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Abstract 

The understanding of the interactions among processes of a High Performance Computing (HPC) system 

can be made easier if trace analysis is used. Traces, however, can be quite large, making it difficult to 

analyze their content unless some abstraction is provided. This paper presents a novel trace abstraction 

approach that aims to facilitate the analysis of large execution traces generated from HPC applications. Our 

approach allows automatic segmentation of large traces into smaller and meaningful clusters that reflect the 

various execution phases of the traced scenarios. Our approach is based on the application of information 

theory principles to the analysis of sequences of communication patterns extracted from traces of HPC 

systems. This work is inspired by recent studies in the field of bioinformatics where several techniques 

have been proposed to segment DNA sequences into homogeneous sub-domains, where each sub-domain 

exhibits a certain degree of internal homogeneity. Trace segments can be used in a number of applications 

such as recovering high-level views of the system behavior and program understanding. We demonstrate 

the usefulness of our approach by applying it to different traces of hundreds of millions of events, 

generated from two HPC systems. 
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1. Introduction 

High Performance Computing (HPC) systems are used to solve complex computational problems in a 

variety of domains including medical image processing, financial trading, bioscience, and data security. 

These systems run on a large number of processors and can process in parallel quadrillions of operations 

per second [Newman 14]. HPC has become a popular solution for building powerful applications due to the 

emergence of multi-core and cloud computing platforms.  

Despite the recent advances in the design of HPC systems, there are still challenges related to how to 

analyze these systems. A typical application involves a large number of processes. Understanding the way 

these processes interact with each other is a tedious and complex task [Maghraoui 05]. To address this, 

existing work (e.g., [Noeth 09][Geimer 09]) has been devoted to techniques and tools that enable the 

analysis of inter-process communication traces. Trace analysis tools support panoply of features, among 

which the most important one is the ability to extract patterns of inter-process communication from large 

traces. This way, a software engineer can validate whether or not the system behaves according to 

predefined communication patterns. Trace patterns can also be seen as a way to build abstractions from 

large traces, allowing software engineers to examine only patterns of interest, instead of going through the 

entire trace content (which is practically impossible).  

Pattern recognition techniques, however, remain limited as to how much abstraction they provide. This is 

because of the large size of typical traces (millions of events). There are just too many patterns to analyze. 

Besides, patterns are often extracted without context. Consider, for instance, an execution trace that is 

generated from running a machine learning algorithm with large datasets on multiple processors. This trace 

is expected to contain typical machine learning steps including data preprocessing, training models, 

validation, testing, etc. A software engineer who wants to understand how a model is trained does not need 

to see the other parts of the trace. Extracting patterns for the entire trace will still not reveal where the 

model is trained. In this scenario, it would be useful to know where each of the phases is manifested in the 

trace. A software engineer can then explore each phase separately. One way to achieve this is to instrument 

the system in such a way that the program’s phases are clearly annotated. The drawback with this approach 

is that it assumes some knowledge of the system under study.  

In this paper, we present a trace abstraction approach that segments a trace of HPC events into smaller and 

meaningful clusters that represent the execution phases that compose the traced scenario. We define an 

execution phase as part of a trace where a particular program computation is invoked. That is, an execution 

phase groups cohesive program elements.  
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The trace segmentation approach we propose in this paper can be used primarily by software analysts who 

want to understand the content of a trace with the objective of completing a given maintenance task (such 

as enhancing an existing feature or detecting the causes of a fault). Our approach can also be used to verify 

if the behavior of the system complies with the intended behavior during design. We also anticipate that our 

approach can be useful for analysts who do not maintain the system, but still need to report on the way it 

behaves. These analysts can benefit from our approach by, for example, reporting on the various phases 

that are involved in the trace, the number of communication patterns each phase contains, etc. Moreover, 

we can always infer some statistical data from our approach such as the number of processes involved in a 

certain pattern, the number of messages exchanged, and so on.  

Trace segmentation is a relatively new topic. To our knowledge, there are only a few studies that focus on 

segmenting inter-process communication traces into execution phases (e.g., [Casas 07][González 

13][Chetsa 13]). These studies use performance data to distinguish among the various phases of a 

program’s execution. In our view, these techniques are designed for performance analysis and not for 

program comprehension. Our approach is designed to allow an analyst to understand how a particular 

scenario is implemented. 

Our trace segmentation approach is inspired by the work of Li et al. [Li 02] in bioinformatics, more 

particularly the area of DNA processing. The authors introduced a new technique for segmenting DNA 

sequences into homogeneous sub-domains; each has a certain degree of internal homogeneity (or 

similarity). DNA segments can be used in a number of applications such as detecting the presence of 

known genes for medical purposes, identifying new genes and associations with diseases, comparing gene 

structures of various species, etc. By analogy, we can view a trace of inter-process communication as a 

large sequence of events, just like a DNA sequence. By segmenting a trace, we mean identifying clusters of 

events that contribute to the implementation of the same execution phases (sub-domains). This way, 

browsing a trace would no longer necessitate the examination of low-level trace events, but instead, we can 

view the trace as a flow of execution phases. Our trace segmentation approach involves two main steps. 

First, we detect inter-process communication patterns using pattern detection techniques. The second step 

consists of dividing the sequence of extracted communication patterns into dense homogenous clusters that 

indicate the presence of execution phases. This is achieved using information theory concepts such as 

Shannon entropy [Roberts 05] and the Jensen-Shannon Divergence measure [Grosse 02]. 

We also focus in this paper on Single Program Multiple Data (SPMD) HPC applications. However, our 

approach should be readily extendible to other inter-process communication models. 
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The rest of the paper is organized as follows. In Section 2, we present background information on traces 

from HPC systems, followed by related work. In Section 3, we present our approach and describe the 

algorithms and techniques used in the detection process. In Section 5, we show the effectiveness of our 

approach by applying it to traces of hundreds of millions of events, generated from two subject systems. 

We discuss threats to validity in Section 6 and conclude our work in Section 7. 

2. Background and Related Work 

2.1. A Brief Overview of HPC  

High Performance Computing (HPC) relies on parallel computing in order to solve complex computation-

intensive scientific problems. Parallel computing decomposes the problem into several sub-problems that 

run on various computational units to complete in an acceptable time period. Typically, the computational 

units need to collaborate in order to accomplish a specific task. Parallel computing utilizes two main 

programming paradigms, which are the shared memory and distributed memory paradigms. In shared 

memory, processes collaborate by sharing the same memory space. On the other hand, a distributed 

memory application consists of many processes running on different distributed processors that interact 

using the message passing model. These parallel programs may consist of thousands of processes that are 

coordinating to solve a specific large scale problem. In this paper, we focus on distributed memory 

applications with a specific interest in programs that use the MPI
1
 (Message Passing Interface), a standard 

for writing parallel applications using message passing, for inter-process communication.  

MPI provides point-to-point, collective, and one-sided types of communications. Point-to-point operations 

support both blocking and non-blocking modes. Point-to-point communication occurs between a pair of 

MPI processes in the program.  The sending process posts a send operation that contains the destination, 

the data, the data type signature, the tag, and the communicator (a predefined group of MPI processes). The 

receiving process, on its side, should post a receive operation that matches the incoming message based on 

its data type signature, the tag value, and the source process (sending process). The receiving process uses 

the tag value to identify the incoming message. However, a process may post a receive operation that can 

accept a message originating from any process in the communicator with a wildcard tag value. 

MPI collective communication includes a set of operations for exchanging information among the group of 

processes in a communicator. MPI assumes that the processes in the communicator must perform the same 

collective operations in the same order. MPI enforces the synchronization among the communicating 

processes using the barrier operation. MPI collective operations are implemented using point-to-point 

                                                      

1http://www.mpi-forum.org 
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operations. However, the collective communication must be in blocking mode only in order to guarantee 

the synchronization among the communicating processes. Therefore, all processes must post collective 

operations that exactly match the size and the data type signature of the exchanged data. The new version 

of MPI (i.e., MPI 3.0
1
) provides non-blocking collective operations. In this study, we work with MPI 2.0. 

