
1

Segmenting Large Traces of Inter-Process Communication with a

focus on High Performance Computing Systems

Luay Alawneh, Abdelwahab Hamou-Lhadj, Jameleddine Hassine

Department of Software Engineering

Jordan University of Science and Technology, Irbid, Jordan

lmalawneh@just.edu.jo

Software Behaviour Analysis (SBA) Research Lab

Department of Electrical and Computer Engineering

Concordia University, Montréal, QC, Canada

abdelw@ece.concordia.ca

Department of Information and Computer Science

King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

jhassine@kfupm.edu.sa

Abstract

The understanding of the interactions among processes of a High Performance Computing (HPC) system

can be made easier if trace analysis is used. Traces, however, can be quite large, making it difficult to

analyze their content unless some abstraction is provided. This paper presents a novel trace abstraction

approach that aims to facilitate the analysis of large execution traces generated from HPC applications. Our

approach allows automatic segmentation of large traces into smaller and meaningful clusters that reflect the

various execution phases of the traced scenarios. Our approach is based on the application of information

theory principles to the analysis of sequences of communication patterns extracted from traces of HPC

systems. This work is inspired by recent studies in the field of bioinformatics where several techniques

have been proposed to segment DNA sequences into homogeneous sub-domains, where each sub-domain

exhibits a certain degree of internal homogeneity. Trace segments can be used in a number of applications

such as recovering high-level views of the system behavior and program understanding. We demonstrate

the usefulness of our approach by applying it to different traces of hundreds of millions of events,

generated from two HPC systems.

Keywords—Dynamic analysis, Trace abstraction and analysis, inter-process communication traces, High

performance computing systems, Software maintenance, Program comprehension

2

1. Introduction

High Performance Computing (HPC) systems are used to solve complex computational problems in a

variety of domains including medical image processing, financial trading, bioscience, and data security.

These systems run on a large number of processors and can process in parallel quadrillions of operations

per second [Newman 14]. HPC has become a popular solution for building powerful applications due to the

emergence of multi-core and cloud computing platforms.

Despite the recent advances in the design of HPC systems, there are still challenges related to how to

analyze these systems. A typical application involves a large number of processes. Understanding the way

these processes interact with each other is a tedious and complex task [Maghraoui 05]. To address this,

existing work (e.g., [Noeth 09][Geimer 09]) has been devoted to techniques and tools that enable the

analysis of inter-process communication traces. Trace analysis tools support panoply of features, among

which the most important one is the ability to extract patterns of inter-process communication from large

traces. This way, a software engineer can validate whether or not the system behaves according to

predefined communication patterns. Trace patterns can also be seen as a way to build abstractions from

large traces, allowing software engineers to examine only patterns of interest, instead of going through the

entire trace content (which is practically impossible).

Pattern recognition techniques, however, remain limited as to how much abstraction they provide. This is

because of the large size of typical traces (millions of events). There are just too many patterns to analyze.

Besides, patterns are often extracted without context. Consider, for instance, an execution trace that is

generated from running a machine learning algorithm with large datasets on multiple processors. This trace

is expected to contain typical machine learning steps including data preprocessing, training models,

validation, testing, etc. A software engineer who wants to understand how a model is trained does not need

to see the other parts of the trace. Extracting patterns for the entire trace will still not reveal where the

model is trained. In this scenario, it would be useful to know where each of the phases is manifested in the

trace. A software engineer can then explore each phase separately. One way to achieve this is to instrument

the system in such a way that the program’s phases are clearly annotated. The drawback with this approach

is that it assumes some knowledge of the system under study.

In this paper, we present a trace abstraction approach that segments a trace of HPC events into smaller and

meaningful clusters that represent the execution phases that compose the traced scenario. We define an

execution phase as part of a trace where a particular program computation is invoked. That is, an execution

phase groups cohesive program elements.

3

The trace segmentation approach we propose in this paper can be used primarily by software analysts who

want to understand the content of a trace with the objective of completing a given maintenance task (such

as enhancing an existing feature or detecting the causes of a fault). Our approach can also be used to verify

if the behavior of the system complies with the intended behavior during design. We also anticipate that our

approach can be useful for analysts who do not maintain the system, but still need to report on the way it

behaves. These analysts can benefit from our approach by, for example, reporting on the various phases

that are involved in the trace, the number of communication patterns each phase contains, etc. Moreover,

we can always infer some statistical data from our approach such as the number of processes involved in a

certain pattern, the number of messages exchanged, and so on.

Trace segmentation is a relatively new topic. To our knowledge, there are only a few studies that focus on

segmenting inter-process communication traces into execution phases (e.g., [Casas 07][González

13][Chetsa 13]). These studies use performance data to distinguish among the various phases of a

program’s execution. In our view, these techniques are designed for performance analysis and not for

program comprehension. Our approach is designed to allow an analyst to understand how a particular

scenario is implemented.

Our trace segmentation approach is inspired by the work of Li et al. [Li 02] in bioinformatics, more

particularly the area of DNA processing. The authors introduced a new technique for segmenting DNA

sequences into homogeneous sub-domains; each has a certain degree of internal homogeneity (or

similarity). DNA segments can be used in a number of applications such as detecting the presence of

known genes for medical purposes, identifying new genes and associations with diseases, comparing gene

structures of various species, etc. By analogy, we can view a trace of inter-process communication as a

large sequence of events, just like a DNA sequence. By segmenting a trace, we mean identifying clusters of

events that contribute to the implementation of the same execution phases (sub-domains). This way,

browsing a trace would no longer necessitate the examination of low-level trace events, but instead, we can

view the trace as a flow of execution phases. Our trace segmentation approach involves two main steps.

First, we detect inter-process communication patterns using pattern detection techniques. The second step

consists of dividing the sequence of extracted communication patterns into dense homogenous clusters that

indicate the presence of execution phases. This is achieved using information theory concepts such as

Shannon entropy [Roberts 05] and the Jensen-Shannon Divergence measure [Grosse 02].

We also focus in this paper on Single Program Multiple Data (SPMD) HPC applications. However, our

approach should be readily extendible to other inter-process communication models.

4

The rest of the paper is organized as follows. In Section 2, we present background information on traces

from HPC systems, followed by related work. In Section 3, we present our approach and describe the

algorithms and techniques used in the detection process. In Section 5, we show the effectiveness of our

approach by applying it to traces of hundreds of millions of events, generated from two subject systems.

We discuss threats to validity in Section 6 and conclude our work in Section 7.

2. Background and Related Work

2.1. A Brief Overview of HPC

High Performance Computing (HPC) relies on parallel computing in order to solve complex computation-

intensive scientific problems. Parallel computing decomposes the problem into several sub-problems that

run on various computational units to complete in an acceptable time period. Typically, the computational

units need to collaborate in order to accomplish a specific task. Parallel computing utilizes two main

programming paradigms, which are the shared memory and distributed memory paradigms. In shared

memory, processes collaborate by sharing the same memory space. On the other hand, a distributed

memory application consists of many processes running on different distributed processors that interact

using the message passing model. These parallel programs may consist of thousands of processes that are

coordinating to solve a specific large scale problem. In this paper, we focus on distributed memory

applications with a specific interest in programs that use the MPI
1
 (Message Passing Interface), a standard

for writing parallel applications using message passing, for inter-process communication.

MPI provides point-to-point, collective, and one-sided types of communications. Point-to-point operations

support both blocking and non-blocking modes. Point-to-point communication occurs between a pair of

MPI processes in the program. The sending process posts a send operation that contains the destination,

the data, the data type signature, the tag, and the communicator (a predefined group of MPI processes). The

receiving process, on its side, should post a receive operation that matches the incoming message based on

its data type signature, the tag value, and the source process (sending process). The receiving process uses

the tag value to identify the incoming message. However, a process may post a receive operation that can

accept a message originating from any process in the communicator with a wildcard tag value.

MPI collective communication includes a set of operations for exchanging information among the group of

processes in a communicator. MPI assumes that the processes in the communicator must perform the same

collective operations in the same order. MPI enforces the synchronization among the communicating

processes using the barrier operation. MPI collective operations are implemented using point-to-point

1http://www.mpi-forum.org

5

operations. However, the collective communication must be in blocking mode only in order to guarantee

the synchronization among the communicating processes. Therefore, all processes must post collective

operations that exactly match the size and the data type signature of the exchanged data. The new version

of MPI (i.e., MPI 3.0
1
) provides non-blocking collective operations. In this study, we work with MPI 2.0.

However, we are planning to target MPI 3.0 as part of future work.

An MPI trace consists of events collected from all the running processes in the program. A trace from each

process contains user-defined routine call events and MPI operation call events. Inter-process

communication traces are those events that correspond to the MPI point-to-point and collective

communication operation calls.

2.2. Techniques for detecting communication patterns in traces of HPC systems

The detection of communication patterns in traces of HPC systems has been the focus of many trace

analysis research studies in the context of HPC systems. This is because HPC systems tend to follow

specific communication patterns throughout their execution. These communication patterns provide a view

of the way processes interact with each other. In addition, trace patterns can be used to recover

communication topologies.

