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Abstract

High Performance Computing (HPC) systems are used in a variety of industrial and research sectors to solve complex problems that
require powerful computing platforms. For these systems to remain reliable, we should be able to debug and analyze their behavior
in order to detect root causes of potential poor performance. Execution traces hold important information regarding the events
and interactions among communicating processes, which are essential for the debugging of inter-process communication. Traces,
however, tend to be considerably large, hindering their applicability. In previous work, we presented an approach for automatically
detecting communication patterns and segmenting large HPC traces into execution phases. The goal is to reduce the effort of
analyzing traces by allowing software analysts to focus on smaller parts of interest. In this paper, we propose an approach for
detecting and localizing inefficient communication patterns using statistical and trace segmentation methods. In addition, we use
the Analytic Hierarchy Process to categorize slow communication patterns based on their severity and complexity levels. Using our
approach, an analyst can quickly locate slow communication patterns that may be the cause of important performance problems.
We show the effectiveness of our approach by applying it to large traces from three HPC systems.
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1. Introduction examples of communication patterns [3]. Figure 1 shows the

butterfly and the bi t tt for eight .
The demand for High Performance Computing (HPC) sys- utiertly anc fie billaty free patieins fot elght processes

tems continues to grow to meet the needs of many industrial
and research sectors such as bioinformatics, medical informa-
tion processing, and financial analytics, for powerful systems to
process and solve large and complex problems [1]. The popu-
larity of HPC programs has further flourished with the advent
of multicore and cloud computing environments.

HPC programs that are developed using the Message Pass-
ing Interface (MPI) standard [2] rely on a large number of pro- (a) Butterfly (b) Binary Tree
cesses working together by exchanging messages to solve com-
putationally intensive problems. MPI combines processes in
different groups called Communicators. Processes in one com-
municator interact with each other according to a virtual topol-
ogy, which usually follows a linear, 2 or 3-dimensional mesh
structure. Processes communicate with their nearest or non-
nearest neighbors in the mesh. In a typical MPI program, these
communications are repetitive and form communication pat-
terns. A communication pattern groups sequences of MPI com-
munication events from different processes that are working to-
wards a specific task. The binary tree and butterfly patterns are

Figure 1: Communication Pattern Examples

Performance analysis and debugging of HPC systems re-
quire dynamic analysis techniques due to the distributed nature
of these systems. An early work presented by Preissl et al. [4]
showed that automatic identification of communication patterns
from execution traces can be useful for understanding an appli-
cation’s communication behavior, that would eventually facili-
tate debugging and performance analysis tasks. The problem is
that typical traces can be overwhelmingly large with many in-
stances of various communication patterns. The mere detection

- of communication patterns may still generate a lot of data that is
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which a large trace is partitioned into distinct segments, which
depict execution phases of the traced scenario, and detect com-
munication patterns within each segment [5][6][7].

An execution phase is broadly defined as a region within
the trace that contains communication patterns, which imple-
ment a specific program functionality [7]. Trace segmentation
is also used to support program comprehension tasks in mono-
lithic systems [8]. The main objective is to provide a way for the
software analyst to only focus on parts of the trace of interest
instead of browsing the whole trace. Casas et al. [S] and Chetsa
et al. [9] showed how MPI trace execution phases can help
with performance optimization tasks by uncovering regions in
a trace with the highest latency. Isaacs et al. [6] presented a
trace visualization and analysis tool that logically orders and
visualizes the MPI communication behavior into fine-grained
phases to determine the lateness in program operations using
temporal metrics and visual inspection.

In our previous work [7], we proposed an effective trace
segmentation approach, which involves two main steps. In the
first step, we detect communication patterns in the entire trace
using natural language processing techniques. In the second
step, we use the extracted communication patterns to identify
dense homogeneous clusters, which represent distinct execu-
tion phases of the trace. This is achieved using information
theory concepts such as Shannon entropy [10] and the Jensen-
Shannon Divergence measure [11]. The new contributions of
this paper are summarized as follows:

e We improve our previous technique for segmenting traces
into execution phases using the Akaike Information Cri-
terion (AIC) [12] to identify finer execution phases.

e We extend the communication pattern detection approach
by using distinctive events to identify the boundaries of

coherent communication events in each process trace, which

facilitates the detection of process repeating patterns.

e We propose an approach for detecting inefficient commu-
nication pattern instances in trace segments using statis-
tical analysis. More specifically, we use the Median Ab-
solute Deviation (MAD) and the Modified Z-score mea-
sures [13] to determine slow communication patterns.

e We propose an approach for the categorization of com-
munication patterns using the Analytic Hierarchy Process
(AHP) [14] by examining the complexity and severity
levels for slow patterns in execution phases.

e We demonstrate the effectiveness of our approach by ap-
plying it to five large traces generated from three different
HPC systems.

e Through the analysis of a sample of inefficient patterns
detected by our approach, we provide a detailed discus-
sion on the potential root causes, which demonstrate the
usefulness of our approach in practice.

The rest of the paper is organized as follows. Section 2
presents a background of HPC and sequence segmentation fol-
lowed by related studies on techniques for the analysis of MPI

programs in Section 3. Section 4 details the proposed approach.
In Section 5, we apply our approach on several traces generated
from HPC systems and show how it could detect patterns of
inefficient behavior. We conclude our paper in Section 6 and
discuss future directions.

2. Background

This section starts by providing a more detailed view of
HPC and communication patterns. Then, it presents the se-
quence segmentation technique that we use in our study for
identifying computational phases.

2.1. A More Detailed View of HPC & Communication Patterns

Complex industrial and scientific applications rely on HPC
systems to process data in a reasonable time. HPC systems use
shared and distributed memory programming paradigms. Pro-
cesses in a distributed memory environment collaborate using
message passing, defined based on the MPI standard. The MPI
specification provides point-to-point, collective, and one-sided
communications. It also supports blocking and non-blocking
modes of communication. The point-to-point operations con-
tain the message tag, communicator, and size of exchanged data
attributes. An example of an MPI operation is MPI_Waitall,
which makes the process wait for a group of non-blocking events
to complete.

MPI programs follow the Single Program Multiple Data
(SPMD) and the Multiple Program Multiple Data (MPMD) pro-
gramming models [15]. In SPMD, MPI decomposes the data
into different processes that use the same program, whereas,
in MPMD, processes execute different programs with different
data. The behavior of MPI systems takes the form of communi-
cation patterns, which are composed of either point-to-point or
collective communication events.
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Figure 2: Sample MPI Trace

Figure 2 shows 16 processes (Py — P}s) exchanging point-
to-point messages. A communication pattern contains only the
processes that are involved in message exchange. Therefore,
we consider A, B, and C as distinct patterns. These patterns
are repeating 6 times in the trace. Patterns A, B, and C involve
processes Po— Py, P,—P)1, and Py, —Ps respectively. The logi-
cal column represents the logical ordering of the events without
any delays while columns (1 —6) depict the real communication
with different durations.



At a high-level of abstraction, a typical MPI program con-
sists of three main phases, which are the Initialize, Setup, and
Solve phases. These three phases contain sub-phases based on
different functionalities. In each phase, the processes commu-
nicate based on various patterns. Identifying these phases helps
in localizing the analysis of the program, and provides fine-
grained and coherent views of the trace. For example, let us
consider that we have six execution phases in the trace in Figure
2, where each phase corresponds to one column. Consequently,
each phase contains 3 different communication patterns where
the communications in Phase 6 are slower than the previous in-
stances.

In message passing programs, the latency is characterized
as a wait state where a process remains idle until it synchro-
nizes with the delayed counterparts. Figure 3 shows three dif-
ferent types of latency. Figure 3a shows that the receiving pro-
cess P; enters a wait state due to the late-sender Py. Figure 3b
shows that process Py enters a wait state since process P; is
late in posting its receive operation. Figure 3¢ shows that pro-
cesses Py and P; entered a wait state due to the slow P, process
during collective communication. These kinds of delays occur
due to several reasons such as load imbalance, network conges-
tion, longer transmission routes, resource limitations, and large
and excessive message transfers. These delays may cause the
latency to propagate across the communicating processes, re-

sulting in communication imbalance.
late send
receive

(a) Wait state caused by late sender in P,

P, send
P, late receive

(b) Wait state caused by late receiver in P,

Allreduce
P, R Allreduce
P, late Allreduce

(c) Wait state caused by late collective in P,
Figure 3: Latency Examples in Message Passing Programs

Py
P

P,  waiting

2.2. Sequence Segmentation

In this section, we present a sequence segmentation tech-
nique that we use in our approach to segment the trace into
more coherent phases. The algorithm relies on Shannon en-
tropy [10] to measure the level of randomness in the sequence.
Low entropy suggests that the sequence is rather homogeneous
and may not be further segmented. Equation 1 measures Shan-
non entropy H of sequence S, where N is the length of the
sequence, k is the number of distinct symbols, and N; is the fre-
quency of the j”* symbol in the sequence. Moreover, N /N is
the probability of the j” symbol in the sequence.

k
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To find the segmentation point in the sequence, we need to
calculate the entropy for the left (S ;) and the right (S ;) segments
at each point in the sequence. Equations 2 and 3 measure the
entropy for §; and S, at point i in S respectively.
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To find the segmentation point, we use the Jensen-Shannon
Divergence (Djy) [11] to measure the similarity between S; and
S, at each point in S using Equation 4.

N-—i

i
Dys =H- NHi - THr )

The point with the highest D;s value indicates the segmen-
tation position. To determine when to stop segmenting a se-
quence, we apply the Bayesian Information Criterion (BIC)
model selection criterion [16]. Equation 5 represents the BIC
measure for model selection where L is the maximum likeli-
hood of the model, while K represents the number of free pa-
rameters in the two models.

BIC = -2logL+ KlogN 4)

BIC is used to check whether the model M, (represented by
S), or M, (represented by its direct subsequences S; and §,)
fit the data well and should be selected. The number of free
parameters K is calculated using (k; + k. + 1 — k), where k;, k,,
and k represent the number of distinct parameters in S, S, and
S respectively. To select the model represented by S; and S,
the BIC value should be close to zero (i.e. ABIC < 0). Thus,
we need to calculate the likelihoods L; and L, for M, and M,
respectively. Equation 6 calculates L; for S where p; is the
probability of finding the j symbol in S .

k
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The value of p; is the probability of the j™ symbol to appear
in § and is calculated as N;/N, where N is the number of times
the j™ symbol appears in S while N is the length of S. Conse-
quently, the log-likelihood of M| is measured by Equation 7.

k
N;
log Li(S) = ,_Zl Njlog - )
By referring to Equation 1, the log-likelihood for M (log
L(S)) is calculated using Equation 8.

log Li(S) = -NH ®



Similarly, the likelihood for M, is measured using Equation
9 where pé is equal to Nj./N and P} is equal to NZ/N.
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Hence, Equation 10 measures the log-likelihood for M.
1
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By referring to Equation 1, the log-likelihood for M, (log
L,(S1,S,)) is calculated using Equation 11.

log L»(S1,S8 ) = =NH; — N, H, (11)

The relative increase of the log-likelihood of the two models
is calculated as log(L,/L;) which is equal to log(L,) — log(Ly).
Using Equations 8 and 11, the value of log(L, /L) is calculated
using Equation 12.

L,
log = = NH = (NH; + N,H,) (12)
1

By referring to Equation 4, the value of ND,g is calculated

using Equation 13.

NDys = NH — (N;H, + N,H,) (13)

The maximum likelihood is set at the point with the highest
NDygs value. To further segment the sequence, the BIC value
should be close to zero (i.e. ABIC < 0). By substituting ND g
(where Dy is the maximum D, value) for L in Equation 5, we
get the inequality shown by Equation 14.

