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A B S T R A C T
Existing Just-In-Time Software Defect Prediction methods suffer from the data imbalance problem,
where the majority class (normal commits) significantly outnumbers the minority class (buggy
commits). This results in a higher probability of misclassification. Various data balancing techniques
have been proposed to address this challenge with varying degrees of success. In this study, we
propose an approach that rely on One-Class Classification (OCC) to train models using data from
the majority class only. This eliminates the need for data balancing. We compare the accuracy of
three OCC algorithms - One-class SVM, Isolation Forest, and One-class k-NN - to their binary
counterparts - SVM, Random Forest, and k-NN - on 34 software projects. Our results show that the
data imbalance ratio (the proportion of normal to buggy commits) plays a crucial role in determining
the optimal classification approach. We found that for projects with medium to high imbalance ratio,
OCC algorithms outperform binary classifiers with and without data balancing, using cross and time-
sensitive validation approaches. Furthermore, we found that OCC methods require fewer features for
projects with medium to high IR, reducing the computational overhead of training and response time
while providing a better understanding of the data and algorithm behaviour.

1. Introduction
Software Defect Prediction (SDP) approaches have shown

to be useful in improving the quality of software sys-
tems while reducing the cost Nayrolles and Hamou-Lhadj
(2018), Kamei, Shihab, Adams, Hassan, Mockus, Sinha
and Ubayashi (2013). SDP models are built using historical
software data and various machine learning techniques. The
models are then deployed to recognize potential defects in
a newly written code Nayrolles and Hamou-Lhadj (2018).
Recently, there has been a growing interest in Just-in-Time
SDP (JIT-SDP) techniques where the prediction of bugs
is performed at the level of code commits, i.e., before the
changes reach the central code repository. The common
practice is to build a model using one or multiple machine
learning algorithms of historical commits (both normal and
buggy commit) that can later be used to detect whether a new
commit is buggy or not. A buggy commit is a commit that
is identified by the models as a potentially bug-introducing
commit. Unlike traditional SDP techniques, which operate
on the entire source code, JIT-SDP approaches can be used
to provide quick feedback to developers on the code changes
they make. Developers can decide to make fixes while the
changes are fresh in their minds. Furthermore, JIT-SDP
methods can be embedded in code versioning systems,
eliminating the need for external tools Kamei et al. (2013);
Wang, Liu and Tan (2016); Nayrolles and Hamou-Lhadj
(2018).

Existing JIT-SDP studies rely on a variety of machine
learning (ML) techniques including decision trees Song,
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Jia, Shepperd, Ying and Liu (2011); Nayrolles and Hamou-
Lhadj (2018), Bayesian approaches Catolino, Di Nucci and
Ferrucci (2019), Neural Networks Kiehn, Pan and Camci
(2019), and Deep Learning Wang and Yao (2009); Hoang,
Khanh Dam, Kamei, Lo and Ubayashi (2019). These ap-
proaches face a significant challenge due to the imbalance
data problem Song, Guo and Shepperd (2019); Cabral,
Minku, Shihab and Mujahid (2019) where one class (the
minority class) has a much lower proportion in the training
data as compared to the majority class. Class imbalance
affects the performance of a classifier because it creates
a bias towards the majority class, leading to errors when
predicting the minority class Lomio, Pascarella, Palomba
and Lenarduzzi (2022); Hoang, Kang, Lo and Lawall (2020).
The class imbalance problem is particularly relevant to JIT-
SDP because the buggy commits are considerably fewer than
the normal ones Lomio et al. (2022); Song et al. (2019). To
address this, existing studies treat the problem as a binary
(i.e., two-class) classification problem and use some sort
of data balancing approaches such as Over-Sampling (OS),
Synthetic Minority Oversampling (SMOTE), or Under-
Sampling (US) so as not to undermine the minority class
Song et al. (2019). A comprehensive study of the use of data
balancing approaches in the context of JIT-SDP research
is presented by Song et al. Song et al. (2019). However,
data balancing methods have many limitations such as
increasing noise when over-sampling or, worse, dropping
important patterns when under-samplingBruce and Bruce
(2017). Additionally, some classifiers are sensitive to the
data distribution that affects the re-sampling process. Inves-
tigating which sampling method works best for a specific
classifier takes time and effort Bishop (2006); Wang, Minku
and Yao (2018).

In this paper, we investigate the use of One-Class Clas-
sification (OCC) algorithms in JIT-SDP, where we train a
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model on the majority class only (in our case the normal
commits). We used two approaches to build and evaluate
models Cross-Validation (CV) and Time-sensitive Valida-
tion (TV). The model is then used to predict buggy commits
(the minority class). By doing so, we completely eliminate
the need for data-balancing approaches. In addition, we only
require the presence of normal data to train the model. Our
approach is inspired by the area of anomaly detection where
the common practice is to build machine learning models
using the normal behavior of the system and then use these
models to detect any deviations from normalcy Khreich,
Khosravifar, Hamou-Lhadj and Talhi (2017); Islam, Khreich
and Hamou-Lhadj (2018). In this work, we compare the
performance of three different OCC algorithms to their
binary counterparts on 34 datasets (a total of 259,925 com-
mits) with various levels of class imbalance ratios. These
algorithms are trained using the features described by Kamei
et al. Kamei et al. (2013). More specifically, we compare
the performance of the following OCC algorithms, Isolation
Forest (IOF) Hariri, Kind and Brunner (2021), One-Class
k-Nearest Neighbors (OC-k-NN) Yousef, Jung, Showe and
Showe (2008), and One-Class Support Vector Machine (OC-
SVM) Khreich et al. (2017) to their binary classification
counterparts, Random Forest (RF), k-Nearest Neighbor (k-
NN), and Support Vector Machine (SVM) with and without
data balancing.

However, it is worth noting that our study deliberately
excluded Deep learning models such as DeepJIT, DBN-JIT,
and CC2Vec due to their utilization of different features,
specifically semantic and syntactic elements Hoang et al.
(2019); Zeng, Zhang, Zhang and Zhang (2021). We decided
to maintain consistency within our research framework and
focus on a specific set of features. By doing so, we aimed
to analyze the selected features’ effectiveness in our model
comprehensively. Moreover, we acknowledge the critical
influence that feature selection can have on the performance
of models, particularly when dealing with imbalanced data
Bruce and Bruce (2017); Butcher and Smith (2020). We
intended not to disregard the significance of these Deep
learning models but rather to streamline our investigation
and isolate the impact of the chosen features. Furthermore,
we draw attention to the work of Zeng et al. Zeng et al.
(2021) and Pornprasit and Tantithamthavorn Pornprasit and
Tantithamthavorn (2021) who showed that traditional ma-
chine learning models such as a logistic regression classifier
outperform deep learning models when working with large
datasets. That being said, as part of future work, we intend
to expand our research to include deep learning algorithms
and semantic feature sets.

The paper addresses the following three new research
questions (RQ):

• RQ1: What is the overall performance of OCC al-
gorithms compared to their binary classifier counter-
parts?

• RQ2: How do OCC algorithms perform compared to
binary classifiers when considering the data imbal-
ance ratio?

• RQ3: Which features affect the accuracy of OCC
algorithms compared to their corresponding binary
classifiers?

Regarding RQ1, our findings suggest that binary classi-
fiers tend to perform better than OCC algorithms in balanced
data settings. For RQ2, we consider the data imbalance
ratio (IR), which indicates the proportion of normal commits
to buggy ones. We found that OCC methods consistently
outperformed binary classifiers for projects with a medium
to high imbalance ratio, with a medium to large effect size.
As for RQ3, our findings indicate that the choice of features
has an impact on the accuracy of the algorithm. Projects with
medium to high IR require fewer features to train than the
other projects.

