases 

the probability of selecting these redundant copies if anyone is selected as a complementary crisp 

classifier by MinMax-Kappa pruning technique of PBC. 

The proposed WPBC2 and WPIBC weighted pruning techniques select the most diverse base 

soft classifiers from the available soft classifiers using weighted kappa. For instance, from the 

Figure 3.3 (a), eight diverse base soft classifiers are selected while 12 are pruned as for redundant 

copies for ADFA-LD dataset. Similarly, from the Figure 3.3 (b), only three diverse base soft 

classifiers are selected while 17 are pruned for CANALI-WD dataset. As the selected base soft 

classifiers are diverse, the converted crisp classifiers from them might also be diverse as well. 

Therefore, when we apply the MinMax-Kappa pruning technique on each selected diverse base 

soft classifiers individually, there has no chance for the selection of redundant complementary 

crisp classifiers. As a result, our proposed pruning technique shows better accuracy when the false 

alarm is close to zero compared to PBC for both datasets (given in Table III and Table IV). 
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Moreover, the proposed weighted based pruning approach is more general as we can combine the 

selected diverse soft/crisp classifiers either pair-wise or iteratively same as in BBC2 or IBC 

Boolean combination techniques. 

Although the proposed approach is experimentally validated only on HIDS using system call 

data, it can be applied in other application domains particularly, where one model does not 

formulate the complex normal behaviors of a system. In that case, we can train ensemble classifiers 

with considering various normal behaviors. Then, the proposed method may be a good one for 

pruning and combining the multiple classifier’s decisions. For example, detecting programming 

errors (i.e., software bugs) and root causes in a complex computer programming system [87] [88]. 

Fosdick et al. [89] reported that a computer program is strongly related to the computation patterns 

of input data and thus useful for detecting the data flow anomalies. The sequences of operations 

i.e., the flows of data are assumed to be consistent and used them to model ensembles classifiers. 

A social or cultural event or road accident can also be detected using sensor and user (e.g., users 

of twitter, Facebook, etc.) generated data. For example, Pramod et al. [90] trained several linear 

Markov models by segmenting the non-linear traffic data and used them to detect the city events. 

3.5 Limitations and Discussions 

Our approach is limited to ensemble of homogeneous soft anomaly classifiers (i.e., multiple 

HMMs). However, the input can be ensemble of heterogeneous soft and crisp anomaly classifiers 

(e.g., STIDE [33], SVM [80], etc.). In fact, having different types of classifiers should further 

increase the diversity in the ensemble and allow for improved performance [23]. Heterogenous 

classifiers use different learning techniques and may commit different (and potentially 

complementary) type of errors, which increases the diversity in the ensemble. For example, OC-
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SVM models the normal behavior of a system using fixed-size feature vectors instead of sequential 

features like HMM; STIDE uses the Hamming distance, whereas HMM uses likelihood probability 

as a matching measure.  

To adapt our approach to support heterogeneous classifiers, we need to modify Phase1, which 

assumes the same thresholds of a base soft classifier, which are the orders or levels for the weighted 

kappa for computing the diversity score. It may be more efficient to group them based on each 

modeling technique. Then, apply the Phase1 pruning technique on each group separately. For 

example, STIDE with various sliding window sizes can be used to produce many homogeneous 

soft classifiers [33], which can then feed as input to Phase1.  

Although the proposed approach significantly reduces the Boolean combination time (see 

Error! Reference source not found.) by pruning the number of combined soft (K) and crisp c

lassifiers (N), the worst-case time complexity, particularly, for the pruning phases (given in Table 

II), will be increased exponentially (𝐾2) with the increase of K. Therefore, for large values of K, 

the pruning approach may suffer from scalability problems. To address this limitation, we need 

resort to parallel processing techniques and platforms such as the Hadoop ecosystem [72] [74]. 

Moreover, the proposed approach is dependent on the ROC space for pruning and combining 

the decisions of the selected complementary crisp classifiers. However, here, the used ROC curves 

is a binary classification problem. Therefore, to extend the approach for multiclass classification 

problems, we need to work with a ROC curve for more than two classes and then adapt the Boolean 

combination and pruning techniques to accommodate multiple classes. 

3.6 Conclusion 



67 

 

The proposed effective pruning-based Boolean combination techniques analyze the diversities 

among the available ensemble soft classifiers (HMMs) using weighted kappa (measures the 

agreement/disagreement between two soft classifiers). Based on the weighted kappa coefficients, 

it selects a best subset of diverse base soft classifiers while pruned all the redundant soft classifiers. 

Each selected base soft classifier is then converted into all the possible crisp classifiers (at various 

decision thresholds) and used them for selecting a subset of complementary crisp classifiers using 

unweighted kappa-based MinMax-Kappa pruning technique. At the end, we merge all the selected 

complementary crisp classifiers and use them for Boolean combinations. The experimental 

evaluation on the two benchmarking ADFA-LD and CANALI-WD system call datasets verified 

the validation of the proposed method. We achieved much better results than the recent PBC 

pruning technique, particularly, when the false alarm is almost close to zero.  

Our future plan is to investigate the proposed pruning approach using different diverse 

classifiers and other datasets. Moreover, we also want to leverage Big Data platforms such as 

Hadoop and the MapReduce programming model in order to further improve the performance of 

our approach, especially when used with multiple heterogeneous ensemble soft classifiers such as 

HMMs, One-class SVM, STIDE, and so on. 
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Chapter 4. EnHMM: On the Use of Ensemble HMMs 

and Stack Traces to Predict the Reassignment 

of Bug Report Fields 

Bug reports (BR) contain vital information that can help triaging teams prioritize and assign 

bugs to developers who will provide the fixes. However, studies have shown that BR fields often 

contain incorrect information that need to be reassigned, which delays the bug fixing process. 

There exist approaches for predicting whether a BR field will most likely be reassigned or not. 

These studies use mainly BR descriptions and traditional machine learning algorithms (e.g., SVM, 

KNN, etc.). As such, they do not fully benefit from the sequential order of information in BR data, 

such as function call sequences in BR stack traces, which may be valuable for improving the 

prediction accuracy. In this paper, we propose a novel approach, called EnHMM, for predicting 

the reassignment of BR fields using ensemble Hidden Markov Models (HMMs), trained on stack 

traces. EnHMM leverages the natural ability of HMMs to represent sequential data to model the 

temporal order of function calls in BR stack traces.  

We applied EnHMM to BRs from the Eclipse and Gnome systems. For Eclipse, our approach 

provides an average precision, recall, and F-measure of 54%, 76%, and 60%, respectively. For 

Gnome, we obtained about 41% precision, 69% recall, and 51% F-measure.  We also found that 

EnHMM improves over the best single HMM by 36% for Eclipse and 76% for Gnome. 

Furthermore, a comparative study reveals that EnHMM outperforms state-of-the-art techniques 

including Im-ML.KNN [30], Naïve Bayes [1], ML.KNN [18], and HOMER [8]. These results 

demonstrate that EnHMM, trained on BR stack traces, holds real promise for predicting BR field 

reassignments. 
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4.1 EnHMM Approach 

Our approach for predicting the reassignment of BR fields consists of four phases as shown 

in Figure 4.1: (1) preprocessing, (2) training, (3) validation, and (4) testing. In the preprocessing 

phase, we extract and profile sequences of function calls from stack traces of BRs. Note that not 

all BRs come with stack traces, so we only include BRs with stack traces in our dataset. In the 

training phase, we use temporal sequences of function calls extracted from stack traces to train 

multiple HMMs for each BR field of interest (e.g., product, component, etc.). In the third phase, 

the validation phase, we select the most diverse classifiers out of the available HMMs. For this, 

we use WPIBC [15], which ensures diversity among the combination of multiple classifiers. The 

selected diverse classifiers are used to construct the proposed ensemble HMMs. In the last phase, 

the testing phase, we use the constructed Boolean combination rules on each BR field of the testing 

set of BRs to predict whether it gets reassigned or not. 

 

4.1.1 Extracting and Profiling Sequences of Function Calls from Stack Traces  

A stack trace contains a sequence of function calls that are in memory when the crash occurs. 

In both Eclipse and Gnome bug tracking systems (used in this study), a BR submitter manually 

appends stack traces to BR descriptions and comments. To extract stack traces, we need to use 

regular expressions.  

 

 

Figure 4.1. An overview of our approach  
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Bettenburg et al. [91] implemented a tool (Infozila) to extract stack traces from Eclipse BR 

descriptions and showed that their regular expression can extract stack traces with 98% accuracy. 