Preissl et al. [Preissl 08, Preissl 10] presented an approach for detecting communication patterns in MPI

traces using compressed suffix trees. Their approach combines both dynamic and static analysis techniques

in the detection process. They used MPI seed events to look for areas in the code where communication

patterns could occur. The authors demonstrated the usefulness of their approach by showing how the

detected communication patterns could be used in improving the overall program performance. Using static

analysis is very challenging in the context of parallel systems. Static analysis requires building and storing

a static model of the system, which adds complexity to the analysis process. Our communication patterns

detection approach depends solely on dynamic analysis and does not require prior knowledge of the source

code.

Isaacs et al. [Isaacs 15] presented a new approach to extract the trace’s logical structure by ordering the

MPI events based on their happened-before relationships. In their approach, the authors cluster processes

and the communication patterns using visualization techniques. Their approach can then be used to identify

delayed operations with respect to their peer ones on the other processes. The authors applied their

approach on a trace generated from running 64 processes. This approach relies on the visualization of

1http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

6

groups of events to form a global communication pattern, which may work for small number of processes

but may be difficult to scale to large configurations.

Knüpfer et al. [Knüpfer 06] presented an approach to remove contiguous patterns from traces of HPC

systems based on the compressed complete call graph (cCCG). The cCCG references all call sequences that

are equivalent with respect to a call structure and temporal behavior to achieve an improved trace

compression scheme. This algorithm does not target the detection of communication patterns. It only

detects tandem repeats of events on each process trace separately. Our approach goes two steps further by

first detecting communication patterns and then creating smaller segments that reflect the various phases of

the execution.

Trahay et al. [Trahay 15] proposed a trace summarization technique to identify points of interest that

should be examined first in the trace. The technique uses a variation of the LZW compression technique to

detect sequences of repeating events in the trace. The technique generates a new view of the trace as loops

and groups of events as opposed to the traditional sequential representation of traces. The approach relies

on filtering techniques to eliminate duplicate sequences so as to simplify the localization of points of

interests. Our approach differs from this approach as it detects the communication patterns in the entire

trace and not only within a given process trace. Furthermore, we identify the computational phases based

on the homogeneity of the sub-segments of the list of communication patterns.

Kunz and Seuren [Kunz 97] proposed a communication pattern matching approach that is based on finite

state automata. The algorithm determines the longest process pattern in the input communication pattern

and finds its occurrences in the trace. The algorithm then starts the construction of the communication

pattern by matching the events of the longest pattern with the partner events on the other process traces.

This approach is only concerned with finding patterns that match a predefined input pattern, whereas our

approach aims to detect all communication patterns in a trace.

Köckerbauer et al. [Köckerbauer 10] used a pattern matching technique to facilitate the debugging of large

message passing parallel programs by searching the trace file for predefined communication patterns. The

engineer provides the communication pattern description using a custom syntax which is then translated to

abstract syntax trees. The generated ASTs are then scaled up to the number of processes in the trace (or a

target subset of the processes). Similar to our approach, they run the pattern matching algorithm on each

process trace separately. The resulting matching patterns on each process trace are then merged to get the

matching communication pattern. In their approach, Köckerbauer et al. look for exact and similar patterns

using a hash-based search algorithm. Therefore, the matching communication pattern may be a variation of

7

the user’s specification. Our segmentation process uses a pattern detection algorithm that does not require

prior knowledge of the communication patterns used in the program.

Wolf et al. proposed a pattern matching technique for detecting patterns of inefficient behavior based on

wait states as part of a HPC performance analysis tool known as KOJAK [Wolf 03][Wolf 07]. They search

the trace for known patterns in order to identify inefficient behavior. The tool then classifies the patterns

based on the time spent in communication. This work is different from the one presented in this paper since

it only looks for patterns of inefficient behavior resulting from processes in long wait states and it does not

aim at segmenting the trace into execution phases. Also, the authors assume that knowledge of the

communication topology is available in order to display the patterns, which is not always the case. In our

study, we detect the communication behavior found in the trace as communication patterns.

2.3. Techniques for segmenting traces into execution phases

The objective of trace segmentation techniques is to divide a trace into coherent segments (that are referred

to as execution phases). There exist some studies that target the identification of computational phases in

MPI programs. González et al. [González 09] presented a density-based clustering approach to detect the

computational phases in SPMD message passing applications. They applied the DBSCAN algorithm to

group different CPU bursts, gathered from performance hardware counters provided by modern processors,

to identify the different computational phases in the program execution. A CPU burst is observed as a

computation region between two consecutive communications. A burst is characterized by the duration and

the set of performance counters. However, performance data should be used with thresholds that require a

high degree of fine-tuning to obtain accurate computational phases. The authors extended their DBSCAN-

based approach by applying Aggregative Cluster Refinement to automate the detection process and

overcome the shortcomings of the DBSCAN algorithm [González 12] and [González 13]. The new

approach combines clustering with multiple Sequence alignment to refine the quality of the extracted

computational structure. Our approach works on execution traces that contain user-defined as well as MPI

events and relies on the communication patterns detected in the trace. Our phase identification approach

segments the trace based on the homogeneity of the communication patterns in each region.

Aguilar et al. [Aguilar 15] presented an on-line approach to detect the loop nesting structure of MPI

applications at runtime using event flow graphs without explicit source code instrumentation. These

detected loops are only the ones that contain MPI communication events. The flow graphs provide a

compressed representation of MPI traces supported by the iterative structure of MPI parallel applications

[Aguilar 14]. They utilize their approach to gather statistical information of the program execution by only

collecting a small number of iterations in order to reduce the overhead of the gathered data on the running

8

program. They detect the loop once the program is stable and goes in a long iterative loop (i.e. the Solve

phase). Detecting when the program goes in a stable state requires user involvement. An advantage of their

approach is that it does not require the whole trace to be collected and that the application structure can still

be used to compute the post-mortem statistics. Our approach differs from this work as it needs the whole

trace to detect communication patterns and then utilizes the list of patterns to identify the different phases

in the program execution.

Casas et al. [Casas 07] proposed an automatic phase detection approach based on signal processing

techniques to identify the main phases (initialization, computation, and output) in the traces of MPI

applications. The algorithm depends on the iterative behavior of MPI programs in order to identify the

different phases in the program. They categorize the phases based on the frequency of their iterative

behavior where in the computational phase most of the parallel iterations exist. The authors extended their

work to detect the sub-phases in the computational phase [Casas 10]. They used several metrics based on

inter-process communications (signals) and CPU computing bursts to mark a computational phase change.

Our approach goes one step further as the user is provided with the distinct communication patterns that are

forming each phase in the trace.

A similar approach to the one found in [Casas 10] is proposed by Chetsa et al. [Chetsa 13] where the

authors presented a phase detection approach based on execution vectors where a vector includes a set of

values such as hardware performance counters, network communications, disk I/O values. Their approach

detects a new phase when the Manhattan distance between successive vectors exceeds a predefined

threshold.

Cornelissen et al. [Cornelissen 09] proposed to visualize the call relations between the functions from

different classes and packages into a matrix that potentially shows the emergence of dense groups that can

be qualified as trace segments. The authors, however, did not provide an automatic segmentation of the trace

data. It is up to the user to interpret the visual rendering of method calls. Reiss et al. [Reiss 05] proposed a

tool called Jive to visualize the behavior of a Java program using statistical information about the system’s

behavior in predefined time intervals. The phases are visualized in a user interface. The problem of this

approach is that it uses profiling information (not sequences of calls). At the end, the user is only provided

with some statistics about each phase.

The techniques that use traces (usually routine call traces) generated from single-process applications

include the work of Pirzadeh el al. [Pirzadeh 11a] and [Pirzadeh 11b]. The authors proposed a novel phase

detection approach, inspired by the way the human perception system groups lines and dots into shapes and

objects. Their approach includes several methods that could automatically group routine-call events into

9

dense elements that formed computational phases. Their work, however, targets traces of routine calls. In

the future, we intend to study how their approach can be applied in the context of inter-process

communication traces.

2.4. Discussion

Although pattern recognition techniques have been shown to be useful, they can only exhibit how processes

interact with others without any context. It is up to the analyst to figure out which parts of the trace

implement a specific computation of the traced scenario, the problem addressed in this paper.

Techniques for segmenting inter-process communication traces rely on performance data such as CPU

bursts and statistics on a program’s execution. In this paper, we focus on traces of call to user-defined

functions and MPI operations. These traces can be used to understand how a particular scenario is

implemented. We propose to reduce the size of traces by dividing them into smaller and more manageable

segments; each contains a set of cohesive trace elements. This way, a software engineer can analyze each

segment individually or combine them if need be. A trace analysis tool can implement the trace

segmentation process, presented in this paper, to provide the ability for software engineers to explore

segments of traces without having to worry about the other parts of the trace. By exploration, we include

the common tasks that a software engineer would normally do if presented by the entire trace, such as

extracting patterns, searching, viewing properties, etc.

The novelty of this work lies in the fact that, to our knowledge, this is the first time that a technique for

segmenting traces of inter-process communication based on communication patterns is proposed. The use

of DNA processing methods to design an effective trace segmentation approach is also novel. We tested

our approach on two HPC systems. This research is significant because it shows evidence that we can build

powerful trace segmentation approaches for traces of inter-process communication.