However, we are planning to target MPI 3.0 as part of future work. 

An MPI trace consists of events collected from all the running processes in the program. A trace from each 

process contains user-defined routine call events and MPI operation call events. Inter-process 

communication traces are those events that correspond to the MPI point-to-point and collective 

communication operation calls. 

2.2. Techniques for detecting communication patterns in traces of HPC systems 

The detection of communication patterns in traces of HPC systems has been the focus of many trace 

analysis research studies in the context of HPC systems. This is because HPC systems tend to follow 

specific communication patterns throughout their execution. These communication patterns provide a view 

of the way processes interact with each other. In addition, trace patterns can be used to recover 

communication topologies.  

Preissl et al. [Preissl 08, Preissl 10] presented an approach for detecting communication patterns in MPI 

traces using compressed suffix trees. Their approach combines both dynamic and static analysis techniques 

in the detection process. They used MPI seed events to look for areas in the code where communication 

patterns could occur. The authors demonstrated the usefulness of their approach by showing how the 

detected communication patterns could be used in improving the overall program performance. Using static 

analysis is very challenging in the context of parallel systems. Static analysis requires building and storing 

a static model of the system, which adds complexity to the analysis process. Our communication patterns 

detection approach depends solely on dynamic analysis and does not require prior knowledge of the source 

code. 

Isaacs et al. [Isaacs 15] presented a new approach to extract the trace’s logical structure by ordering the 

MPI events based on their happened-before relationships. In their approach, the authors cluster processes 

and the communication patterns using visualization techniques. Their approach can then be used to identify 

delayed operations with respect to their peer ones on the other processes. The authors applied their 

approach on a trace generated from running 64 processes. This approach relies on the visualization of 

                                                      

1http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf  



6 

 

groups of events to form a global communication pattern, which may work for small number of processes 

but may be difficult to scale to large configurations. 

Knüpfer et al. [Knüpfer 06] presented an approach to remove contiguous patterns from traces of HPC 

systems based on the compressed complete call graph (cCCG). The cCCG references all call sequences that 

are equivalent with respect to a call structure and temporal behavior to achieve an improved trace 

compression scheme. This algorithm does not target the detection of communication patterns. It only 

detects tandem repeats of events on each process trace separately. Our approach goes two steps further by 

first detecting communication patterns and then creating smaller segments that reflect the various phases of 

the execution. 

Trahay et al. [Trahay 15] proposed a trace summarization technique to identify points of interest that 

should be examined first in the trace. The technique uses a variation of the LZW compression technique to 

detect sequences of repeating events in the trace. The technique generates a new view of the trace as loops 

and groups of events as opposed to the traditional sequential representation of traces. The approach relies 

on filtering techniques to eliminate duplicate sequences so as to simplify the localization of points of 

interests. Our approach differs from this approach as it detects the communication patterns in the entire 

trace and not only within a given process trace. Furthermore, we identify the computational phases based 

on the homogeneity of the sub-segments of the list of communication patterns. 

Kunz and Seuren [Kunz 97] proposed a communication pattern matching approach that is based on finite 

state automata. The algorithm determines the longest process pattern in the input communication pattern 

and finds its occurrences in the trace. The algorithm then starts the construction of the communication 

pattern by matching the events of the longest pattern with the partner events on the other process traces. 

This approach is only concerned with finding patterns that match a predefined input pattern, whereas our 

approach aims to detect all communication patterns in a trace. 

Köckerbauer et al. [Köckerbauer 10] used a pattern matching technique to facilitate the debugging of large 

message passing parallel programs by searching the trace file for predefined communication patterns. The 

engineer provides the communication pattern description using a custom syntax which is then translated to 

abstract syntax trees. The generated ASTs are then scaled up to the number of processes in the trace (or a 

target subset of the processes). Similar to our approach, they run the pattern matching algorithm on each 

process trace separately. The resulting matching patterns on each process trace are then merged to get the 

matching communication pattern. In their approach, Köckerbauer et al. look for exact and similar patterns 

using a hash-based search algorithm. Therefore, the matching communication pattern may be a variation of 
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the user’s specification. Our segmentation process uses a pattern detection algorithm that does not require 

prior knowledge of the communication patterns used in the program. 

Wolf et al. proposed a pattern matching technique for detecting patterns of inefficient behavior based on 

wait states as part of a HPC performance analysis tool known as KOJAK [Wolf 03][Wolf 07]. They search 

the trace for known patterns in order to identify inefficient behavior. The tool then classifies the patterns 

based on the time spent in communication. This work is different from the one presented in this paper since 

it only looks for patterns of inefficient behavior resulting from processes in long wait states and it does not 

aim at segmenting the trace into execution phases. Also, the authors assume that knowledge of the 

communication topology is available in order to display the patterns, which is not always the case. In our 

study, we detect the communication behavior found in the trace as communication patterns. 

2.3. Techniques for segmenting traces into execution phases 

The objective of trace segmentation techniques is to divide a trace into coherent segments (that are referred 

to as execution phases). There exist some studies that target the identification of computational phases in 

MPI programs. González et al. [González 09] presented a density-based clustering approach to detect the 

computational phases in SPMD message passing applications. They applied the DBSCAN algorithm to 

group different CPU bursts, gathered from performance hardware counters provided by modern processors, 

to identify the different computational phases in the program execution. A CPU burst is observed as a 

computation region between two consecutive communications. A burst is characterized by the duration and 

the set of performance counters. However, performance data should be used with thresholds that require a 

high degree of fine-tuning to obtain accurate computational phases. The authors extended their DBSCAN-

based approach by applying Aggregative Cluster Refinement to automate the detection process and 

overcome the shortcomings of the DBSCAN algorithm [González 12] and [González 13]. The new 

approach combines clustering with multiple Sequence alignment to refine the quality of the extracted 

computational structure. Our approach works on execution traces that contain user-defined as well as MPI 

events and relies on the communication patterns detected in the trace. Our phase identification approach 

segments the trace based on the homogeneity of the communication patterns in each region. 

Aguilar et al. [Aguilar 15] presented an on-line approach to detect the loop nesting structure of MPI 

applications at runtime using event flow graphs without explicit source code instrumentation. These 

detected loops are only the ones that contain MPI communication events. The flow graphs provide a 

compressed representation of MPI traces supported by the iterative structure of MPI parallel applications 

[Aguilar 14]. They utilize their approach to gather statistical information of the program execution by only 

collecting a small number of iterations in order to reduce the overhead of the gathered data on the running 
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program. They detect the loop once the program is stable and goes in a long iterative loop (i.e. the Solve 

phase). Detecting when the program goes in a stable state requires user involvement. An advantage of their 

approach is that it does not require the whole trace to be collected and that the application structure can still 

be used to compute the post-mortem statistics. Our approach differs from this work as it needs the whole 

trace to detect communication patterns and then utilizes the list of patterns to identify the different phases 

in the program execution. 

Casas et al. [Casas 07] proposed an automatic phase detection approach based on signal processing 

techniques to identify the main phases (initialization, computation, and output) in the traces of MPI 

applications. The algorithm depends on the iterative behavior of MPI programs in order to identify the 

different phases in the program. They categorize the phases based on the frequency of their iterative 

behavior where in the computational phase most of the parallel iterations exist. The authors extended their 

work to detect the sub-phases in the computational phase [Casas 10]. They used several metrics based on 

inter-process communications (signals) and CPU computing bursts to mark a computational phase change. 

Our approach goes one step further as the user is provided with the distinct communication patterns that are 

forming each phase in the trace.  

A similar approach to the one found in [Casas 10] is proposed by Chetsa et al. [Chetsa 13] where the 

authors presented a phase detection approach based on execution vectors where a vector includes a set of 

values such as hardware performance counters, network communications, disk I/O values. Their approach 

detects a new phase when the Manhattan distance between successive vectors exceeds a predefined 

threshold.  