Lerch et al [67] improved the regular expression proposed by Bettenburg et al. [91] to detect stack 

traces with a higher accuracy and proposed the following regular expression, which we use in our 

study: 

[EXCEPTION] ([:][MESSAGE])? ([at][METHOD][(] [SOURCE] [)] )+ ( [Caused by:] 

[TEMPLATE] )? 

Similarly, we need to define a regular expression to extract stack traces from BR descriptions 

in the Gnome bug tracking system. We designed the following regular expression after examining 

manually hundreds of Gnome BRs: 

([#NUMBER] [HEX ADDRESS] [IN] [FUNCTION NAME] [(] [PARAMETERS] [)] 

([FROM] | [AT]) ([LIBRARYNAME] | [FILENAME]))* 

For each BR, we extract the sequence of function calls in its associated stack traces, which we 

will use to train multiple HMMs. 

4.1.2 Training an HMM  

Our approach is used to predict the reassignment of any BR field of interest (e.g., component, 

product, severity, OS, version, etc.) that we refer to as BR field, Fi.  

For a given Fi, we create an HMM by specifying the number of hidden states. The training 

phase consists of the following steps. We split the BRs into two sets: the BRs that have their field 

Fi reassigned (R) and those that have their field Fi not reassigned (NR). We use 70% of BRs from 

R to train the HMM. We use 10% of BRs from R and another 10% of BRs from NR to create the 
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validation set. For testing (see the next subsection), we use 20% of BRs from R and the remaining 

90% of BRs from NR. This way of splitting the data is a common practice in machine learning. 

This said, a different splitting may yield different results, which constitutes an internal threat to 

validity of our approach. 

The output of this phase is an HMM that learns the pattern of BR-associated stack trace for 

which field Fi is reassigned. We call this model HMM-RFi. This model can help predict for a new 

incoming BR whether field Fi would get reassigned or not. However, the limited number of trained 

reassigned BRs (i.e., observations from the rare class) on a specific field Fi causes a data imbalance 

problem as shown by Xia et al. [56]. Simply learning a model from the BRs for which Field Fi is 

reassigned will most likely increase the false positive rate. To address this, we need to create 

another model that is trained on the major class observations (meaning BRs for which Fi is not 

reassigned). We create another model, called HMM-NRFi to represent BRs in the historical data 

for which Fi is not reassigned. The idea is to combine multiple instances of each model by varying 

the number of hidden states (see next subsection) into a powerful classifier that knows about both 

the rare and major class observations. HMM-NRFi is trained using the same process as HMM-RFi. 

We use 70% of NR for training, 10% from R and another 10% from NR for validation. For testing, 

we use 90% of R BRs and 20% from NR. Figure 4.2 shows how the data is split for training, 

validation, and testing purposes for both HMM-RFi and HMM-NRFi with an example of 10,860 

BRs collected from the Eclipse project on ‘component’ field (given in Table VI). 
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4.1.3 Constructing Ensemble HMMs  

The proposed ensemble HMMs are composed of HMM-RFi and HMM-NRFi; each trained by 

varying the number of hidden states from N=10, 20…200. As a result, for each field Fi, we will 

have 20 HMM-RFi and 20 HMM-NRFi models combined. To our knowledge, there is no work that 

precisely defines how many hidden states we should have for best accuracy. Most studies (e.g., 

[11]) vary the number of hidden states as we propose in this paper.  

The combination of these multiple HMM-RFi and HMM-NRFi soft classifiers works at the 

decision label (i.e., ‘0’ for not reassigned and ‘1’ for reassigned). A decision is made by a crisp 

HMM-RFi or HMM-NRFi classifier with a predefined threshold, . Assume, in the validation set, 

we have n BRs for Field Fi. We therefore obtain n scores (Sn) computed by a trained soft HMM-

RFi / HMM-NRFi classifier. We obtain n responses {Rn: 1 if Sn >, otherwise 0}, which also 

represents the number of crisp classifiers. Our HMM decision-level combination technique is 

based on WPIBC and consists of three steps (as described in Chapter 3): (a) selecting base soft 

classifiers, (b) selecting complementary crisp classifiers, and (c) constructing Boolean 

 

 

Figure 4.2. Splitting the training, testing, and validation sets from the Eclipse bug reports on field, Fi 

(i=Component) for HMM-RFi and HMM-NRFi models.  
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combination rules. 

Selecting Base Soft Classifiers: Suppose, there are k trained HMM-RFi and HMM-NRFi soft 

classifiers and each one produces a set of scores (Sk) of size |V|, where V is the validation set. We 

use Tk  to refer to all possible thresholds on scores. Therefore, we have k ROC curves (Sk, Tk) with 

k AUC values. Initially, we select a base soft classifier k∗ = max [AUC(k)] for which the AUC is 

the highest. Then we compute agreement coefficients between the base soft classifier (k∗) and all 

the other soft classifiers. We set an agreement threshold  to 90% as a default value. This means 

that soft classifiers that agree 90% with scores computed by the base soft classifier (k∗) are 

considered redundant, and therefore should be pruned. Assume, we found k~ redundant copies of 

the base classifier k∗. So, we select the base k∗ and prune k~ redundant ones. The process is 

repeated with the remaining (k − k~ − k∗) soft classifiers and continues until we are left with only 

one base soft classifier. At the end, we obtain a total of l << k diverse base soft classifiers. 

Figure 4.3 shows an example with k=40 trained soft classifiers (i.e., 20 HMM-RFi and 20 

HMM-NRFi) using the validation set. We can see that only six (i.e., l=6, three from HMM-RFi and 

three from HMM-NRFi) soft classifiers are selected as diverse. All the other ones are pruned 

because they are redundant. The resulting l=6 base soft classifiers are then used to select the final 

complementary crisp classifiers. 
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Selecting Complementary Crisp Classifiers: Suppose we have 𝑇𝑙 possible thresholds on 

scores computed by a base soft 𝐻𝑀𝑀 − 𝑅𝐹𝑖
𝑙  or 𝐻𝑀𝑀 − 𝑁𝑅𝐹𝑖

𝑙  classifier (l). We therefore obtain 

𝑇𝑙 candidate crisp 𝐻𝑀𝑀 − 𝑅𝐹𝑖
𝑙 (𝑇𝑙) or 𝐻𝑀𝑀 − 𝑁𝑅𝐹𝑖

𝑙 (𝑇𝑙) classifiers. Then, we compute kappa (kp) 

agreement coefficients between each crisp classifier’s decisions and decisions from the ground 

truth. The accurate crisp classifiers should be close to 𝑘𝑝 ≈ 𝑘𝑝𝑚𝑎𝑥 and their complementary crisp 

classifiers should be close to 𝑘𝑝 ≈ 𝑘𝑝𝑚𝑖𝑛.  Assume the number of selected crisp classifiers is D 

and the ratio between accurate and their complementary crisp classifiers is 50%, we sort candidate 

crisp classifiers in a descending order based on their kp agreement coefficients. Then, we select 

the top D/2 (i.e., 50% of total) as accurate crisp classifiers and the bottom D/2 as their 

complementary ones, respectively. 

Constructing Boolean Combination Rules: We combine decisions/responses (0/1) 

 
 

Figure 4.3. Example of selected six diverse base HMM-RFi and HMM-NRFi soft classifiers after 

pruning all the redundant ones under the ROC space using the validation set.  
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produced by each selected complementary crisp classifier by leveraging the WPIBC Boolean 

combination technique [15]. WPIBC uses the same Boolean operators as previous approaches, 

namely IBC [11], except that it uses only base soft classifiers with their selected complementary 

crisp classifiers instead of all available candidate soft and crisp classifiers (as it is the case of IBC). 

We also use ten different Boolean combination functions to combine two crisp classifiers’ 

decisions on the ROC space. Initially, we combine the first two base soft classifiers and then, the 

resulting emerging responses are combined with the next base one and so on. We repeat this 

combination process iteratively until no further improvement is reached. The composite ROC 

curve (red curve in Figure 4.3) with the AUC about 93% is the combination of selected 

complementary crisp HMM-RFi/HMM-NRFi classifiers produced by six selected base soft HMM-

RFi/HMM-NRFi classifiers using the validation set and  as a threshold. The constructed Boolean 

combination rules are then used during testing. 

4.2 Case Study Setup and Results 

This case study aims to answer the following questions: 

• RQ1: How does EnHMM perform in terms of its ability to predict BR field reassignment? 

• RQ2: How does EnHMM perform in comparison to a single HMM when predicting BR 

field reassignment? 

• RQ3: How does EnHMM compare to existing techniques? 