Researchers and practitioners can benefit from this study
by developing JIT-SDP tools that use OCC algorithms in-
stead of binary classifiers for systems with high data imbal-
ance ratios. OCC methods not only eliminate the need for
data balancing techniques but do not require the availability
of commits from both classes, i.e., normal and buggy com-
mits. These algorithms can also be trained on fewer features,
which shortens the training and response time and allows for
a better understanding of the behavior of the algorithms.

Organization of the paper: The next section reviews
software defect prediction and techniques for learning from
imbalanced data. Section 3 describes three one-class clas-
sifiers, which will be used in our experiments. Section 4
describes methods and experiments including datasets, fea-
tures, performance metrics, and experimental protocol used
for conducting the experiments. In Section 5, we present the
results to provide answers to the research questions. Potential
threats to validity and our mitigating actions are presented
in Section 6, followed by the conclusions and future work in
Section 7.

2. Related Work
Lomio et al. Lomio et al. (2022) investigated the use

of anomaly detection algorithms, more particularly, OC-
SVM, IOF, and Local Outlier Factor for fine-grained JIT
Pascarella, Palomba and Bacchelli (2019) defect prediction,
where the predicted class has three labels, namely buggy,
partial-buggy, and normal, instead of buggy and normal.
The authors found that one-class classification algorithms
perform similarly to binary classifiers. There are many key
differences between Lomio et al’s approach and our study.
First the authors focused on predicting files within the com-
mits that may potentially be buggy and not the commits. In
addition, they used a cross-project JIT-SDP method, mean-
ing that, using a dataset of n projects, they train a model
using n-1 projects and then test it on the remaining project.
In this study, we apply JIT-SDP to single projects and not
cross-projects. This is because our objective is to determine
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whether and when OCC algorithms provide better results
than their corresponding binary classifier. Using a cross-
project experimental setting makes it difficult to conclude
if the obtained results are due to the type of classifier
(binary or OCC) or simply because the models are trained
on larger datasets (commits from multiple projects). The
second difference is that we compare OCC algorithms with
their corresponding binary classifiers with and without data
balancing techniques. This is because data balancing is used
to address the imbalance data problem. Therefore, we must
compare OCC to binary classifiers with data balancing to
reach strong conclusions. In addition, unlike Lomio et al.’s
study, we examine the impact of the ratio of data imbalance
on the accuracy to determine a threshold beyond which
OCC algorithms should be favored over binary classification
algorithms. In their study, the authors did not provide such a
threshold. Finally, we also investigate the impact of various
feature sets on the accuracy of OCC algorithms to draw a
full picture of the value and usefulness of these algorithms
in practice.

There exist other studies that investigate the problem
of data imbalance in JIT-SDP tasks using mainly binary
classifiers. Cabral et al. Cabral et al. (2019) showed that JIT-
SDP suffers tremendously from data imbalance issues by
significantly reducing the predictive performance of existing
JIT-SDP methods. Their study is based on the analysis of
commits of 10 projects. Wang et al. Wang and Yao (2013)
studied the problem of class imbalance learning methods
in the field of software defect prediction. They examined
various class imbalance learning methods, including re-
sampling techniques, threshold moving, and ensemble algo-
rithms. They found that AdaBoost.NC yields the best overall
performance. The authors further improved the performance
of AdaBoost.NC by proposing a dynamic version, which
adjusts its parameters automatically during training.

Song et al. Song et al. (2019) conducted a comprehensive
study to understand the impact of defects in software com-
ponents by applying various imbalance learning techniques.
They conducted experiments with 27 datasets to understand
the impact of specific classifiers, data balancing techniques,
and features on prediction accuracy. The authors found that a
moderate and severe level of imbalanced data can directly in-
fluence the SDP model’s performance. They also found that
the selection of the machine learning algorithm is important
when dealing with data imbalance in the context of SDP.

Other recent studies on SDP use a variety of ma-
chine learning algorithms and their combinations to im-
prove model accuracy. Tong et al. Tong, Liu and Wang
(2018) proposed a two-stage ensemble approach to im-
prove the accuracy of SDP. The proposed model, called
SDAEsTSE, builds on a two-phase ensemble learning based
on stacked denoising auto-encoders. In the first phase, the
auto-encoders were used to represent the traditional software
metrics as deep representations. After that, the two layers of
the ensemble technique were used to build the prediction
model to overcome the class imbalance issue. The proposed
approach outperforms existing state-of-the-art SDP models

significantly when applied to commits from 12 NASA
projects.

TLEL is an approach proposed by Yang et al. Yang,
Lo, Xia and Sun (2017) to use two-layer set learning that
uses decision trees and ensemble learning to improve the
performance of JIT-SDP prediction. On average, TLEL was
able to identify more than 70% of defects by only 20% of
code lines compared to around 50% for a baseline model.
The researchers used random under-sampling to overcome
the imbalance issue.

The accuracy across supervised and unsupervised mod-
els for investigative JIT-SDP techniques has been examined
by Yang, Zhou, Liu, Zhao, Lu, Xu, Xu and Leung (2016).
The authors found that unsupervised techniques, which typ-
ically require less time to build the model, yield similar
results as the supervised models. Fu et al. Fu and Menzies
(2017) conducted a replication study of that of Yang et al.
Yang et al. (2016). The authors reported that unsupervised
models did not perform better than the supervised ones. They
contended that unsupervised learners should be combined to
achieve comparable performance to supervised algorithms.

Fukushima et al. Fukushima, Kamei, McIntosh, Ya-
mashita and Ubayashi (2014) examined the performance
of JIT-SDP models using two case studies: single-projects
and cross-projects. They started by examining the effect of
using the 14 code-based and process-based features Kamei
et al. (2013) by extracting these features from 11 projects.
They ended up using only six projects. The authors used
the Random Forest algorithm for building the classifier
and showed that cross-project techniques provide superior
performance compared to single-project methods.

Yan et al. Yan, Xia, Fan, Hassan, Lo and Li (2022)
designed a framework to detect the buggy changes for code
and then recognize the buggy code location from the newly
added lines. This technique comprises two main phases:
Identification and Localization. In the Identification phase,
the JIT-SDP model is trained and tested using 14 features
proposed by Kamei et al. (2013), where the training data is
60% of early commits and the next 40% of commits used
to test the model. Yan et al. (2022) did not focus on the
performance of the JIT-SDP model, which directly affects
the Localization step after identifying the buggy changes.
Their approach focuses on finding the location of the buggy
code if the JIT-SDP predicts the code changes as buggy.

Wang et al. Wang et al. (2016) applied the Deep Belief
Network (DBN) model as a semantic feature generator. The
Abstract Syntax Tree (AST) is used to represent the source
code and use it to train the DBN model. They used the
Naive Bayes (NB) and Logistic Regression (LR) classifiers
for building the prediction models, which were trained on 10
open-source Java projects from various domains to ensure
model generalization. The proposed method increases the
F1-score of cross-projects and within-project approaches by
8.9% and 14.2%, receptively.

In contrast, Pornprasit and Tantithamthavorn Pornprasit
and Tantithamthavorn (2021) proposed the JITLine tool
using the JIT-SDP model to predict the buggy changes and
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find the location of buggy code for buggy predictions. The
authors evaluated the performance of the JITLine with 3
models (EARL Kamei et al. (2013), DeepJIT Hoang et al.
(2019), and CC2Vec Hoang et al. (2020)). They used the
AUC, F1, Precision, and Recall evaluation metrics. The
JITLine achieved AUC = 82%, while the best AUC for
EARL, DeepJIT, and CC2Vec reaches 64%, 76%, and 81%,
respectively. The JITLine approach also provides faster and
simpler machine learning models to build JIT-SDP models
rather than deep learning approaches (e.g., DeepJIT Hoang
et al. (2019) and CC2Vec Hoang et al. (2020)).