3. The Trace Segmentation Approach

Figure 1 shows our trace segmentation approach. The first step is to generate the trace of the specified

scenario from the target test system. The trace consists of multiple process traces (T1 … Tn) where each

process trace contains both MPI as well as user-defined function events. The next step is to detect

communication patterns from the process traces. For this, we improve an algorithm that we presented in

[Alawneh 11] (the new algorithm is discussed in more detail in the next subsections). The extracted

sequence of communication patterns is then input to the phase identification component. In the phase

detection step, we look for changes in communication patterns in the trace and group those that show a

certain degree of homogeneity. The result is a binary tree, which we refer to as a segmentation tree, where

10

the root node is the whole input sequence (coarse-grained) and the leaf nodes are the lowest level segments

(fine-grained). The final step consists of identifying the beginning and ending of each phase using the

segmentation tree. A phase may contain multiple segments. These steps are presented in more detail in the

next subsections.

Communication Pattern Detection

MPI

Trace

.

.

.

Tn-2

T0

Process Repeating Patterns

Recognition

{P0}

Communication Patterns

Construction

...

Phase

Identification

{PH}

Tn-1

{Pn-2} {Pn-1}

{CP}

Phase Analysis

Figure 1. Approach for segmenting traces of inter-process communication

3.1. Trace Generation

The process of generating execution traces is usually done through instrumentation of the code. This

consists of inserting probes in the code in places of interest, recompile the code, and run the system.

Instrumentation is performed automatically using tools such as VampirTrace
1
, TAU

2
 and Score-P

3
.

Instrumentation can also be at the OS and binary levels using tools such as PIN
4
 and LTTng

5
.

To collect traces, an analyst needs to exercise the instrumented system by executing the scenario of interest.

In this paper, we instrument the entire system. This is because we do not assume that analysts know which

parts of the system to analyze. We use the Score-P tool to collect traces in OTF2
6
 format. The tool

generates the entire trace as a set of files where each file contains a trace for each process. A process trace

contains a sequence of events. There are two types of events. The first one consists of calls to user-defined

functions and MPI operations (we need to have entry and leave probes for each call). The second type

consists of communication events. All events have timestamps associated with them. Figure 2 shows an

excerpt of a trace from four processes generated in OTF2 format. In this figure, HYPRE_StructGridCreate

is a user-defined function. MPI_Allgather is an MPI operation, which is a collective operation.

1 http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/projekte/vampirtrace
2 http://www.cs.uoregon.edu/Research/tau
3 http://www.vi-hps.org/projects/score-p/
4 https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
5 http://www.lttng.org
6 https://silc.zih.tu-dresden.de/otf2-current/html/

11

MPI_ISEND and MPI_IRECV are point-to-point operations. The “Location” column shows the process id.

The “Attributes” column shows different values that are used by the operation such as a tag in case of

point-to-point operations. The number within the angle brackets represents the code (id) of the function.

Figure 2. An example of a process trace in OTF2 format

Scientific problems have several input parameters that determine their size and complexity. HPC systems

that solve these kinds of problems should be configured by providing the number of processes and the

appropriate process topology. The number of processes is constrained by the problem complexity and the

hardware capabilities.

3.2. Communication Pattern Detection

As mentioned earlier, our trace segmentation technique takes as input a trace of sequences of

communication patterns instead of raw events. To detect patterns, we improve an earlier pattern detection

algorithm significantly that we presented in [Alawneh 11]. The algorithm uses a two-step process. First, we

detect patterns in each process trace separately. Then we use the patterns from each process trace to

construct the final communication patterns. We illustrate these steps in the following sections.

We explain the pattern detection technique through a running example using the sample trace depicted in

Figure 3. The trace consists of four processes, where each process trace is represented as a routine-call tree.

The processes collaborate in functions F1 to F3 to accomplish a certain task. This example uses MPI_Send

and MPI_Recv operations represented using the S and R symbols respectively. Every send operation

should have a matching receive operation on the partner process. For example, P3 sends a message to P4

represented as S4 (send to P4) in F1 and P4 posts a receive operation as R3 (receive from P3) in F1.

Similarly, P2 sends a message to P1 in F2 and P2 receives this message by posting R2 in F2.

12

Figure 3. Traces of four Inter-communicating Parallel Processes

Step 1: Detection of per-process patterns

In this step, we iterate on each process trace separately in order to detect the patterns of MPI

communication events. A pattern is a maximal repeat that may not be extended to the left and to the right in

the sequence that it occurs in. More formally, given a string S of length l, a maximal repeat in S is a tuple

(p1, p2, l) such that:

S[p1 .. p1 + l – 1] = S[p2 .. p2 + l – 1] and p2 > p1 and

S[p1 + l] ≠ S[p2+ l] and S[p1 - 1] ≠ S[p2 - 1]

Using the concept of n-gram extraction, the algorithm starts by building the list of repeating bi-grams in a

process trace along with their positions in the trace. The repeating bi-grams will eventually grow in size,

using the algorithm, to be the final detected n-grams. The events of an n-gram (i.e. pattern) may only

appear within the same user-defined function call. That is, we do not consider patterns that are formed

across functions. In other words, we use functions as a context. This derives from our empirical observation

that meaningful patterns are the ones that are defined within specific functions [Alawneh 14]. We found

that this limitation was primarily due to the fact that we viewed a trace as a mere stream of MPI

communication events without considering where these events appear in the program. We observed that

patterns rarely appear outside the boundaries of user-defined functions.

13

Figure 4. (a) An example of a process trace with contextual information; (b) Delimiters added

during the preprocessing of the trace to specify contextual information

Figure 4(a) shows the trace of P1 from Figure 3 with contextual information. This context will be used

when looking for trace patterns by treating each MPI call. To make the pattern detection algorithm take the

context into account, we simply add delimiters to the trace whenever a context switch occurs (i.e., another

function is called). Figure 4(b) shows a preprocessed trace where D1 and D2 (two delimiters are added).

The pattern detection algorithm (as we will show later in the paper) does not cross these delimiters when

looking for trace patterns.

Figure 5(a) shows a fictive process trace with multiple nesting levels. The corresponding preprocessed

trace is shown in Figure 5(b). As we can see, this trace has three contexts due to the call of user-defined

function F2 by F1. Delimiters D1 and D2 are added to show the contexts.

14

Figure 5. A trace with multiple nesting levels (a) and its corresponding preprocessed trace with

delimiters added to show the contexts

We recognize that determining a pattern’s context is not that straightforward. However, in most benchmark

systems that we have analyzed we observed that by simply considering each function as a unique context,

we could enhance the pattern detection process.

Algorithm 1 shows the steps for detecting patterns in a process trace. The algorithm takes each

preprocessed process trace as input and returns a set of maximal repeats found in each trace. The first step

is the extraction of the repeating bi-grams from each process trace. These bi-grams are used as the start

point of patterns for the detection of maximal repeats. Algorithm 1 has two main loops, the outer loop

determines the number of passes required to complete the detection process. The new variable indicates that

a new pattern is detected. Therefore, the stopping criterion for Algorithm 1 is when there are no new

patterns added to the list of detected patterns in the last pass. The inner loop reads one event at a time and

appends it to the current repeat at Line 11. Once a bi-gram is constructed, the algorithm checks if it is in

the bi-gram table. If the bi-gram is in the table, then the algorithm reads the next event and appends it to the

current repeat, otherwise the next bi-gram is read from the trace. A new repeat is added to the pattern list

(Line 24). In Line 27, we also add the starting position of repeat to the set of starting positions of its

corresponding pattern, depicted by the collection {positions}. If the previous pattern is not a repeating

pattern, then the algorithm clears the current pattern and starts reading from the last position of previous

(Lines 20 and 21). The number of passes (the outer loop) is directly related to the length of repeats and

their frequencies. The more frequent a pattern is, the faster it will be detected.

Maximal Repeats Detection: trace size = n

{patterns}: list of patterns (initially repeating bi-grams)

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

new ← true

while (new)

 new ← false, length ← 0, position ← 0, repeat ← Ø

 for I ← 0 TO n - 1

 event = trace [I]

 if event is delimiter then

 length ← 0, repeat ← Ø  GOTO line 4

 if repeat is Ø then

 position ← I

 repeat ← event

 else previous ← repeat, repeat || event

 length ← length + 1

 if length ≤ 2 then GOTO line 4

 pattern ← patterns [repeat]

 if pattern is null ⋀ length is 2 then

 I ← I – 1

 length ← 0, repeat ← Ø  GOTO line 4

 end if

 if length is 2 then GOTO line 4

 if frequencyprevious is 1 then

 I ← I – 2, length ← 0, repeat ← Ø  GOTO line 4

 if pattern is null then

 new ← true

 {patterns} ← pattern

 length ← 0, repeat ← Ø, I ← I – 1

 end if

 {positions}pattern ← position

 I: end of for loop

N: end of for loop

Algorithm 1. Pattern detection algorithm

To illustrate the execution of Algorithm 1, we use the preprocessed trace sample of Figure 4(b). We also

add the position of each event to ease the description of the algorithm. S2 appears at position 0, S3 at

position 1, etc. The new sequence with the positions is shown in Figure 6.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

S2 S3 R2 R3 D1 R3 R2 S2 S3 D2 S2 S3 R2 R3

Figure 6. A simplified representation of preprocessed trace of Figure 4(b).