4.2.1 Datasets  

We use Eclipse and Gnome bug repositories to assess the performance of our approach. 
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Eclipse and Gnome are two open source software systems and their bug repositories are publicly 

available through Bugzilla bug tracking system. We only consider BRs with status “resolved”, 

“closed” and “fixed”. From Eclipse, we collect 83,984 BRs from January 01, 2008 to July 19, 

2011, among which 10,860 (12.9%) have stack traces. This exact Eclipse dataset was used by other 

studies (e.g., Im-ML.KNN [56], ML.KNN [57]). This will help us compare our results with other 

approaches. For Gnome, we collect 55,438 BRs from December 28, 2007 to July 20, 2011, among 

which 10,579 (19.08%) have stack traces. This dataset was used by the authors in other studies. 

(We are currently building larger datasets on which we intend to replicate this work.) 

Table VI shows the distribution of reassigned and not reassigned BRs for eight BR fields: 

Product, Component, Version, OS, Priority, Severity, and Status. As expected, the number of BRs 

for which field Fi is not reassigned is much higher than the number of BRs that are reassigned, 

which shows a clear imbalance of the data. As we explained in Section 4.1.2, we address this by 

creating a model for each class, HMM-RFi and HMM-NRFi, and combine them. 

 

4.2.2 Training HMMs for Field Fi  

As discussed in Section 4.1.2, to train an HMM, we split the BRs associated with field (Fi) 

into two groups: BRs that have Fi reassigned, and those that have Fi not reassigned. Each group is 

then divided into three sets: training (70%), validation (10%), and testing (20%). The 10% 

Table VI. Statistics on BRs (BR) with Stack Traces Collected from Eclipse and Gnome Bug Repositories 

Dataset Class Label Assignee Product Component Version OS Priority Severity Status 

#BR % #BR %  #BR % #BR % #BR % #BR % #BR % #BR % 

Eclipse 

 

Not-Reassigned 3,566 33 9,156 84 8,081 74 8,875 82 10,194 94 9,702 89 9,593 88 9,451 87 

Reassigned 7,294 67 1,704 16 2,779 26 1,985 18 666 6 1,158 11 1,267 12 1,409 13 

Gnome Not-Reassigned 3,752 73 8,813 83 7,930 75 6,612 63 10,471 99 9,404 89 9,317 88 9,736 92 

Reassigned 6,827 27 1,766 17 2,649 25 3,967 37 108 1 1,175 11 1,262 12 843 8 
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validation set contains BR traces from each group. For testing, we use 20% of BR traces from the 

training class and 90% from the other group of BR traces. For example, in Eclipse, the number of 

stack traces used for training, validation, and testing one HMM-NRFproduct model, given that the 

number of BRs with stack traces that have the product field reassigned and not reassigned is 1,704 

and 9,156, respectively (see Table VI) is as follows: 

- Training set contains 6,409 traces (=9,156*70%) 

- Validation set contains 1,086 traces (9,156*10% + 1,704*10%) 

- Testing set contains 3,365 traces (=9,156*20% + 1,704*90%) 

We apply the same process to HMM-RFproduct and also to construct HMM-RFi and HMM-NRFi 

for every other field Fi. In addition, for each field Fi, we train 20 HMM-RFi and HMM-NRFi by 

varying the number of hidden states (N), from 10 to 200 with bonds of 10. In total, we built 280 

(=40*7) different HMM models for the prediction of the eight BR fields shown in Table VI. Note 

that not all of these HMM models are used in the actual prediction since the WPIBC (the selected 

HMM combination approach) prunes the redundant ones. 

4.2.3 Evaluation Metrics  

In addition to the ROC curve that we discussed in Section III, we also use precision, recall, 

and F-measure to measure the performance of EnHMM to predict BR field reassignment. These 

metrics are used in the literature to evaluate the accuracy of a classifier [21] [55] [57] [58].  

Precision and recall are defined as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                 (4.1) 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                      (4.2) 

TP: True Positives; FP: False Positives; FN: False Negatives.  

Precision is the ratio of the number of BRs that we correctly predicted that their field (Fi) is 

reassigned (TP) to the total number of BRs for which we predicted that their field (Fi) is reassigned 

(TP+FP). Recall is the ratio of the number of BRs that we correctly predicted that their field (Fi) 

is reassigned (TP) to the total number of BRs that actually have their field (Fi) reassigned (TP+FN). 

To have a better perception of the result, we also use F-measure, a harmonic mean of precision 

and recall and is defined as follows: 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒   =  
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
          (4.3) 

4.2.4 Experimental Results  

We use the ROC curves (see Figure 4.4 and Figure 4.5) to show the effectiveness of EnHMM 

in predicting whether a BR field of a new incoming BR would be reassigned or not by addressing 

RQ1, RQ2, and RQ3. 

RQ1.  How does EnHMM perform in terms of its ability to predict BR field 

reassignment? 
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Figure 4.4. Results on the testing set for Eclipse bug report fields 

 
Assignee  Component  OS  Priority 

 
 Product  Severity  Version  Status       

 
Figure 4.5. Results on the testing set for Gnome bug report fields 
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We can easily compute the best precision, recall, and F-measure for each predicted BR field 

Fi from the corresponding ROC curve shown in Figure 4.4 and Figure 4.5. Each point (fpr, tpr) on 

the final composite ROC curve produced by EnHMM represents the predicted responses (i.e., the 

decisions whether the testing BRs will be reassigned (i.e., 1) on field Fi or not reassigned (i.e., 0) 

on field Fi. We used this set of predicted responses (i.e., a set of points) on the composite ROC 

curve for Field Fi to compute a set of precisions, recalls, and F-measures using Equations (4.1), 

(4.2), and (4.3). Finally, a point (i.e., the tpr and fpr of the responses or predicted outcomes) out 

of all the points on the ROC curve produced by EnHMM (red one with star marker points) that 

give the maximum F-measure is selected as the best predictor with a best precision, recall, and F-

measure for each BR field Fi. 

Table VII shows the best F-measure of the proposed ensemble HMMs for each field Fi from 

the corresponding ROC curve shown in Figure 4.5 for Eclipse and Gnome datasets. Overall, 

EnHMM performs relatively well for most cases, with some noticeable exceptions. For example, 

it only detects the “severity” field with a precision of 21% for Eclipse and 22% for Gnome (the 

lowest precision obtained). We also notice that for the “status” field, EnHMM achieves a low recall 

for both Eclipse and Gnome (27% and 35% respectively). This may be due to the low number of 

BRs for which this field is reassigned as shown in Table VI. On the other hand, we notice a very 

high  
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Table VII. Accuracy of EnHMM 

BR Field Datasets Precision Recall F-measure 

Assignee Eclipse 80.15% 97.12% 87.82% 

Gnome 82.69% 95.91% 88.82% 

Component Eclipse 62.50% 67.87% 65.00% 

Gnome 45.61% 100.0% 62.65% 

OS Eclipse 36.82% 100.0% 53.83% 

Gnome 28.71% 100.0% 55.81% 

Priority Eclipse 54.75% 75.63% 63.52% 

Gnome 26.32% 55.56% 35.71% 

Product Eclipse 57.57% 98.90% 72.78% 

Gnome 45.61% 40.63% 42.98% 

Severity Eclipse 21.04% 72.87% 32.66% 

Gnome 22.17% 65.15% 33.08% 

Version Eclipse 61.19% 72.00% 66.16% 

Gnome 50.88% 58.00% 54.21% 

Status Eclipse 57.41% 26.72% 36.47% 

Gnome 28.57% 34.78% 31.37% 

Average Eclipse 53.93% 76.39% 59.78% 

Gnome 41.32% 68.76% 50.59% 

 

precision and recall for fields that contain a large number of BRs for which the respective field is 

reassigned very often. For example, the “assignee” field, which is reassigned in 68% of the BRs 

for Eclipse and 27% BRs in Gnome can be predicted with 80% precision and 97% recall for Eclipse 

and 83% precision and 96% recall for Gnome. We need to conduct more studies to understand the 

reasons behind the performance of EnHMM by examining various factors including the impact of 

the size of the dataset on the approach, as well as the size and content of the BR stack traces. For 

now, we state the following finding: 

Finding 1:   

EnHMM achieves an average precision, recall, and F-measure of 54%, 76%, and 60% on Eclipse 

dataset and 41%, 69%, and 51% on Gnome dataset. 
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RQ2. How does EnHMM perform in comparison to a single HMM when predicting BR 

field reassignment? 