Cornelissen et al. [Cornelissen 09] proposed to visualize the call relations between the functions from 

different classes and packages into a matrix that potentially shows the emergence of dense groups that can 

be qualified as trace segments. The authors, however, did not provide an automatic segmentation of the trace 

data. It is up to the user to interpret the visual rendering of method calls. Reiss et al. [Reiss 05] proposed a 

tool called Jive to visualize the behavior of a Java program using statistical information about the system’s 

behavior in predefined time intervals. The phases are visualized in a user interface. The problem of this 

approach is that it uses profiling information (not sequences of calls). At the end, the user is only provided 

with some statistics about each phase. 

The techniques that use traces (usually routine call traces) generated from single-process applications 

include the work of Pirzadeh el al. [Pirzadeh 11a] and [Pirzadeh 11b]. The authors proposed a novel phase 

detection approach, inspired by the way the human perception system groups lines and dots into shapes and 

objects. Their approach includes several methods that could automatically group routine-call events into 
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dense elements that formed computational phases. Their work, however, targets traces of routine calls. In 

the future, we intend to study how their approach can be applied in the context of inter-process 

communication traces. 

2.4. Discussion 

Although pattern recognition techniques have been shown to be useful, they can only exhibit how processes 

interact with others without any context. It is up to the analyst to figure out which parts of the trace 

implement a specific computation of the traced scenario, the problem addressed in this paper.   

Techniques for segmenting inter-process communication traces rely on performance data such as CPU 

bursts and statistics on a program’s execution. In this paper, we focus on traces of call to user-defined 

functions and MPI operations. These traces can be used to understand how a particular scenario is 

implemented. We propose to reduce the size of traces by dividing them into smaller and more manageable 

segments; each contains a set of cohesive trace elements. This way, a software engineer can analyze each 

segment individually or combine them if need be. A trace analysis tool can implement the trace 

segmentation process, presented in this paper, to provide the ability for software engineers to explore 

segments of traces without having to worry about the other parts of the trace. By exploration, we include 

the common tasks that a software engineer would normally do if presented by the entire trace, such as 

extracting patterns, searching, viewing properties, etc.  

The novelty of this work lies in the fact that, to our knowledge, this is the first time that a technique for 

segmenting traces of inter-process communication based on communication patterns is proposed. The use 

of DNA processing methods to design an effective trace segmentation approach is also novel. We tested 

our approach on two HPC systems. This research is significant because it shows evidence that we can build 

powerful trace segmentation approaches for traces of inter-process communication.  

3. The Trace Segmentation Approach 

Figure 1 shows our trace segmentation approach. The first step is to generate the trace of the specified 

scenario from the target test system. The trace consists of multiple process traces (T1 … Tn) where each 

process trace contains both MPI as well as user-defined function events. The next step is to detect 

communication patterns from the process traces. For this, we improve an algorithm that we presented in 

[Alawneh 11] (the new algorithm is discussed in more detail in the next subsections). The extracted 

sequence of communication patterns is then input to the phase identification component. In the phase 

detection step, we look for changes in communication patterns in the trace and group those that show a 

certain degree of homogeneity. The result is a binary tree, which we refer to as a segmentation tree, where 
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the root node is the whole input sequence (coarse-grained) and the leaf nodes are the lowest level segments 

(fine-grained). The final step consists of identifying the beginning and ending of each phase using the 

segmentation tree. A phase may contain multiple segments. These steps are presented in more detail in the 

next subsections. 

Communication Pattern Detection

MPI 

Trace

.

.

.

Tn-2

T0

Process Repeating Patterns 

Recognition

{P0}

Communication Patterns 

Construction

...

Phase 

Identification

{PH}

Tn-1

{Pn-2} {Pn-1}

{CP}

Phase Analysis

 

Figure 1. Approach for segmenting traces of inter-process communication 

3.1. Trace Generation 

The process of generating execution traces is usually done through instrumentation of the code. This 

consists of inserting probes in the code in places of interest, recompile the code, and run the system. 

Instrumentation is performed automatically using tools such as VampirTrace
1
, TAU

2
 and Score-P

3
.  

Instrumentation can also be at the OS and binary levels using tools such as PIN
4
 and LTTng

5
.  

To collect traces, an analyst needs to exercise the instrumented system by executing the scenario of interest. 

In this paper, we instrument the entire system. This is because we do not assume that analysts know which 

parts of the system to analyze. We use the Score-P tool to collect traces in OTF2
6
 format. The tool 

generates the entire trace as a set of files where each file contains a trace for each process. A process trace 

contains a sequence of events. There are two types of events. The first one consists of calls to user-defined 

functions and MPI operations (we need to have entry and leave probes for each call). The second type 

consists of communication events. All events have timestamps associated with them. Figure 2 shows an 

excerpt of a trace from four processes   generated in OTF2 format. In this figure, HYPRE_StructGridCreate 

is a user-defined function. MPI_Allgather is an MPI operation, which is a collective operation. 

                                                      

1 http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/projekte/vampirtrace  
2 http://www.cs.uoregon.edu/Research/tau 
3 http://www.vi-hps.org/projects/score-p/ 
4 https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool 
5 http://www.lttng.org 
6 https://silc.zih.tu-dresden.de/otf2-current/html/ 
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MPI_ISEND and MPI_IRECV are point-to-point operations. The “Location” column shows the process id. 

The “Attributes” column shows different values that are used by the operation such as a tag in case of 

point-to-point operations. The number within the angle brackets represents the code  (id) of the function. 

 

Figure 2. An example of a process trace in OTF2 format 

Scientific problems have several input parameters that determine their size and complexity. HPC systems 

that solve these kinds of problems should be configured by providing the number of processes and the 

appropriate process topology. The number of processes is constrained by the problem complexity and the 

hardware capabilities.  

3.2. Communication Pattern Detection 

As mentioned earlier, our trace segmentation technique takes as input a trace of sequences of 

communication patterns instead of raw events. To detect patterns, we improve an earlier pattern detection 

algorithm significantly that we presented in [Alawneh 11]. The algorithm uses a two-step process. First, we 

detect patterns in each process trace separately. Then we use the patterns from each process trace to 

construct the final communication patterns. We illustrate these steps in the following sections.  

We explain the pattern detection technique through a running example using the sample trace depicted in 

Figure 3. The trace consists of four processes, where each process trace is represented as a routine-call tree. 

The processes collaborate in functions F1 to F3 to accomplish a certain task. This example uses MPI_Send 

and MPI_Recv operations represented using the S and R symbols respectively. Every send operation 

should have a matching receive operation on the partner process. For example, P3 sends a message to P4 

represented as S4 (send to P4) in F1 and P4 posts a receive operation as R3 (receive from P3) in F1. 

Similarly, P2 sends a message to P1 in F2 and P2 receives this message by posting R2 in F2.  
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Figure 3. Traces of four Inter-communicating Parallel Processes  

 

Step 1: Detection of per-process patterns 

In this step, we iterate on each process trace separately in order to detect the patterns of MPI 

communication events. A pattern is a maximal repeat that may not be extended to the left and to the right in 

the sequence that it occurs in. More formally, given a string S of length l, a maximal repeat in S is a tuple 

(p1, p2, l) such that: 

S[p1 .. p1 + l – 1] = S[p2 .. p2 + l – 1] and p2 > p1 and 

S[p1 + l] ≠ S[p2+ l]  and S[p1 - 1] ≠  S[p2 - 1] 

Using the concept of n-gram extraction, the algorithm starts by building the list of repeating bi-grams in a 

process trace along with their positions in the trace. The repeating bi-grams will eventually grow in size, 

using the algorithm, to be the final detected n-grams. The events of an n-gram (i.e. pattern) may only 

appear within the same user-defined function call. That is, we do not consider patterns that are formed 

across functions. In other words, we use functions as a context. This derives from our empirical observation 

that meaningful patterns are the ones that are defined within specific functions [Alawneh 14]. We found 

that this limitation was primarily due to the fact that we viewed a trace as a mere stream of MPI 

communication events without considering where these events appear in the program. We observed that 

patterns rarely appear outside the boundaries of user-defined functions.  
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Figure 4. (a) An example of a process trace with contextual information; (b) Delimiters added 

during the preprocessing of the trace to specify contextual information 

Figure 4(a) shows the trace of P1 from Figure 3 with contextual information. This context will be used 

when looking for trace patterns by treating each MPI call. To make the pattern detection algorithm take the 

context into account, we simply add delimiters to the trace whenever a context switch occurs (i.e., another 

function is called). Figure 4(b) shows a preprocessed trace where D1 and D2 (two delimiters are added). 