Nayrolles and Hamou-Lhadj Nayrolles and Hamou-
Lhadj (2018) introduced CLEVER, a JIT-SDP technique
that creates a training model by merging contributions
from multiple video game systems that use the same game
engines. Instead of working on each project independently,
the authors argued that developing a training model that
incorporates commits from several interconnected systems
made more sense in this situation. CLEVER can detect
buggy commits with 79% precision and 65% recall, and the
F1-score is 79.10%.

Shehab et al. Shehab, Hamou-Lhadj and Alawneh (2022)
proposed merging commit data from a collection of projects
as part of a bigger cluster to train the JIT-SDP model.
ClusterCommit depends solely on code and process metrics,
making no assumptions about how projects are built. Fur-
thermore, unlike Nayrolles and Hamou-Lhadj’s work Nay-
rolles and Hamou-Lhadj (2018), Shehab et al. Shehab et al.
(2022) adopt a time-sensitive validation technique to test the
prediction accuracy of ClusterCommit, which considers the
temporal sequence of commits. ClusterCommit gets an F1-
score of 73% and 0.44 MCC.

Except for the work of Lomio et al. Lomio et al. (2022),
all other existing studies resort to machine learning tech-
niques for JIT-SDP using binariy classification models and
use data balancing methods to avoid bias. In this paper, we
propose the use of one-class classification to train JIT-SDP
models using the majority class, i.e., the normal commits.
The OCC approach eliminates the need for data balancing.
Also, as we show in this paper, the OCC models perform
better than binary algorithms when the data imbalance ratio
is high. We also determine using 27 datasets a threshold for
the data imbalance ratio beyond which it is preferable to use
OCC instead of binary classification.

3. One-class classification
OCC techniques rely on data from the majority (nega-

tive) class to train the machine learning model, as opposed
to binary classifiers, which need labeled data from both pos-
itive and negative classesBellinger, Sharma and Japkowicz
(2012). Once trained, the OCC model is used to classify
new examples as either belonging to the majority class or
not (which can then be considered outliers or anomalies).
One-class algorithms are well suited for tasks where the
minority (positive) class does not exhibit a consistent pattern

or structure in the feature space, which makes it harder for bi-
nary classification models to learn the class boundary. OCC
algorithms attempt to group the majority class instances
into a high-density region in the feature space as normal
behavior (see Figure 1) and then detect deviations from this
expected behavior as anomalies or outliers Hart, Stork and
Duda (2000).

In this paper, we examine three commonly used OCC
techniques which are based on three fundamental machine
learning approaches, and compare them to their binary
classifier counterparts. These OCC algorithms are One-
Class Support Vector Machine (OC-SVM), which relies on
a margin-based algorithm; One-Class k-Nearest Neighbors
(OC-k-NN), which relies on a distance-based algorithm;
and Isolation Forest (IOF), which relies on a tree-based
algorithm. We explain each algorithm in more detail in the
following subsections.

Figure 1: An illustration of OCC approach learning from the
majority class and detecting deviations as anomalies or outliers.

3.1. OC-SVM
Support Vector Machine (SVM) is a binary supervised

machine learning approach that separates classes based on
the maximum margin hyperplane Bishop (2006); He and
Garcia (2009). In addition to linear hyperplanes, SVM can
rely on other kernels such as polynomial, radial basis func-
tion (RBF), and sigmoid to detect nonlinear boundaries
between classes Bishop (2006). OC-SVM is a version of
SVM adapted to the OCC approach that only learns from
the majority class Schölkopf, Platt, Shawe-Taylor, Smola
and Williamson (2001). OC-SVM creates discrimination
boundaries based on the high-density region in the feature
space of the training data.

Given a training data 𝑋𝑖 of size n and 𝐾 kernel function,
the OC-SVM training is based on the following dual problem
(Eq. 1):

min
𝛼

1
2
∑

𝑖𝑗
𝛼𝑖𝛼𝑗𝐾(𝑥𝑖, 𝑥𝑗) (1)

subject to 0 ≤ 𝛼𝑖 ≤
1
𝜈𝑛

,
∑

𝑖
𝛼𝑖 = 1 (2)
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where 𝛼𝑖 are the support vectors, 𝐾 is the kernel, and 𝜈 ∈
(0, 1) controls the upper bound on the fraction of outliers
and the lower bound on the fraction of support vectors. After
obtaining the coefficients of the support vectors (𝛼𝑖 > 0), the
decision function is computed based on the sign (positive or
negative) of the fowling function (Eq. 3):

𝑓 (𝑥) = 𝑠𝑖𝑔𝑛(
∑

𝑖𝑗
𝛼𝑖𝛼𝑗𝐾(𝑥𝑖, 𝑥𝑗) − 𝜌) (3)

where 𝜌 denotes the offset of the separating hyperplane.
3.2. OC-k-NN

k-NN is a supervised machine learning approach that
uses lazy processing to classify the data Wang and Zucker
(2000). The lazy approach uses the training data on the
prediction time as a memory instead of training the model to
detect the patterns on the training time Jiang, Cai, Wang and
Jiang (2007). The k-NN algorithm calculates the distance
between a new data point and the k closest points. Then, it
uses the voting method to determine the best label for that
data point Jiang et al. (2007).

The distance between the data point and training points
is measured using Minkowski distance as shown in Equation
(4). The Minkowski distance 𝑑 is the generalized formula
of both (Manhattan for 𝑝 = 1 and Euclidean for 𝑝 = 2)
distances Jiang et al. (2007). After selecting the distance
measure, we only need to tune the k value, the number of
the closest neighbors to the new incoming point.

𝑑 =

( 𝑛
∑

𝑖=1
|𝑝𝑖 − 𝑞𝑖|

𝑝

)
1
𝑝

(4)

The OC-k-NN algorithm is a modified version of k-NN,
which also relies on training a dataset (comprising only the
majority class) to determine whether a new instance belongs
to the majority class or not. For a given test example x, the
distance 𝑑 to the nearest k neighbors of x is first calculated.
Then, the average (using the mean or median) of these
distances is computed and compared to a tunable threshold
𝛿 to determine whether x belongs to the majority class or
not. Therefore, OC-k-NN requires two tunable parameters,
the value of k and the threshold 𝛿 Zhao, Nasrullah and Li
(2019).
3.3. IOF

The Isolation Forests (IOF) is a tree-based ensemble
algorithm, the OCC counterpart of the Random Forests (RF)
binary classifier Liu, Ting and Zhou (2008). The main idea
is to build isolation trees by creating partitions such that each
data point is isolated, i.e., a particular partition contains only
one data point. The intuition behind isolation trees is that a
regular point is much harder to isolate than an anomalous
point. Therefore, an anomalous point requires fewer parti-
tions than a regular point. The algorithm creates multiple
isolation trees by selecting random features and random
partitions from different subsets of the training data. This

process of partitioning or branching is performed recursively
until reaching a single point or the maximum allowable tree
depth (a tunable parameter) Hariri et al. (2021).