From Figure 4.4 and Figure 4.5, we can see that EnHMM (represented with the red curve in 

the figures) always gives a better accuracy than the best selected single HMM classifier (the 

blue/pink curves) for all BR fields for both datasets.  The ensemble HMMs significantly improves 

the AUC, while reducing the false positive rates compared to the best single HMM (the ROC curve 

in blue or pink depending on the field, which is the closest to the EnHMM red curve). For example, 

for the “assignee” field in Eclipse data (see Figure 4.4), the AUC of the ROC curve corresponding 

to the three selected HMM-NRassignee is 0.645, the AUC of the three selected HMM-Rassignee is 

0.628, and the AUC of EnHMM (composite ROC curve) = 0.718. This also shows that the rules 

constructed by the ten different Boolean combination functions yields good results.   

To dig deeper, we analyzed each ROC curve shown in Figure 4.4 and Figure 4.5 on Eclipse 

and Gnome testing datasets to find the maximum tpr at the y-axis against a maximum tolerable fpr 

(MTPR) at the x-axis for each BR field using EnHMM and a single HMM. We measure the 

improvement as follows: 

Improvement = (TPREnHMM – TPRsingleHMM) / TPRsingleHMM 

Table VIII shows the results. For example, for the “assignee” field in Eclipse data, the 

maximum tolerable FPR (MTFPR) is 12%, the TPR obtained using EnHMM that corresponds to 

MTFPR in the ROC curve is 32% and that of a single HMM is 26%, which shows that EnHMM 

results in 32% improvement over the best single HMM. 
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Table VIII. Improvement of EnHMM over single HMM 

BR Field Datasets MTFPR TPR 
EnHMM 

TPR 
Single 
HMM 

Improvement 

Assignee Eclipse 12% 32% 26% 23% 

Gnome 11% 34% 27% 26% 

Component Eclipse 5% 24% 14% 71% 

Gnome 1% 19% 4% 375% 

OS Eclipse 22% 51% 47% 9% 

Gnome 12% 43% 43% 0% 

Priority Eclipse 2% 30% 22% 36% 

Gnome 8% 47% 42% 12% 

Product Eclipse 2% 19% 12% 58% 

Gnome 14% 49% 42% 17% 

Severity Eclipse 12% 29% 20% 45% 

Gnome 12% 38% 20% 90% 

Version Eclipse 10% 41% 30% 37% 

Gnome 5% 26% 15% 73% 

Status Eclipse 16% 44% 39% 13% 

Gnome 6% 44% 39% 13% 

Average Eclipse 10% 34% 26% 36% 

Gnome 9% 38% 29% 76% 

 

In addition, Figure 4.4 and Figure 4.5 show the number of selected classifiers out of the 40 

classifiers (20 HMM-RFi and 20 HMM-NRFi) used initially for each field. For example, for the 

“product”, “component”, “severity” and “assignee” fields in Eclipse dataset, our approach only 

needed 6 classifiers (3 HMM-RFi and 3 HMM-NRFi) out of 40 to provide optimum AUC (=0.734). 

The maximum number of selected classifiers (i.e., after the pruning step) independently from any 

field is 8. We needed a maximum of 5 HMM-RFi and 3 HMM-NRFi to attain best accuracy for the 

prediction of the OS and Priority fields. Similarly, we needed 3 HMM-RFi and 3 HMM-NRFi to 

predict the “component”, “OS”, “product”, “priority” and “severity” fields for the Gnome dataset. 

In other words, our approach only needed a maximum of 8 out 40 initial classifiers (20%) to predict 

any of the fields, which suggests that it is not only effective for predicting the reassignment of 

these fields, but also scalable with the growing number of classifiers.  
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Finding 2:   

EnHMM improves over a single HMM by 36% for Eclipse and 76% for Gnome. In addition, 

EnHMM requires at most 20% of the initial classifiers thanks to the Kappa-based pruning approach 

used to prune redundant classifiers.  

 

RQ3: How does EnHMM compare to existing techniques? 

We compare our approach with a recent approach proposed by Xia et al. [56], called the 

imbalanced multi-label k-Nearest Neighbors (Im-ML.KNN). The authors proposed a machine 

learning approach, which is a composite classifier where each classifier uses the same multi-label 

KNN (ML.KNN) machine learning algorithm [57] to train the model. The main novelty of Im-

ML.KNN is the combination of three classifiers that are built on top of three separate features 

types: BR field metadata, BR description and summary, and a mix of both. When applied to four 

large BRs datasets (OpenOffice, Netbeans, Eclipse, and Mozilla) containing a total of 190,558 

BRs, the authors showed that their approach achieves an average F-measure score of 56%-62%. 

They also showed that Im-ML.KNN improves on average the F-measure scores by 119.69%, 

9.11%, and 161.08% when compared with past methods namely the method proposed by Lamkanfi 

et al. [53], ML.KNN [57], and HOMER-NB [58], respectively. 

The authors, however, did not provide a reproduction package, which made it challenging for 

us to reuse their approach. Reimplementing Im-ML.KNN would require resources and even if we 

succeeded to do so, it would have been difficult to reproduce their experiments on our datasets 

because of the number of parameters that we needed to provide, which we could not find (at least 

explicitly) in the corresponding papers. In addition, the only common dataset between their 
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approach and ours is the Eclipse dataset. 

Despite these challenges, we attempt, in this paper, to provide a preliminary baseline 

comparison by comparing the results of our approach when applied to the Eclipse BRs with stack 

traces (this represents only 12.9% of BRs of the entire Eclipse dataset) to the results obtained by 

Im-ML.KNN applied to the entire Eclipse dataset as reported in their respective papers. 

Table IX shows the best F-measures of EnHMM for each BR field and that of Im.ML.KNN. 

We also measure the improvement. As we can see, although EnHMM is tested on far fewer data 

points than Im.ML.KNN, the average F-measure score of EnHMM improves the average F-

measure score of Im.ML.KNN by 6.80% (this is calculated as follows: (59.78%-55.97)/55.97%). 

Table IX. Comparison between EnHMM and Im.ML.KNN based on f-measure 

F-measure Average Assignee Component OS Priority Product Severity Version Status 

EnHMM 59.78% 87.82% 65.00% 53.83% 63.52% 72.78% 32.66% 66.16% 36.47% 

Im-ML.KNN 55.97% 86.67% 63.65% 66.06% 54.13% 73.34% 25.77% 63.41% 14.75% 

Improvement 6.80% 1.33% 2.12% -18.51% 17.35% -0.76% 26.74% 4.34% 147.25% 

 

EnHMM F-measure score is higher than Im.ML.KNN for five fields out of eight. The major 

improvements are observed for the “priority”, “severity”, and “status” fields (between 17.35% to 

147.25%).  Slight improvements can be seen for the “assignee”, “component”, and “version” fields 

(between 1.33% and 4.34%). For the “OS” field, we observe that EnHMM F-measure score is 

considerably lower than that of Im.ML.KNN (improvement of -18.51%), possibly because of the 

low number of reassigned BRs used for training (only 6% as shown in Table VI). This also suggests 

that having more BRs with stack traces may improve the accuracy of the proposed solution. We 

intend to conduct more studies to understand the underlying reasons behind the performance of 

EnHMM across these BR fields. We need to examine in more depth how the size of the dataset, 
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the quality of the traces, and the use of a particular machine learning algorithm impact the results. 

Table X shows a comparison of both approaches using the average precision and recall. Xia 

et al. [56] did not report the precision and recall obtained by applying Im.ML.KNN to each field. 

They only included the averages shown in Table X. We can see that, in average, EnHMM has a 

much higher recall (76.39% compared to 56.13%), but a lower precision (53.93% compared to 

56.71%).  In other words, EnHMM can predict BR fields better than Im.ML.KNN, but also has a 

higher false positive rate. We can enhance precision in two ways: (a) add more training BRs with 

stack traces, and (b) combine other features such as BR field metadata and BR descriptions and 

summaries (if deemed of good quality). 

Table X. Comparison between EnHMM and IM.ML.KNN 

Approach Average Precision Average Recall 

EnHMM 53.93% 76.39% 

Im-ML.KNN 56.71% 56.13% 

Improvement -4.90% 36.09% 

 

Finding 3:   

The average F-measure of EnHMM, trained on 12.9% of Eclipse BRs, outperforms all the reported 

state-of-art algorithms, which are trained on the entire Eclipse dataset. EnHMM improves the 

average F-measure by 15% (i.e.  60% from 52%) over im-ML.KNN [56], a leading approach. 

 

4.2.5 Discussion  

On the performance of EnHMM: The appealing results obtained by EnHMM are 

attributable to the power of HMMs in modeling sequential data as opposed to traditional machine 
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learning techniques, which do not take full advantage of sequential data. Moreover, fusing the 

weak and best classifiers using 10 different Boolean functions maximizes the diversity between 

two combined classifiers, in fact, it is the most important ground truth for any ensemble-based 

approaches [13] [15]. 