The maximal repeats detection algorithm starts by extracting the list of repeating bi-grams with their

positions and frequency as shown below.

n-gram Position Frequency

S2.S3 0, 7, 10 3

S3.R2 1, 11 2

R2.R3 2, 12 2

16

The algorithm continues by reading the bi-grams from the input trace. If the bi-gram already exists, it will

append the next event to the bi-gram. Similarly, if a 3-gram exists in the patterns list, the algorithm will

append the next event, forming a 4-gram. The algorithm takes two passes to detect the longest pattern

S2.S3.R2.R3 (4-gram). However, the third pass is needed since the new is assigned a true value in the

second pass when the S3.S4.S2.S1 pattern was detected. The table below shows the pattern list after

completing the three passes in Algorithm 1.

n-gram Position Frequency Inner Repeat

S2.S3 0, 7, 10 3 Yes (positions 0 & 10)

S3.R2 1, 11 2 Yes

R2.R3 2, 12 2 Yes

S2.S3.R2 0, 10 2 Yes

S2.S3.R2.R3 0, 10 2 No

The next step is to remove inner patterns. We achieve this by iterating through the list of patterns, resulting

from the maximal repeats detection process, and removing the instances of patterns that are part of larger

patterns. For example, instances of pattern S2.S3 at positions 0 and 10 are part of pattern S2.S3.R2.R3.

Similarly, S3.R2 at positions 1 and 11 are parts of S2.S3.R2.R3. We remove these instances from the list of

patterns. The result of removing inner patterns is shown below:

n-gram Position Frequency

S2.S3 7 1

S2.S3.R2.R3 0, 10 2

The final step is to look for single events that were not part of any repeating patterns. These may include

point-to-point and collective communications. These events may be part of a communication pattern but

could not be detected in Algorithm 1 since they appear separately due to the delimiters that were added in

the preprocessing step. These events will be linked to the patterns that are created and will be part of the

communication pattern construction algorithm (the next step of the algorithm). The sequence extracted

from Figure 4 shows that events R3 and R2 at positions 5 and 6 can be added as new patterns that are

occurring only once to the list of detected patterns. The final list of patterns is as follows:

n-gram Position Frequency

S2.S3 7 1

S2.S3.R2.R3 0,10 2

R3 5 1

R2 6 1

17

In case of single collective communication events, they will also be added as repeats and will be used in the

next step to form collective communication patterns.

Step 2: Formation of final communication patterns

To construct the final communication patterns, we simply iterate through the per-process patterns, detected

in the previous step, and match the MPI communication events with the ones of the partner processes. For a

pattern p1, its corresponding partners are those that have matching events with p1. For example, the

matching events of pattern S2.S3.R2.R3 found in Process P1 are R1 in Process P2 (matches S2 in P1), R1

in P3 (matches S3 in P1), S1 in P2 (matches R2 in P1), and finally S1 in P3 which matches R3 in P1.

Therefore, the matching patterns for p1 are S1.R1 on P2, and R1.S4.S1 on P3. We use timestamp

information, tag, data type signature, and the communicator in order to identify the matching events. The

formation process continues until all MPI communication events are matched. It should be noted that event

R3 on Process P4 will be included in the final communication pattern since it matches event S4 (S4 is part

of pattern R1.S4.S1) on process P3. The final communication pattern of the fictive trace in Figure 4 is

shown in Figure 7.

Figure 7. Detected communication pattern

3.3. Detection of trace segments

The proposed trace segmentation approach is based on studies for the analysis of DNA sequences in the

field of bioinformatics. Our study for detecting the different computational phases in MPI programs is

derived from the algorithm presented by Li et al. [Li 02] to identify the homogeneous sub-domains in a

DNA sequence recursively. The segmentation algorithm, a divide-and-conquer algorithm where a problem

is subdivided into smaller problems recursively, is proposed by Cormen et al. in [Cormen 90]. It relies on

information theory concepts where Shannon entropy [Shannon 48] [Gray 11] and the Jensen-Shannon

divergence measures [Grosse 02] are used to guide the segmentation process.

R1 S4 S1

S1 R1

P1

P2

P3

P4

S2 S3 R2 R3

R3

18

We applied the aforementioned recursive approach to the segmentation of a message passing trace by using

the sequence of communication patterns detected in the previous section; where the MPI trace is first

abstracted as a sequence of communication patterns (each pattern is represented by a symbol). The

segmentation process first measures the degree of heterogeneity of the whole sequence, which results in

two segments. For this, Shannon entropy is used [Gray 11] to measure the level of randomness of

information in a sequence. A sequence with low entropy (homogeneous) is achieved when all the symbols

appear with similar probabilities. On the contrary, sequences with high randomness will have high entropy

which means that the data is heterogeneous and could be divided into more homogenous segments. The

Shannon entropy H of a sequence S of length N with k different symbols is measured using equation 1

[Gray 11].




k

j

jj

N

N

N

N
H

1

log (1)

where Nj is the frequency of symbol j in S.

The first step in segmenting a sequence is to measure its Shannon entropy. Then, we need to locate the

position in the sequence where the highest level of heterogeneity occurs. This process is performed based

on the following steps in order to select the two new subsequences:

1. For every position i in S, we calculate the entropy of the left subsequence Sl and the right subsequence

Sr from position i:

 log
1




k

j

l
j

l
j

l
i

N

i

N
H (2)







k

j

r
j

r
j

r
iN

N

iN

N
H

1

log (3)

where Nj
l
 is the frequency of symbol j in Sl and Nj

r
 is the frequency of symbol j in Sr. Note that the

symbol at position i is in Sl, and that Sl and Sr may not be empty.

2. The similarity between Sl and Sr is measured using the Jensen-Shannon Divergence (DJS) [Gray 11]. A

higher DJS value means more heterogeneity between the two subsequences:

rlJS H
N

iN
H

N

i
HD


 (4)

From the (N – 2) subsequence pairs, the pair with the highest DJS value contains the new detected phases.

The two subsequences may also be segmented further into more subsequences. This segmentation process

is applied recursively to the new subsequences until a certain stopping criterion is met.

19

Li et al. [Li 02] used the model selection framework in order to decide when to stop the segmentation

algorithm. There are two models, M1 and M2, that we use to determine the split position in a sequence S. M1

is characterized by the entire sequence S while M2 is characterized by the two sub-segments Sl and Sr. To

further segment S, we need to find a model M2 at the border between the underfitting and the overfitting

models. The Bayesian Information Criterion (BIC) [Akaike 78] is used to select the model that fits the data

well with the number of parameters [Li 02] as follows:

KNLBIC)log()log(2  (5)

where L is the maximum likelihood of the model, N is the sequence length, and K represents the number of

free parameters in the two models. K is computed as (kl + kr + 1 – k) where kl, kr, and k refer to the number

of distinct parameters in Sl, Sr and S respectively. In order to show the ability of the BIC measure to

determine the stopping criterion, we need to measure the likelihood for S using:





k

1j

j
N

jp)S(1L (6)

where pj is the probability of symbol j to appear in S and is calculated as Nj/N. Consequently, the log-

likelihood of M1 is measured using:




k

1j

j
j

N

N
logN)S(1Llog (7)

From equation 7, it is clear that the log-likelihood for S is equal to (- NH) where H is the entropy value for

S (refer to equation 1). Additionally, the likelihood for M2, represented by Sl and Sr, is measured by:

)p()p(
r

k

1j

r
j

Nr
j

l
k

1j

l
j

Nl
jlrl)N,S,S(2L 



 (8)

where p
l
j is equal to N

l
j/N and p

r
j is equal to N

r
j/N. Hence, the log-likelihood is calculated as:




r
k

1j

r
jr

j

l
k

1j

l
jl

jlrl
N

log
N

log)N,S,S(2Llog
N

N
N

N (9)

Clearly, log L2 is equal to -Nl Hl – NrHr. Thus, the relative increase of the log-likelihood of the two models

log(L2/L1) is equal to NH – (NlHl + NrHr) which, according to equation 4, is equal to NDJS. Thus, the

maximum likelihood is measured at the point with the highest NDJS value. This means that the BIC value

should be close to zero (i.e. ΔBIC < 0) for segmentation to continue. By substituting JSDN ˆ (JSD̂ is the

maximum DJS value) for L in equation 5, we get:

KNDN JS)log(ˆ2  (10)

20

Thus, the sequence could be further segmented if JSD̂
is greater than log(N)K/2N. Li et al. [Li 02] defined a

new segmentation strength value s which is determined by the relative increase of 2NDJS from the BIC

threshold as:

KN

KNDN
s JS

)log(

)log(ˆ2 
 (11)

A positive segmentation strength value will have the same segmentation effect as when the DJS value is

greater than log(N)K/2N. Therefore, both measures could be used as the stopping criterion for the recursive

segmentation algorithm. In our study, we will use the positive segmentation strength value as the indicator

whether to stop or continue the segmentation process. The user can also adjust the value of s to be greater

than zero which will result in a smaller number of subsequences. On the other hand, specifying a zero

threshold value will increase the depth of the segmentation tree which means a larger number of

subsequences.

The segmentation algorithm results in a hierarchy of segments, which can be viewed as a binary tree (that

we call segmentation tree) where the original sequence forms the root node and the leaves are the detected

segments. Each parent node (i.e. segment) in the tree is split into two segments at the point with the

maximum DJS value in the parent node. The accuracy of the presented technique is at the cost of its

relatively slower computational time since it requires many passes through the data to measure the DJS

value for each pair of subsequences in each hierarchy in the tree.