2ND;s > KlogN (14)

Thus, we can segment sequence S if Dyg is greater than
(Klog N)/2N. Similarly, we can use the positive segmentation
strength s in Equation 18 to determine further possible segmen-
tation of the sequence. The value of s is determined by the
relative increase of 2ND ;g from the BIC threshold (K log N)
value [17]. Therefore, for D;g with a positive s value, model
M, will be selected (i.e. S is segmented). Otherwise, sequence
S will not be further segmented.

_ 2NDys — KlogN

= 15
g KlogN (15

3. Related Work

Several tools have been developed for the visualization of
MPI traces to facilitate program comprehension and system anal-
ysis tasks [18][19]. Although trace visualization tools capture
details regarding the whole execution trace, it is difficult to an-
alyze and comprehend the program execution by mere reliance
on visualization techniques. For example, Figure 4 shows a
zoomed-in view of a trace of 16 processes using the Vampir

[18] visualization tool. This typical view of the trace is clut-
tered, making it challenging to analyze the communication be-
havior and find the slow events and patterns without some sort
of trace analysis techniques.

Figure 4: Cluttered view of SMG2000 with 16 Processes

Many approaches and tools [20][19] used dynamic analy-
sis to guide in the performance analysis process. For example,
several studies used the program’s critical path to determine
performance issues [21][22]. However, critical paths may ig-
nore some interesting execution paths during analysis. Wei et
al. [23] presented MPI-RCDD for runtime detection of dead-
locks by logging MPI communications. The algorithm depends
on the message timeout and process dependency mechanisms
in identifying deadlocks. In the following, we present related
studies of execution trace analysis techniques for program com-
prehension and performance analysis in MPI programs.

3.1. Online Monitoring Approaches

Mao et al. [24] proposed an approach to identify wait states
and quantify them in order to guide in detecting the root cause
of latency. They used a lightweight profiler instead of analyz-
ing large execution traces. The proposed approach is scalable
and portable with low overhead induced on the running pro-
cesses. Sikora et al. [25] proposed a dynamic performance ab-
straction technique to automatically discover causal execution
paths (both communication and computational events) in MPI
parallel programs to help understand their performance behav-
iors. This approach helps in online diagnosis of performance
issues generated from execution monitoring of the running pro-
gram. It extracts the application behavior from high level pro-
gram structures such as loops and communication operations.
Then, it labels all program elements with statistical execution
profiles. Our approach provides a more fine-grained analysis
since it detects all the communication patterns involved in the
trace and compares their performance in order to identify inef-
ficient behaviors.

Aguilar et al. [26] used event flow graphs in the context
of performance monitoring of MPI applications to keep track
of temporal orderings among events and guide in visual perfor-
mance analysis. They used their profiling approach for runtime
identification of loop nesting structures that involve commu-
nication events without explicit instrumentation of the source



code. They utilize the iterative behavior of MPI parallel pro-
grams by only collecting statistical information once the pro-
gram goes in a stable state, from a small number of iterations,
resulting in low overhead on the running program. Usually, the
stable state represents the Solve phase since it contains a long
iterative loop. The usefulness of this approach is characterized
by avoiding the generation of the whole execution trace. In our
approach, we need to detect all the communication patterns in
the execution trace (containing user-defined and MPI events)
and then segment the sequence of detected communication pat-
terns into more homogeneous regions representing the different
phases in the program.

Jeannot et al. [27] introduced an introspection monitoring
library in Open MPI for runtime optimization of communica-
tion time in MPI applications. The main objective is to en-
able the program to query its state using the monitoring system.
The library provides session management, where monitoring
can be suspended at any time or can be performed on certain
code sections. Moreover, they monitor the collective commu-
nications based on their point-to-point implementations which
can be used for detecting the affinity among the communicating
processes. Ramesh et al. [28] presented an MPI Performance
Engineering infrastructure for MPI runtime introspection, on-
line monitoring, and performance tuning recommendations for
production and synthetic applications. It is based on the MPI
Tools Information Interface (MPI_T) available in the MPI 3.0
standard [2]. It extended the features found in the TAU Perfor-
mance System, MVAPICH2, and BEACON [19] to fully exploit
the features offered by MPI_T.

3.2. Offline Performance Analysis and Debugging Approaches

Taheri et al. [29] presented Diff Trace, a performance debug-
ging tool that utilizes the full program trace to differentiate be-
tween normal execution trace and a fault-laden trace. The tool
provides features for filtering out function calls and presents in-
formation about loop-level behavioral differences. They used
incremental algorithms to represent loops as concept lattices.
Then, they apply hierarchical clustering on these behaviors and
determine the inefficient ones.

Gallardo et al. [30] presented MPI Advisor, a tool for pro-
viding performance recommendations by tuning MPI configu-
ration parameters. The main purpose of MPI Advisor is the
characterization of the main communication behavior of MPI
applications and providing recommendations on how to tweak
runtime performance. This tool targets application developers
who may have insufficient knowledge of the MPI architecture
and design. MPI Advisor starts by collecting the data, analyz-
ing the traces, and then providing recommendations on which
point-to-point protocols to use, algorithms for implementing
collective communications, mapping of MPI tasks to cores, and
the Infiniband transport protocol.

Kenny et al. [31] studied the effect of network and its pa-
rameters on the performance of MPI programs. They classify
the time spent in MPI operations as communication, synchro-
nization, and MPI stack components. They used the Bayesian
inference to parameterize the synchronization latency and the
MPI stack. By replaying the trace and applying the Bayesian

inference, they concluded that the overhead incurred by com-
munication synchronization and the software stack components
are significant to the overall performance.

3.2.1. Analysis of wait states approaches

Mohr et al. presented KOJAK [32] to locate patterns of in-
efficient behavior in each process based on wait states in MPI
programs. They classify the patterns based on communication
durations to determine the ones that are causing the program’s
inefficient behavior. Scalasca [33], the new version of KOJAK,
is a trace analysis tool that is used in the localization of wait
states and their root causes as well as the identification of the
critical path. The latter is used to measure the feasibility of op-
timization. Scalasca identifies performance issues such as late
message arrivals, and directs the engineer to the source code in
order to investigate the root cause of the problem. Each identi-
fied performance issue is then assigned a severity level in order
to determine whether it should be investigated or not. This ap-
proach is limited to identifying the late arrived messages but
does not provide information about the inter-process communi-
cation behavior.

Bohme et al. [34] proposed an approach for detecting long
wait states in message passing programs. They show whether
the cause of the delay is from late senders or late receivers, and
the subroutines they occur in. However, our approach detects
the latency in the context of communication patterns, to enable
the understanding of the relations among the communicating
processes. Further, we show whether the delay in the pattern is
caused by late senders or late receivers, and provide the subrou-
tine that the communication occurs in.

3.2.2. Performance forecasting using trace extrapolation

Xing et al. [35] presented ScalaExtrap, a trace-based com-
munication extrapolation for SPMD programs. ScalaExtrap gen-
erates a trace for a large number of nodes from a set of traces
from a smaller number of nodes. The authors propose to use
the extrapolated trace for different purposes such as the assess-
ment of communication requirements by replaying the trace,
analysis of inefficient communications, and the evaluation of
the program scalability. Tsuji et al. [36] presented SCAlable
Mpi Profiler (SCAMP), a tool for extrapolation of MPI traces
for scaling up the simulation of larger systems based on existing
traces for trace-driven network simulation. SCAMP generates a
pseudo MPI event trace from a small-scale execution trace, that
fits larger traces from large-scale runs, to be used in network
simulation. The pseudo MPI-event trace generator is built using
LLVM’s intermediate representations. Having an extrapolated
version of the current system helps in forecasting the perfor-
mance behavior of larger instances of MPI applications on the
network.

Similarly, Miwa et al. [37] presented Predcom, an approach
for approximate prediction of larger scale of communications
based on a small scale collected traces. They combined LLVM
on source code to capture the program static structure with pre-
diction parameters for the program dynamic behavior. An ad-
vantage of their approach is that they can reduce the overhead



of generating execution traces without compromising their ac-
curacy. Thus, traces will be generated much faster when com-
pared to capturing all the execution traces at larger scales.

3.2.3. Approaches based on patterns in traces

HPC programs tend to follow specific communication be-
haviors. Several research studies targeted communication pat-
terns detection in HPC traces as they are helpful in the under-
standing, debugging, and analysis of these types of systems.
Preiss] et al. [4] used compressed suffix trees supported by
static analysis techniques to guide in detecting communication
patterns in MPI traces. The authors suggested using the pat-
terns for performance identification purposes. Our communica-
tion pattern detection approach relies on dynamic analysis tech-
niques and does not require building a static model. Kniipfer et
al. [38] used the compressed complete call graph (cCCG) to
detect the contiguous repeats in HPC traces. This approach is
used to achieve an improved trace compression scheme on each
process trace but does not consider the detection of communi-
cation patterns. Detecting contiguous repeats could also help
in identifying the recurring events in each process trace which
could be used in the detection of communication patterns.

Trahay et al. [39] proposed a debugging approach to iden-
tify the points of interest based on trace summarization. They
applied a variation of the LZW compression to detect patterns
in each process trace separately. This approach detects the re-
peating behavior on each process trace and does not consider
the detection of communication patterns in the trace. Kunz and
Seuren [40] applied finite state automata methods in their com-
munication pattern matching approach. Their approach looks
for all the occurrences of an input communication pattern in
the whole trace. First, they extract the longest process pattern
from the input communication pattern and locate all of its in-
stances in the trace. Then, they construct the communication
pattern from each instance (longest pattern) by matching its
events with the partner events on their counterparts. This ap-
proach is limited to detecting known communication patterns
in the HPC trace.

Kockerbauer et al. [41] proposed a debugging approach for
message passing programs using pattern matching techniques.
The input communication pattern is translated into abstract syn-
tax trees (ASTs) which are then scaled up to the number of pro-
cesses in the trace. An advantage of this approach is its ability
to detect exact and similar communication patterns which can
help in the validation of the application behavior. However, it is
still limited to known communication patterns. In our approach,
we detect the communication patterns in the trace without prior
knowledge about the program’s communication behavior.

Isaacs et al. [6] used a visualization-based performance
analysis approach to guide in the analysis of MPI programs.
They use the happened-before relationships of MPI events to
extract the execution trace’s logical structure. Visualization
techniques are then used to cluster related processes based on
the program’s communication patterns. The logically ordered
trace could then be used to locate delayed peer events among
the processes. Our approach uses pattern detection, statistical
analysis, and information theory techniques in order to identify

the program’s structure and performance behavior rather than
relying on visual inspection.

3.2.4. Approaches based on trace segmentation

Trace segmentation techniques divide the trace into coher-
ent segments that are then mapped to execution phases in the
program. A number of studies targeted the identification of
computational phases in MPI programs. Gonzalez et al. [42]
applied the DBSCAN algorithm, a density-based clustering tech-
nique, to detect computational phases in SPMD MPI applica-
tions by grouping different CPU bursts collected from perfor-
mance hardware counters. A computational region is repre-
sented by the CPU burst occurring between two consecutive
communications. Then, they use defined thresholds to fine-
tune the resulting phases. These threshold values could be sub-
jective which may result in inaccurately identified phases. To
overcome the shortcomings of the DBSCAN algorithm, the au-
thors improved the quality of the resulting phases by applying
Aggregative Cluster Refinement techniques [43]. Chetsa et al.
[9] presented the use of execution vectors (hardware perfor-
mance counters, network communications, disk I/O values) in
identifying phases in MPI programs where a new phase is de-
tected when the Manhattan distance between successive vectors
is over a specified threshold.