Given a new observation x, the IOF algorithm parses the
x value into the isolation trees. If x ends up in a leaf node or
reaches the maximum allowable tree depth it is considered a
normal point (belonging to the majority class). Otherwise, if
the x couldn’t reach a leaf node or the maximum allowable
depth then is classified as abnormal (belonging to the minor-
ity class) Hariri et al. (2021). Finally, the anomalous score of
a particular point x is calculated as shown in Equation (5):

𝑠(𝑥, 𝑛) = 2−𝐸( ℎ(𝑥)𝑐(𝑛) ) (5)
Where ℎ(𝑥) is the mean value of depth of the point x in all
the isolation trees, 𝑐(𝑛) is the average of ℎ(𝑥) or the average
depth of all points, and n is the number of points used to
build the trees.

4. Experimental Protocol
4.1. Dataset

In this paper, we use datasets of commits from 34 open-
source projects from the Apache organization. The total
number of commits to all these projects is 259,925. Table
1 shows the characteristics of the datasets. The first column
refers to the project name, followed by the number of normal
commits, the number of buggy commits, and the data imbal-
ance ratio (IR) measured as the ratio of the number of normal
commits to the number of buggy commits. For example, an
IR of 4 means that there are 4 normal commits for each 1
buggy commit. The last column shows the total number of
commits to the project. The category column has 3 types
(low, medium, and large) labeled using a k-mean clustering
algorithm based on the IR column. We make the datasets,
the scripts, and the results of this study available online1.
4.2. Feature Extraction and Data Labeling

In this study, we use 14 features proposed by Kamei
et al. Kamei et al. (2013) to build JIT-SDP models (also
known as Process metrics). These features are organized
into five dimensions: diffusion, size, purpose of commit,
history, and experience as detailed in Table 2. The selection
of these features is motivated by their widespread usage in
JIT-SDP research as shown in a survey study conducted by
Yunhua et al. Zhao, Damevski and Chen (2023), and their
effectiveness in characterizing normal and buggy commits as
shown by Rahman et al. Rahman and Devanbu (2013). They
are also simple to compute and easy to interpret, allowing us
to understand the model behaviour. The simpler the features
used to build models, the clearer the interpretation of model
predictions Zheng and Casari (2018).

To label the data into normal and buggy commits, we use
the Refactoring Aware SZZ Implementation (RA-SZZ) al-
gorithm, proposed by Neto et al. Neto, da Costa and Kulesza
(2018). RA-SZZ labels the commits as normal or buggy by

1https://github.com/wahabhamoulhadj/jit-occ
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Table 1
Description of the Datasets for JIT-SDP

Project Name Normal Buggy IR Category Total

Drill 2,288 1,643 1.39 Low 3,931
Flume 1,151 661 1.74 Low 1,812
Openjpa 3,404 1,706 2.00 Low 5,110
Camel 9,032 3,990 2.26 Low 13,022
Zookeeper 1,453 577 2.52 Low 2,030
Flink 20,369 4,613 4.42 Low 24,982
Carbondata 4,249 552 7.70 Low 4,801
Zeppelin 4,259 543 7.84 Low 4,802
Ignite 13,969 1,609 8.68 Low 15,578
Avro 2,151 235 9.15 Low 2,386
Tez 2,426 232 10.46 Low 2,658
Airavata 6,729 497 13.54 Low 7,226
Hadoop 9,881 627 15.76 Low 10,508
Hbase 16,721 1,058 15.80 Low 17,779
Falcon 2,096 130 16.12 Low 2,226
Derby 7,795 473 16.48 Low 8,268
Accumulo 9,541 552 17.28 Low 10,093
Parquet-mr 2,126 114 18.65 Low 2,240
Phoenix 3,284 168 19.55 Low 3,452
Oozie 2,244 114 19.68 Low 2,358
Cayenne 6,365 285 22.33 Medium 6,650
Hive 11,759 518 22.70 Medium 12,277
Jackrabbit 8,488 370 22.94 Medium 8,858
Oodt 2,006 85 23.60 Medium 2,091
Gora 1,314 52 25.27 Medium 1,366
Bookkeeper 2,289 84 27.25 Medium 2,373
Storm 10,178 239 42.59 Large 10,417
Spark 19,591 376 52.10 Large 19,967
Reef 3,813 60 63.55 Large 3,873
Helix 3,672 56 65.57 Large 3,728
Bigtop 2,567 31 82.81 Large 2,598
Curator 2,690 28 96.07 Large 2,718
Cocoon 13,094 66 198.39 Large 13,160
Ambari 24,477 110 222.52 Large 24,587

Total 237,471 22,454 - - 259,925

analyzing bug reports from the bug tracking system (in our
case, Jira). The RA-SZZ algorithm retrieves all resolved bug
reports and links them to the commits using the bug report’s
unique identifier contained within the commit message (if
available). Finally, the algorithm examines the commit his-
tory to determine the original commits that introduced the
bugs and label them as buggy. Furthermore, we have taken
steps to ensure that the most recent commits in our dataset
date back to at least one year from the labeling process initi-
ation, thereby significantly reducing the likelihood of misla-
beling the commits. This practice was proposed by Herbold
et al. Herbold, Trautsch, Trautsch and Ledel (2022). The
RA-SZZ is an extension of SZZ Śliwerski, Zimmermann
and Zeller (2005) that takes into account code refactoring,
which are changes to the code that do not change its external
behavior. Refactoring activities tend to complicate the bug
localization process because they can move code around
and change its structure, making it difficult to determine
which lines of code are responsible for a bug Neto et al.
(2018); Fan, Xia, da Costa, Lo, Hassan and Li (2021). The
RA-SZZ addresses this issue by identifying and accounting
for refactorings when analyzing code changes between two

Table 2
The features used to build the prediction model

Dimension Name Description

Diffusion

NS Number of modified sub-systems
ND Number of modified directories
NF Number of modified files
Entropy Distribution of modified code across files

Size
LA Added lines
LD Deleted lines
LT Line of code before edit

Purpose of Change Fix Whether or not the change is a defect or fix

History
NDEV Number of developers that changed the file
AGE The average time between file changes
NUC The number of unique changes

Experience
EXP Developer experience
REXP Recent developer experience
SEXP Developer experience on sub-systems

versions. This allows it to provide more accurate and reliable
results than SZZ when dealing with systems that undergo
frequent refactoring Fan et al. (2021). In addition, Fan et
al. Fan et al. (2021) showed that RA-SZZ reduces the noise
when compared to SZZ. For all these reasons, we opted to
use for RA-SZZ in this research instead of the traditional
SZZ.
4.3. Evaluation Metrics

Several metrics have been used to evaluate the perfor-
mance of binary classification problems in general and JIT-
SDP models in particular Kamei et al. (2013); McIntosh
and Kamei (2018); Catolino et al. (2019); Huang, Xia and
Lo (2019). These include threshold-based metrics such as
Precision, Recall, F1-score, and the Matthews Correlation
Coefficient (MCC), and threshold-independent metrics such
as the Receiver Operating Characteristic (ROC) curve and
the Area Under the ROC (AUC-ROC).

Threshold-based metrics rely on setting a cut-off point on
the classifier’s score to compute the confusion matrix based
on the following quantities:

• True Positive (TP): The number of buggy commits
that are correctly classified as buggy

• False Positive (FP): The number of normal commits,
classified as buggy (a.k.a false alarms)

• False Negative (FN): The number of buggy commits
that are classified as normal

• True Negative (TN): The number of normal commits
that are correctly classified as normal

The F1-score or F1-measure is a popular accuracy mea-
surement used to evaluate machine models Baeza-Yates and
Ribeiro-Neto (1999) based on a specific threshold. It is the
harmonic mean of the precision (TP/(TP + FP)) and recall
(TP/(TP + FN)). However, the F1-score is not suitable for
measuring the performance of classifiers when dealing with
class imbalance since it gives equal importance to precision
and recall, does not account for the TN instances, and varies
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with swapping the target class Song et al. (2019); Chicco and
Jurman (2020).