On the use of heterogenous classifiers: EnHMM is based on a combination of multiple 

HMM homogenous classifiers, trained by varying the number of hidden states. This said, the 

combination process itself is not linked to the sole use of HMM. It can, for example, be used to 

combine decisions from other types of classifiers such as those built using SVM, KNN, etc. This 

can further improve the diversity aspect of the combination process (which is now supported 

through the use of the Kappa- coefficient). 

On the use of stack traces: Our findings clearly show the importance of stack traces in 

predicting bug report fields. This confirms the need to better collect, store, and manage stack traces 

whenever a bug report is submitted. For the present time, both Eclipse and Gnome rely on stack 

traces that are copied and pasted in BR descriptions by end users. This process is error-prone and 

may result in the presence of noise. Bug report tracking systems must be equipped with powerful 

mechanisms for managing historical traces that can later be used for all types of applications 

including the prediction of BR field reassignment. 

4.2.6 Limitation 

The main limitation of our approach is the low number of BRs that come with stack traces. 

As an example, only 10% of Eclipse BRs described in [66] contain stack traces. This is because 

many bug tracking systems are still not equipped with adequate mechanisms for managing traces. 

Nevertheless, we believe that an approach that uses stack traces remains very useful, especially in 



89 

 

situations where BR descriptions and summaries are deemed to be of poor quality. In addition, our 

own experience working with industrial partners shows that it is a very common practice in 

industry to collect stack traces whenever a BR is submitted. This is because traces serve other 

important purposes such as bug localization and reproduction. We therefore conjecture that, in the 

future, more bug tracking systems (including those in the open source community) will provide 

better mechanisms for collecting, storing, and managing stack traces. 

4.3 Threats to Validity 

Our proposed approach and the conducted experiments are subject to threats to validity, 

namely external, internal, and construct validity. 

Threats to external validity: Our approach is evaluated against two open source datasets. 

We need to conduct further studies by applying it to more datasets that contain a large number of 

stack traces to be able to generalize the results. We also need to use other features such as BR 

descriptions, summaries, and so on to assess the effectiveness of EnHMM on these features in 

situations where one cannot rely on stack traces.  

Threats to internal validity: In our approach, the way we set the hyperparameters A and B, 

conditional probability matrices, to construct HMM could be a threat to internal validity. We used 

the validation set to optimize A and B. A different validation set could result in a different 

initialization of A and B, which my produce another model. However, to our knowledge there is 

no clear solution to this problem and most studies that use HMM follow random initialization of 

A and B and repeat this process several times until a satisfactory model is obtained. In addition, 

we chose to build 40 HMMs for each BR field by varying the number of hidden states. A different 

configuration may yield other results. Another threat may be with respect to the use of regular 
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expressions to extract stack traces from BR descriptions. Our regular expression may have missed 

some stack traces. The missed stack traces could have slightly altered the accuracy of our approach. 

In addition, we implemented many scripts to extract data, build HMMs, etc. Although care was 

exercised to write these scripts, errors may have occurred. We will make all our scripts available 

online to allow other researchers to reproduce our work. 

Threats to construct validity: The construct validity shows how the used evaluation 

measures could reflect the performance of our predictive model. In this study, we used precision, 

recall, F-measure, ROC curves, and AUC. These measures are widely used in similar studies to 

assess the accuracy of machine learning models. 

4.4 Conclusion 

We proposed an effective approach for predicting the reassignment of BR fields. Our 

approach, called EnHMM, combines multiple HMMs using WPIBC, an anomaly detection 

algorithm that uses Boolean combination of classifiers, pruned using the Kappa coefficient. When 

applied to Eclipse and Gnome BR repositories, EnHMM achieves an average precision, recall, and 

F-measure of 54%, 76, and 56% on Eclipse dataset and 41%, 69%, and 51% on Gnome dataset. A 

preliminary comparison study shows that EnHMM outperforms leading BR field reassignment 

prediction methods. Future research should focus on (a) applying EnHMM to larger datasets, (b) 

understanding the performance of EnHMM by examining the quality of stack traces, (c) combining 

stack traces with other BR features, and (d) combining other classification techniques, other than 

HMMs. 
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Chapter 5. MASKED: A Mapreduce Solution For The 

Weighted Kappa-pruned Ensemble-based 

Anomaly Detection System 

Detecting system anomalies at run-time is critical for system reliability and security. Studies in 

this area focused mainly on effectiveness of the proposed approaches; that is, the ability to detect 

anomalies with high accuracy. However, less attention was given to efficiency. In this paper, we 

propose an efficient MapReduce Solution for the Kappa-pruned Ensemble based Anomaly 

Detection System (MASKED). It profiles the heterogeneous features from large-scale traces of 

system calls and processes them by heterogeneous anomaly classifiers which are Sequence-Time 

Delay Embedding (STIDE), Hidden Markov Model (HMM), and One-class Support Vector 

Machine (OCSVM). We deployed MASKED on a Hadoop cluster using the MapReduce 

programming model. We compared their efficiency and scalability by varying the size of the 

cluster. We assessed the performance of the proposed approach using the CANALI-WD dataset 

which consists of 180 GB of execution traces, collected from 10 different machines. Experimental 

results show that MASKED becomes more efficient and scalable   as the file size is increased (e.g., 

6-node cluster is 8 times faster than the 2-node cluster). Moreover, the throughput achieved on a 

6-node solution is up to 5 times better than a 2-node solution. 

5.1. Introduction 

Studies have shown that ensemble approaches that combine the decisions of multiple crisp 
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classifiers3 using Boolean combination rules such as Pair-wise Brute-force Boolean Combination 

(BBC2) [10], Iterative Boolean Combination (IBC) [11], and a recently proposed Weighted 

Pruning Iterative Boolean Combination (WPIBC) [15] improve significantly the detection 

accuracy, while reducing the false alarms rates which are a major impediment for the general 

adoption of anomaly detection techniques in practice. Moreover, Wael et al., [23] have shown that 

a combination of heterogeneous anomaly classifiers (e.g., STIDE [33], OCSVM [80], and HMMs) 

can significantly improves the overall performance of the system. However, heterogeneous 

classifiers use heterogeneous features for modeling and testing the normal behavior of a system. 

For example, OCSVM uses fixed-size vector-based features while HMM and STIDE use fixed-

size sliding window-based short sequences of system calls. Therefore, profiling such 

heterogeneous features from large-scale traces of system calls is the very first and essential step 

before processing them by the ensemble of heterogeneous anomaly classifiers. 

For instance, each trace entry produced by kernel collector [92], contains so many information 

related to each invoked system call such as arguments, result (return), process ID, process name, 

parent process ID, etc. Filtering and transforming such a large-scale trace of system calls into 

numerical sequences of system calls, and then, treating them to profile the heterogeneous features 

for heterogeneous anomaly classifiers, is a time-consuming task for a single machine. To address 

this issue, a feasible solution would be to profile the heterogeneous features of the ensemble-based 

anomaly detection system by leveraging the power of existing parallel computation frameworks, 

such as HDFS (Hadoop Distributed File System) and the MapReduce programming model which 

                                                 
3 A crisp anomaly classifier is the one that produces a decision (i.e., normal or anomalous) instead of scores (i.e., likelihood 

probability or similarity). This is contrasted with a soft classifier, which produces scores instead of a decision. A soft classifier 

can be converted into one or more crisp anomaly classifiers by setting different thresholds on the output scores [12] [100]. 
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are implemented on Big Data platforms.  

However, Hadoop with its original parallel computation model is technically not suitable for 

profiling sequential data due to dependencies on the temporal information or the orders of a 

sequence [76]. For example, when HDFS splits a large trace file into two or more fixed-size blocks, 

Hadoop fails to keep track of the order or temporal information of large sequences within the trace 

file. To overcome this limitation, Li et. al, [76] have recently proposed an index pool data structure 

to predict time series by rolling a fixed-size window using Hadoop and the MapReduce 

programming model. Index pool has shown to be efficient in extracting the index key of a rolling 

window once the entire sequence is already distributed across multiple splits. However, extracting 

the index key for each rolling window gives rise to a linear increase of the computational time 

proportionally to the length of the sequence. Moreover, this approach can only profile the features 

of sliding windows, and thus, it is not suitable for the ensemble of heterogeneous anomaly 

classifiers. Therefore, a more sophisticated MapReduce algorithm is required. This algorithm must 

profile the heterogeneous features such as fixed-size sliding windows for short sequences-based 

anomaly classifiers (e.g., HMMs and STIDE) and fixed-size feature vectors for the traditional 

machine learning based anomaly classifiers (e.g., OCSVM). 