Casas et al. [44] used signal processing techniques to aid
in the identification of the main phases in the traces of MPI ap-
plications. This approach relies on the iterative behavior of MPI
programs in identifying the different computational phases. More
precisely, the frequency of the iterative behavior determines the
different computational phases in the trace. The Solve phase is
labeled as the phase containing most of the parallel iterations.
In [5], Casas et al. used CPU computing bursts in conjunction
with communication events (signals) in order to define several
metrics that could be used in the identification of sub-phases
in the Solve (computational) phase. Our approach distinctly
identifies the different phases in the program using information
theory principles.

3.3. Summary of Related Studies

Table 1 provides a summary of the related studies. The
columns show the program analysis and comprehension tech-
niques that they apply, and the features provided by their ap-
proaches such as parameter tuning and tool support. Further, we
include our proposed approach at the end of the table to position
it among the related work. In our approach, we present several
trace abstraction techniques to facilitate the understanding of
the inter-process communication behavior through communi-
cation patterns. We localize these patterns into several phases,
where the user can specify the level of granularity of the phases.
Further, we study the latency of communication patterns, and
categorize the slow ones in each phase based on their severity
and complexity levels to guide in selecting the points of interest
during analysis.



Table 1: Summary of Related Studies
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4. The Approach

Figure 5 shows our overall approach for detecting and locat-
ing inefficient communication patterns in MPI traces. We start
by extracting the communication patterns by identifying the re-
peated sequences of MPI calls in each process trace. The output
of this step is a sequence of all instances of the detected com-
munication patterns in the trace ordered using the happened-
before relationship. Second, we locate the communication pat-
terns within specific trace segments using information theory
principles. This helps in reducing the analysis efforts by only
focusing on a fine-grained view of the trace. In the third step,
we examine the pattern instances to determine the ones that are
considerably slower than the other instances using statistical
analysis. Finally, the set of inefficient patterns in each trace
segment are categorized based on their severity and complexity
levels using the AHP technique. In the following, we elaborate
on each step by presenting the techniques using examples.

4.1. Detection and Localization of Communication Patterns
The detection of communication patterns consists of two

steps. In the first step, we identify all the communication pat-

terns in the trace. In the second step, we segment the trace into

execution phases and localize pattern instances in each phase.
In the following, we explain the two steps in detail.

4.1.1. Identification of Communication Patterns

The first step of our approach starts by detecting the com-
munication patterns in the trace. To this end, we adapt our pat-
tern detection algorithm presented in [7], which relies on two
tasks. First, we iterate through each process trace separately
to detect the patterns of MPI communication events. Then, we
use these process patterns to construct the final communication
patterns.

To illustrate this process, we refer to a sample trace of four
processes shown in Figure 6. Figure 6a shows the routine call
trees of each process and the MPI calls, where P refers to a pro-
cess, M refers to the main function, F refers to a user-defined
function call, Waitall refers to MPI_Waitall, and S and R refer
to MPI Send and Receive operations respectively. For exam-
ple, S4 means Send to process P4, and R1 means receive from
process P1. The MPI events in each process trace are extracted
and delimited based on the identified contexts as shown in the
routine call tree. The contexts are identified based on the user
functions they occur in and the MPI_Waitall events. Figure 6b
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Figure 5: Trace Abstraction Approach For Performance Analysis

shows the delimited traces that will be used in the extraction of
process patterns.

We consider a process pattern as a sequence of MPI events
that satisfies two conditions: (1) the sequence cannot be ex-
tended to the left and to the right (i.e. maximal repeat [45]),
and (2) the sequence must appear within the boundaries of a
user function call. For example, in Figure 6, process P; has
three distinct maximal repeats: S3-S2-R3-R2, S2:R3, and S3.

In our previous algorithm, we used n-gram techniques to
detect patterns of MPI events within a user-defined function.
In this paper, we use a different approach. We rely on the
MPI Waitall events in conjunction with the user function calls
to determine the beginning and ending of a group of MPI events.
MPI_Waitall is acommon construct in MPI applications where
a process waits for a set of MPI communication events to finish
a specific task.

Table 2 shows the MPI event patterns (maximal repeats) and
their starting positions for each process trace. For example, P,
contains four instances of pattern PT4 (S4-S1-R1) at positions
0, 4, 8, and 17. It also has two instances of PT5 (S4-R1) at
positions 12 and 21. Moreover, it has two instances of the single
event pattern PT6 (S4) at positions 15 and 24. The position of
the pattern refers to the order of its appearance in the process
trace and does not indicate a timestamp.

After detecting the process patterns (repeats), we construct
the communication patterns by linking the matching repeats in
each process trace. For each communication pattern, the algo-
rithm starts by an empty bag of repeats until all the matching
repeats are added. Table 3 shows four distinct communication

P1 P2 P3 P4 i P1 P2 P3P4
M M M M 0 S3 S4 S1S3
> F1 >F1 > Fl >Fl
Lo [ (B [he 1Eie
sz | st R4 PR2 SRy prRIDE
PR PR S\ ey DI S4 DI1S3
> \R2/ i > \RY/ oo
S Waiall D | P> Waiall 5 83 ST S1R2
: /\%l;l\tall »C“/S a s =) 6 S2 R1 R4R3
Ly/s2) > St *““R4“‘ > R2| 7 R3 D2 S4 D2
»‘ RS > \RL/ > s4 >R3)/ g R2 S4 R1S3
> RY > Waitall | [> RV L> waitann 9 D281 D2R2
“> Waitall - »F2 > Waitall | gy 10 83 R1 SI R3
Ra VI > /58 [PF2 > /53,  11S2D3R4D3
> /83 B[ s1 | > /STy |y [R2| 12R3S4 5483
82 | bR | Re) '»\R3/ 13 R2RI RIR2
LIRS b ~ 14 D3 D4 D3 D4
> \R2/ ol LS > F3 155284 S1R2
> SRy 560 [2[33] 16 R3 D5 R4 DS
(2| S>(s4) Nz '::\\Réy‘ ~\7 17 D484 D4S3
A/ - i) | >RJ 188381 RIR2
IS VR F4\‘;f\ > F4 19 D5 R1 D5R3
b 83\ > R4\ /s1\ Ly /53 20 S3 D6 S1 D6
L[ 2 »\151;\ “R4“ %\RZ\ 21 S2 S4 R4 S3
4;\ R3§‘ > \@ \ S4“‘J > \Rr3/ 22 R3 R1 S4 R2
> \R2/ > 5 \R1/ ~ 23 R2D7R1D7
L>F3 /34 F3 ™ F3 24 D6 S4 D6R2
N\ ( | & 83\
/s2) \R1/ K{Slu‘ t:‘m‘ 2582 sl1
Ry N R4 RY 26R3 R4
e ~ AN .
BCO R € ®D)  >(R2) 27D7 D7
_— 28 S3 Rl
@ontexD S4: Send To P4  R3: Receive from P3 D: Delimiter
(a) Routine-Call Trees (b) Delimited Traces

Figure 6: A sample trace with four processes: Py, P, P3, and Py

patterns, their corresponding process patterns, and the number
of times they appear in the trace. For example, to construct the
first instance of CP2, the algorithm adds PT2 at position 15 to
the empty bag. Then, it links the events in PT2 to their match-
ing events in processes P, and P3;. Event S2 in PT2 matches
event R1 in PT5 at position 12, and event R3 in PT2 matches
event S1 in PT8 at position 15. Thus, the instances of PT5 and
PT8 will be added to the bag of repeats. Then, event S4 in PT5
is linked with its partner event R2 in PT11 at position 12. Con-
sequently, PT11 will also be added to the bag of repeats. The
algorithm will iterate on all the non-visited events in each re-
peat until all the matching repeats are added to the bag. Hence,
the resulting communication pattern consists of PT2, PT5, PT8
and PT11. Once all the instances of communication patterns are
constructed, the algorithm assigns a unique symbol to each set
of instances that are composed from the same group of repeats.

Finally, we represent the trace as a sequence of communica-
tion patterns using temporal ordering (i.e., instances that occur
first appear before the others). Table 4 shows the resulting se-
quence that is used for trace segmentation.

Table 4: Communication Patterns Sequence

1 2 3 4 5 6 7 8 9
CP1 | CP1 | CP1 | CP2 | CP3 | CP4 | CP1 | CP2 | CP3

10
CP4

Figure 7 shows the detected communication patterns in the
sample trace. Communication pattern CP1 contains 14 events
(7 messages) while CP2 contains 8 events (4 messages). Fur-
ther, CP3 and CP4 contain only two events (one message).



Table 2: Maximal Repeats Per Process

P Process Patterns Positions in Trace | Frequency
PT1 | S3-S2-R3-R2 0,5, 10,20 4
P1 | PT2 | S2R3 15,25 2
PT3 | S3 18,28 2
PT4 | S4.S1-R1 0,4,8,17 4
P2 | PT5 | S4RI1 12,21 2
PT6 | S4 15,24 2
PT7 | S1-R4-S4.R1 0,5, 10,20 4
P3 | PT8 | SI-R4 15,25 2
PT9 | Rl 18, 28 2
PT10 | S3-R2-R3 0,4,8,17 4
P4 | PT11 | S3-R2 12,21 2
PT12 | R2 15,24 2
Table 3: Communication Patterns Construction
Communication Pattern Process Patterns Frequency
CP1 PT1, PT4, PT7, PT10 4
CP2 PT2, PTS, PT8, PT11 2
CP3 PT3, PT9 2
CP4 PT6, PT12 2

4.1.2. Localization of Patterns in Trace Segments

In this step, we partition the sequence of communication
patterns into more homogeneous sections. This helps in the lo-
calization of patterns, and consequently in reducing the analysis
efforts. These cohesive partitions can be viewed as the program
computational phases.

This way, software developers can focus only on the phases
of interest instead of analyzing the entire trace. To achieve this,
we propose an improvement to our trace segmentation algo-
rithm presented in [7], which is inspired by the work of Li et al.
[17] on segmenting DNA sequences into more homogeneous
regions. The sequence segmentation technique is presented in
Section 2.2. In this paper, we apply the Akaike Information
Criterion (AIC) [12] for model selection since it tends to pe-
nalize complex models less than BIC [46], resulting in more
fine-grained phases. Equation 16 represents the AIC measure
for model selection where L is the maximum likelihood of the
model, while K represents the number of free parameters in the
two models.

AIC = —2log L + 2K (16)

Then, similar to BIC, we segment the sequence when the
value of AIC is close to zero. By substituting ND;g (where
D is the maximum D g value) for L in Equation 16, we get
the inequality shown by Equation 17.

2ND;s > 2K (17)

Finally, the positive segmentation strength s is calculated
using Equation 18 to determine further segmentation of the se-
quence. In the evaluation section, we show a case where BIC
fails to further segment the trace.

ND;s - K
§= ————

X (18)

P1 P1

P2 P2
P3 P3
P4 P4
CP1 CP2
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Figure 7: Detected Communication Patterns

P3

The algorithm works on segmenting the sequence of com-
munication patterns recursively. To segment the sequence, we
need to find the segmentation point that splits the sequence into
more homogeneous sub-segments. Then, the algorithm runs on
the left and right sub-segments, and checks whether they can
be further segmented. The algorithm will stop until no further
segmentation is possible.

The segmentation algorithm results in a binary tree (seg-
mentation tree) where sequence S is the root node at depth zero
and the child nodes in the lower levels contain the detected sub-
segments. In this paper, we also use the depth of the segmen-
tation tree in conjunction with s to terminate the segmentation.
Moreover, we use the length parameter to prevent segmenting
sequences that are shorter than a certain length.