Threshold-independent metrics such as the Receiver
Operating Characteristic (ROC) and the Area Under the
ROC Curve (AUC) do not commit to a threshold. The
ROC is a graphical plot (see Figure 2 for an example),
which illustrates the performance of a classifier as its dis-
crimination threshold is varied.“‘ The ROC plots the false
positive rate fpr=FP/(FP+TN) against the true positive
rate tpr=TP/(TP+FP) for every decision threshold Fawcett
(2006). A ROC curve allows the visualization of the perfor-
mance of detectors and the selection of optimal operational
points, without committing to a single decision threshold. It
presents the classifier’s performance across the entire range
of class distribution and error costs. The default decision
threshold (minimizing overall errors and costs) corresponds
to the vertex that is closest to the upper-left corner of the
ROC plane (see the red lines on Figure 2. This threshold
assumes balanced classes and an equal cost of errors. When
the number of positives is larger than the negatives, this
threshold can be adjusted to account for the data imbalance
ratio by rotating the iso-performance line (blue line on
Figure 2) proportionally to the imbalance ratio Fawcett
(2006). The AUC has been proposed as a robust (global)
measure for the evaluation and selection of classifiers Huang
and Ling (2005). The AUC is the average of the tpr values
over all fpr values (independently of decision thresholds
and prior class distributions). The AUC evaluates how well
a classifier is able to sort its predictions according to the
confidence it assigns to these predictions. An AUC = 1
means all positives are ranked higher than the negatives,
which indicates perfect discrimination between the positive
and negative classes. An AUC = 0.5 means that both classes
are ranked at random and the classifier is no better than
random guessing.

Because the objective of this paper is to understand the
overall performance of OCC algorithms compared to binary
classifiers, we use the AUC as a threshold-independent
metric and the F1-score as a threshold-dependent metric to
assess the performance of the algorithms.

Additionally, we use Cliff’s 𝛿 effect size to assess the
magnitude of the difference between the results of OCC
algorithms and binary classifiers. The Cliff’s test is a non-
parametric effect size measure that quantifies the magnitude
of dominance as the difference between two groups X and Y
Cliff (1993); Macbeth, Razumiejczyk and Ledesma (2010);
Romano, Kromrey, Coraggio, Skowronek and Devine (2006).
Cliff’s 𝛿 ranges from –1 to +1. A Cliff’s 𝛿 that is equal
to -1 means that all observations in Y are larger than all
observations in X. It is equal to +1 if all observations in
X are larger than the observations in Y. A Cliff’s 𝛿 value
that converges to 0 indicates that the distribution of the two
observations is identical. The Cliff’s 𝛿 effect size can also be
grouped into ranges Cohen (1992). The effect is considered
small for 0.147 ≤ |𝛿| < 0.330, moderate for 0.330 ≤ |𝛿| <
0.474, or large for |𝛿| ≥ 0.474 Romano et al. (2006); Cohen
(1992). Cliff’s 𝛿 is defined using Equation (6), with x and y

Figure 2: An illustration of a ROC curve and the area under
the curve (AUC) along with the default decision threshold.

representing two data vectors and n_x and n_y, the size of
these vectors.

𝐶𝑙𝑖𝑓𝑓 ′𝑠 𝛿 =
∑

𝑖
∑

𝑗 𝑠𝑖𝑔𝑛(𝑦𝑖 − 𝑥𝑗)
𝑛𝑦.𝑛𝑥

(6)

4.4. Training and Testing the Algorithms
We experimented with six classification algorithms in-

cluding three OCC algorithms, OC-SVM, IOF, and OC-k-
NN, and three binary classifiers, SVM, RF, and k-NN. For
each project in the datasets, we train each of the six algo-
rithms using the 14 features shown in Table 2. In addition,
each binary classifier is trained without balancing the data,
and with balancing the data using over-sampling, SMOTE,
and under-sampling techniques. The choice of these tech-
niques is discussed in Section 5.1. In total, we trained
408 models ((3 binary models ∗ 3 balancing methods +
3 OCC models) ∗ 34 projects) repeated 30 times.

We use the PyOD library2 to build the one-class JIT-
SDP models. PyOD is a comprehensive and scalable Python
library that is developed on the top of Scikit-learn Pedregosa,
Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel,
Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Courna-
peau, Brucher, Perrot and Duchesnay (2011). It supports
over 40 anomaly detection algorithms, and has been used
in a variety of academic research and commercial products
Zhao et al. (2019). For binary classifiers, we used the well-
known Scikit-learn Pedregosa et al. (2011) library, which is
widely used in this field.

A classification model is built in three steps: training,
validation, and testing. The initial model is built during the
training step. The validation step is used to fine-tune and
optimize the model parameters. The testing phase is used to
assess the model’s performance. Because one of our goals

2https://pyod.readthedocs.io/en/latest/
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is to compare OCC algorithms with binary classifiers, the
models must be tested on the same testing sets.
4.4.1. Cross-validation approach

In this paper, we use a cross-validation (CV) approach to
build and assess the JIT-SDP models. We split each dataset
into 70% training and 30% testing sets using a stratified
sampling technique to ensure that the ratio of normal to
buggy remains the same for both splits. We use k-fold (CV)
to train, validate, and select the best model parameters as
shown in Figure 3.

Figure 3: Cross-Validation for JIT-SDP Model Training and
Evaluation. In Step 1, models are repeatedly trained on k -
1 folds (white boxes), and their parameters are evaluated on
the remaining kth fold (gray box). The overall best models are
selected on the test set (Step 2).

Algorithm 1 shows the steps for building the binary
models. In Line 1, we split the dataset into training and
testing sets. Note that we ensure the testing set is identical for
binary and OCC models to enable fair comparison. In Line 2,
the training data is used to generate training and validation
sets using k folds, where the training data is k-1 folds and
the validation data is the remaining fold. From Lines 3
to 6, the hyper-parameters tuning process is performed to
find the best model as shown in Figure 3 (Step 1). As for
training, we used 70% of normal commits and 70% of buggy
commits. We validated the trained model through k-fold
cross-validation. Traditionally, k is set to 10. However, in
our case, for projects with a number of buggy commits in
the validation set that has less than 10 buggy commits (e.g.,
camel-1.0 and jedit-4.3), we set k to 5, otherwise k = 10. In
Line 7, the best binary models without balancing the data
are evaluated using the testing set (30% of normal commits
and 30% of buggy commits) as shown in Figure 3 (Step 2).
The same steps are applied to build the binary models from
Lines 8 to 15 but with data balancing methods.

For each one-class classification algorithm, we build
the training, validation, and testing sets using the following
protocol: In Line 1 of Algorithm 2, the dataset is split for
training (70%) and testing (30%), similar to binary classi-
fiers. In Line 2, k folds are used for training and validating
the OCC models as shown in Figure 3 (Step 1). From Line 3
through 8, we used 60% of normal commits to train the initial
model. The remaining 10% of normal commits are merged
with 70% of the buggy commits as the validation data to
optimize and hyper-tune the model parameters. Finally, in
Line 9, the best OCC model is evaluated using the testing
set (30% of normal commits and 30% of buggy commits), as
shown in Figure 3 (Step 2).

Algorithm 1: Process of training, validation, and
testing of binary algorithms using the Cross-
Validation approach.