The pattern detection algorithm (as we will show later in the paper) does not cross these delimiters when 

looking for trace patterns.  

Figure 5(a) shows a fictive process trace with multiple nesting levels. The corresponding preprocessed 

trace is shown in Figure 5(b). As we can see, this trace has three contexts due to the call of user-defined 

function F2 by F1. Delimiters D1 and D2 are added to show the contexts. 
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Figure 5. A trace with multiple nesting levels (a) and its corresponding preprocessed trace with 

delimiters added to show the contexts 

We recognize that determining a pattern’s context is not that straightforward. However, in most benchmark 

systems that we have analyzed we observed that by simply considering each function as a unique context, 

we could enhance the pattern detection process.  

Algorithm 1 shows the steps for detecting patterns in a process trace. The algorithm takes each 

preprocessed process trace as input and returns a set of maximal repeats  found in each trace.  The first step 

is the extraction of the repeating bi-grams from each process trace. These bi-grams are used as the start 

point of patterns for the detection of maximal repeats. Algorithm 1 has two main loops, the outer loop 

determines the number of passes required to complete the detection process. The new variable indicates that 

a new pattern is detected. Therefore, the stopping criterion for Algorithm 1 is when there are no new 

patterns added to the list of detected patterns in the last pass. The inner loop reads one event at a time and 

appends it to the current repeat at Line 11. Once a bi-gram is constructed, the algorithm checks if it is in 

the bi-gram table. If the bi-gram is in the table, then the algorithm reads the next event and appends it to the 

current repeat, otherwise the next bi-gram is read from the trace. A new repeat is added to the pattern list 

(Line 24). In Line 27, we also add the starting position of repeat to the set of starting positions of its 

corresponding pattern, depicted by the collection {positions}. If the previous pattern is not a repeating 

pattern, then the algorithm clears the current pattern and starts reading from the last position of previous 

(Lines 20 and 21). The number of passes (the outer loop) is directly related to the length of repeats and 

their frequencies. The more frequent a pattern is, the faster it will be detected. 

# 
Maximal Repeats Detection: trace size = n 

{patterns}: list of patterns (initially repeating bi-grams) 
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3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

new ← true 

while (new) 

   new ← false, length ← 0, position ← 0, repeat ← Ø 

   for I ← 0 TO n  - 1 

      event = trace [ I ] 

      if event is delimiter then   

         length ← 0, repeat ← Ø    GOTO line 4 

      if repeat  is  Ø  then 

          position ← I     

          repeat ← event   

       else  previous ← repeat, repeat  ||  event                 

       length ← length + 1 

       if  length ≤  2  then  GOTO line 4 

       pattern ← patterns [ repeat ] 

       if  pattern is  null  ⋀  length  is 2  then         

          I ← I – 1         

 length ← 0, repeat ← Ø    GOTO  line 4 

        end if 

        if  length is 2 then GOTO line 4 

        if frequencyprevious  is  1   then 

           I ← I – 2, length ← 0, repeat ← Ø  GOTO  line 4 

          if  pattern is null then 

    new ← true             

             {patterns} ← pattern 

    length ← 0, repeat ← Ø, I ← I – 1 

          end if 

          {positions}pattern ← position 

      I: end of for loop  

N: end of for loop 

Algorithm 1. Pattern  detection algorithm 

To illustrate the execution of Algorithm 1, we use the preprocessed trace sample of Figure 4(b). We also 

add the position of each event to ease the description of the algorithm. S2 appears at position 0, S3 at 

position 1, etc. The new sequence with the positions is shown in Figure 6. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 

S2 S3 R2 R3 D1 R3 R2 S2 S3 D2 S2 S3 R2 R3 

Figure 6. A simplified representation of preprocessed trace of Figure 4(b). 

The maximal repeats detection algorithm starts by extracting the list of repeating bi-grams with their 

positions and frequency as shown below.  

n-gram Position Frequency 

S2.S3 0, 7, 10 3 

S3.R2 1, 11 2 

R2.R3 2, 12 2 
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The algorithm continues by reading the bi-grams from the input trace. If the bi-gram already exists, it will 

append the next event to the bi-gram. Similarly, if a 3-gram exists in the patterns list, the algorithm will 

append the next event, forming a 4-gram. The algorithm takes two passes to detect the longest pattern 

S2.S3.R2.R3 (4-gram). However, the third pass is needed since the new is assigned a true value in the 

second pass when the S3.S4.S2.S1 pattern was detected. The table below shows the pattern list after 

completing the three passes in Algorithm 1. 

n-gram Position Frequency Inner Repeat 

S2.S3 0, 7, 10 3 Yes (positions 0 & 10) 

S3.R2 1, 11 2 Yes 

R2.R3 2, 12 2 Yes 

S2.S3.R2 0, 10 2 Yes 

S2.S3.R2.R3 0, 10 2 No 

 

The next step is to remove inner patterns. We achieve this by iterating through the list of patterns, resulting 

from the maximal repeats detection process, and removing the instances of patterns that are part of larger 

patterns. For example, instances of pattern S2.S3 at positions 0 and 10 are part of pattern S2.S3.R2.R3. 

Similarly, S3.R2 at positions 1 and 11 are parts of S2.S3.R2.R3. We remove these instances from the list of 

patterns. The result of removing inner patterns is shown below: 

n-gram Position Frequency 

S2.S3 7 1 

S2.S3.R2.R3 0, 10 2 

The final step is to look for single events that were not part of any repeating patterns. These may include 

point-to-point and collective communications. These events may be part of a communication pattern but 

could not be detected in Algorithm 1 since they appear separately due to the delimiters that were added in 

the preprocessing step. These events will be linked to the patterns that are created and will be part of the 

communication pattern construction algorithm (the next step of the algorithm). The sequence extracted 

from Figure 4 shows that events R3 and R2 at positions 5 and 6 can be added as new patterns that are 

occurring only once to the list of detected patterns. The final list of patterns is as follows: 

n-gram Position Frequency 

S2.S3 7 1 

S2.S3.R2.R3 0,10 2 

R3 5 1 

R2 6 1 
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In case of single collective communication events, they will also be added as repeats and will be used in the 

next step to form collective communication patterns. 

Step 2: Formation of final communication patterns 

To construct the final communication patterns, we simply iterate through the per-process patterns, detected 

in the previous step, and match the MPI communication events with the ones of the partner processes. For a 

pattern p1, its corresponding partners are those that have matching events with p1. For example, the 

matching events of pattern S2.S3.R2.R3 found in Process P1 are R1 in Process P2 (matches S2 in P1), R1 

in P3 (matches S3 in P1), S1 in P2 (matches R2 in P1), and finally S1 in P3 which matches R3 in P1. 

Therefore, the matching patterns for p1 are S1.R1 on P2, and R1.S4.S1 on P3. We use timestamp 

information, tag, data type signature, and the communicator in order to identify the matching events. The 

formation process continues until all MPI communication events are matched. It should be noted that event 

R3 on Process P4 will be included in the final communication pattern since it matches event S4 (S4 is part 

of pattern R1.S4.S1) on process P3. The final communication pattern of the fictive trace in Figure 4 is 

shown in Figure 7.  

 

Figure 7. Detected communication pattern 

3.3. Detection of trace segments 

The proposed trace segmentation approach is based on studies for the analysis of DNA sequences in the 

field of bioinformatics. Our study for detecting the different computational phases in MPI programs is 

derived from the algorithm presented by Li et al. [Li 02] to identify the homogeneous sub-domains in a 

DNA sequence recursively. The segmentation algorithm, a divide-and-conquer algorithm where a problem 

is subdivided into smaller problems recursively, is proposed by Cormen et al. in [Cormen 90]. It relies on 

information theory concepts where Shannon entropy [Shannon 48] [Gray 11] and the Jensen-Shannon 

divergence measures [Grosse 02] are used to guide the segmentation process.  