In this work, we propose an efficient anomaly detection approach called MASKED-A 

MapReduce Solution for the Kappa-pruned Ensemble-based Anomaly Detection System. 

MASKED has only one MapReduce job. It profiles the heterogeneous features from the large-

scale traces of system calls, and then processes them by a pre-constructed set of Kappa-pruned 

Ensemble-based Iterative Boolean Combination Rules (BICKER). In constructing BICKER, we 

use the same technique used in our previous work [15] with the exception of using the input of 

heterogeneous anomaly classifiers (i.e., multiple HMMs, STIDE, and OCSVM) instead of 
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homogeneous ones (i.e., only multiple HMMs). BICKER selects a set of diverse soft and their 

corresponding complementary crisp classifiers which are used to construct the Boolean 

combination rules. Then, BICKER is used by MASKED to process the profiled heterogeneous 

features. 

The main contributions of this work are as follows: 

• Construction of a set of Kappa-pruned Ensemble-based Iterative Boolean Combination 

Rules (BICKER) by using the WPIBC Boolean combination technique [15]. BICKER takes 

heterogeneous anomaly classifiers (i.e., multiple HMMs, STIDE, and OCSVM) as input 

instead of homogeneous ones (i.e., only multiple HMMs) as was the case in WPIBC. 

• Selection of five most diverse soft anomaly classifiers (i.e., three HMMs, STIDE, and 

OCSVM) where each one has six complementary crisp classifiers, which are used to 

construct the final set of Boolean combination rules. 

• A MapReduce Solution for the Kappa-pruned Ensemble-based Anomaly Detection System 

(MASKED) that profiles heterogeneous features from large-scale traces of system calls and 

processes them using BICKER. 

The rest of this chapter is organized as follows. In Section 5.2, we describe the implementation 

of our proposed approach followed by the experimental results in Section 5.3. Finally, we conclude 

the paper in Section 5.4 and discuss the future directions.   

5.2 Proposed Approach 

In this work, we propose a MapReduce Solution for the Kappa-pruned Ensemble-based 
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Anomaly Detection System (MASKED) that profiles the heterogeneous features from the large-

scale traces of system calls, and then processes them by a pre-constructed set of Kappa-pruned 

Ensemble-based Iterative Boolean Combination Rules (BICKER). In constructing BICKER, we 

leverage our previous proposed Weighted Pruning Iterative Boolean Combination (WPIBC) 

technique [15]. The only difference is that the inputs of BICKER are a set of heterogeneous soft 

anomaly classifiers (e.g., multiple HMMs, STIDE, and OCSVM) whereas, WPIBC uses 

homogeneous ones (i.e., only multiple HMMs). BICKER is used by the proposed MapReduce 

solution (MASKED) to process the profiled heterogeneous features. MASKED is completely 

controlled by only one MapReduce job that does not only profile the heterogeneous features for 

the heterogeneous anomaly classifiers (e.g., STIDE, HMM, and OCSVM) but also process them 

by using BICKER Boolean combination rules. In the following, we first describe the construction 

procedure of BICKER and then, we present the proposed MapReduce solution. 

5.2.1 Kappa-pruned Ensemble-based Iterative Boolean Combination Rules 

(BICKER) 

Although, the construction procedure of BICKER is exactly the same as in WPIBC, the inputs 

of BICKER are now three main heterogeneous soft anomaly classifiers (STIDE, multiple HMMs, 

and OCSVM) instead of only homogeneous multiple HMMs. We trained STIDE and HMM using 

the fixed-size sliding window based sequential features, and OCSVM using the tf-idf term vectors 

(both feature types can be profiled using the proposed MapReduce solution (MASKED) whose 

details are discussed in the next subsection B). We use the validation set same as in WPIBC [15] 

for selecting the most diverse soft and their corresponding complementary crisp classifiers. 

First, we compute a set of scores for each input soft anomaly classifier. Then, we set all the 

possible thresholds on each set of scores. Each threshold is associated with a crisp classifier that 
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produces a set of responses 0/1 (0-means normal and 1-means anomaly), which in turn, produce a 

single point (fpr-false positive rate, tpr-true positive rate) on the ROC space. Therefore, each soft 

classifier produces a set of crisp classifiers or a set of points (fpr, tpr) on the ROC space with an 

AUC (area under the curve) value used as a performance metric for that soft classifier. 

With this setting and according to WPIBC [15], we select the most diverse soft classifiers 

while pruning all the redundant ones using weighted kappa coefficients (an extended version [82] 

of Cohen’s kappa [83] that measures the degree of agreement between two soft classifiers at the 

various ranks/levels/thresholds). Figure 5.2 shows the selected five diverse base soft classifiers 

(OCSVM, STIDE, and three HMMs) while pruning 17 redundant soft HMMs. 

 

Let the number of possible thresholds be k. Each selected diverse base soft classifier produces 

k crisp classifiers. Then, we apply the MinMax-kappa pruning technique [12] on each selected soft 

 
 

Figure 5.1. Selected diverse heterogeneous soft anomaly classifiers 

(OCSVM, STIDE, and 3 HMMs) including their corresponding selected 

complementary crisp classifiers (bold marker points) also using one of the 

kappa-pruned ensembles based Weighted Pruning Iterative Boolean 

Combination (WPIBC) techniques [34]. 
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classifier. As a result, m (m<<k) complementary crisp classifiers out of k candidate crisp classifiers 

are selected while the trivial (always produces same responses either 0 or 1) and redundant crisp 

classifiers are pruned. Figure 5.2 illustrates the selected 6 complementary crisp classifiers (bold 

marker points) from each selected diverse base soft classifier. 

The selected five diverse base heterogeneous soft anomaly classifiers and their corresponding 

30 complementary crisp classifiers are then used to construct the final Boolean combination rules. 

As in WPIBC, we leverage the IBC Boolean combination technique [11] in constructing BICKER. 

For instance, the ROC curve, red one with ‘+’ marker points (shown in Figure 5.2), is the resulted 

composite ROC curve using the BICKER Boolean combination rules on the validation set. In 

Figure 5.2 and for simplicity, we show a composite emerging point (e) which results from the IBC 

combination of three selected complementary crisp classifiers a, b, and c. The best-case scenario 

for BICKER is that it uses only the five most diverse base soft classifiers or their selected 

corresponding 30 complementary crisp classifiers to get this composite ROC curve. In contrast, 

when IBC is used without pruning, all the available 22 input soft classifiers or 2,200 (in our case, 

k=100) crisp classifiers should be used to get the same composite ROC curve [11].  

Finally, we store the ensuing BICKER information into a NoSQL database: (i) the trained 

parameters of each selected soft classifiers and the thresholds of their six complementary crisp 

classifiers, and (ii) the constructed Boolean combination rules using only the selected 

complementary crisp classifiers. The proposed MapReduce solution that contains only one 

MapReduce job, uses BICKER for processing the profiled heterogeneous features from a large-

scale raw traces of system calls. 

5.2.2 Profiling Heterogeneous Features using Distributed File System 
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It is well known that HDFS, a distributed file system, splits a large file (bigger than the block 

size, 64MB) into several fixed-size blocks, which are distributed across many parallel nodes [75]. 

However, if a trace file with a large sequence of system calls is stored into two or more HDFS 

blocks, the temporal orders of system calls will be lost. That is, some fixed-size sliding windows 

are straddled at the split boundary between two blocks [76]. Figure 5.4 (a) shows an example in 

which three consecutive sliding windows (assuming a window of size four): window 8, window 

9, and window 10 are straddled at the split boundary between two blocks. Indexing these straddle 

windows is important for re-assembling them at the aggregation level. In this work, we propose a 

general solution for indexing these straddle windows, which can be used for profiling both fixed-

size sliding window based short subsequences as well as fixed-size feature vectors from a large-

scale trace file that is stored in a distributed fashion. 
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Before profiling the fixed-size sliding windows, each distributed block produces a set of 

complete sliding windows including two partial windows (partial pre-window and partial post-

window) as shown at the top of Figure 5.4 (a). The main benefit of these two partial windows is 

that, at the aggregation level, only two consecutive partial pre-window and post-window are 

required to profile the rest of the straddle sliding windows. Figure 5.4 (b) shows that the two-

consecutive partial pre-window and post-window are merged into one partial subsequence before 

being sorted based on the timestamps (t). This partial subsequence is then used to produce the rest 

of the complete straddle sliding windows (windows 8, 9, and 10) at the split boundary between 

two blocks.  