Data: 𝐷𝑎𝑡𝑎
Result: 𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒, 𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑
/* The size of data tuning is 70% and

testing is 30% */
1 𝐷𝑎𝑡𝑎𝑇 𝑢𝑛𝑖𝑛𝑔 , 𝐷𝑎𝑡𝑎𝑇 𝑒𝑠𝑡𝑖𝑛𝑔 ← 𝑠𝑝𝑙𝑖𝑡_𝑑𝑎𝑡𝑎(𝐷𝑎𝑡𝑎)
2 𝑓𝑜𝑙𝑑𝑠 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝐹𝑜𝑙𝑑𝑠(𝐷𝑎𝑡𝑎𝑇 𝑢𝑛𝑖𝑛𝑔 , 10)

/* Evaluate the binary model without
balancing the data */

3 for 𝑖𝑛𝑑𝑒𝑥 = 1; 𝑖𝑛𝑑𝑒𝑥 < 𝑆𝑖𝑧𝑒(𝑓𝑜𝑙𝑑𝑠); 𝑖𝑛𝑑𝑒𝑥+ = 1
do

4 𝐷𝑎𝑡𝑎𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔 ←
𝐴𝑙𝑙 𝐹𝑜𝑙𝑑𝑠 𝐸𝑥𝑐𝑒𝑝𝑡 𝑓𝑜𝑙𝑑𝑠[𝑖𝑛𝑑𝑒𝑥]

5 𝐷𝑎𝑡𝑎𝑉 𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑛𝑔 ← 𝑓𝑜𝑙𝑑𝑠[𝑖𝑛𝑑𝑒𝑥]
6 𝑀𝑜𝑑𝑒𝑙𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ←

𝐺𝑒𝑡_𝐵𝑒𝑠𝑡_𝑀𝑜𝑑𝑒𝑙(𝐷𝑎𝑡𝑎𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔 , 𝐷𝑎𝑡𝑎𝑉 𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑛𝑔)
7 𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ←

𝑀𝑜𝑑𝑒𝑙𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒.𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝐷𝑎𝑡𝑎𝑇 𝑒𝑠𝑡𝑖𝑛𝑔)
/* Evaluate the binary model after

balancing the data */
8 𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑀𝑒𝑡ℎ𝑜𝑑𝑠 ←

{𝑂𝑣𝑒𝑟𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔,𝐷𝑜𝑤𝑛𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔}
9 foreach 𝑀𝑒𝑡ℎ𝑜𝑑 ∈ 𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒_𝑀𝑒𝑡ℎ𝑜𝑑𝑠 do

10 𝐷𝑎𝑡𝑎𝑇 𝑢𝑛𝑖𝑛𝑔 ←
𝐵𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔(𝐷𝑎𝑡𝑎𝑇 𝑢𝑛𝑖𝑛𝑔 ,𝑀𝑒𝑡ℎ𝑜𝑑)

11 for 𝑖𝑛𝑑𝑒𝑥 = 1; 𝑖𝑛𝑑𝑒𝑥 < 𝑘; 𝑖𝑛𝑑𝑒𝑥+ = 1 do
12 𝐷𝑎𝑡𝑎𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔 ←

𝐴𝑙𝑙 𝐹𝑜𝑙𝑑𝑠 𝐸𝑥𝑐𝑒𝑝𝑡 𝑓𝑜𝑙𝑑𝑠[𝑖𝑛𝑑𝑒𝑥]
13 𝐷𝑎𝑡𝑎𝑉 𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑛𝑔 ← 𝑓𝑜𝑙𝑑𝑠[𝑖𝑛𝑑𝑒𝑥]
14 𝑀𝑜𝑑𝑒𝑙𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 ←

𝐺𝑒𝑡_𝐵𝑒𝑠𝑡_𝑀𝑜𝑑𝑒𝑙(𝐷𝑎𝑡𝑎𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔 , 𝐷𝑎𝑡𝑎𝑉 𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑛𝑔)
15 𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 ←

𝑀𝑜𝑑𝑒𝑙𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 .𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝐷𝑎𝑡𝑎𝑇 𝑒𝑠𝑡𝑖𝑛𝑔)

In our case, for OC-SVM, the cross-validation set is
used to determine the best kernel and 𝜈 parameters. Note
that many studies do not use a validation set and simply
rely on the default parameters provided by the ML library.
Based on best practices in ML, the use of cross-validation is
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Algorithm 2: Process of training, validation, and
testing of OCC algorithms using Cross-Validation
approach.

Data: 𝐷𝑎𝑡𝑎𝑇 𝑢𝑛𝑖𝑛𝑔
Result: 𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝑂𝑛𝑒−𝑐𝑙𝑎𝑠𝑠
/* The size of data tuning is 70% and

testing is 30% */
1 𝐷𝑎𝑡𝑎𝑇 𝑢𝑛𝑖𝑛𝑔 , 𝐷𝑎𝑡𝑎𝑇 𝑒𝑠𝑡𝑖𝑛𝑔 ← 𝑠𝑝𝑙𝑖𝑡_𝑑𝑎𝑡𝑎(𝐷𝑎𝑡𝑎)
2 𝑓𝑜𝑙𝑑𝑠 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝐹𝑜𝑙𝑑𝑠(𝐷𝑎𝑡𝑎𝑇 𝑢𝑛𝑖𝑛𝑔 , 10)
3 for 𝑖𝑛𝑑𝑒𝑥 = 1; 𝑖𝑛𝑑𝑒𝑥 < 𝑘; 𝑖𝑛𝑑𝑒𝑥+ = 1 do
4 𝐷𝑎𝑡𝑎𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔 ←

𝐴𝑙𝑙 𝐹𝑜𝑙𝑑𝑠 𝐸𝑥𝑐𝑒𝑝𝑡 𝑓𝑜𝑙𝑑𝑠[𝑖𝑛𝑑𝑒𝑥]
5 𝐷𝑎𝑡𝑎𝑉 𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑛𝑔 ← 𝑓𝑜𝑙𝑑𝑠[𝑖𝑛𝑑𝑒𝑥]
6 𝐷𝑎𝑡𝑎𝑛𝑜𝑟𝑚𝑎𝑙, 𝐷𝑎𝑡𝑎𝑏𝑢𝑔𝑔𝑦 ←

𝐷𝑎𝑡𝑎𝐹 𝑖𝑙𝑡𝑒𝑟(𝐷𝑎𝑡𝑎𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔)
/* Merge the buggy data with

Validation set */
7 𝐷𝑎𝑡𝑎𝑉 𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑛𝑔 ←

𝑀𝑒𝑟𝑔𝑒(𝐷𝑎𝑡𝑎𝑉 𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑛𝑔 , 𝐷𝑎𝑡𝑎𝑏𝑢𝑔𝑔𝑦)
/* Train the OCC model only with

normal data */
8 𝑀𝑜𝑑𝑒𝑙𝐵𝑒𝑠𝑡 ←

𝐺𝑒𝑡_𝐵𝑒𝑠𝑡_𝑀𝑜𝑑𝑒𝑙(𝐷𝑎𝑡𝑎𝑛𝑜𝑟𝑚𝑎𝑙, 𝐷𝑎𝑡𝑎𝑉 𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑛𝑔)
9 𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝑂𝑛𝑒−𝑐𝑙𝑎𝑠𝑠 ←

𝑀𝑜𝑑𝑒𝑙𝐵𝑒𝑠𝑡.𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝐷𝑎𝑡𝑎𝑇 𝑒𝑠𝑡𝑖𝑛𝑔)

highly recommended in order to build more reliable models,
avoid overfitting, and improve generalization to unseen data
Yang and Shami (2020); Feurer and Hutter (2019). The k-
fold cross-validation generally results in less biased models
(compared to hold-out validation) since each instance in
the training dataset is used for training and testing without
overlapping Yang and Shami (2020); Feurer and Hutter
(2019). Note that in this case we do not consider the time
of commits and it is selected randomly between training and
testing sets.