Table 5 shows how the proposed approach segments the list
of detected communication patterns S, from Section 4.1, into
two phases. The maximum Djg value for Sy is at position 3
with a positive segmentation strength value. The resulting se-
quences S and S, could not be further segmented since the
segmentation strength value is negative.

Table 5: Phase Detection for the Trace in Figure 6

i 1 2 3 4 5 6 7 8 9 10
So | CP1 | CP1 | CP1 | CP2|CP3|CP4|CPl1|CP2|CP3|CP4
d So

0 s =1.11, Dyg = 0.42 at position 3

Sl S2
d s=-1.17 s=-0.08

4.2. Identification of Inefficient Communication Pattern Instances

The main objective of this step is to identify the communi-
cation pattern instances that take much longer to complete when
compared to the other ones. We compare the duration of the in-
stances of the same communication pattern that exchange the
same amount of data. The duration of each communication pat-
tern instance is computed as finish_time(le) — start_time(fe)
where fe and le are the first and last events in the pattern in-
stance, respectively.

We use the modified Z-score method [13] to measure how
much the execution time of a given communication pattern in-
stance differs from the typical duration. The advantage of using
the modified Z-score over the original Z-score statistic (mean-
based measure) is that the latter may be affected by extreme



values, which may result in inaccuracies [47]. This is impor-
tant for MPI programs. In some cases, certain events may take
longer time than expected due to network delays or low memory
issues, which may be skipped using mean-based methods. The
modified Z-score method relies on robust measures, which are
the Median and the Median Absolute Deviation (MAD). Equa-
tion 19 calculates MAD where X is the sample median.

MAD = median(|x — X|) (19)

To estimate the standard deviation value for normally dis-
tributed data, Equation 19 is multiplied by 1.4826 as shown in
Equation 20.

MAD = 1.4826 - median(|x — X|) (20)

Using the estimated MAD value in Equation 20 and the me-
dians, we can calculate the modified Z-score value (M;) for each
element x; using Equation 21.

X — X xXi— X
MAD MAD

Iglewicz and Hoaglin [13] observed through simulations
that a value of |M;| > 3.5 indicates an outlier. In our approach,
we will use this value as the default value. However, the tool
that implements our approach should allow enough freedom to
the analysts to increase this cut-off value based on their judg-
ment.

=0.6745 -

M; = 2

Table 6: Communication Patterns Information
np: number of processes, ne: number of events

Pattern np e Time Units Per Instance
1 2 3) ) ©) (6)
A 2 4 1 1 2 3 2 8
B 10 18 3 3 4 5 6 12
C 4 6 2 3 3 2 3 9

To explain this method, we use Table 6 to show the duration
of the communication patterns found in the trace of Figure 2 in
Section 2.1. We suppose that the 1* instance of pattern A takes
1 time unit to complete, while the 6™ instance takes 8 time units
to complete. Similarly, the 4™ instance in pattern B takes 5 time
units and the 6 instance of pattern C takes 9 time units.

The modified Z-score determines the pattern instances that
deviate from others of the same pattern. Table 7 shows how
the M; value was calculated for each instance. The calculations
show that only the last instance (in phase 6) was detected as an
outlier.

Table 7: Slow Communication Patterns Identification

; Pattern A Pattern B Pattern C
Xi )C,'—)~C M,' Xi X,'—)NC M,‘ Xi )C,’—)~C M,'
1|1 1 0.6745 | 3 1 0.6745 | 2 1 1.3490
211 1 0.6745 | 3 1 0.6745 | 3 0 0
312 0 0 4 0 0 3 0 0
4 |3 1 0.6745 | 5 1 0.6745 | 2 1 1.3490
512 0 0 6 2 1.3490 | 3 0 0
6|8 6 4.0470 | 12 8 5.3960 | 9 6 8.0940
X=2,MAD=1.0 x=4,MAD=10 | x=3,MAD =0.5
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After detecting the slow communication patterns, we need
to analyze those patterns to determine the cause of the delay.
The latency in communication patterns is caused by late senders,
late receivers, or a late partner in collective communications.
The root cause of these kinds of delays could be related to load
imbalance, excessive communications, or network issues. For
each slow communication pattern, we provide the first process
to start, the last process to start, the first process to finish, and
the last process to finish. The first process to start indicates a
waiting process, while the last process to start refers to a late
process. Further, we present the shortest and the longest events
in the pattern.

In a point-to-point communication pattern, we check the
event of the last process to start to determine whether the la-
tency is caused by a late-sender or a late-receiver. If it is a
send operation, it means that we have a late-sender. On the
other hand, if the event is a receive operation, it means that the
delay is caused by a late-receiver.

The analyst can then check the last process to start, in point-
to-point and collective communications, and determine whether
it was late due to long computations or if it was preceded by
excessive communications which caused the process to start its
new task late.

4.3. Categorization of Communication Patterns

The final step in our approach is to categorize slow pat-
terns in each trace execution phase. For this purpose, we apply
the Analytic Hierarchy Process (AHP) [14]. AHP is a popular
multi-criteria decision making and prioritization technique that
has been widely used in several problems and domains such as
software requirements prioritization [48], finance and banking
[49], energy [50], and sustainable development [51].

AHP categorizes alternatives based on multiple criteria. For
each criterion, it performs a pairwise comparison between the
alternatives to calculate their relative weights. Then, it uses
the weighted values from the different criteria to categorize the
alternatives in order to help in decision making.

In our context, the different alternatives are the slow com-
munication patterns in each phase. Thus, we need to define the
criteria for categorization to help in deciding which patterns to
analyze first. A communication pattern that is very slow when
compared to the other slow patterns in the same phase requires
more attention since it can lead to the root cause of the problem.
On the other hand, if the pattern involves many processes and
has a large number of events, it will be more difficult to ana-
lyze due to its increased complexity. Therefore, we choose the
pattern’s severity and complexity levels as our criteria for cat-
egorization. The pattern severity is related to its duration [52]
while the pattern complexity is related to the number of events
exchanged among the processes [53][54].

We define three categories for slow communication patterns
based on their severity-complexity degree. We refer to this de-
gree as the Inspection Affinity (IA) property with High, Medium,
and Low levels of affinity. A High level means that patterns are
extremely severe and less complex. Thus, inspecting patterns in
this category should be simpler and may reveal important infor-
mation regarding latency. Moreover, when a pattern with fewer



number of processes and events is extremely slow it means that
there should be a clear issue causing the delay since fewer pro-
cesses should collaborate smoothly. On the other hand, a Low
level means that the investigation of this pattern may take longer
time to investigate due to its increased complexity.

For each criterion, we build a comparison matrix for the
patterns in each phase, and then calculate their relative weights.
The AHP process will be performed as follows.

1. Estimate the relative weights between patterns in each
phase based on their severity.

2. Estimate the relative weights between patterns in each
phase based on their complexity.

3. Determine the Inspection Affinity level using the relative
weights for each criterion.

In the following, we explain the AHP process using the
sample trace in Figure 2 and the corresponding number of pro-
cesses, events, and duration in Table 6.

4.3.1. Severity Criterion

The communication pattern severity is directly related to its
duration [52]. Normally, a communication that exchanges more
data should take longer to complete. Thus, we determine the
pattern severity based on its duration with respect to the size of
exchanged data (duration + data_size). Table 6 shows the du-
ration for each pattern instance. We showed in Section 4.2 that
the instances of patterns A, B and C in Phase 6 were detected as
outliers using the MAD approach. Assuming that each message
holds 1 unit of data. Then, the size of data exchanged in patterns
A, B, and Cis 2, 9, and 3 respectively. Thus, the correspond-
ing severity values will be 4.0, 1.33, and 3.0 respectively. Table
8a shows the comparison matrix for the three patterns based on
their severity level. We normalize the values in each cell by di-
viding its value by the sum of its corresponding column (value
in X). Table 8b shows the normalized comparison matrix. The
final step is to calculate the weights by averaging the values in
each row in the normalized matrix. The Weight column in Table
8b shows the relative weights (or the Eigenvector) for the three
patterns. This vector will be used in the categorization.

Table 8: Severity-based Weight

A6 B-6 C-6

A6| 10 |40/133] 40/30 A-6 | B-6 | C-6 | Weight
B-6 | 1.33/4.0 1.0 1.33/3.0 A-6]048]048 048 | 048
C-6 | 3.0/40 [3.0/133] 1.0 B-6|0.160.16 ] 0.16 | 0.16
b 2.08 6.25 278 C-6]036[0.36]036] 0.36

(a) Comparison Matrix (b) Relative Weights (Eigenvector)

4.3.2. Complexity Criterion

The complexity of a communication pattern is related to the
number of events exchanged among the processes [54]. We
calculate the relative pattern complexity as np X ne where np is
the number of processes and ne is the number of events. Table 6
shows that Pattern A involves 2 processes with 4 events, Pattern
B involves 10 processes with 18 events, and Pattern C involves
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4 processes with 6 events. Thus, the complexity values for pat-
terns A, B, and C will be 8, 180, and 24 respectively. Table 9a
shows the comparison matrix for each pair of patterns based on
the calculated complexity values. Table 9b shows the normal-
ized values for the cells in Table 9a and the relative weights.

Table 9: Complexity-based Weight

A6 | B-6 C-6
A-6| 1 | 8180 | 824 A6 | B-6 | C-6 | Weight
B-6 | 180/8 1 180724 A-6| 0.04 | 0.04 | 0.04| 0.04
C-6 | 24/8 | 24/180 1 B-6|0.85|0.85|085| 085
T [2650| 1.18 | 8.83 C6 011011011 0.11

(a) Comparison Matrix (b) Relative Weights (Eigenvector)

The last step is to plot the weights based on the complexity
(x-axis) and the severity (y-axis) values. The complexity of the
pattern impacts the inspection affinity negatively while a higher
severity affects the inspection affinity positively. Since we have
three different categories, we divide the area into three equal
divisions [55]. Figure 8 depicts the equal divisions for each
category. It shows that patterns A-6 and C-6 have high affinity
levels (above 60°), while pattern B-6 has a low affinity level
(below 30°).
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£ 0301 e Medium
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<
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@ 0.10
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Complexity-based Weight
Figure 8: Communication Patterns Categorization
5. Evaluation

We tested our approach on five traces generated from three
HPC systems: SMG2000 [56][57], AMG2013 [58], and the
NAS BT parallel benchmark [59].

To generate traces, we instrumented the applications stati-
cally using the Score-P [60] tool, which is perhaps one of the
most recommended instrumentation tools for MPI-based sys-
tems. We instrumented all the functions of a system in the same
way to ensure that the added overhead, though it is known to
be low with Score-P [61], is the same. This makes it possi-
ble to distinguish between normal and slow executions by fac-
toring out the instrumentation overhead. Note that this would
have been different if dynamic instrumentation is used where
the trace generation is done as the system is executed, resulting
in potential bias when measuring execution time. We deliber-
ately chose static instrumentation to avoid such bias. Score-P
generates traces in OTF2 [62] format. We generated the traces
on a private IBM CloudBurst 2.1 cloud cluster of 14 blades.



In the following, we present an analysis for each program
followed by a discussion of the approach’s execution times in
Section 5.4.

5.1. SMG2000

SMG2000 is a semi-coarsening multi-grid solver for linear
systems [57] that performs a large number of irregular commu-
nication patterns [63]. We provide the analysis on execution
traces generated using 4, 128, and 1024 processes.