R1  S4   S1 

S1           R1          

P1 

P2 

P3 

P4 

S2 S3         R2         R3 

R3   
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We applied the aforementioned recursive approach to the segmentation of a message passing trace by using 

the sequence of communication patterns detected in the previous section; where the MPI trace is first 

abstracted as a sequence of communication patterns (each pattern is represented by a symbol). The 

segmentation process first measures the degree of heterogeneity of the whole sequence, which results in 

two segments. For this, Shannon entropy is used [Gray 11] to measure the level of randomness of 

information in a sequence. A sequence with low entropy (homogeneous) is achieved when all the symbols 

appear with similar probabilities. On the contrary, sequences with high randomness will have high entropy 

which means that the data is heterogeneous and could be divided into more homogenous segments. The 

Shannon entropy H of a sequence S of length N with k different symbols is measured using equation 1 

[Gray 11]. 
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where Nj is the frequency of symbol j in S.  

The first step in segmenting a sequence is to measure its Shannon entropy. Then, we need to locate the 

position in the sequence where the highest level of heterogeneity occurs. This process is performed based 

on the following steps in order to select the two new subsequences: 

1. For every position i in S, we calculate the entropy of the left subsequence Sl and the right subsequence 

Sr from position i: 
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where Nj
l
 is the frequency of symbol j in Sl and Nj

r
 is the frequency of symbol j in Sr. Note that the 

symbol at position i is in Sl, and that Sl and Sr  may not be empty. 

2. The similarity between Sl and Sr is measured using the Jensen-Shannon Divergence (DJS) [Gray 11]. A 

higher DJS value means more heterogeneity between the two subsequences: 
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From the (N – 2) subsequence pairs, the pair with the highest DJS value contains the new detected phases. 

The two subsequences may also be segmented further into more subsequences. This segmentation process 

is applied recursively to the new subsequences until a certain stopping criterion is met.  
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Li et al. [Li 02] used the model selection framework in order to decide when to stop the segmentation 

algorithm. There are two models, M1 and M2, that we use to determine the split position in a sequence S. M1 

is characterized by the entire sequence S while M2 is characterized by the two sub-segments Sl and Sr. To 

further segment S, we need to find a model M2 at the border between the underfitting and the overfitting 

models. The Bayesian Information Criterion (BIC) [Akaike 78] is used to select the model that fits the data 

well with the number of parameters [Li 02] as follows: 

KNLBIC )log()log(2      (5) 

where L is the maximum likelihood of the model, N is the sequence length, and K represents the number of 

free parameters in the two models. K is computed as (kl + kr + 1 – k) where kl, kr, and k refer to the number 

of distinct parameters in Sl, Sr and S respectively. In order to show the ability of the BIC measure to 

determine the stopping criterion, we need to measure the likelihood for S using: 
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where pj is the probability of symbol j to appear in S and is calculated as Nj/N. Consequently, the log-

likelihood of M1 is measured using: 
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From equation 7, it is clear that the log-likelihood for S is equal to (- NH) where H is the entropy value for 

S (refer to equation 1). Additionally, the likelihood for M2, represented by Sl and Sr, is measured by: 
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where p
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j is equal to N
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j/N. Hence, the log-likelihood is calculated as: 
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Clearly, log L2 is equal to -Nl Hl – NrHr. Thus, the relative increase of the log-likelihood of the two models 

log(L2/L1) is equal to NH – (NlHl + NrHr) which, according to equation 4, is equal to NDJS. Thus, the 

maximum likelihood is measured at the point with the highest NDJS value. This means that the BIC value 

should be close to zero (i.e. ΔBIC < 0) for segmentation to continue. By substituting JSDN ˆ ( JSD̂ is the 

maximum DJS value) for L in equation 5, we get: 

KNDN JS )log(ˆ2      (10) 
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Thus, the sequence could be further segmented if JSD̂  
is greater than log(N)K/2N. Li et al. [Li 02] defined a 

new segmentation strength value s which is determined by the relative increase of 2NDJS from the BIC 

threshold as: 

KN

KNDN
s JS

)log(

)log(ˆ2 
       (11) 

A positive segmentation strength value will have the same segmentation effect as when the DJS value is 

greater than log(N)K/2N. Therefore, both measures could be used as the stopping criterion for the recursive 

segmentation algorithm. In our study, we will use the positive segmentation strength value as the indicator 

whether to stop or continue the segmentation process. The user can also adjust the value of s to be greater 

than zero which will result in a smaller number of subsequences. On the other hand, specifying a zero 

threshold value will increase the depth of the segmentation tree which means a larger number of 

subsequences.  

The segmentation algorithm results in a hierarchy of segments, which can be viewed as a binary tree (that 

we call segmentation tree) where the original sequence forms the root node and the leaves are the detected 

segments.  Each parent node (i.e. segment) in the tree is split into two segments at the point with the 

maximum DJS value in the parent node. The accuracy of the presented technique is at the cost of its 

relatively slower computational time since it requires many passes through the data to measure the DJS 

value for each pair of subsequences in each hierarchy in the tree. 

Figure 8 shows a typical segmentation tree (the table shows the values of the various parameters of the 

recursive algorithm). In this example, S0 contains the sequence of communication patterns of the entire 

trace. In the example of Figure 8 no further segmentation is possible. 

 

S ps pe S DJS pc P 
S0 1 16 2.62 0.91 8 - 

S1 1 8 2.94 0.74 2 S0 

S2 9 16 4.08 0.95 12 S0 

S3 1 2 2 0.75 1 S1 

S4 3 8 -0.66 0.14 4 S1 

S5 1 1 0 0 1 S3 

S6 2 2 0 0 2 S3 

S7 9 12 2.22 0.81 10 S2 

S8 13 16 1.75 0.69 15 S2 

S9 9 10 -1 0 10 S7 

S10 11 12 -1 0 12 S7 

S11 13 15 -1 0 15 S8 

S12 16 16 0 0 16 S8 
 

S0

S2

S3 S4 S7

S1

S5 S6

S8

S9 S10 S11 S12

 S5.S6.S4.S9.S10.S11.S12  

Figure 8. An example of a segmentation tree resulting from applying the algorithm 
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3.4. Phase Identification and Analysis 

Once the tree is constructed, we need to identify the boundaries of each phase. This is because a phase may 

contain multiple segments. To achieve this, we added a threshold t to indicate where to cut the tree. This 

threshold would provide flexibility to the analyst to vary the level of granularity of the final phases. The 

threshold t is set manually by the analyst and it varies from 0 to the height of the segmentation tree (the 

depth of the root node). A tool that supports our approach should offer the flexibility to modify the 

threshold t.   

On one hand, setting t to 0 would result in one large segment (S0 in the case of Figure 8) that contains all 

the communication patterns. This would be rarely desirable.  On the other hand, setting t to the height of 

the tree would result in fine-grained segments (S5, S6, S4, S9, S10, S11, S12) and phases. The analyst can vary 

t to decide on the level of granularity.  

Once the set of segments is identified, we need to map them to the original execution trace (that contains 

also the user-defined functions) in order to identify the user-defined functions that invoke the MPI events 

that form the patterns in the segments. Note that since we are only focusing on SPMD programs, all the 

processes execute the same functions and follow the same flow. This means that we only need to visit one 

process trace to be able to identify the user-functions that encompass the segments.   

We start by checking the function-call tree to identify all the functions in which the patterns of the first 

segments are invoked. For example, assume the list of final segments from Figure 8 is: S5, S6, S4, S9, S10, 

S11, S12. This means that t is set to the height of the tree. We first identify the functions that invoke all the 

MPI events that form the patterns in S5. This would result in a call subtree. Assume this subtree is rooted at 

node n. The next step is to check the patterns in S6 (the next segment right after S5). If S6 is also rooted at 

n1 or any child node of n then we put S5 and S6 as part of the same execution phase. If this is not the case 

then S6 suggests the start of a new phase. This is because a new phase should reflect the fact that some new 

functions are emerging while the previous ones (belonging to the previous phase) are disappearing in the 

trace, meaning that new computations are taking place. 