Figure 8 shows a typical segmentation tree (the table shows the values of the various parameters of the

recursive algorithm). In this example, S0 contains the sequence of communication patterns of the entire

trace. In the example of Figure 8 no further segmentation is possible.

S ps pe S DJS pc P
S0 1 16 2.62 0.91 8 -

S1 1 8 2.94 0.74 2 S0

S2 9 16 4.08 0.95 12 S0

S3 1 2 2 0.75 1 S1

S4 3 8 -0.66 0.14 4 S1

S5 1 1 0 0 1 S3

S6 2 2 0 0 2 S3

S7 9 12 2.22 0.81 10 S2

S8 13 16 1.75 0.69 15 S2

S9 9 10 -1 0 10 S7

S10 11 12 -1 0 12 S7

S11 13 15 -1 0 15 S8

S12 16 16 0 0 16 S8

S0

S2

S3 S4 S7

S1

S5 S6

S8

S9 S10 S11 S12

 S5.S6.S4.S9.S10.S11.S12

Figure 8. An example of a segmentation tree resulting from applying the algorithm

21

3.4. Phase Identification and Analysis

Once the tree is constructed, we need to identify the boundaries of each phase. This is because a phase may

contain multiple segments. To achieve this, we added a threshold t to indicate where to cut the tree. This

threshold would provide flexibility to the analyst to vary the level of granularity of the final phases. The

threshold t is set manually by the analyst and it varies from 0 to the height of the segmentation tree (the

depth of the root node). A tool that supports our approach should offer the flexibility to modify the

threshold t.

On one hand, setting t to 0 would result in one large segment (S0 in the case of Figure 8) that contains all

the communication patterns. This would be rarely desirable. On the other hand, setting t to the height of

the tree would result in fine-grained segments (S5, S6, S4, S9, S10, S11, S12) and phases. The analyst can vary

t to decide on the level of granularity.

Once the set of segments is identified, we need to map them to the original execution trace (that contains

also the user-defined functions) in order to identify the user-defined functions that invoke the MPI events

that form the patterns in the segments. Note that since we are only focusing on SPMD programs, all the

processes execute the same functions and follow the same flow. This means that we only need to visit one

process trace to be able to identify the user-functions that encompass the segments.

We start by checking the function-call tree to identify all the functions in which the patterns of the first

segments are invoked. For example, assume the list of final segments from Figure 8 is: S5, S6, S4, S9, S10,

S11, S12. This means that t is set to the height of the tree. We first identify the functions that invoke all the

MPI events that form the patterns in S5. This would result in a call subtree. Assume this subtree is rooted at

node n. The next step is to check the patterns in S6 (the next segment right after S5). If S6 is also rooted at

n1 or any child node of n then we put S5 and S6 as part of the same execution phase. If this is not the case

then S6 suggests the start of a new phase. This is because a new phase should reflect the fact that some new

functions are emerging while the previous ones (belonging to the previous phase) are disappearing in the

trace, meaning that new computations are taking place.

Once the phases are identified, we check their validity by referring to the source code or any available

documentation. One way to adjust the result is to run the phase detection again by varying the threshold t.

In practice, the tool that supports our approach should be flexible enough to allow the analyst to modify t

dynamically. Determining the appropriate value of t in advance is a difficult problem because this

parameter may vary from one system to another.

4. Evaluation

22

In this section, we demonstrate the effectiveness of our approach by applying it to 15 different traces

generated from the SMG2000
1
 industrial HPC system, and two traces from the BT NAS

2
 benchmark. We

used the Score-P tool to generate the traces from the two target systems. Score-P generates the traces in

OTF2 format. Our experiments were performed on a small cluster of 10 nodes (Intel Core i7-3770, 3.4GHz,

RAM 12GB), connected using a standard IEEE 802.11 network. We developed our techniques using Java.

The question that this study aims to answer is: Can a recursive algorithm be used to effectively segment an

inter-process communication trace into execution phases?

4.1. SMG 2000

SMG2000 is an SPMD parallel semi-coarsening multi-grid solver for linear systems arising from finite

difference, finite volume, or finite element discretization of the diffusion equation on logically rectangular

grids. It performs a large number of non-nearest-neighbor point-to-point communication operations

[SMG2000].

The execution of SMG2000 involves three main phases which are Initialization, Setup and Solve [Tiwari

11]. The Initialization phase is responsible for the creation and initialization of the grid objects and has

main routines such as HYPRE_StructSMGCreate, and HYPRE_StructMatrixAssemble. The

HYPRE_StructSMGSetup routine marks the Setup phase and the HYPRE_StructSMGSolve routine marks

the Solve phase. We use this information in the validation of the detected phases.

Table 1 shows the results of running our approach on 12 scenarios from SMG2000 with 1x1x1 input size.

The rows of Table 1 are grouped into three categories where each category represents the execution of the

system with the same process topology-base. The number of processes range from 16 to 1024. The

16x16x4 scenario generates a very large number of events, over 598 million events.

Table 1 also provides timing information. This time does not include the trace preprocessing step (adding

delimiters and keeping only MPI events). The preprocessing time can reach up to one hour for large traces.

We see in Table 1 that the communication behavior is directly related to the process topology. For

example, when the number of processes is 64, the 3D process topology (4x4x4) scenario shows more

complex behavior compared to the same number of processes in the 2D topology (8x8x1). The time it took

to detect the process patterns in 4x4x4 was 2,378 milliseconds and in case of 8x8x1 it was only 611

milliseconds. This is related to the number of communications among the processes in each scenario. The

same behavior can be seen when comparing the number of process patterns for the other cases that have the

1http//www.llnl.gov/asc/purple/benchmarks/limited/smg/
2NAS Parallel Benchmarks, http://www.nas.nasa.gov

23

same number of processes. In situations where the number of processes is larger, but with a fewer number

of grids, the communication behavior is less complex. For example, for the two 512-process scenarios, the

16x16x2 topology has a simpler communication behavior when compared to the 8x8x8 topology.

Table 1. SMG2000 Scenarios (problem size: 1x1x1), ∑ev: total number of events, ∑ mpiev total number of MPI calls,

∑MSG: total number of exchanged messages, ∑cvp: number of collective operations per process, ∑PP: total number

of distinct process patterns on all processes (excludes single event patterns), PPd: total process patterns detection

execution time, ∑CP: number of distinct communication patterns, CPd: communication patterns construction time,

CPLl: Communication Patterns List Length, PHd: phase detection time

np Topology ∑ev ∑mpiev ∑msg ∑cvp ∑PP
PPd

(ms)
∑CP CPLl

CPd

(ms)

PHd

(ms)

16 4 x 4 x 1 641,646 13,479 7,132 12 223 127 49 101 14 19

32 4 x 4 x 2 4,027,420 92,275 55,468 13 668 534 145 712 54 124

48 4 x 4 x 3 11,104,714 264,471 170,584 14 1,455 1,866 252 1,626 169 310

64 4 x 4 x 4 14,603,190 347,823 225,756 14 1,906 2,378 318 1,877 184 397

64 8 x 8 x 1 4,241,270 89,739 49,692 12 1,210 611 191 299 91 38

128 8 x 8 x 2 26,342,588 577,771 345,712 13 3,638 2,551 589 1,959 399 459

256 8 x 8 x 4 103,400,644 2,276,539 1,479,184 15 10,035 22,836 1148 5,433 2,217 2,948

512 8 x 8 x 8 309,733,410 6,507,339 4,305,444 16 24,522 129,455 2899 12,644 49,229 13,802

256 16 x 16 x 1 24,394,422 495,163 265,908 12 5,680 1895 712 937 973 180

512 16 x 16 x 2 151,226,556 3,063,087 1,727,100 13 16,550 14,623 2290 6,321 4,813 4,392

768 16 x 16 x 3 418,407,354 8,542,783 5,169,608 14 34,310 117,904 3388 11,473 23,977 13,645

1024 16 x 16 x 4 598,699,396 11,866,079 7,311,836 15 42,088 193,741 3906 15,373 41,801 19,016

Table 2 provides four different scenarios of the SMG2000 4x4x4 topology with varying input problem size.

It should be noted that the first entry in Table 2 is the same as the fourth entry in Table 1. It is clear that the

problem size has a direct impact on the communication behavior among the processes in the program. It is

apparent that problem size (1x1x1) has simpler communication behavior when compared to the other

scenarios. For example, the execution of problem size (2x2x2) has 3 times more the number of exchanged

point-to-point messages than that of the (1x1x1) case. Furthermore, problem size 3x3x2 has more point-to-

point communications (approximately three times larger) when compared to the 8x8x2 process topology in

Table 1 with problem size of 1x1x1.