 

 

Figure 5.3. A general approach for profiling heterogeneous features from a large-scale trace file that has a long sequence 

of system calls and stored in a distributed file system 

 

 

 

Figure 5.4. A general approach for profiling heterogeneous features from a large-scale trace file that has a long sequence 
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For profiling the fixed-size feature vector, each block produces a partial tf feature vector 

whose size is fixed and equals the number of unique symbols used in the system. It also records 

the length of the processed subsequence (within a block) at the end of that partial tf vector. The 

bottom of Figure 5.4 (a) shows two blocks producing two partial tf feature vectors with size of six 

(i.e., the number of unique symbols: A B C D E F), excluding the last element that is the length 

(10) of the processed subsequence. At the aggregation level, Figure 5.4 (c) shows that the two 

partial tf feature vectors are also merged into a complete tf feature vector, normalized by the total 

length (20) of that sequence. The tf feature vector is then transformed into tf-idf feature vector 

using equation (3) and the precomputed document frequency (df). 

5.2.3 A MapReduce Solution for Profiling and Processing Large-scale Traces 

of System Calls 

In the proposed method, we use a set of system call traces collected by the Anubis emulator 

tool and stored in HDFS, as a large-scale dataset [84] [92]. Running under Windows operating 

system, the OS emulator has a kernel module that tracks system call events and annotates them 

according to privacy rules [92]. Figure 5.6 shows the flow of data of the MapReduce job that 

extracts, transforms, and profiles the heterogeneous features, and then, processes them using 

BICKER (as discussed in subsection A). 
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Since each trace file contains so many information related to each invoked system call (e.g., 

result, pid, process name, and parent process ID), the mapper function first filters and transforms 

a raw system call trace file into a set of tuples. Each tuple contains three fields: ⟨timestamp, pid, 

system_call⟩ which are needed to profile the heterogeneous features for the anomaly classifiers. 

As shown in Figure 5.6, the mapper function groups all the tuples into sub-sequences of system 

calls based on each process ID. The Mapper function then computes all the complete sliding 

windows, including the two partial windows. It also computes a partial tf feature vector for each 

 

 

 

Figure 5.5. The flow of data of the proposed MapReduce solution MASKED for profiling heterogeneous features for 

heterogeneous anomaly classifiers and processing them using a pre-constructed Kappa-pruned Ensemble based Iterative 

Boolean Combination Rules (BICKER) 

 
 

 

 

Figure 5.6. The flow of data of the proposed MapReduce solution MASKED for profiling heterogeneous features for 

heterogeneous anomaly classifiers and processing them using a pre-constructed Kappa-pruned Ensemble based Iterative 

Boolean Combination Rules (BICKER) 
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sub-sequence of system calls. 

Once a sliding window, wi is complete, the mapper function accesses BICKER to load the 

trained parameters of each sliding window based soft classifiers, Dl (e.g., STIDE and three 

HMMs). Then, it uses them to compute the score $𝑙
𝑖. The score is then sent as a key-value pair into 

the reduce function, where key is the pid and value is the score. If the sliding window is partial, 

the score is not computed, and the partial window is sent as a value together with the pid to the 

reduce function. Similarly, the mapper function directly sends a partial tf feature vector as a (key, 

value) pair into the reduce function, where key is the pid and value is the partial tf feature vector. 

For each process, the reduce function re-assembles (i.e., merges and sorts) the partial windows 

and uses them to compute the straddled sliding windows which were stored in two HDFS blocks. 

It also computes the scores ($𝑙
𝑗
) for each straddled sliding windows (wj) by accessing each sliding 

window-based soft classifiers (Dl) from BICKER. Then, it aggregates all the scores Vl=[$𝑙
𝑖 $𝑙

𝑗
] to 

find the maximum which is considered as the desired score $l=max(Vl), for each sliding window 

based soft classifiers (Dl). Similarly, and for each process, the reduce function aggregates all the 

partial tf vectors into a single tf vector, normalized with the length of the sequence. The normalized 

tf vector is further weighted by the document frequency (df) and transformed into tf-idf feature 

vector using equation (5.3). This tf-idf feature vector is then processed by accessing each vector 

based soft classifiers, Dl (e.g., OCSVM) from BICKER to compute the score $l. 

The reduce function accesses BICKER to load the thresholds of each soft classifier, Dl, and 

converts the computed score $l into a set of six (m=6) complementary crisp classifiers 𝐶𝑙
𝑚. Then, 

the responses 𝑅𝑙
𝑚 of each crisp classifier 𝐶𝑙

𝑚 are combined using the BICKER Boolean rules. 

Finally, the combination responses 𝑅𝑙
𝑚 are used to compute the final composite ROC convex hull 
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(ROCCH) on the ROC space. 

5.3 Experiments and Results 

To access the performance of the proposed MapReduce solution, a small cluster with only 

seven nodes was used as a platform. The CANALI-WD [84] was used as raw traces of system calls 

dataset. 

5.3.1 Setting the Training Parameters 

For training, we used the traces of normal behavior of Anubis-good and Goodware datasets 

(excluding the traces of machine 10, which are used for testing). In addition to the traces of 

machine 10, malware and malware-test datasets were used to construct the testing set with varied 

sizes to evaluate the performance of MASKED. Among the evaluation traces, we randomly 

selected 10% from machine 10, malware, and malware-test datasets to form the validation set. The 

training dataset was used to train the three-main heterogeneous soft anomaly classifiers (STIDE, 

multiple HMMs, and OCSVM). In the case of STIDE, we built the normal database using the 

normal unique short-sequences. We also used the same unique normal short-sequences to train the 

HMM parameters (A, B, π) using the BW algorithm [3]. In the case of OCSVM, we converted the 

normal training sequences into the tf-idf feature vectors using Equation (5.3). The converted tf-idf 

vectors were used to train the OCSVM using the Gaussian or RBS (radial basis function) kernel 

function [51]. We obtained the best accuracy for OCSVM on the validation set for sigma = 0.001. 

We obtained the best accuracy for OCSVM soft on the validation set for sigma = 0.001. 

To select the best window size for both STIDE and HMM, we trained them with three different 

window sizes (5, 10, and 20). We obtained the best accuracy using the validation set for a window 

size of 5 which was selected as the window size. Moreover, to find the well-trained HMMs models, 
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we trained different discrete-time ergotic HMMs with various 𝑁 values (N=10, 20, … 100) [15].  

5.3.2 Cluster Configuration  

We configured a small Hadoop cluster with only seven nodes to test the proposed approach. 

We used Matlab Distributed Computing Server [93] to setup this small cluster. Among the seven 

nodes, six nodes were used as a Hadoop cluster and one node was used as a database server to 

store the contents of BICKER. The five nodes of Hadoop cluster (excluding the Hadoop master 

node) were used to accumulate a large-scale system call traces dataset. The Hadoop cluster with 

six nodes was used as a HDFS with block size of 64MB.  

5.3.3 Analyzing Performance of the Proposed MapReduce Solution  

We evaluated the performance of the proposed MapReduce solution by varying the input file 

size from 13MB to 10GB. We compared the performance of 6-node and 2-node Hadoop cluster 

settings in terms of job completion time (seconds) and throughput (MBps). Figure 5.8 shows the 

performance of the MapReduce job with different file sizes. According to Figure 5.8 (a), when the 

file size is very small (up to 81MB), the completion times are almost constant. When the input file 

size increases above 81MB, however, our approach gave rise to a significant reduction of the 

completion time with a 6-node cluster compared to 2-node cluster. For example, when the file size 

is 10GB, the completion times were 20,068s and 155,187s for 6-node and 2-node cluster settings, 

respectively. That is, MapReduce job with 6-node cluster is approximately 8 times faster than that 

with 2-node cluster. 
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In terms of throughput and according to Figure 5.8 (b), we can see that when the file size is 

more than 224MB, the 6-node cluster far outperformed the 2-node cluster. For example, when the 

file size of 10GB, the 6-node cluster achieved a throughput of 36MBps compared to 9MBps 

achieved by the, whereas, the 2-node cluster. That is, the throughput of the 6-node cluster is about 

4 times higher than that of the 2-node cluster. 

We evaluated the scalability of MASKED with the increase of the number of cluster nodes 

from one node to six nodes. From Figure 5.10, we can see that the MapReduce job reduced the 

completion time inversely proportional to the number of worker nodes. This result was expected 

for two reasons: 1) Hadoop is known for its scalability; and 2) MapReduce parallel/distributed 

computing provides a powerful solution for accessing, processing, grouping, and aggregating a 

 
(a) 

 

 
(b) 

 

Figure 5.7. Performance comparison between 6-node and 2-node Hadoop clusters: (a) job completion 

time and (b) throughput 

 

 

 

 
(a) 

 

 
(b) 

 

Figure 5.8. Performance comparison between 6-node and 2-node Hadoop clusters: (a) job completion 

time and (b) throughput 
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large-scale data such as the one used in this study. 