5.1.1. SMG2000 with 4 Processes

We clarify the approach using a trace generated with 4 pro-
cesses (2 X 2 x 1 process topology) and 10 x 10 x 10 problem
size. The OTF2 trace file contains a total of 6,248,096 events
where 283,946 are MPI events. Figure 9 shows three different
views from the trace using Vampir visualization tool [18]. Each
view provides different sections of the program execution with
several recurring communication patterns.
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Figure 9: Zoomed-In Views using Vampir

Figure 10 shows the detected communication patterns in the
trace. The trace contains 25 distinct patterns (point-to-point and
collective communications) with a total of 42,222 instances.
The number next to the pattern name represents its frequency.
For example, CP2 is repeated 2,101 times while CP18 only ap-
pears 9 times in the trace. The name sequence is based on the
order of their appearance in the trace. The trace contains three
collective communication patterns (CP1, CP3, and CP25). In
CP1, each process posts ALLGATHER and ALLGATHERV events
during the Initialize phase. CP3 contains two ALLREDUCE events

60.0ms &0.5ms  &L0ms 6lL5ms 620ms 62Fms 63.0ms 63.5ms &40ms &45ms  65.0ms

&5,

CP1(1) CP3(2101) CP25(7)
PO|ALLGATHER-ALLGATHERV  ALLREDUCE-ALLREDUCE ALLREDUCE
P1|ALLGATHER-ALLGATHERV  ALLREDUCE-ALLREDUCE  ALLREDUCE
P2 |ALLGATHER-ALLGATHERV  ALLREDUCE-ALLREDUCE  ALLREDUCE
P3|ALLGATHER-ALLGATHERV  ALLREDUCE-ALLREDUCE  ALLREDUCE

CP2(2101) CP4 (963) CP5 (648) CP6 (511)
PO S1-S2-S3-R1-R2-R3 S1-R1 R2
P1|S0-S2-S3-RO-R2-R3 SO-RO
P2|S0-S1-S3-RO-R1-R3 S3-R3 S0
P3|S0-5S1-S2-RO-R1-R2 S2-R2

CP7(511) CP8(9385) CP9(7960) CP10(7960) CP11 (9385)
PO R1 S1
P1|R3 ) RO
P2 R3 s3
P3|s1 S2 R2

CP12 (502) CP13(502) CP14(18) CP15(18)
PO[S2 S1-R1-R2-R3 S1-S2-S3-R1
Pl s3 S0-RO-R2-R3 S0-S2-33-R0O
P2|RO S0-S1-83-R3 S3+RO-R1-R3
P3 R1 S0-S1-S2-R2 S2+RO-R1-R2

CP16(9) CP17(18) CP18(9) CP19(9) CP20(380)
PO|S1-R1-R2-R3 S1-S2-S3-R1  R2-R3 S2-53 S2-R2
P1|SO-R0O-R2-R3 S0-S2-83-R0O R2-R3 $2-53
P2(S0-S1 RO-R1 S0-s1 RO-R1 S0-RO
P3|S0-S1 RO-R1 S0-S1 RO-R1

Cp21(380) CP22(182) CP23(380) CP24 (380)
PO S1-S2-R1-R2 S1-S2-S3-R1-R2-R3 S2-S3-R2-R3
P1(s3-R3 S0-S3-R0-R3 S0-S2-S3-RO-R2-R3  S2-S3-R2-R3
P2 S0-S3-R0O-R3 S0-S1-RO-R1 S0-S1-RO-R1
P3|s1-R1 S1-S2-R1-R2_ S0-S1-RO-R1 S0-S1-RO-R1

Figure 10: Communication Patterns in SMG2000 (2 x 2 x 1 Topology)

and marks the end of the main three phases (/nitialize, Setup
and Solve). CP25 is a single ALLREDUCE operation that occurs
7 times in the Solve phase.

Further, the trace has several point-to-point communication
patterns. For example, in CP2, all the processes exchange mes-
sages with each other. On the other hand, patterns CP6—CP13
involve only one message. Patterns CP4, CP5, CP20, and CP21
involve two processes that send to and receive a message from
each. Furthermore, the trace contains other patterns that involve
all the processes but with different communication behaviors.
For example, given the 2 X 2 process topology, pattern CP18 in-
volves sending messages from the processes in the second row
in the grid (P, and P3) to the processes in the first row in the
grid (Py and P;). Similarly, in CP19, the processes in the first
row in the grid send messages to the ones in the second row.

The Modified Z-Score technique detected a total of 1,995
slow pattern instances in the trace, where 1,362 were caused
by late senders, and 632 from late receivers. Further, the trace
contains one instance of the collective communication pattern
CP3 that was slow due to late processes Py and P;. Figure 11 is
an excerpt of the trace which shows the first 43 patterns in the
program where the slow ones are surrounded by red rectangles.
The first occurrence of CP2 exchanges 41,280 bytes while the
other instances in the figure exchange 1,536 and 48 bytes. We
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Figure 11: First 43 Patterns in the Trace (SMG2000 with 4 Processes)
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only compare the instances of the same pattern that exchange
the same amount of data. For example, only two instances of
CP2 involve a total of 41,280 bytes in the whole trace. The
first instance is at position 2 and the second is at position 1,751.
The first instance was identified as slow (327,100 us) while the

34,793 to 34,752. This phase is highly homogeneous, which
means that it has a low level of randomness. Therefore, this
phase can be further segmented into equal sized sub-phases.

Table 10: Execution Phases and Slow Communication Patterns

second as normal (159,376 us). Phase User Functions From To | Slow Patterns
Figure 12 shows a zoomed-in view of the two slow instances | gzllzﬁgfgtmcﬁrid?‘iemblil | 49 .
" _StructMatrixAssemble
of CP2 at .posmons. 22 (48 bytes-).and 23 (1.,536 bytes), where hypre SMGRelaxSetupASol
the events involved in CP2 at position 22 are in red. The 48-byte 2 [ hypre SMGRelax 30 951 99
instances occur 440 times in the whole trace, while the 1,536- 3 | hypre_.SMGSetup 952 | 1,749 32
byte instances occur 492 times. It is clear from Figure 12 that hypre_SMGSetupRAPOp
. . .. . 4 1,750 | 7,420 346
even for a small trace, without the aid of statistical techniques, Eypre,gMngle}axSetup = — -
. s . . . 5 ypre_SMGSolve 7421 | 7,
visual inspection will not be practical. 6 hypre SMGSolve X TRETRITS TSI
7 hypre_SMGSolve 42217 | 42,219 0
W 8 | hypre_.SMGSolve 42220 | 42,222 1
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Figure 12: Slow CP2 Pattern Instances

Figure 13 shows the D;g values for each pattern instance
in the communication patterns sequence. Figure 13 is not con-
cerned with time, and only depicts the D g values for each point
in the sequence. The phase detection algorithm segmented the
list of 42,222 communication patterns at point 7,420, which has
the maximum Djg value with a positive segmentation strength.
This point has an instance of CP3. The first segment corre-
sponds to the Serup phase while the second belongs to the Solve
phase. The HYPRE_StructSMGSetup function represents the
Setup phase and the HYPRE_StructSMGSolve function repre-
sents the Solve phase. The Solve phase is more homogeneous
than the Serup phase. This is clear from the smoothness of the
curve. The Setup phase has 483 slow pattern instances, while
the Solve phase has 1,512 slow instances. The first slow pattern
in the Solve phase is an instance of CP9 (200 bytes) at position
14 (position 7,434 in the trace). The duration of this instance is
166,000 us while the median for CP9 (200 bytes) is 47,570 us.
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Figure 13: NDyg values for whole trace

Using a segmentation tree depth of 3, the number of leaf
segments (phases) was 8. Table 10 shows the 8 execution phases
with the corresponding number of slow communication pat-
terns. Phase 6 is a very long phase, it stopped segmenting at
depth 4 where the length of the phase was only reduced from

Table 11 shows the slow patterns in Phase 1, which are dif-
ferent instances of CP2. The instances at positions 22 and 24
(CP2 with 48 bytes) were identified as slow with high inspec-
tion affinity level.

Table 11: Slow CP2 instances in Phase 1 where i: position in phase, /:
data length, d: duration, m: median, ¢: threshold, P;g: last process to
start, P, r: last process to finish, IA: Inspection Affinity

i | [(bytes) | d(us) m t(us) | Prs | Prr IA

2 | 41,280 | 327,100 | 245,438 | 163,776 | 1 3 Low
22 48 165,701 | 58,344 | 105,800 | O 2 High
23 | 1,536 | 262,600 | 55,838 | 86,836 2 3 Low
24 48 135,000 | 58,344 | 105,800 | 3 3 High
25| 1,536 | 100,701 | 55,838 | 86,836 3 3 Low
48 48 108,501 | 58,344 | 105,800 | 2 3 | Medium

Further, we provide other information such as the slowest
event, the shortest event, first and last processes to start, and
first and last to finish in the pattern. We use the last process
to start to determine whether the latency was caused by a late-
sender or a late-receiver. This information when provided to
the analyst will help in tracing back to the root cause. For ex-
ample, CP2 at position 22 in Phase 1 was categorized with high
inspection affinity. When investigating the trace and based on
the information provided by our approach, process P; entered
a long wait-state. The delay in this pattern was propagated to
the next three successive patterns. Process P3 waited for a long
time to receive the messages from Py, P; and P, causing a com-
munication imbalance (see Figure 14).
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Figure 14: CP2: A wait-state causing propagation latency

Figure 15 shows a case for CP16 where the senders (P, and
P3) are waiting for processes Py and P, (late receivers) to com-
plete their computation. This waiting time could be reduced
with better load balancing.
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Figure 15: CP16: A wait-state from load imbalance

Figure 16 shows two instances of the collective communi-
cation pattern CP3. The first instance was identified as slow
where processes P, and P are waiting for processes Py and P
to complete their computations, which is another example of
load imbalance.

o

'Slow GP3

CP3
Figure 16: CP3: Slow Instance at position 7420

5.1.2. SMG 2000 with 128 Processes

The second scenario uses a trace generated from running
SMG2000 using 128 processes. The process topology is 8x8x2
with a 1 X 1 X 1 problem size. The trace contains 14,445,448
events with 577, 772 MPI events.

The number of distinct communication patterns in the trace
is 690 with a total of 6, 180 instances. Figure 17 presents a sam-
ple of several communication patterns in the trace, where the
processes perform nearest and non-nearest neighbor communi-
cations with their partner processes in the same grid. CP166
occurred only twice, while CP188 and CP336 occurred 46 and
48 times respectively. The approach identified 609 slow pattern
instances, where 514 instances were late senders, 93 were late
receivers, and two instances were slow due to late processes in
collective communications.

Figure 18 shows the D;g values for the 6, 180 pattern list.
The maximum value is at point 1,766, which marks the end
of the Setup phase. The communication pattern at this point is
ALLREDUCE-ALLREDUCE, which occurs three times in the trace
and marks the end of the three main phases (Initialize, Setup
and Solve).

Table 12 shows a comparison between BIC and AIC for se-
quence segmentation. Using BIC for model selection, the seg-
mentation algorithm was only able to segment the whole se-
quence into two phases (S| and S,). However, Figure 18 shows
that there is a level of randomness in the two phases which may
be further segmented. AIC, on the other hand, provided deeper
segmentation levels due to positive segmentation strengths. For
example, the Initialize phase, which only includes three pat-
terns, was distinctly identified at depth 9 in the segmentation
tree.