Table 2. SMG2000 Scenarios (Topology: 4x4x4, Varying Input Problem Size)

np
Problem

Size
∑ev ∑mpiev ∑msg ∑cvp ∑PP

PPd

(ms)
∑CP CPLl

CPd

(ms)

PHd

(ms)

64 1 x 1 x 1 14,603,190 347,823 225,756 14 1,906 2,378 318 1,877 184 397

64 2 x 2 x 2 45,151,470 1,172,727 767,564 16 3,851 9,678 491 5,736 408 2,377

64 3 x 2 x 2 52,621,296 1,331,775 851,476 16 4,090 11,170 539 6,033 652 2,838

64 3 x 3 x 2 67,778,872 1,722,049 1,100,424 16 5,322 19,969 615 6,694 977 5,494

24

Figure 9 shows a textual representation of a communication pattern that is repeated 16 times in the 4x4x2

scenario. This example shows that the communication pattern is occurring among the processes in the same

grid (black nodes). The pattern shows that only processes P0, P1, P2, P3, P8, P9, P10 and P11 are involved

in communication. Process P0 communicates with processes P1, P2, P8, P9, and P10 while processes P9

and P10 communicate with all the processes involved in the pattern.

P0 : S1.S2.S8.S9.S10.R1.R2.R8.R9.R10
P1 : S0.S2.S3.S8.S9.S10.S11.R0.R2.R3.R8.R9.R10.R11
P2 : S0.S1.S3.S8.S9.S10.S11.R0.R1.R3.R8.R9.R10.R11
P3 : S1.S2.S9.S10.S11.R1.R2.R9.R10.R11
P8 : S0.S1.S2.S9.S10.R0.R1.R2.R9.R10
P9 : S0.S1.S2.S3.S8.S10.S11.R0.R1.R2.R3.R8.R10.R11
P10: S0.S1.S2.S3.S8.S9.S11.R0.R1.R2.R3.R8.R9.R11
P11: S1.S2.S3.S9.S10.R1.R2.R3.R9.R10

Figure 9. Communication patterns in 4x4x2 topology (P0 is Process 0, S1: Send to P1, R1: Recv from P1)

Another interesting pattern that is repeated 20 times in the trace involves all the processes in the two grids

where each process communicates with its first and second neighbors in each direction in the two grids. For

example, process P1 communicates with processes P2, P4, P5, P6, P8, P9, P10, P16, P17, P18, P20, P21,

P22, P24, P25, P26 and process P10 communicates with all the other processes in the two grids. Another

pattern that is repeated 10 times in the trace involves only two processes from the two adjacent grids which

are processes 10 and 26. All the scenarios have the same repeating collective communication pattern

ALLREDUCE.ALLREDUCE. This collective communication occurs three times in the program execution

and marks the end of each phase.

S ps pe L S DJS pc P S0

S2

S3

S1

S5 S6

S4

S7 S8

Init (13%) Setup (48%) Solve (39%)

S0 1 15,373 15,373 23.68 0.83 5,601 -

S1 1 5,601 5,601 1.53 0.75 2,814 S0

S2 5,602 15,373 9,772 -0.77 0.05 6,257 S0

S3 1 2,814 2,814 2.99 0.89 1,081 S1

S4 2,815 5,601 2,787 15.77 0.9 4,054 S1

S5 1 1,081 1,081 215.04 1.01 540 S3

S6 1,082 2,814 1,733 11.49 0.97 1,945 S3

S7 2,815 4,054 1,240 22.06 0.96 3,517 S4

S8 4,055 5,601 1,547 0.09 0.53 5,008 S4

Figure 10. Recursive Segmentation for Communication Patterns Sequence of 16x16x4 Scenario (Ps: start position, Pe:

end position, l: length, DJS: Jensen-Shannon Divergence, pc: cutting position of max divergence, s: Segmentation

Strength, P: parent node, t = 3)

20

16

24

28

21

17

25

29

22

18

26

30

23

19

27

31

4

0

8

12

5

1

9

13

6

2

10

14

7

3

11

15

z=2

X =4

y =4

25

Figure 10 shows the segmentation results when applied to the communication pattern sequence generated

from the 16x16x4 process topology example in Table 1. The communication pattern list size is 15,373. In

this example, we used t= 3 to cut the segmentation tree. By investigating the execution trace, S1 includes

the initialization and setup phases and S2 represents the Solve phase. S2 is homogeneous with a negative

semgentation strength, which cannot be further segmented using our technique. The pattern at position

5,602 is an ALLREDUCE collective operation which is the first pattern in the Solve phase. The trace has

three ALLREDUCE collective patterns. We already explained how a single collective operation could be

detected as a communication pattern. Furthermore, the trace has three occurences of the

ALLREDUCE.ALLREDUCE pattern. Each occurrence marks the end of a main phase (Initialization,

Setup and Solve). The positions of the ALLREDUCE.ALLREDUCE pattern are 1081, 5601, and 15373.

Figure 11 shows the plot of the DJS for the whole pattern sequence for three different scenarios. Figure 11a

shows the DJS for 16x16x4 scenario. The graph shows the three identified phases that were detected in

Figure 10 where the initialization phase was detected at t=3 as shown in the segmentation tree. The pattern

list was first segmented at point 5601 which is exactly at the beginning of the Solve phase. This shows that

our approach scales up to larger process numbers. The same behavior was exactly the same for the other

3D process topologies for problem size 1x1x1. Figure 11b shows that when using a 2D topology the

communication behavior in the program changed which resulted in a different DJS for the communication

pattern list. The Solve phase was detected at t=4 in the segmentation tree. This behavior is consistent for all

the 2D topology scenarios. Another interesting result is clear when increasing the problem size in Figure

11c. The initialization phase contains only four communication patterns which are the ALLGATTHER,

ALLGATHERV, a communication pattern (call it CP1) that involves all the processes in the program and

finally the ALLREDUCE.ALLREDUCE pattern that marks the end of the phase. The Solve phase starts at

position 2345 and was detected from the first segmentation step. It is interesting that CP1 is also occurring

in the Setup phase. In the other topologies, the initialization phase contains short communication patterns

that involve a fewer number of processes which may indicate that these patterns together may compose one

large communication pattern that involves all the processes in the program which will result in only four

patterns in the initialization phase for all the scenarios. However, since our algorithm only looks for

repeating patterns (maximal repeats) on each process this communication behavior could not be detected.

Moreover, the segmentation algorithm was able to identify the phases much faster in the 1x1x1 problem

size scenarios (t=1 for the Solve phase and t=3 for the other two phases). It should be noted that the size of

phases in Figure 11 does not represent the execution time of each phase but corresponds to the number of

communication patterns in each phase.

26

0

0.5

1

D
JS

Initialize
Setup
Solve

1081 5601 15373
(a) DJS for 16x16x4 Topology (1x1x1 Problem Size)

0

0.2

0.4

0.6

0.8

1
D

JS
Initialize

Setup

Solve

105 892 937

(b) DJS for 16x16x1 Topology (1x1x1 Problem Size)

0

0.2

0.4

0.6

0.8

D
JS

Initialize
Setup
Solve

4 2344 6994

(c) DJS for 4x4x4 Topology (3x2x2 Problem Size)

Figure 11. Jensen-Shannon Divergence for S0

We mapped the detected segments to the original trace and located the user-defined routines that were

called at the beginning of each phase. We used the detailed SMG2000 description available at [21] to

validate the correctness of the detected phases. In the following, we conclude the outcome of our analysis

of SMG2000 for the 16x16x4 topology example.

Initialization Phase: Segment S5 in Figure 10 represents the initialization phase. This phase contains a

total of 1081 communication pattern instances. The HYPRE_StructGridAssemble sub-phase which

includes the ALLGATHER and ALLGATHERV collectives was detected at depth 11 in the segmentation

tree. Moreover, the HYPRE_StructMatrixAssemble sub-phase which corresponds to the communications

from 4 to 1081 in the pattern sequence was also detected at depth 11 in the tree.

Setup Phase: This phase starts at position 1082 and ends at position 5601 in the patterns sequence. It spans

the three segments S6.S7.S8 shown in Figure 10 which are included in the call to the

HYPRE_StructSMGSetup routine.

27

Solve Phase: This phase starts at point 5602 and ends at point 15373 in the patterns sequence and only

occurs in S2 segment as shown in Figure 10. The detected phase starts at the Enter event of the

HYPRE_StructSMGSolve routine and ends at its Exit event. S2 is a very homogenous phase due to its

iterative behavior. Therefore, S2 could not be further segmented to discover its sub-phases. This behavior is

consistent in all the 15 presented scenarios. Our approach, which is based on the segmentation of

heterogeneous sequences, fails in identifying fine-grained phases in such cases.

4.2. NAS – Block Tridiagonal

The second system in this evaluation is the Block Tridiagonal (BT) benchmark which is part of the NAS

PB
1
 suite. It uses an implicit algorithm to solve the 3-D compressible Navier-Stokes equations.

Table 3 shows the two scenarios involved in our study. The first one is generated from a class W problem

scenario and the second one is from a class B problem scenario. The number of processes is 16 and 32

respectively.

Table 3. NAS BT Scenarios

np Class ∑ev ∑mpi ∑msg ∑cvp ∑PP
PPd

(ms)
∑CP CPLl

CPd

(ms)

PHd

(ms)

16 W 6,500,800 38,912 25,728 14 32 630 4 211 54 89

32 B 1,033,480 48,560 32,160 14 64 954 4 211 101 89

Figure 12 shows the process topology (right) and the detected patterns. Our approach detected one global

point-to-point communication pattern PT1 that is repeated 201 times in the trace. PT1 is represented

textually to simplify reading. The other communication patterns are collective operations. The BCAST

communications are performed at the initialization while the REDUCE collectives are performed at the

finalization phase.