The entire process of training each algorithm (OCC and
binary) is replicated 30 times and the average AUC for
each classifier is reported along with the summary statistics
shown in a boxplot (see Figure 4).

4.4.2. Time-sensitive validation approach
Tan el al. Tan, Tan, Dara and Mayeux (2015) proposed

a time-sensitive validation (TV) approach to train JIT-SPD
models. This method sorts commits chronologically and
divides data into three-time windows: train, gap, and test.
The goal is to prevent situations where future commits are
predicted based on a training set that contains older commits.

Algorithm 3 describes the protocol of training models
using the Time-sensitive validation approach. Line 1 or-
ganizes the data chronologically, arranging commits from
the oldest to the newest, as shown in Figure 5 (Step 1).
In Lines 3 and 4, the dataset is divided into three distinct
parts: training (50%), validation (20%), and testing (30%)

Figure 4: Overall performance of binary and OCC models using
average AUC for all projects (Cross-Validation).

sets (Figure 5, Step 2). The data’s specific characteristics
influenced the decision to allocate 30% of the data for testing.
Upon chronological sorting, we observed that most projects
exhibited buggy data within the last 30% of commits. In Line
5, the training and validation sets were employed for hyper-
parameter tuning to determine the optimal model, similar to
the cross-validation approach. During the hyper-parameter
tuning process, we implemented a bootstrapping approach
on the training data to generate new sets for each test case.
Assuming that the training data is represented as 𝑇𝑅, with a
population size of 𝑁 (i.e., 𝑇𝑅 = 𝑇 𝑟1, 𝑇 𝑟2, 𝑇 𝑟3, ..., 𝑇 𝑟𝑁 ),
bootstrapping entails randomly selecting data points with
replacement from 𝑇𝑅 to create a new training data of the
same size as 𝑁 , ensuring that the size of the sample remains
the same as the original training data (50% as shown in
Figure 5). This data is then used for model training and
parameter validation, using the validation set as shown in
Figure 5 (Step 3). Finally, in Line 6, the best model is
evaluated by testing data. From Lines 7 to 11, the same
procedure is applied with data balancing methods (i.e., OS,
US, and SMOTE).

Figure 5: Splitting data using the time-sensitive validation
Approach.
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Figure 6: Overall performance of binary and OCC models using
average AUC for all projects (time-sensitive validation).

Algorithm 3: Process of training, validation, and
testing of binary algorithms using the Time-
sensitive Validation approach.
1 Data: 𝐷𝑎𝑡𝑎

Result: 𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒, 𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑
2 𝐷𝑎𝑡𝑎 ← 𝑆𝑜𝑟𝑡_𝑏𝑦𝑇 𝑖𝑚𝑒(𝐷𝑎𝑡𝑎)

/* The size of data tuning is 70% and
testing is 30% */

3 𝐷𝑎𝑡𝑎𝑇 𝑢𝑛𝑖𝑛𝑔 , 𝐷𝑎𝑡𝑎𝑇 𝑒𝑠𝑡𝑖𝑛𝑔 ← 𝑠𝑝𝑙𝑖𝑡_𝑑𝑎𝑡𝑎(𝐷𝑎𝑡𝑎)
/* The size of data training is 50% and

validation is 20% */
4 𝐷𝑎𝑡𝑎𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔 , 𝐷𝑎𝑡𝑎𝑉 𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑛𝑔 ←

𝑠𝑝𝑙𝑖𝑡_𝑑𝑎𝑡𝑎(𝐷𝑎𝑡𝑎𝑇 𝑢𝑛𝑖𝑛𝑔)
/* Evaluate the binary model without

balancing the data */
5 𝑀𝑜𝑑𝑒𝑙𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ←

𝐺𝑒𝑡_𝐵𝑒𝑠𝑡_𝑀𝑜𝑑𝑒𝑙(𝐷𝑎𝑡𝑎𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔 , 𝐷𝑎𝑡𝑎𝑉 𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑛𝑔)
6 𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ←

𝑀𝑜𝑑𝑒𝑙𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒.𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝐷𝑎𝑡𝑎𝑇 𝑒𝑠𝑡𝑖𝑛𝑔)
/* Evaluate the binary model after
balancing the data */

7 𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑀𝑒𝑡ℎ𝑜𝑑𝑠 ← {𝑂𝑆,𝑈𝑆, 𝑆𝑀𝑂𝑇𝐸}
8 foreach 𝑀𝑒𝑡ℎ𝑜𝑑 ∈ 𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒_𝑀𝑒𝑡ℎ𝑜𝑑𝑠 do
9 𝐷𝑎𝑡𝑎𝑇 𝑢𝑛𝑖𝑛𝑔 ←

𝐵𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔(𝐷𝑎𝑡𝑎𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔 ,𝑀𝑒𝑡ℎ𝑜𝑑)
10 𝑀𝑜𝑑𝑒𝑙𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 ←

𝐺𝑒𝑡_𝐵𝑒𝑠𝑡_𝑀𝑜𝑑𝑒𝑙(𝐷𝑎𝑡𝑎𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔 , 𝐷𝑎𝑡𝑎𝑉 𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑛𝑔)
11 𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 ←

𝑀𝑜𝑑𝑒𝑙𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 .𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝐷𝑎𝑡𝑎𝑇 𝑒𝑠𝑡𝑖𝑛𝑔)

Algorithm 4 illustrates the protocol for OCC algorithms.
In Lines 1 to 4, the same steps are applied to organize
and split the data into training (50%), validation (20%), and
testing (30%) sets (Figure 5, Step 2). In Line 5, the training
data is filtered as normal and buggy. To keep the principles
of the time-sensitive Validation approach, we omit the buggy
commits from the training set to prevent any violation. In
Line 6, we exclusively utilize the normal commits from the
training data for the hyper-parameter tuning process with
OCC algorithms. Subsequently, model validation takes place
using normal and buggy commits from the validation data
(20%).

Conversely, in the case of binary models, the inclusion of
buggy data is essential during the training phase. Lastly, the
best OCC model is evaluated by testing data (30%) in Line
7. We repeated this process 30 times, calculating the average
AUC for each classifier as shown in Figure 6. This approach
aims to assess the model’s performance and stability by
generating multiple samples that mimic the characteristics
of the original training data.

Algorithm 4: Process of training, validation, and
testing of OCC algorithms using the time-sensitive
validation approach
1 Data: 𝐷𝑎𝑡𝑎𝑇 𝑢𝑛𝑖𝑛𝑔

Result: 𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝑂𝑛𝑒−𝑐𝑙𝑎𝑠𝑠
2 𝐷𝑎𝑡𝑎 ← 𝑆𝑜𝑟𝑡_𝑏𝑦𝑇 𝑖𝑚𝑒(𝐷𝑎𝑡𝑎)

/* The size of data tuning is 70% and
testing is 30% */

3 𝐷𝑎𝑡𝑎𝑇 𝑢𝑛𝑖𝑛𝑔 , 𝐷𝑎𝑡𝑎𝑇 𝑒𝑠𝑡𝑖𝑛𝑔 ← 𝑠𝑝𝑙𝑖𝑡_𝑑𝑎𝑡𝑎(𝐷𝑎𝑡𝑎)
/* The size of data training is 50% and

validation is 20% */
4 𝐷𝑎𝑡𝑎𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔 , 𝐷𝑎𝑡𝑎𝑉 𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑛𝑔 ←