The Setup phase contains 431 slow patterns while the Solve
phase has 178 slow instances. For example, the two occurrences

14

CP166 (2) CP188 (46) cP17 (2)
PO |516-S16 P32 (533 P71 |R79
Pl [516:517-518 P33 |R32-R34 P79 [S71-R87
P2 [S17+518:S19 P34 |S33-535 P87 |S79+R95
P3 [s18-519-520 P35 |R34:R36 P95 |S87:R103
pa |s19-520-321 P36 535537 P103[S95+R111
PS5 |$20-521-522 P37 |R36-R38 P111[S103-R119
p6 |521-522-523 P38 [837-539 P119|S111-R127
P7 |s22-523 P39 |R38 P127|S119
P16(S32+S33+R0O-R1 CP336(48) CP364 (56)
P17|532-533-534-R0-R1-R2 5oc o972 ra 5o Toiz mia
P18/533:534-535-R1-R2-R3 59 I566.582-R66-R82 P14 |S22-S6-R6-R22
P19/534+535:536+R2-R3 R4 P82 |S74-590-R74-R90 P22 |$30:514-R14:R30
P20|535-536-537-R3-R4-R5 P90 582-598-R82+R98 P30 |538+522+R22-R38
P211S36-537-538-R4-R5-R6 P98 [590-5106-R90-R106 P38 [S46-530-R30-R46
P22|S37-538+539-R5+R6*R7 P106/S98-S114-R98-R114 P46 |S54-S38-R38-R54
P23|538-539:R6"R7 P114[5106-5122-R106-R122 P54 |S62-S46-R46:R62
P32(s48-549-R16-R17 P122|S114:R114 P62 |S54:R54
P33|S48-549-550-R16-R17+R18
P34[S49:550+S51+R17-R18+R19 Cp89 (18) CP72 (4)
P35(550-551-552-R18-R19-R20 P41 [S43 P25 |s527+R27
P36[551-552+853-R19-R20+R21 P43 |R41-R45 P27 [525+529+R25+R29
P37|352-553+S54-R20-R21+R22 P45 |S43-547 P29 [527-531-R27-R31
P38|S53-554-555-R21-R22-R23 P47 [R45 P31 [S29-R29
532 f{g;‘:;gg*”“” CP401 (56) cP407 (30)

PO |[S8-R8 P112[R113
ggg Egg_gzi;g P8 [S0-S16-R0O-R16 P113[S112-5114
e1|R3a.R35. R3E P16 [S8-524+R8-R24 P114[R113:R115
poolnas 3 ng P24 [S16:532-R16+R32 P115[S114:5116
reslnae i3m0 P32 [524:540+R24+R40 P116|R115-R117

P40 [532-548-R32-R48 P117[S116-5118
P54|R37-R38-R39 P48 |S40-556-R40-R56 P118|R117-R119
P55|R38-R39 P56 |S48-R48 P119|s118

Figure 17: Sample Patterns in SMG2000 (8 x 8 x 2 Topology)
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Figure 18: D¢ for Whole Communication Patterns List

of CP166 (528 bytes), where the first one was marked as slow.

CP188 occurred 46 times (4 in Sefup and 42 in Solve). All 4 in-

stances in the Setup phase were marked as slow, and only one in

Solve. From the 48 instances of CP336 (112 bytes), only 8 oc-

curred in the Setup phase (first two were marked as slow). The

second instance of ALLREDUCE-ALLREDUCE (262, 144 bytes) was
also marked as slow.

Table 13: Execution Phases and Slow Communication Patterns

Phase User Functions From | To | Slow Patterns

HYPRE _StructGridAssemble

1 HYPRE_StructMatrix Assemble 1 339 105
hypre_SMGRelaxSetup

2 | hypre_SMGRelaxSetup 340 | 529 45

3 hypre_SMGSetuplnterpOp 530 | 1,453 204
hypre_SMGSetupRAPOp

4 hypre_SMGRelaxSetup 1,454 | 1,766 m

5 hypre_SMGSolve 1,767 | 5,185 140

6 | hypre_SMGSolve 5,186 | 5,908 32

7 hypre_SMGSolve 5,909 | 5,986 2

8 hypre_SMGSolve 5,987 | 6,180 4

Table 13 presents the 8 phases detected at depth 3 with the
number of slow communication patterns. The analyst can fur-
ther segment the long phases to reduce the number of patterns
in a certain phase. Working with fine-grained views guides in
the localization of the root cause.

Figure 19 shows the whole trace, using Vampir tool, anno-



Table 12: Comparison between AIC and BIC for Segmentation:
starting position (p;), ending position (p,), segmentation point (p,,,)

Table 14: Slow Communication Patterns in Phase 1 (depth 6)
i: position in phase, np: number of processes, ne: number of events

S Ps Pe | Dis | Pwax | swic | saic | Parent
So 1 6,180 | 0.24 | 1,766 | 0.13 | 3.19 -

S 1 1,766 | 0.30 | 529 | -0.37 | 1.37 So
S, 11,767 | 6,180 | 0.07 | 5,908 | -0.42 | 1.45 So

tated with the 8 phases. Manual inspection of a trace of this size
is not a trivial task. Thus, the analyst should be guided to where
specific communications are happening, in which phases, and
which ones are slow. Moreover, information about the severity
and complexity of the slow patterns should be useful in decid-
ing where to conduct the analysis.

!‘w:nWM |

Figure 19: Execution Trace in Vampir with Phases

Figure 20 depicts the communication patterns in the execu-
tion trace where the slow ones are shown in blue. We magnified
the size of slow patterns to make them clear to the reader. This
applies to the other scenarios.
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Figure 20: Communication Patterns in Execution Trace

When segmenting the trace at depth 6, the length of the first
phase was reduced to 43 patterns with three slow instances. Ta-
ble 14 shows that patterns CP5, CP7, and CP15 involve 32,
16, and 2 processes respectively. Our approach marked CP15
with high affinity level (due to its low complexity), CP7 with
medium, and CP5 as low due to its high complexity.

Figure 21 depicts these three slow patterns. The patterns
are colored based on their severity-complexity (IA) level. The
light blue color depicts the normal communications in Phase
1. Communication pattern CP15 (high IA) involves processes
P33 and P3;. P37 was the last to start in the pattern by send-
ing its message late (i.e. late-sender). Analyzing this pattern

15

Pattern | i |[np | ne | bytes | Duration (us)| Median Threshold | TA
CP5 |12]32|888|1,776| 142,107,809 | 116,603,750 | 126,426,115 | Low
CP7 |22]16|360| 720 | 120,196,558 | 96,675,762 | 73,154,966 | Med.
CP15 |41 2| 4 | 32 | 21,438,566 | 6,977,436 | 10,924,132 | High

was simple since it only involves an exchange of two messages
between P33 and P3;. Further, identifying the root cause was
quick, where the delay was caused by P37 as it was busy in
computations while P33 was waiting for a message from Ps;.
CP7 (medium IA) involves 16 processes and 360 events, which
is clearly more complex to analyze than CP15. In CP7, the
last process to start was P37 as it was busy in computations be-
fore sending a message to P;. Thus, P3; was identified as a
late-sender. The slowest event was in process Ps which was
also waiting to receive from P;. This delay caused the other
processes to wait and the most impacted was P33 which com-
pleted its communication last. The analysis to identify the root
cause in this pattern was longer than that in CP15 due to its
higher complexity. The root cause was also related to compu-
tational imbalance resulting in communication imbalance due
to the waiting time. Finally, CP5 which is the most complex
in the phase (32 process and 888 events) was categorized as
low. Understanding this communication pattern using the Vam-
pir tool was a tedious task. The last process to start was Ps3,
where it was sending a message to Pjg. Process Ps3; was busy
in computations, which shows that the root-cause was due to
computational (or load) imbalance.
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Figure 21: Communication Patterns in Execution Trace

The trace also contains 96 patterns that occurred only once
(where 80 patterns consist of a single message communica-
tion). The remaining 16 patterns involve different number of
processes (8, 16, 32, 64, and 128) that communicate with their
nearest and non-nearest neighboring processes. For example,
pattern CP139 involves all the processes in the program, where
each process in the first 2D grid (processes 0 to 63) sends to
its neighbors in the same grid and to its neighbors in the sec-
ond grid (processes 64 to 127). However, the processes in the
second grid only receive data from their adjacent neighbors in
the first grid. In this paper, we only identify slow patterns
that repeat in the trace. However, it is important to identify
if non-repeating communication patterns are causing latency.
These patterns can be compared to similar repeating and non-



repeating patterns in terms of number of processes, events, and
size of exchanged data.

5.1.3. SMG2000 with 1024 Processes

We also tested our approach on a trace of 1,024 processes
using a 16 X 16 x 4 process topology with a 1 X 1 X 1 problem
size. The Total number of OTF2 events is 598,699,396 with
11,866,079 MPI events. The number of detected distinct com-
munication patterns is 5,777 with a total of 64,052 instances.
Our approach identified 3,512 slow pattern instances, where
2,967 instances were due to late senders, 544 by late receivers,
and two were from late processes in collective communications.
There are also 2, 122 non-repeating patterns in the trace where
1,568 are composed of a single message and 512 are composed
of 3 messages. The remaining 42 communications involve dif-
ferent number of processes ranging from 16 to 1, 024.

Figure 22 shows sample nearest and non-nearest neighbor
communication patterns that are repeating in the trace. The
trace contains many point-to-point patterns that involve various
number of processes (ranging from 2 to 1,024 processes).

CP974 (90) CP2210 (80)
P32 R33 P257 | S273-R273
P33 532:534 P273 | S257+5289-R257+-R289
P34 R33-R35 P289 | S273-5305-R273-R305
P35 S34+536 P305 | S289:5321+R289-R321
P36 R35:R37 P321 | S305:5337-R305-R337
P37 S36-5S38 P337 | S321-5353-R321-R353
P38 R37-R39 P353 | S337:-5369-R337-R369
P39 538-540 P369 | S353:-5385-R353-R385
P40 R39-R41 P385 | S369:5401-R369-R401
P41 S540-542 P401 | S385-5417-R385-R417
P42 R41-R43 P417 | S401-5433-R401-R433
P43 S42-544 P433 | S417-5449-R417-R449
P44 R43:R45 P449 | S433:5465-R433-R465
P45 S44-546 P465 | S449-5481-R449-R481
P46 R45-R47 P481 | S465-5497-R465-R497
P47 S46 P497 | 5481

CP3008 (90) CP38 (12)
P897 | S901 P225 | S229.R229
P901 | R897+-R905 P229 | S225.5233.R225.R233
P905 | S901-5909 P233 | S229.5237.R229.R237
P909 | R905 P237 | S233.R233

Figure 22: Sample Patterns in SMG2000 (16 x 16 x 4 Topology)
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Figure 23: D;g for Whole Communication Patterns List

Figure 23 depicts the D,y values for the whole sequence of
communication patterns in the trace. The behavior is similar to
the previous two scenarios. The segmentation is performed at
point 12,961 which marks the end of the Setup phase.

Table 15 shows the 8 phases at depth 3 in the segmentation
tree with the user functions that they occur in and the number
of slow patterns in each phase.