The NAS BT benchmark consists of the following three main phases [Geisler 99]:

 Initialization: sets all the initial values.

 Solve:

- Copy Faces: exchanges boundary values between neighboring processes.

- X Solve: solves the problem in the x-dimension.

- Y Solve: solves the problem in the y-dimension.

- Z Solve: solves the problem in the z-dimension.

- Add: performs a matrix update (no communications).

 Finalization: verifies the solution integrity, cleans up data, and prints the final results.

1 https://www.nas.nasa.gov/publications/npb.html

28

PT1 (201):
 P0: S1.R1.S2.R2.S8.R8.S9.R9
 P1: S0.R0.S3.R3.S4.R4.S11.R11
 P2: S3.R3.S0.R0.S5.R5.S12.R12
 P3: S2.R2.S1.R1.S7.R7.S6.R6
 P4: S6.R6.S1.R1.S14.R14.S8.R8
 P5: S7.R7.S2.R2.S13.R13.S9.R9
 P6: S4.R4.S3.R3.S12.R12.S10.R10
 P7: S5.R5.S3.R3.S11.R11.S10.R10
 P8: S12.R12.S15.R15.S0.R0.S4.R4
 P9: S11.R11.S15.R15.S0.R0.S5.R5
 P10:S14.R14.S13.R13.S6.R6.S7.R7
 P11:S9.R9.S14.R14.S1.R1.S7.R7
 P12:S13.R13.S8.R8.S6.R6.S2.R2
 P13:S12.R12.S15.R15.S10.R10.S5.R5
 P14:S15.R15.S10.R10.S11.R11.S4.R4
 P15:S14.R14.S13.R13.S9.R9.S8.R8

PT2 (5): BCAST, PT3 (3): REDUCE
PT4 (2): BCAST.BCAST

Process Topology:4x4x4

Figure 12. Communication Patterns in BT (Class: W, Iterations: 200) and Process Topology

Figure 13 lists the few resulted segments for positive segmentation strength. The small number of segments

is expected due to the low number of communication patterns, resulting in low entropy. Segment S1

represents the initialization phase and includes only broadcast collective communications. S3 represents the

Solve phase and consists of only one communication pattern that is repeated 201 times. Finally, S4

represents the finalization phase where the verification of results as well as the output is printed. This is due

to the repeating nature of the program.

S ps pe L S DJS pc P S0

S2

S3S1 S4

Init (7%) Solve (92.5%) Final (0.5%)

S0 1 211 211 10.14 0.2 7 -

S1 1 7 7 -0.42 0.23 6 S0

S2 8 211 204 4.64 0.11 208 S0

S3 8 208 201 -1 0 208 S2

S4 209 211 3 -1 0 211 S2

Figure 13. Recursive Segmentation (Ps: start position, Pe: end position, l: length, DJS: Jensen-Shannon

Divergence, pc: cutting position of max divergence, s: Segmentation Strength, P: parent node)

P12 P13

P14 P15

x

y

z

P8 P9

P10 P11

P4 P5

P6 P7
P0 P1

P2 P3

29

5. Discussion and Threats to Validity

Our approach can be used both in SPMD and MPMD HPC systems. Naming the phase in MPMD systems

will not be straightforward as in SPMD since the functionality in MPMD programs is decomposed among

the processes.

The recursive segmentation algorithm provides very accurate results based on the specified threshold and

segmentation strength. The algorithm derives the segments and sub-segments based on the entropy in the

input sequence. The analyst may vary the threshold in order to achieve fine- or coarse-grained segments

(phases in our context). Recursive segmentation is not linear with a complexity of O (NLog(N)) where N

represents the size of the sequence to be segmented [Li 02]. In our case, we applied segmentation on a

sequence of communication patterns. Therefore, N refers here to the number of pattern occurrences in a

trace and not the number of events in the original trace. For example the SMG2000 16x16x1 trace contains

approximately 600 million events but only around 15 thousand patterns. Applying the recursive

segmentation directly on raw traces may pose scalability issues. The complexity of extracting patterns from

a trace using the algorithm proposed in Section 3.2 is O(l*S) where l refers to the length of the longest

pattern and S the size of the raw trace since the algorithm may require multiple passes through the trace

until the longest pattern is formed.

One way to improve the scalability of the approach is to filter out functions that implement low-level

utilities or any other components of the system that may not add any value to the analysis. Utilities tend to

be the functions that are repeated most frequently in the trace [Hamou-Lhadj 04]. The challenge, however,

is to automatically distinguish the utilities from core functions. We intend to investigate this in future work.

User-based filtering could be a possible approach. Users can choose to instrument smaller parts of the

system that they want to focus their analysis on.

Another limitation of our approach is that we labelled the phases manually by referring to whatever

documentation (including source code comments) available. In practice, manual labelling is not desirable.

We need to investigate ways to automatically extract labels from various system artifacts. A possible

solution is to use information retrieval techniques to mine source code comments and other artifacts such as

method names, etc. A good example of this is the work by Medini et al. [Medini 12]. The authors proposed

a labelling mechanism using text mining for labelling segments once extracted. Their labelling method can

be used with any trace segmentation technique. Their work, however, is limited to simple Java programs.

Extending this work to heterogeneous environments is necessary.

30

The selection of the dataset is one of the common threats to validity for this type of studies. It is possible

that the traces extracted from these two systems share common properties that we are not aware of and

therefore, invalidate our results. However, these two systems are used in many similar studies so we

believe that they are representative systems for this research. This said, we acknowledge that we need to

apply our approach to other systems.

Another threat to validity lies in the way we have selected the traces in this study. We selected the traces by

running the systems using various configurations to avoid any bias. One may argue that a better approach

would be to select traces based on other criteria such as the size of the traces or the number of distinct

functions they contain, etc. We believe that longer and more complex traces may perhaps have an impact

on the running time of the approach, but we are not convinced that the accuracy of our approach depends

on the complexity of the traces. Besides, traces used in this paper are very large (they contain tens of

millions of events); they should provide good coverage of the running systems.

In addition, we see a threat to validity that stems from the fact that we implemented the recursive

segmentation algorithm based on the description of the approach in the paper [Li 02]. Unfortunately, we

were not able to have access to the implementation of the authors. We tested our implementation on many

examples to make sure it works properly.

The threshold, t, may be a threat to validity since a different threshold may lead to different results. In

practice, we need to have a way to vary the threshold until satisfactory phases are obtained. This can be

achieved by embedding this approach in a trace analysis tool and allowing users to interact with the tool to

vary the threshold.

Moreover, we see a threat to validity in the trace generation tool we used. If the tool does not handle

indeterminism well and other complex scenarios, this may affect our approach. This threat is mitigated by

the fact that we used the Score-P tool suite, which is a well-supported infrastructure for tracing HPC

systems, developed by HPC experts.

Finally, we see a threat to validity that stems from the fact that we only used one industrial system, which

hinders the generalizability of our approach.

6. Conclusions and Future Work

We proposed a new approach for identifying execution phases in message passing programs based on the

segmentation of the communication patterns sequence extracted from execution traces generated from

SPMD HPC systems.

31

Our approach elaborates on the steps that are required to identify the execution phases supported by an

explanatory example. We validated the results of our approach on large scale traces from the SMG2000

system and the BT NAS benchmark. The presented approach does not only identify the main program

phases but also the sub-phases.

Our approach depends on the threshold t to determine the level of granularity of the detected phases. One

possible way to determine this threshold is to have domain experts apply our technique to several post-

mortem traces, analyze the resulting phases by varying t, and decide on the ones that are most suitable. The

other analysts can then use the same t when analyzing similar traces of the same systems.

Our approach is based on MPI 2.0. We need to examine the changes to MPI, reflected in MPI 3.0, and see

how these changes affect our approach. This may require updating the way some MPI operations are being

handled by our approach.

In the future, we intend to enhance the phase detection approach by including a different segmentation

technique for segmenting long homogeneous sequences such as the ones identified in the target systems.

This will provide a way to further break down these long phases into sub-phases.

Moreover, we intend to further reduce the number of distinct communication patterns by considering the

similarity among them resulting in a more homogeneous sequence.

We also intend to improve the performance of our algorithms by parallelizing them such as the per-process

detection algorithm and the recursive segmentation technique. Moreover, we will use our technique in

identifying performance bottlenecks by locating irregular communication patterns due to delays in

computations as well as network overhead.

Finally, we should also investigate how this approach can be extended to support other inter-process

communication models, in addition to SPMD.

Acknowledgment

The authors would like to acknowledge the support provided by the Natural Science and Engineering Council of

Canada (NSERC) and the Deanship of Scientific Research at King Fahd University of Petroleum & Minerals

(KFUPM) for funding this work through project No. IN131031.

7. References

Aguilar 14 X. Aguilar, K. Fürlinger, and E. Laure, “MPI trace compression using event flow graphs,” In Proc.

of the 20th International Euro-Par Conference on Parallel Processing (Euro-Par ’14), pp. 1-12,

2014.

32

Aguilar 15 X. Aguilar, K. Fürlinger, and E. Laure, “Automatic On-Line Detection of MPI Application

Structure with Event Flow Graphs,” In Proc, of the 21th International Euro-Par Conference on

Parallel Processing (Euro-Par '15), pp. 70-81, 2015.