Once the phases are identified, we check their validity by referring to the source code or any available 

documentation. One way to adjust the result is to run the phase detection again by varying the threshold t. 

In practice, the tool that supports our approach should be flexible enough to allow the analyst to modify t 

dynamically. Determining the appropriate value of t in advance is a difficult problem because this 

parameter may vary from one system to another. 

4. Evaluation 
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In this section, we demonstrate the effectiveness of our approach by applying it to 15 different traces 

generated from the SMG2000
1
 industrial HPC system, and two traces from the BT NAS

2
 benchmark. We 

used the Score-P tool to generate the traces from the two target systems. Score-P generates the traces in 

OTF2 format. Our experiments were performed on a small cluster of 10 nodes (Intel Core i7-3770, 3.4GHz, 

RAM 12GB), connected using a standard IEEE 802.11 network. We developed our techniques using Java. 

The question that this study aims to answer is: Can a recursive algorithm be used to effectively segment an 

inter-process communication trace into execution phases?  

4.1. SMG 2000  

SMG2000 is an SPMD parallel semi-coarsening multi-grid solver for linear systems arising from finite 

difference, finite volume, or finite element discretization of the diffusion equation on logically rectangular 

grids. It performs a large number of non-nearest-neighbor point-to-point communication operations 

[SMG2000].  

The execution of SMG2000 involves three main phases which are Initialization, Setup and Solve [Tiwari 

11]. The Initialization phase is responsible for the creation and initialization of the grid objects and has 

main routines such as HYPRE_StructSMGCreate, and HYPRE_StructMatrixAssemble. The 

HYPRE_StructSMGSetup routine marks the Setup phase and the HYPRE_StructSMGSolve routine marks 

the Solve phase. We use this information in the validation of the detected phases.  

Table 1 shows the results of running our approach on 12 scenarios from SMG2000 with 1x1x1 input size. 

The rows of Table 1 are grouped into three categories where each category represents the execution of the 

system with the same process topology-base. The number of processes range from 16 to 1024. The 

16x16x4 scenario generates a very large number of events, over 598 million events. 

Table 1 also provides timing information. This time does not include the trace preprocessing step (adding 

delimiters and keeping only MPI events). The preprocessing time can reach up to one hour for large traces. 

We see in Table 1 that the communication behavior is directly related to the process topology. For 

example, when the number of processes is 64, the 3D process topology (4x4x4) scenario shows more 

complex behavior compared to the same number of processes in the 2D topology (8x8x1). The time it took 

to detect the process patterns in 4x4x4 was 2,378 milliseconds and in case of 8x8x1 it was only 611 

milliseconds. This is related to the number of communications among the processes in each scenario. The 

same behavior can be seen when comparing the number of process patterns for the other cases that have the 

                                                      

1http//www.llnl.gov/asc/purple/benchmarks/limited/smg/ 
2NAS Parallel Benchmarks, http://www.nas.nasa.gov 
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same number of processes. In situations where the number of processes is larger, but with a fewer number 

of grids, the communication behavior is less complex. For example, for the two 512-process scenarios, the 

16x16x2 topology has a simpler communication behavior when compared to the 8x8x8 topology. 

Table 1. SMG2000 Scenarios (problem size: 1x1x1), ∑ev: total number of events, ∑ mpiev total number of MPI calls, 

∑MSG: total number of exchanged messages, ∑cvp: number of collective operations per process, ∑PP: total number 

of distinct process patterns on all processes (excludes single event patterns), PPd: total process patterns detection 

execution time, ∑CP: number of distinct communication patterns, CPd: communication patterns construction time, 

CPLl: Communication Patterns List Length, PHd: phase detection time 

np Topology ∑ev ∑mpiev ∑msg ∑cvp ∑PP 
PPd 

(ms) 
∑CP CPLl 

CPd 

(ms) 

PHd 

(ms) 

16 4 x 4 x 1 641,646 13,479 7,132 12 223 127 49 101 14 19 

32 4 x 4 x 2 4,027,420 92,275 55,468 13 668 534 145 712 54 124 

48 4 x 4 x 3 11,104,714 264,471 170,584 14 1,455 1,866 252 1,626 169 310 

64 4 x 4 x 4 14,603,190 347,823 225,756 14 1,906 2,378 318 1,877 184 397 
 

64 8 x 8 x 1 4,241,270 89,739 49,692 12 1,210 611 191 299 91 38 

128 8 x 8 x 2 26,342,588 577,771 345,712 13 3,638 2,551 589 1,959 399 459 

256 8 x 8 x 4 103,400,644 2,276,539 1,479,184 15 10,035 22,836 1148 5,433 2,217 2,948 

512 8 x 8 x 8 309,733,410 6,507,339 4,305,444 16 24,522 129,455 2899 12,644 49,229 13,802 
 

256 16 x 16 x 1 24,394,422 495,163 265,908 12 5,680 1895 712 937 973 180 

512 16 x 16 x 2 151,226,556 3,063,087 1,727,100 13 16,550 14,623 2290 6,321 4,813 4,392 

768 16 x 16 x 3 418,407,354 8,542,783 5,169,608 14 34,310 117,904 3388 11,473 23,977 13,645 

1024 16 x 16 x 4 598,699,396 11,866,079 7,311,836 15 42,088 193,741 3906 15,373 41,801 19,016 

 

Table 2 provides four different scenarios of the SMG2000 4x4x4 topology with varying input problem size. 

It should be noted that the first entry in Table 2 is the same as the fourth entry in Table 1. It is clear that the 

problem size has a direct impact on the communication behavior among the processes in the program. It is 

apparent that problem size (1x1x1) has simpler communication behavior when compared to the other 

scenarios. For example, the execution of problem size (2x2x2) has 3 times more the number of exchanged 

point-to-point messages than that of the (1x1x1) case. Furthermore, problem size 3x3x2 has more point-to-

point communications (approximately three times larger) when compared to the 8x8x2 process topology in 

Table 1 with problem size of 1x1x1.  

Table 2. SMG2000 Scenarios (Topology: 4x4x4, Varying Input Problem Size) 

np 
Problem 

Size 
∑ev ∑mpiev ∑msg ∑cvp ∑PP 

PPd 

(ms) 
∑CP CPLl 

CPd 

(ms) 

PHd 

(ms) 

64 1 x 1 x 1 14,603,190 347,823 225,756 14 1,906 2,378 318 1,877 184 397 

64 2 x 2 x 2 45,151,470 1,172,727 767,564 16 3,851 9,678 491 5,736 408 2,377 

64 3 x 2 x 2 52,621,296 1,331,775 851,476 16 4,090 11,170 539 6,033 652 2,838 

64 3 x 3 x 2 67,778,872 1,722,049 1,100,424 16 5,322 19,969 615 6,694 977 5,494 
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Figure 9 shows a textual representation of a communication pattern that is repeated 16 times in the 4x4x2 

scenario. This example shows that the communication pattern is occurring among the processes in the same 

grid (black nodes). The pattern shows that only processes P0, P1, P2, P3, P8, P9, P10 and P11 are involved 

in communication.  Process P0 communicates with processes P1, P2, P8, P9, and P10 while processes P9 

and P10 communicate with all the processes involved in the pattern.  

 

 

P0 : S1.S2.S8.S9.S10.R1.R2.R8.R9.R10 
P1 : S0.S2.S3.S8.S9.S10.S11.R0.R2.R3.R8.R9.R10.R11 
P2 : S0.S1.S3.S8.S9.S10.S11.R0.R1.R3.R8.R9.R10.R11 
P3 : S1.S2.S9.S10.S11.R1.R2.R9.R10.R11 
P8 : S0.S1.S2.S9.S10.R0.R1.R2.R9.R10 
P9 : S0.S1.S2.S3.S8.S10.S11.R0.R1.R2.R3.R8.R10.R11 
P10: S0.S1.S2.S3.S8.S9.S11.R0.R1.R2.R3.R8.R9.R11 
P11: S1.S2.S3.S9.S10.R1.R2.R3.R9.R10 

 

Figure 9. Communication patterns in 4x4x2 topology (P0 is Process 0, S1: Send to P1, R1: Recv from P1) 

 

Another interesting pattern that is repeated 20 times in the trace involves all the processes in the two grids 

where each process communicates with its first and second neighbors in each direction in the two grids. For 

example, process P1 communicates with processes P2, P4, P5, P6, P8, P9, P10, P16, P17, P18, P20, P21, 

P22, P24, P25, P26 and process P10 communicates with all the other processes in the two grids. Another 

pattern that is repeated 10 times in the trace involves only two processes from the two adjacent grids which 

are processes 10 and 26. All the scenarios have the same repeating collective communication pattern 

ALLREDUCE.ALLREDUCE. This collective communication occurs three times in the program execution 

and marks the end of each phase. 