Table 15: Execution Phases and Slow Communication Patterns

Phase User Functions From To | Slow Patterns

HYPRE_StructGridAssemble

1 HYPRE_StructMatrix Assemble 1 3,086 610
hypre_SMGRelaxSetup

2 | hypre_SMGRelaxSetup 3,087 | 8,183 515

3 | hypre_.SMGSetuplnterpOp 8,184 | 9,818 146
hypre_SMGSetupRAPOp

4 hypre_SMGRelaxSetup 9,819 112,960 760

5 | hypre_SMGSolve 12,961 | 59,438 1,463

6 hypre_SMGSolve 59,439 162,707 4

7 | hypre_SMGSolve 62,708 | 62,976 7
hypre_SMGSolve

8 HYPRE_StructSMGDestroy 62,977 164,052 7

Figure 24 depicts the communication patterns and the main
two phases in the trace, where slow patterns are in darker blue.
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Figure 24: Communication Events in Execution Trace

Increasing the segmentation tree depth increases the num-
ber of phases and results in shorter ones. Table 16 shows the
slow patterns in Phase 8 and Phase 24 when segmenting the
trace at depth 6. In Phase 8, three slow patterns were catego-
rized with low, medium and high IA levels. Slow instance of
pattern CP1751 at position 106 was categorized as high since it
only consists of two events (low complexity). This pattern re-
peats 24 times in the trace, where process P337 sends a message
to P345. For this instance, P345 was identified as a late-receiver.
When investigating the trace, we found that the delay propa-
gated from the preceding pattern (another instance of CP1751),
causing process P34s to enter a wait state. Analyzing the pre-
vious instance of CP1751 showed that P34s was busy in com-
putations while process P337 was idle (computation imbalance).
Further, the analysis of pattern CP1420 (low IA) in this phase
showed that process P375 was late in sending a message to P374
due to computation imbalance.

In CP2122, process Py was a late-sender to P,s. Investi-
gating this pattern was more complex than CP1420 since it in-
volved more events. The latency in Py propagated to the other
processes in the pattern which caused P;s3 to finish sending its
message late to process Pigy. In Phase 24, all the patterns have
equal number of processes and events. Pattern CP677 was cate-
gorized as high due to its high severity, where process Pgoy was



identified as a late-sender when sending a message to Psg4. Fur-
ther, the analysis of slow communication patterns in this sce-
nario (16 x 16 x 4 process topology) showed that the latency
was also related to a communication issue, which could be a re-
sult of resource limitation due to the large number of processes
and excessive communications.

Table 16: Slow Patterns in Phases 8 and 24 (depth 6)
i: position in phase, np: number of processes, ne: number of events

Pattern | i |np|ne|bytes| Dur. (us) Median | Threshold | TA
» CP1420| 50 [16[30]| 120 | 24,569,225 | 8,371,079 |11,323,924 | Low
Z|CP1751(106| 2 | 2| 8 8,711,713 | 3,793,115 | 5,895,232 | High
& [CP2122(258|16 | 60| 240 | 342,098,199 | 16,613,767 | 31,253,557 | Med.
CP640 |29 (2|2 ] 8 1,466,800 | 1,341,800 | 1,216,800 | Low
CP652 |44 (22| 8 545,726 437,495 329,264 | Low
S CP677 [62 |22 8 6,528,768 | 5,690,704 | 4,852,640 | High
% CP691 [ 70 [ 2] 2| 8 3,949,956 | 3,773,906 | 3,597,856 | Med.
£ICP702 [ 74 [2 2] 8 3,502,378 | 3,260,228 | 3,018,078 | Med.
CP813 [102( 2|2 ] 8 3,024,405 | 3,018,423 | 3,012,441 | Med.
CP833 [110| 22| 8 2,557,835 | 2,508,315 | 2,458,795 | Med.

When using a modified Z-Score of M; > 5, the number
of slow patterns was reduced to 2,502. This enables the ana-
lyst to focus on the most severe patterns first. The analyst can
adjust this number based on his findings and can select which
category of slow patterns to show. The analyst should navigate
through the patterns based on the happened-before relationship
and trace back to the root cause of the problem.

5.2. AMG2013
We applied our approach on the AMG2013 parallel bench-

mark [58]. AMG2013 examines parallel weak scaling efficiency.

It is an algebraic multigrid solver for linear systems occurring in
problems on unstructured grids. AMG2013 uses both MPI and
OpenMP to achieve parallelism (SPMD). In our experiments,
we generated the traces using 64 processes (4 X 4 X 4 topology),
10 x 10 x 10 problem size and OMP_NUM_THREADS=1.

The trace contains a total of 19,452,036 events (1, 879,455
MPI events). It contains 56 distinct communication patterns
with a total of 728 instances (where 30 have single occurrences
and involve all the processes in the trace with various number
of events). The communication patterns are mostly global (in-
volve all the processes in the program). For example, CP4 re-
peats 111 times in the trace where the processes perform near-
est neighbor communications in the same grid and the adjacent
grids. AMG2013 has the Setup (HYPRE_PCGSetup) and Solve
(HYPRE_PCGSolve) as its main phases.

Figure 25 presents the D g values for segments S, S2, S,
and Sg in the tree. It shows that S, was divided into two seg-
ments (S5 and S¢), and S¢ was segmented into two phases
where S'g corresponds to the Solve phase. The latter was dis-
tinctly identified at depth 3 in the segmentation tree (S is at
depth 0). Figure 25 shows that the Solve phase is highly homo-
geneous which is depicted by the low level of divergence.
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Figure 25: ND,¢ values for whole trace

Figure 26 shows the whole execution trace captured using
the Vampir tool with annotations of the 8 identified phases.
The Setup phase contains 7 sub-phases where each phase cor-
responds to specific user functions in the trace.

Figure 26: Execution Trace in Vampir with Phases

The Modified Z-Score method identified 65 instances as
slow, where 48 were caused by late senders, one instance by
late receivers, and 16 from slow processes in collective com-
munications. The Setup phase, which is 287 patterns long, has
46 slow instances, while the Solve phase (441 patterns long) has
19 slow instances. Table 17 shows the 8 phases at depth 3, their
user functions, and the corresponding slow patterns. The first
phase contains 36 communication patterns where 12 of them
were identified as slow.

Figure 27 depicts the communication patterns in the trace,
where the slow communications are in blue and the normal
communication events are in light gray.

Figure 27: Communication Events in Execution Trace



Table 17: Execution Phases and Slow Communication Patterns

Phase | User Functions From | To | Slow Patterns
hypre_BoomerAMGCoarsenHMIS

1 | hypre_.BoomerAMGCreate2ndS 1 36 12
hypre_BoomerAMGCoarsenRuge

2 hypre_BoomerAMGCoarsenPMIS 37 | 86 7
hypre_BoomerAMGBuildMultipass

3 | hypre_.BoomerAMGBuildCoarseOp 87 | 91 0

4 hypre_BoomerAMGCoarsenHMIS 0 | 142 9
hypre_BoomerAMGBuildExtPIInterp
hypre_BoomerAMGBuildCoarseOp

5 | hypre_BoomerAMGCoarsenHMIS 143 | 201 7
hypre_BoomerAMGBuildExtPIInterp
hypre_BoomerAMGBuildCoarseOp

6 | hypre_BoomerAMGCoarsenHMIS 202 | 278 11
hypre_BoomerAMGBuildExtPIInterp
hypre_BoomerAMGBuildCoarseOp

7 | hypre_BoomerAMGCoarsenHMIS 279 | 287 0
hypre_BoomerAMGBuildExtPIInterp

8 | HYPRE_PCGSolve 288 | 728 19

Table 18 shows the 12 slow communication patterns in Phase
1. They are point-to-point and collective communications that
involve 64 processes (i.e. global). The patterns that involve
higher number of events have higher complexity. CP3 and CP4
are point-to-point communication patterns. CP3 is a large pat-
tern that repeats 4 times in the trace with 2 instances marked
as slow. CP4 repeats 111 times with 9 slow instances in the
trace. The whole trace contains 4 instances of CP1, a collective
communication pattern (ALLREDUCE-ALLREDUCE), where only
its first instance (which is also the first communication in the
trace) was identified as slow. The program also contains 128
instances of ALLREDUCE (CP2), where 11 of them are slow (3
slow in Phase 1). CP4 at positions 6 and 7 both have process Pg;
as a late-sender when it was sending a message to P4s. CP4 at
position 6 was categorized as medium while the instance at po-
sition 7 was categorized as low due to its lower severity. When
analyzing the trace, the cause of delay was related to compu-
tational imbalance as the late processes were busy in computa-
tions while the others were set idle.

Table 18: Slow Communication Patterns in Phase 1

Ptrn| i |np| ne bytes |Duration (us)| Median Threshold | IA
CP1| 1 |64]| 128 | 65,536 | 239,226,449 | 8,420,955 | 9,569,933 | High
CP2| 2 64| 64 | 32,768 | 49,099,716 | 8,517,267 |24,026,711 | High
CP2| 3 |64| 64 | 32,768 | 31,699,789 | 8,517,267 |24,026,711 | High
CP3| 4 |64|1,404]| 20,736 | 26,272,627 | 19,157,037 | 12,041,447 | Low
CP3| 5 |64|1,404 232,704 | 218,539,989 | 115,149,039 | 11,758,089 | Low
CP4| 6 [64| 576 |230,400 | 388,590,357 | 11,078,898 |21,154,570 | Med.
CP4| 7 |64] 576 (230,400 | 155,497,529 | 11,078,898 |21,154,570 | Low
CP2| 8 |[64| 64 | 32,768 | 106,645,449 | 8,517,267 |24,026,711 | High
CP4(24164| 576 [115,200| 13,115,945 | 5,910,651 | 6,759,955 | Low
CP4(25]64| 576 [115,200| 13,311,987 | 5,910,651 | 6,759,955 | Low
CP4(32164| 576 [115,200| 16,648,752 | 5,910,651 | 6,759,955 | Low
CP4(33|64| 576 [115,200| 140,555,667 | 5,910,651 | 6,759,955 |Med.

5.3. NAS BT Parallel Benchmark

We tested our approach on a trace generated from the Block
Tri-diagonal solver (BT) pseudo application from the NAS par-
allel benchmarks suite [59]. This suite contains a small set of
applications for performance evaluation of parallel supercom-
puters. We generated a trace from running BT on 100 pro-
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cesses (10 x 10 process topology) using the A class configu-
ration. We applied a Score-p filter to exclude some utility func-
tions to reduce the trace file size (binvcrhs*, matmul_sub*,
matvec_sub*, exact_solution*, binvrhs*, lhs*initx*,
timer_x). The trace contains 24,454,798 events with 4,605,900
as MPI events.

Our approach detected 64 distinct communication patterns
with a total of 108,745 instances. The trace contains 3, 283 slow
patterns, where only one was in a collective communication and
the rest 3,282 were caused by late senders. The program per-
forms one BCAST, two ALLREDUCE, and one REDUCE collective
operations. The first communication in the trace is the BCAST
while the ALLREDUCE and REDUCE are the last communications
respectively. The trace contains a global point-to-point com-
munication pattern (CP2), that repeats 202 times, where all the
processes send messages to and receive from their left, right,
upper, lower and anti-diagonal neighbors. There are also 60
short point-to-point communication patterns, where each pat-
tern repeats 1,809 times in the trace. They belong to six dif-
ferent groups that occur in a specific solve function. Figure 28
shows one sample pattern from each group.

CP7 CP15 CP25

PO S1-R9 PO S9-R1 PO S10-R90
Pl S2-RO Pl S0-R2 P10 | S20-RO

P2 S3-R1 P2 S1-R3 P20 | S30-R10
P3 S4-R2 P3 S2-R4 P30 | S40+R20
P4 S5+R3 P4 S3+R5 P40 | S50+R30
P5 S6-R4 P5 S4-R6 P50 | S60+R40
P6 S7+R5 P6 S5-R7 P60 | S70+R50
P7 S8-R6 P7 S6-R8 P70 | s80-R60
P8 S9-R7 P8 S7-R9 P80 | S90+R70
P9 SO0-R8 P9 S8-RO P90 | SO-R80

CP33 CP47 CP58

PO S90-R10 PO S19-R91 PO S91-R19
P10 | SO-R20 P19 | S28+R0O P19 | sO0-R28

P20 | S10-R30 P28 | S37+R19 P28 | S19:R37
P30 | S20-R40 P37 | S46-R28 P37 | S28:R46
P40 | S30+-R50 P46 | S55-R37 P46 | S37+R55
P50 | S40-R60 P55 | S64-R46 P55 | S46-R64
P60 | S50-R70 P64 | S73-R55 P64 | S55-R73
P70 | S60-R80 P73 | S82-R64 P73 | S64-R82
P80 | S70-R90 P82 | S91+R73 P82 | S73+R91
P90 | S80-RO P91 | SO-R82 P91 | S82+R0O

Figure 28: Local Communication Patterns

In the following, we describe each group and show the user
function it occurs in.