 

We analyzed the outputs (i.e., combination responses) of the proposed MapReduce job on the 

ROC space. Figure 5.12 shows the achieved composite ROCCH (red color) after combining the 

responses of the selected complementary crisp classifiers. According to this figure, BICKER 

shows a significant improvement when compared to the performance of the individual classifiers, 

particularly, when the false alarm is close to zero. These results show conclusively that using 

heterogeneous classifiers gives rise to better anomaly detection accuracy that using homogeneous 

multiple HMMs.  

 

 
 

Figure 5.9. Performance comparison with the increase of number of workers, when the file 

size is fixed to 10 GB. 

 

 

 

 
 

Figure 5.10. Performance comparison with the increase of number of workers, when the file 

size is fixed to 10 GB. 
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5.3.4 Effects of Partial Pre(Post)-window for Indexing the Straddle Sliding 

Windows 

Instead of using additional indexing data structure, like in [76] [78], the two partial windows 

are essential for indexing the straddle sliding windows at the split boundary between two HDFS 

blocks. In contrast, Li method [76] needs to access index pool data structure to profile each 

complete and partial window. 

At the aggregation end, the reduce function only accesses the two consecutive partial windows 

to produce the remaining complete windows at the split boundary between two blocks (Figure 5.4). 

In contrast to Li method in which both the mapper and reducer need to maintain many partial 

windows to produce the remaining complete windows. In addition, the proposed approach does 

not need to store and access any additional index pool data structure as in [76] [78]. 

 

 
 

Figure 5.11. Comparing the combination results on the ROC space using the standard AUC (Area Under the 

Curve) as a measurement metric. 

 

 

 

 

 
 

Figure 5.12. Comparing the combination results on the ROC space using the standard AUC (Area Under the 

Curve) as a measurement metric. 
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5.3.5 Effects of Heterogeneous Classifiers in Constructing the Boolean 

Combination Rules, BICKER 

It is well-known that the diversity between two combined crisp or soft classifiers is an 

important factor for any ensemble-based anomaly detection approach [12] [15] [23] [13]. That is, 

if the responses of two crisp classifiers are comparable, combining them using Boolean 

combination rules declines the anomaly detection accuracy. In our previous work [15], we 

developed a Boolean combination approach (WPIBC) which demonstrated how the diversities 

among the combined soft and crisp classifiers can be guaranteed. This work shows that the 

diversity is improved when using heterogeneous classifiers. Although the construction of BICKER 

is exactly the same as in WPIBC, the input is a set of heterogeneous soft anomaly classifiers 

(STIDE, multiple HMMs, and OCSVM) instead of only homogeneous multiple HMMs. BICKER 

uses only five diverse base heterogeneous soft anomaly classifiers (3 HMMs, STIDE, and 

OCSVM) while pruning 17 HMMs classifiers as the redundant ones. 

5.4 Conclusion 

We proposed an efficient MapReduce solution, namely called MASKED, for the Kappa-

pruned Ensemble-based Anomaly Detection Systems. MASKED has only one MapReduce job 

that profiles the heterogeneous features from large-scale raw traces of system calls for 

heterogeneous anomaly classifiers. The MapReduce job also processes the profiled heterogeneous 

features using a constructed kappa-pruned iterative Boolean combination rules, BICKER. The 

experimental results with varied sizes of HADOOP clusters, have shown that MASKED is 

efficient and scalable for detecting system anomaly with the help of kappa-pruned ensemble-based 

anomaly detection system. In the future, we plan to evaluate the efficiency of MASKED with more 

worker nodes and anomaly classifiers. 
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To the best of our knowledge, MASKED is the first initiative where MapReduce is used to 

profile and process the heterogeneous features for heterogeneous anomaly classifiers. 
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Chapter 6. Conclusions and Future Work 

6.1 Conclusions 

The main contribution of this thesis is to develop an ensemble of machine learning techniques 

that selects the most diverse classifiers from a set of input classifiers. We leverage the kappa 

measure of (dis)agreement to compute the diversities among the set of classifiers. The weighted 

kappa selects the most diverse soft classifiers. Then, we apply the simple kappa on each diverse 

soft classifier to find its complementary crisp classifiers. At the end, we leverage Boolean 

combination techniques to combine the decisions produced by each complementary crisp 

classifier. We validated the propose solution by applying it to two application domains: detecting 

system anomalies and detecting bug fields reassignment. 

In anomaly detection, we considered two benchmark datasets: ADFA and CANALI. We 

compared the results with the state-of-art ensemble anomaly detection techniques. The proposed 

weighted pruning ensemble approach obtained much better results than the other ensemble 

techniques particularly when the false alarm is almost close to zero. The proposed approach also 

significantly reduces the number of Boolean operations needed to combine the results from the 

multiple classifiers because of the fact that it operates on a subset of diverse classifiers only. 

Later, we applied the propose weighted pruning ensemble approach in the application of 

predicting the reassignment of bug report fields, we also considered two different projects: Eclipse 

and Gnome. For both applications, we compared the results with the state-of-art algorithm. 

We further extended the proposed approach by leveraging heterogeneous classifiers and Big 

Data platforms. We proposed an efficient MapReduce solution, namely called MASKED that 
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profiles features of heterogeneous diverse anomaly classifiers from large-scale raw traces of 

system calls. The experimental results with varied sizes of HADOOP clusters, have shown that 

MASKED is efficient and scalable for detecting system anomaly with the help of kappa-pruned 

ensemble-based anomaly detection system. 

6.2 Future Work 

In this thesis, we conducted an extensive research to define the most diverse soft and crisp 

classifiers from a set of candidate classifiers. We also validated the proposed approach by applying 

it to a set of homogeneous and heterogeneous classifiers. However, there are potential future 

directions that would improve the proposed ensemble approach. The following subsections present 

future directions.  

6.2.1 Leveraging Recurrent Neural Networks (RNNs) 

As input for the homogeneous candidate classifiers, we use a set of multiple HMMs classifiers. 

However, recently, deep neural network models are getting more attention because of their high 

accuracy [94] [95]. One future direction of our research is to train multiple Long Short-term 

Memory (LSTM) Recurrent Neural Network (RNN) models by varying different learning 

parameters and use them as input for the proposed WPIBC approach [15]. LSTMs track a long-

term dependency over time by analyzing memory states. They are especially best for sequential 

data as they track dependencies and correlations over time. Since our datasets (both for anomaly 

detection and bug fields reassignment prediction) are sequential, an ensemble of LSTMs would be 

a potential future direction for improving the accuracy of the proposed WPIBC approach. 
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6.2.2 Increasing Diversity 

For further improvements, the other potential future direction is to increase the number and 

type of classifiers. The proposed WPIBC ensures the diversity at the decision level. However, we 

can also ensure the diversity at the algorithmic level by adding more heterogenous classifiers. 

Although, we tested WPIBC by leveraging diverse heterogeneous classifiers, our experiments are 

limited to HMMs, OCSVM, and STIDE. Adding more diverse (and heterogeneous) classifiers 

such as LSTMs may help in modeling more complex patterns, reducing false positive rates, and 

also improving the overall accuracy as well. We also increase the diversity of the proposed 

approach by adding more feature engineering approaches. In this solution, we use sliding windows 

for training HMMs and STIDE and TF-IDF feature vectors for training OCSVM. However, we 

may train more accurate and diverse models by leveraging different feature engineering techniques 

that may capture more complex variations of a system. 

6.2.3 Comparing with Other Ensemble Techniques 

For further validation and verification of the proposed ensemble approach, we can conduct a 

comparison study between the proposed and the other existing state-of-art ensemble techniques 

such as AdaBoost [97] and XGB [98]. We can also verify the soundness of the proposed WPIBC 

approach by applying it to diverse datasets from various application domains such as datasets from 

health care systems. 

6.3 Closing Remarks 

Research shows that the diversity among ensemble of classifiers holds great potential to 

improve accuracy. In this thesis, we proposed a weighted pruning based Boolean combination 

technique that ensures the diversity among the combination of classifiers by pruning the redundant 
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soft classifiers using weighted kappa. We validated successfully the proposed approach by 

applying it to two application domains in the fields of software security and reliability: detecting 

system anomalies and predicting the bug report fields reassignment. We hope that this works sets 

the ground for further research in leveraging artificial intelligence techniques to improve the 

security and reliability of software systems.  
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