S ps pe L S DJS pc P S0

S2

S3

S1

S5 S6

S4

S7 S8

Init (13%)  Setup (48%)        Solve (39%)
 

S0 1 15,373 15,373 23.68 0.83 5,601 - 

S1 1 5,601 5,601 1.53 0.75 2,814 S0 

S2 5,602 15,373 9,772 -0.77 0.05 6,257 S0 

S3 1 2,814 2,814 2.99 0.89 1,081 S1 

S4 2,815 5,601 2,787 15.77 0.9 4,054 S1 

S5 1 1,081 1,081 215.04 1.01 540 S3 

S6 1,082 2,814 1,733 11.49 0.97 1,945 S3 

S7 2,815 4,054 1,240 22.06 0.96 3,517 S4 

S8 4,055 5,601 1,547 0.09 0.53 5,008 S4 

 

Figure 10. Recursive Segmentation for Communication Patterns Sequence of 16x16x4 Scenario (Ps: start position, Pe: 

end position, l: length, DJS: Jensen-Shannon Divergence, pc: cutting position of max divergence, s: Segmentation 

Strength, P: parent node, t = 3) 
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Figure 10 shows the segmentation results when applied to the communication pattern sequence generated 

from the 16x16x4 process topology example in Table 1. The communication pattern list size is 15,373.  In 

this example, we used t= 3 to cut the segmentation tree. By investigating the execution trace, S1 includes 

the initialization and setup phases and S2 represents the Solve phase. S2 is homogeneous with a negative 

semgentation strength, which cannot be further segmented using our technique. The pattern at position 

5,602 is an ALLREDUCE collective operation which is the first pattern in the Solve phase. The trace has 

three ALLREDUCE collective patterns. We already explained how a single collective operation could be 

detected as a communication pattern. Furthermore, the trace has three occurences of the 

ALLREDUCE.ALLREDUCE pattern. Each occurrence marks the end of a main phase (Initialization, 

Setup and Solve). The positions of the ALLREDUCE.ALLREDUCE pattern are 1081, 5601,  and 15373.  

Figure 11 shows the plot of the DJS for the whole pattern sequence for three different scenarios. Figure 11a 

shows the DJS for 16x16x4 scenario. The graph shows the three identified phases that were detected in 

Figure 10 where the initialization phase was detected at t=3 as shown in the segmentation tree. The pattern 

list was first segmented at point 5601 which is exactly at the beginning of the Solve phase. This shows that 

our approach scales up to larger process numbers. The same behavior was exactly the same for the other 

3D process topologies for problem size 1x1x1. Figure 11b shows that when using a 2D topology the 

communication behavior in the program changed which resulted in a different DJS for the communication 

pattern list. The Solve phase was detected at t=4 in the segmentation tree. This behavior is consistent for all 

the 2D topology scenarios. Another interesting result is clear when increasing the problem size in Figure 

11c. The initialization phase contains only four communication patterns which are the ALLGATTHER, 

ALLGATHERV, a communication pattern (call it CP1) that involves all the processes in the program and 

finally the ALLREDUCE.ALLREDUCE pattern that marks the end of the phase. The Solve phase starts at 

position 2345 and was detected from the first segmentation step. It is interesting that CP1 is also occurring 

in the Setup phase. In the other topologies, the initialization phase contains short communication patterns 

that involve a fewer number of processes which may indicate that these patterns together may compose one 

large communication pattern that involves all the processes in the program which will result in only four 

patterns in the initialization phase for all the scenarios. However, since our algorithm only looks for 

repeating patterns (maximal repeats) on each process this communication behavior could not be detected. 

Moreover, the segmentation algorithm was able to identify the phases much faster in the 1x1x1 problem 

size scenarios (t=1 for the Solve phase and t=3 for the other two phases). It should be noted that the size of 

phases in Figure 11 does not represent the execution time of each phase but corresponds to the number of 

communication patterns in each phase. 
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(c) DJS for 4x4x4 Topology (3x2x2 Problem Size) 

Figure 11. Jensen-Shannon Divergence for S0 

We mapped the detected segments to the original trace and located the user-defined routines that were 

called at the beginning of each phase. We used the detailed SMG2000 description available at [21] to 

validate the correctness of the detected phases. In the following, we conclude the outcome of our analysis 

of SMG2000 for the 16x16x4 topology example.  

Initialization Phase: Segment S5 in Figure 10 represents the initialization phase. This phase contains a 

total of 1081 communication pattern instances. The HYPRE_StructGridAssemble sub-phase which 

includes the ALLGATHER and ALLGATHERV collectives was detected at depth 11 in the segmentation 

tree. Moreover, the HYPRE_StructMatrixAssemble sub-phase which corresponds to the communications 

from 4 to 1081 in the pattern sequence was also detected at depth 11 in the tree. 

Setup Phase: This phase starts at position 1082 and ends at position 5601 in the patterns sequence. It spans 

the three segments S6.S7.S8 shown in Figure 10 which are included in the call to the 

HYPRE_StructSMGSetup routine. 
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Solve Phase: This phase starts at point 5602 and ends at point 15373 in the patterns sequence and only 

occurs in S2 segment as shown in Figure 10. The detected phase starts at the Enter event of the 

HYPRE_StructSMGSolve routine and ends at its Exit event. S2 is a very homogenous phase due to its 

iterative behavior. Therefore, S2 could not be further segmented to discover its sub-phases. This behavior is 

consistent in all the 15 presented scenarios. Our approach, which is based on the segmentation of 

heterogeneous sequences, fails in identifying fine-grained phases in such cases.  

4.2. NAS – Block Tridiagonal 

The second system in this evaluation is the Block Tridiagonal (BT) benchmark which is part of the NAS 

PB
1
 suite. It uses an implicit algorithm to solve the 3-D compressible Navier-Stokes equations.  

Table 3 shows the two scenarios involved in our study. The first one is generated from a class W problem 

scenario and the second one is from a class B problem scenario. The number of processes is 16 and 32 

respectively.  

Table 3. NAS BT Scenarios 

np Class ∑ev ∑mpi ∑msg ∑cvp ∑PP 
PPd 

(ms) 
∑CP CPLl 

CPd 

(ms) 

PHd 

(ms) 

16 W 6,500,800 38,912 25,728 14 32 630 4 211 54 89 

32 B 1,033,480 48,560 32,160 14 64 954 4 211 101 89 

 

Figure 12 shows the process topology (right) and the detected patterns. Our approach detected one global 

point-to-point communication pattern PT1 that is repeated 201 times in the trace. PT1 is represented 

textually to simplify reading. The other communication patterns are collective operations. The BCAST 

communications are performed at the initialization while the REDUCE collectives are performed at the 

finalization phase. 

The NAS BT benchmark consists of the following three main phases [Geisler 99]: 

 Initialization: sets all the initial values. 

 Solve: 

- Copy Faces: exchanges boundary values between neighboring processes. 

- X Solve: solves the problem in the x-dimension. 

- Y Solve: solves the problem in the y-dimension. 

- Z Solve: solves the problem in the z-dimension. 

- Add: performs a matrix update (no communications). 

 

 Finalization: verifies the solution integrity, cleans up data, and prints the final results. 