G1 (x_solve_): The processes in each row (x-axis) send
to the right and receive from the left neighbor (e.g. CP7).

G2 (x_solve_): The processes in each row send to the left
and receive from the right neighbor (e.g. CP15).

G3 (y-solve_): The processes in each column (y-axis)
send to the lower and receive from the upper neighbor
(e.g. CP25).

G4 (y-solve_): The processes in each column send to the
lower and receive from the upper neighbor (e.g. CP33).

G5 (zsolve_): The processes in each anti-diagonal (z-
axis) send to the lower-left neighbor and receive from the
upper-right neighbor (e.g. CP47).



e G6 (z_solve_): The processes in each anti-diagonal send
to the upper-right neighbor and receive from the lower-
left neighbor (e.g. CP58).

Figure 29 shows a screenshot from the Vampir tool for a
repeating communication pattern (same as CP15) in the trace.

Figure 29: Zoomed-in view using Vampir

Figure 30 shows the D,g values for the whole trace. The
trace contains a long homogeneous Solve phase which is demon-
strated by the smoothness of the curve.
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Figure 30: Jensen-Shannon Divergence at S

Table 19 shows four phases detected at depth 2 in the seg-
mentation tree. Phase 1 involves one instance of the copy_faces_
and x_solve_ functions. The second phase is a long phase that
should be further segmented. The third and fourth phases in-
volve the z_solve_ and copy_faces_ functions. The pattern
at point 1 is a BCAST operation, followed by CP2 (occurs in
copy-_faces_), and 180 short point-to-point patterns. Similarly,
phases 3 and 4, together contain 180 short patterns followed by
CP2, two ALLREDUCE operations, and one REDUCE operation.

Table 19: Phases at segmentation depth 2

Phase Usér From To Slow Patterns
Functions

1 copy_faces- 1 182 49
x_solve_
x_solve_

2 y-solve. 183 | 108,562 3,232
z_solve_
copy__faces._

3 z_solve_ 108,563 | 108,652 1

4 copy_faces_ | 108,653 | 108,746 1

To further segment Phase 2, we set the length parameter
to 200 to prevent segmenting any phase that is less than 200
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patterns. We selected this value based on the length of Phase
1 which belongs mainly to the x_solve_ function. Table 20
presents the sub-phases of Phase 2. It shows how the segmen-
tation approach is capable of identifying distinct short phases
in the trace. This long phase will be subsequently segmented to
detect finer sub-phases, which is different than the Solve phases
in SMG2000 and AMG2013 where they stopped segmenting
due to negative segmentation strength.

Table 20: Sub-phases in Phase 2

Sub-Phase | User Functions | From To Slow Patterns
2.1 y_solve_ 183 362 51
22 z-solve 363 543 1

copy-faces._
2.3 x_solve_ 544 723 0
24 y-solve_ 724 903
2.5 z-solve- 904 | 1,084 13
copy-faces_
x_solve_
2.6 y-solve. 1,085 | 108,562 3,165
z_solve_
copy-faces._

Figure 31 depicts the communication events in the whole
execution trace. The normally behaving patterns are in light
blue, while the slow events are in darker blue. It shows that
there are repeating waves of slow events in the trace.

Figure 31: Communication Events in Execution Trace

Our approach is capable of providing finer views of the trace
at deeper segmentation levels. The recognition of phases at this
level of granularity makes it easier to analyze the trace and com-
pare the patterns in the phase. For example, Table 21 shows
the slow communication patterns in Phase 6 when segmenting
the trace at depth 8. Even though the patterns have the same
number of processes, events, and data length, they have been
categorized differently based on their severity level (duration).
The severity in CP9 was clear when analyzing the trace, where
process P47 was the last to start when sending a message to
P4g. Process P47 was busy in computations which caused the
pattern to be slower than its peers in the trace. For CP4, there
was lack of synchronization between the processes due to load
imbalance as some processes were busy in computations while
the others were set idle.



Table 21: Slow Communication Patterns in Phase 6 at depth = 8
i: position in phase, processes = 10, events = 20, data length =

Table 23: Execution times and number of phases
for variable depths

117600 bytes, P, last process to start, and P, last to finish h SMG2000| SMG2000 | SMG2000| AMG2013 | NAS BT
Pattern | 7 | Duration (us) | Median | Threshold | Prs | Prr | IA Dept ) (128) | (1024) (64) (100)
CP4 1| 75,980,041 |32,944,462 | 68,698,667 | 27 | 27 Low 5 g 6 38 51 61 49 50
CP7 21 90,115,100 | 34,156,897 | 72,057,660 | 3 3 Low e 2 9 96 374 478 104 132
CP12 |3 165,094,010 | 31,797,205 | 64,371,365 | 97 | 97 | Medium Z f 12 176 1,349 3,535 129 212
CP9 41 517,507,257 | 33,601,163 | 72,984,113 | 47 | 47 High - 6 822 2,845 270,032 64 7,489
CP4 51 72,882,120 | 32,944,462 | 68,698,667 | 27 | 27 Low & § 9 850 2,852 271,577 70 11,054
CP8 6| 281,978,202 | 33,067,682 | 73,696,175 | 88 | 88 | Medium a2~ 12 888 2,940 293,161 74 11,225
CP10 | 7] 329,193,924 | 34,084,422 72,353,890 | 61 | 61 | Medium - 6 365 63 704 73 2,007
CP4 | 8| 74,083,586 | 32,944,462 | 68,698,667 | 27 | 27 | Low 520 505 166 1.047 5 3.970

v 12 622 417 2,186 59 4,038

5.4. Execution Time Analysis of the Approach

We tested our approach on a Windows 10 running on a 2.4
GHz Intel Core i7-3517U with 8GB RAM. We measured the
execution time for each of the following steps in the approach
using the five scenarios.

e Step 1: Building the maximal repeats table per process

Step 2: Communication patterns construction

Step 3: Localization of patterns (phase detection)

Step 4: Inefficient patterns identification

e Step 5: Inefficient patterns categorization

Table 22 shows each scenario, its pattern length, the num-
ber of distinct patterns, and the execution time for each step.
The time for phase detection depends on the length of the se-
quence of patterns and the number of distinct patterns. For ex-
ample, SMG2000 with 1,024 processes contains 5,777 distinct
patterns (parameters) with a total length of 64,052. It spent
much more time than the SMG2000 with 4 processes (25 pat-
terns and 42,222 sequence length). Moreover, it took much
longer than the NAS BT case which has a length of 108,745
patterns with 64 distinct ones.

Table 22: Execution Times (ms) for each step at depth 3
Number of phases = 8

SMG2000 | SMG2000 | SMG2000 | AMG2013 | NAS BT
(@) (128) (1024) (64) (100)
length 42,222 6,180 64,052 728 108,745
patterns 25 690 5,777 56 64
Step 1 (ms) 221 325 4,507 437 934
Step 2 (ms) 466 991 25,990 2,037 10,854
Step 3 (ms) 670 2,450 219,506 55 5,291
Step 4 (ms) 106 46 219 35 284
Step 5 (ms) 548 78 928 9 3,803

Table 23 shows the execution times for steps 3 and 5 at var-
ious depths. The phase detection times slightly changed due to
the shorter phases at deeper depths in the trees, and that some
phases stopped segmenting due to their high homogeneity. The
pattern categorization times showed an increase for the first four
traces, and were almost unchanged in case of NAS BT.

5.5. Threats to Validity

Internal validity threats concern the factors that might influ-
ence our results. The selection of the systems used in the evalu-
ation section is one possible threat. These systems are used by

similar studies and are representative of typical HPC systems.
Another threat to internal validity is the way we evaluated the
patterns that we detected as inefficient. Although every effort
was made to provide a thorough evaluation, errors may have
occurred. Finally, errors in the implementation of our tool may
be a threat to internal validity. To mitigate this threat, we tested
the tool. We also make the tool available for other researchers
to review.

Conclusion Validity: Conclusion validity threats depend on
the correctness of the results. We made every effort to review
the results obtained from our experiments to ensure that we
properly evaluate the effectiveness of our approach. We strive
to provide as many details as possible to allow the evaluation
and reproducibility of our results.

Reliability Validity: Reliability validity corresponds to the
possibility of replicating this study. We examined five traces
from three different HPC systems. These systems were also
used by other studies. We acknowledge that we need more
traces to strongly support our findings. This said, we put on-
line material to allow other researchers to reproduce the study.

External Validity: External validity is related to the gen-
eralizability of the results. We experimented with three HPC
systems that use MPI for inter-process communication. Our
approach relies solely on MPI calls and no other mechanism.
As such, we believe that it should work on any system that
uses MPI for inter-process communication. This said, we agree
that generalization remains an external threat to validity of our
study. We can see a situation where an HPC system uses other
communication mechanisms. For that, we will need to adapt
our approach to traces generated from these systems.

6. Conclusion

We presented a novel approach for the discovery of slow
communication patterns in execution traces using statistical anal-
ysis techniques. Our approach can also be used for program
comprehension to help analysts understand the behavior of the
inter-process communication in MPI programs. Our approach
is built on an improved version of our previous trace segmenta-
tion approach, which uses information theory principles to split
a trace on execution phases. The approach relies on the detec-
tion of communication patterns in a trace. For this, we used
routine-call trees to identify the maximal repeats in each pro-
cess. Each phase contains a list of slow communication patterns



categorized based on their severity and complexity. We also
used a median-based statistical approach to identify the outlier
patterns in the trace. The Modified Z-score is a robust statistical
method that is not greatly affected by outliers.

We tested our approach on five traces from three open HPC
programs that use MPI for inter-process communication. The
results show that our approach can accurately identify execution
phases based on the detected communication patterns, is capa-
ble of identifying slow patterns within each phase, and deter-
mine whether the latency is caused by late senders or receivers.
These inefficient patterns are categorized based on their sever-
ity and complexity levels to help an analyst make decisions on
where to start the inspection.

Our approach suffers from the existence of non-repeating
communications in the program execution in some scenarios.
These communications may hold important information regard-
ing the performance of the program. In this paper, we did not
target the identification of latency in non-repeating communi-
cations and their significance on the performance of HPC sys-
tems.

In the future, we intend to apply various similarity tech-
niques to compare single occurring communications to other
patterns in the trace in order to identify whether they are slow
or not. We will also extend the trace segmentation approach
to avoid the problem of long homogeneous segments caused by
the context sensitivity problem [64] instead of segmenting them
into sub-phases of equal length.

Further, We want to apply our approach to HPC systems
that use other communication mechanisms to generalize our ap-
proach to work on traces generated from these systems.

Finally, we intend to conduct a user study to provide a qual-
itative evaluation of the effectiveness of our approach. We are
also investigating the application of our approach to industrial
systems.

7. Reproduction Package

The implementation of our approach as well as the data used
in the evaluation section are made available in the following
repository: https://github.com/lalawneh/HPC-MPI-Traces.
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