Akaike 78 H. Akaike, “A Bayesian analysis of the minimum AIC procedure,” Annals of the Institute of

Statistical Mathematics, 30 (Part A), pp. 9-14, 1978.

Alawneh 12 L. Alawneh, A. Hamou-Lhadj, “Identifying computational phases from inter-process

communication traces of HPC applications,” In Proc. of the International Conference on Program

Comprehension (ICPC 2012), pp. 133–142, 2012.

Alawneh 11 L. Alawneh and A. Hamou-Lhadj, “Pattern Recognition Techniques Applied to the Abstraction of

Traces of Inter-Process Communication,” In Proc. of the European Conference on Software

Maintenance and Reengineering (CSMR 2011), pp. 211-220, 2011.

Alawneh 14 L. Alawneh, A. Hamou-Lhadj, S. Shariyar Murtaza, Y. Liu, “A contextual approach for effective

recovery of inter-process communication patterns from HPC traces,” In Proc. of I In Proc. of the

Software Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE), pp. 274-282,

2014.

Cornelissen 09 B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, R. Koschke, “A Systematic Survey of

Program Comprehension through Dynamic Analysis,” IEEE Transactions on Software

Engineering (TSE), 35(5), pp. 684-702, 2009.

Casas 07 M. Casas, R. M. Badia, and J. Labarta “Automatic phase detection of MPI applications,” In Proc.

of the 14th Conference on Parallel Computing Parallel Computing, pp. 129-136,2007.

Casas 10 M. Casas, R. M. Badia, J. Labarta, “Automatic Phase Detection and Structure Extraction of MPI

Applications,” International Journal of High Performance Computing Applications, 24(3),

pp.335-360, 2010.

Chetsa 13 G. L. T. Chetsa, L. Lefèvre, J.-M. Pierson, P. Stolf, and G. Da Costa, “A User Friendly Phase

Detection Methodology for HPC Systems’ Analysis,” In Proc. of IEEE International Conference

on Green Computing and Communications, Beijing (China), pp. 118–125, 2013.

Cormen 90 T. H. Cormen, C.E. Leiserson, R.L. Rivest, “Introduction to Algorithms,” The MIT Press,

Cambridge, MA, 1990.

Geimer 09 M. Geimer, F. Wolf, B.J.N. Wylie, B. Mohr, “A scalable tool architecture for diagnosing wait

states in massively-parallel applications,” Journal of Parallel Computing, 35(7), pp. 375–388,

2009.

33

González 09 J. González, J. Giménez, J. Labarta, “Automatic Detection of Parallel Applications Computation

Phases,” In Proc. of International Parallel & Distributed Processing Symposium (IPDPS), pp. 1-

11, 2009.

González 12 J. González, K. Huck, J. Giménez, & J. Labarta, “Automatic Refinement of Parallel Applications

Structure Detection,” In Proc. of 26th International the Parallel and Distributed Processing

Symposium Workshops PhD Forum (IPDPSW), pp. 1680–1687, 2012.

González 13 J. González, J. Giménez, J. Labarta, “Performance Analytics: Understanding Parallel Applications

Using Cluster and Sequence Analysis,” In Proc. of the 7th International Workshop on Parallel

Tools for High Performance Computing, pp. 1-17, 2013.

Gray 11 R. Gray, “Entropy and information theory,” 2nd Edition, New York, Springer, 2011.

Grosse 02 I. Grosse, P. Bernaola-Galván, P. Carpena , R. Román-Roldán, J. Oliver and H. E. Stanley,

"Analysis of symbolic sequences using the Jensen-Shannon divergence," Phys. Rev. E, 65(4),

pp.041905-1 -041905-16 , 2002.

Hamou-Lhadj 04 A. Hamou-Lhadj, and T. Lethbridge, "Reasoning About the Concept of Utilities," ECOOP

International Workshop on Practical Problems of Programming in the Large, Oslo, Norway,

Lecture Notes in Computer Science (LNCS), Vol 3344, Springer-Verlag, pp. 10-22, 2004.

Isaacs 15 K. E. Isaacs, T. Gamblin, A. Bhatele, M. Schulz, B. Hamann, and P.-T. Bremer, “Ordering traces

logically to identify lateness in message passing programs,” IEEE Transactions on Parallel and

Distributed Systems, 2015.

Knüpfer 06 A. Knüpfer, B. Voigt, W.E. Nagel, H. Mix, “Visualization of repetitive patterns in event traces,” In

Proc. of the Workshop on State-of-the-Art in Scientific and Parallel Computing (PARA), p. 430-

439, 2006.

Köckerbauer 10 T. Köckerbauer, T. Klausecker and D. Kranzlmüller, “Scalable Parallel Debugging with g-

Eclipse,” In Proc. of the 3rd International Workshop on Parallel Tools for High Performance

Computing, published as a book chapter in Tools for High Performance Computing, Springer

Berlin Heidelberg, pp. 115-123, 2010.

Kunz 97 T. Kunz and M. F. H. Seuren, "Fast detection of communication patterns in distributed

executions,” In Proc. of the Conference of the Centre for Advanced Studies on Collaborative

research (CASCON), pp. 12-24, 1997

Li 02 W. Li, P. Bernaola-Galvan, F. Haghighi, I. Grosse, “Applications of recursive segmentation to the

analysis of DNA sequences,” Journal of Computers & Chemistry, 26, pp. 491-510, 2002.

34

Maghraoui 05 K. El Maghraoui, B. K. Szymanski, and C. A. Varela, “An Architecture for Reconfigurable

Iterative MPI Applications in Dynamic Environments,” In Proc. of the 6th International

Conference on Parallel Processing and Applied Mathematics (ICPP AM), pp. 258-271, 2005.

Medini 12 S.Medini., G.Antoniol.,Y. Gueheneuc, M. Di Penta and P.Tonella, “SCAN: An Approach to Label

and Relate Execution Trace Segments,” In Proc. of 29th Working Conference on Reverse

Engineering, pp. 135-144, 2012.

Newman 14 G. A. Newman, “A Review of high-performance computational strategies for modeling and imaging

of electromagnetic induction data,” Surveys in Geophysics, vol. 35, pp. 85-100, 2014.

Noeth 09 M. Noetha, P. Ratna, F. Muellera, M. Schulzb, B. R. de Supinskib, “ScalaTrace: Scalable

compression and replay of communication traces for high-performance computing,” Journal of

Parallel and Distributed Computing, 69(8), pp. 696-710, 2009.

Pirzadeh 11a H. Pirzadeh, A. Hamou-Lhadj, “A Novel Approach Based on Gestalt Psychology for Abstracting

the Content of Large Execution Traces for Program Comprehension,” In Proc. of the 16th IEEE

International Conference on Engineering of Complex Computer Systems (ICECCS '11), pp. 221-

230, 2011.

Pirzadeh 11b H. Pirzadeh, A. Hamou-Lhadj, “A Software Behaviour Analysis Framework Based on the Human

Perception System: NIER Track”, In Proc. of the 33rd International Conference on Software

Engineering (ICSE NIER Track), pp, 948-951, 2011.

Preissl 08 R. Preissl, T. Köckerbauer, M. Schulz, D. Kranzlmüller, B. R. de Supinski, and D. J. Quinlan,

“Detecting patterns in MPI communication traces,” In Proc. of the 37
th
 International Conference

on Parallel Processing (ICPP), pp. 230–237, 2008.

Preissl 10 R. Preissl, B. R. de Supinski, M. Schulz, D. J. Quinlan, D. Kranzlmüller, T. Panas, “Exploitation

of Dynamic Communication Patterns through Static Analysis,” In Proc. of 39
th

 International

Conference on Parallel Processing (ICPP), pp. 51-60, 2010.

Reiss 05 S. P. Reiss, “Dynamic detection and visualization of software phases”, In Proc. of the 3rd

International Workshop on Dynamic Analysis (WODA), ACM, pp. 1-6, 2005.

Shannon 48 C. E. Shannon, “A mathematical theory of communication,” Bell System Technical Journal, vol.

27, pp. 379-423, 1948.

SMG2000 Advanced Simulation and Computing Program: The ASC SMG2000 benchmark code. URL:

http//www.llnl.gov/asc/purple/benchmarks/limited/smg/, 2001.

Tiwari 11 I. Tiwari, J. K. Hollingsworth, C. Chen, M. W. Hall, C. Liao, D.J. Quinlan, J. Chame, “Auto-

tuning full applications: A case study,” The International Journal of High Perfornace Computing

Applications, 25(3), pp. 286-294, 2011.

35

Trahay 15 F. Trahay, E. Brunet, M. M. Bouksiaa, and J. Liao, “Selecting points of interest in traces using

patterns of events,” In Proc. of the 23rd Euromicro International Conference on Parallel,

Distributed, and Network-Based Processing (PDP ’15), pp. 70-77, 2015

Wolf 03 F. Wolf and B. Mohr. “KOJAK - A Tool Set for Automatic Performance Analysis of Parallel

Applications,” In Proc. of the European Conference on Parallel Computing (Euro-Par), volume

2790, LNCS, pp. 1301–1304, 2003.

Wolf 07 F. Wolf, B. Mohr, J. Dongarra, S. Moore, “Automatic analysis of inefficiency patterns in parallel

applications,” Wiley Journal of Concurrency and Computation: Practice and Experience, 19(11),

pp. 1481–1496, 2007.