                                                      

1 https://www.nas.nasa.gov/publications/npb.html 
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PT1 (201): 
  P0: S1.R1.S2.R2.S8.R8.S9.R9 
  P1: S0.R0.S3.R3.S4.R4.S11.R11 
  P2: S3.R3.S0.R0.S5.R5.S12.R12 
  P3: S2.R2.S1.R1.S7.R7.S6.R6 
  P4: S6.R6.S1.R1.S14.R14.S8.R8 
  P5: S7.R7.S2.R2.S13.R13.S9.R9 
  P6: S4.R4.S3.R3.S12.R12.S10.R10 
  P7: S5.R5.S3.R3.S11.R11.S10.R10 
  P8: S12.R12.S15.R15.S0.R0.S4.R4 
  P9: S11.R11.S15.R15.S0.R0.S5.R5 
  P10:S14.R14.S13.R13.S6.R6.S7.R7 
  P11:S9.R9.S14.R14.S1.R1.S7.R7 
  P12:S13.R13.S8.R8.S6.R6.S2.R2 
  P13:S12.R12.S15.R15.S10.R10.S5.R5 
  P14:S15.R15.S10.R10.S11.R11.S4.R4 
  P15:S14.R14.S13.R13.S9.R9.S8.R8 

PT2 (5): BCAST, PT3 (3): REDUCE 
PT4 (2): BCAST.BCAST 

 

 
 
Process Topology:4x4x4 

Figure 12. Communication Patterns in BT (Class: W, Iterations: 200) and Process Topology 

Figure 13 lists the few resulted segments for positive segmentation strength. The small number of segments 

is expected due to the low number of communication patterns, resulting in low entropy. Segment S1 

represents the initialization phase and includes only broadcast collective communications. S3 represents the 

Solve phase and consists of only one communication pattern that is repeated 201 times. Finally, S4 

represents the finalization phase where the verification of results as well as the output is printed. This is due 

to the repeating nature of the program. 

S ps pe L S DJS pc P S0

S2

S3S1 S4

Init (7%)        Solve (92.5%)     Final (0.5%)  

S0 1 211 211 10.14 0.2 7 - 

S1 1 7 7 -0.42 0.23 6 S0 

S2 8 211 204 4.64 0.11 208 S0 

S3 8 208 201 -1 0 208 S2 

S4 209 211 3 -1 0 211 S2 

 

Figure 13.  Recursive Segmentation (Ps: start position, Pe: end position, l: length, DJS: Jensen-Shannon 

Divergence, pc: cutting position of max divergence, s: Segmentation Strength, P: parent node) 
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5. Discussion and Threats to Validity 

Our approach can be used both in SPMD and MPMD HPC systems. Naming the phase in MPMD systems 

will not be straightforward as in SPMD since the functionality in MPMD programs is decomposed among 

the processes. 

The recursive segmentation algorithm provides very accurate results based on the specified threshold and 

segmentation strength. The algorithm derives the segments and sub-segments based on the entropy in the 

input sequence. The analyst may vary the threshold in order to achieve fine- or coarse-grained segments 

(phases in our context). Recursive segmentation is not linear with a complexity of O (NLog(N)) where N 

represents the size of the sequence to be segmented [Li 02]. In our case, we applied segmentation on a 

sequence of communication patterns. Therefore, N refers here to the number of pattern occurrences in a 

trace and not the number of events in the original trace. For example the SMG2000 16x16x1 trace contains 

approximately 600 million events but only around 15 thousand patterns. Applying the recursive 

segmentation directly on raw traces may pose scalability issues. The complexity of extracting patterns from 

a trace using the algorithm proposed in Section 3.2 is O(l*S) where l refers to the length of the longest 

pattern and S the size of the raw trace since the algorithm may require multiple passes through the trace 

until the longest pattern is formed. 

One way to improve the scalability of the approach is to filter out functions that implement low-level 

utilities or any other components of the system that may not add any value to the analysis. Utilities tend to 

be the functions that are repeated most frequently in the trace [Hamou-Lhadj 04]. The challenge, however, 

is to automatically distinguish the utilities from core functions. We intend to investigate this in future work. 

User-based filtering could be a possible approach. Users can choose to instrument smaller parts of the 

system that they want to focus their analysis on. 

Another limitation of our approach is that we labelled the phases manually by referring to whatever 

documentation (including source code comments) available. In practice, manual labelling is not desirable. 

We need to investigate ways to automatically extract labels from various system artifacts. A possible 

solution is to use information retrieval techniques to mine source code comments and other artifacts such as 

method names, etc. A good example of this is the work by Medini et al. [Medini 12].  The authors proposed 

a labelling mechanism using text mining for labelling segments once extracted. Their labelling method can 

be used with any trace segmentation technique. Their work, however, is limited to simple Java programs. 

Extending this work to heterogeneous environments is necessary.  
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The selection of the dataset is one of the common threats to validity for this type of studies. It is possible 

that the traces extracted from these two systems share common properties that we are not aware of and 

therefore, invalidate our results. However, these two systems are used in many similar studies so we 

believe that they are representative systems for this research. This said, we acknowledge that we need to 

apply our approach to other systems.   

Another threat to validity lies in the way we have selected the traces in this study. We selected the traces by 

running the systems using various configurations to avoid any bias. One may argue that a better approach 

would be to select traces based on other criteria such as the size of the traces or the number of distinct 

functions they contain, etc. We believe that longer and more complex traces may perhaps have an impact 

on the running time of the approach, but we are not convinced that the accuracy of our approach depends 

on the complexity of the traces. Besides, traces used in this paper are very large (they contain tens of 

millions of events); they should provide good coverage of the running systems. 

In addition, we see a threat to validity that stems from the fact that we implemented the recursive 

segmentation algorithm based on the description of the approach in the paper [Li 02]. Unfortunately, we 

were not able to have access to the implementation of the authors. We tested our implementation on many 

examples to make sure it works properly.  

The threshold, t, may be a threat to validity since a different threshold may lead to different results. In 

practice, we need to have a way to vary the threshold until satisfactory phases are obtained. This can be 

achieved by embedding this approach in a trace analysis tool and allowing users to interact with the tool to 

vary the threshold.  

Moreover, we see a threat to validity in the trace generation tool we used. If the tool does not handle 

indeterminism well and other complex scenarios, this may affect our approach. This threat is mitigated by 

the fact that we used the Score-P tool suite, which is a well-supported infrastructure for tracing HPC 

systems, developed by HPC experts. 

Finally, we see a threat to validity that stems from the fact that we only used one industrial system, which 

hinders the generalizability of our approach.  

6. Conclusions and Future Work 

We proposed a new approach for identifying execution phases in message passing programs based on the 

segmentation of the communication patterns sequence extracted from execution traces generated from 

SPMD HPC systems. 
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Our approach elaborates on the steps that are required to identify the execution phases supported by an 

explanatory example. We validated the results of our approach on large scale traces from the SMG2000 

system and the BT NAS benchmark. The presented approach does not only identify the main program 

phases but also the sub-phases.  

Our approach depends on the threshold t to determine the level of granularity of the detected phases. One 

possible way to determine this threshold is to have domain experts apply our technique to several post-

mortem traces, analyze the resulting phases by varying t, and decide on the ones that are most suitable. The 

other analysts can then use the same t when analyzing similar traces of the same systems.  

Our approach is based on MPI 2.0. We need to examine the changes to MPI, reflected in MPI 3.0, and see 

how these changes affect our approach. This may require updating the way some MPI operations are being 

handled by our approach. 

In the future, we intend to enhance the phase detection approach by including a different segmentation 

technique for segmenting long homogeneous sequences such as the ones identified in the target systems. 

This will provide a way to further break down these long phases into sub-phases.  

Moreover, we intend to further reduce the number of distinct communication patterns by considering the 

similarity among them resulting in a more homogeneous sequence. 

We also intend to improve the performance of our algorithms by parallelizing them such as the per-process 

detection algorithm and the recursive segmentation technique. Moreover, we will use our technique in 

identifying performance bottlenecks by locating irregular communication patterns due to delays in 

computations as well as network overhead. 

Finally, we should also investigate how this approach can be extended to support other inter-process 

communication models, in addition to SPMD.  
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