𝑠𝑝𝑙𝑖𝑡_𝑑𝑎𝑡𝑎(𝐷𝑎𝑡𝑎𝑇 𝑢𝑛𝑖𝑛𝑔)
/* Train the OCC model only with normal

data */
5 𝐷𝑎𝑡𝑎𝑛𝑜𝑟𝑚𝑎𝑙, 𝐷𝑎𝑡𝑎𝑏𝑢𝑔𝑔𝑦 ← 𝐷𝑎𝑡𝑎𝐹 𝑖𝑙𝑡𝑒𝑟(𝐷𝑎𝑡𝑎𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔)
6 𝑀𝑜𝑑𝑒𝑙𝐵𝑒𝑠𝑡 ←

𝐺𝑒𝑡_𝐵𝑒𝑠𝑡_𝑀𝑜𝑑𝑒𝑙(𝐷𝑎𝑡𝑎𝑛𝑜𝑟𝑚𝑎𝑙, 𝐷𝑎𝑡𝑎𝑉 𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑛𝑔)
7 𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝑂𝑛𝑒−𝑐𝑙𝑎𝑠𝑠 ←

𝑀𝑜𝑑𝑒𝑙𝐵𝑒𝑠𝑡.𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝐷𝑎𝑡𝑎𝑇 𝑒𝑠𝑡𝑖𝑛𝑔)

5. Results and Discussions
In this section, we present and discuss the results of the

experiment by providing answers to our research questions
in the subsection sections.
5.1. RQ1: What is the overall performance of

OCC algorithms compared to their binary
classifier counterparts?

5.1.1. RQ1.1: Results using cross-validation
In this question, we look at the average AUC and F1-

score achieved by the six models for JIT-SDP using three
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Table 3
The average results of the JIT-SDP trained models with no
balancing with cross-validation.

Classifiers AUC Improvement F1 -Score Improvement

OC-SVM 0.759 0.0% 0.769 0.0%
SVM 0.619 -18.4% 0.578 -24.9%

IOF 0.748 0.0% 0.779 0.0%
RF 0.678 -9.5% 0.678 -12.9%

OC-k-NN 0.755 0.0% 0.776 0.0%
k-NN 0.696 -7.8% 0.706 -9.0%

binary classifiers SVM, RF, and k-NN, and their correspond-
ing OCC algorithms, i.e., OC-SVM, IOF, and OC-k-NN.
These models are trained on 34 projects for JIT-SDP with
and without balancing techniques. In RQ2, we dig deeper by
examining the performance of the algorithms on individual
projects.

Table 3 shows the results of the binary classifiers without
balancing techniques. On average, OC-SVM performs the
best among all classifiers with AUC = 0.759. It outperforms
SVM, AUC = 0.619. Also, IOF performs better than RF on
average (AUC = 0.748 compared to AUC = 0.678). The OC-
k-NN achieved AUC = 0.755 compared to k-NN (AUC =
0.696). We also compute the improvement achieved by each
binary method over its one-class counterpart. Improvement
of A over B is calculated as (A-B)/B. We see that OC-SVM,
IOF, and OC-KNN improve over SVM, RF, and K-NN by
18.4%, 9.5%, and 7.8%.

Table 3 also shows improvements with F1-score. Where
the highest F1-score is recorded by IOF 0.779. In this case,
we chose the optimal point on the ROC curve to measure
the F1-score. The results of F1-score are similar to the AUC
ones. We see that OC-SVM, IOF, and OC-KNN improve
over SVM, RF, and K-NN by 24.9%, 12.9%, and 9.0% with
F1-score. This point is observed with the CV approach due
to the same IR between training and testing data compared to
the TV approach where the IR is different between training
and testing. More explanations are reported in the next
section.

Table 4 shows that the average AUC of the JIT-SDP of all
binary classifiers achieves a better average AUC when using
over-sampling or SMOTE compared to one-class classifiers.
The best improvement was achieved when using SVM OS
(4.5%). Under-sampling did not improve the results of binary
classifiers over OCC except for k-KNN, which improves by
1.5% the result obtained with OC-KNN. These results show
that binary classifiers trained with balancing data approaches
do not result in major improvements over OCC.

Furthermore, Table 4 shows results of F1-score where
SVM outperform OC-SVM with OS and SMOTE balancing
techniques with 2.6% and 0.1%, respectively. While the US
degraded the performance of SVM compared to OC-SVM
average F1-score. The IOF still outperforms RF with all

Table 4
Results of comparison between OCC and binary classifiers with
balancing techniques OS, US, SMOTE using cross-validation.

Classifiers AUC Improvement F1 -Score Improvement

OC-SVM 0.759 0.0% 0.769 0.0%
SVM OS 0.785 3.5% 0.789 2.6%
SVM SMOTE 0.765 0.8% 0.769 0.1%
SVM US 0.748 -1.5% 0.753 -2.0%

IOF 0.748 0.0% 0.779 0.0%
RF OS 0.750 0.1% 0.766 -1.6%
RF SMOTE 0.752 0.5% 0.767 -1.5%
RF US 0.722 -3.5% 0.737 -5.4%

OC-k-NN 0.755 0.0% 0.776 0.0%
k-NN OS 0.708 -6.2% 0.720 -7.2%
k-NN SMOTE 0.769 1.9% 0.782 0.8%
k-NN US 0.757 0.3% 0.774 -0.3%

balancing approaches in terms of F1-score. Finally, the k-
NN outperforms OC-k-NN only with the SMOTE balancing
approach with a small improvement of 0.8% in the F1-score.
5.1.2. RQ1.2: Results using time-sensitive validation

In this section, we discuss the results of time-sensitive
validation. Five projects are excluded from these results
(Derby, Oozie, Gora, Bookkeeper, and Helix). We decided
to exclude these projects because the number of buggy
commits in the testing set is less than 10, which resulted in
outcomes that aren’t robust, with significant variations upon
replication, often yielding irrelevant results.

Overall, the performance of all models remained quite
consistent with our previous experiments, both in binary and
one-class classification scenarios. In Table 5, we present a
comparison of the average AUC values and F1-scores for
OCC and binary models without the use of data balancing
techniques during training.

When examining the performance metrics, the OC-SVM
model outperforms its binary counterpart, achieving higher
AUC, and F1-score values. It achieves an average AUC
of 0.646, while the SVM model reaches 0.628. Similarly,
the F1-scores are 0.641 for OC-SVM and 0.618 for SVM,
respectively.

In addition, the IOF and OC-k-NN models exhibit supe-
rior performance compared to their binary versions, RF and
k-NN. The IOF model attains an AUC of 0.737, outperform-
ing RF’s 0.721. Likewise, the OC-k-NN achieves an AUC of
0.679, surpassing k-NN’s 0.649.

Furthermore, in terms of F1-scores, the IOF model
yields a result of 0.704, while RF scores 0.666. Similarly, the
OC-k-NN model achieves an F1-score of 0.679, outpacing
k-NN’s 0.649.

Table 6 exhibits the outcomes of both OCC and binary
models, incorporating balancing techniques (OS, SMOTE,
and US), following the implementation of a time-sensitive
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Table 5
The average results of the JIT-SDP trained models with no
balancing with time-sensitive validation

Classifiers AUC Improvement F1 -Score Improvement

OC-SVM 0.646 0.0% 0.641 0.0%
SVM 0.628 -2.7% 0.618 -3.6%

IOF 0.737 0.0% 0.704 0.0%
RF 0.721 -2.1% 0.666 -5.3%

OC-k-NN 0.679 0.0% 0.677 0.0%
k-NN 0.649 -4.5% 0.559 -17.4%

Table 6
Results of comparison between OCC and binary classifiers with
balancing techniques OS, US, SMOTE using time-sensitive
validation.

Classifiers AUC Improvement F1 -Score Improvement

OC-SVM 0.646 0.0% 0.641 0.0%
SVM OS 0.626 -3.1% 0.592 -7.7%
SVM SMOTE 0.639 -1.0% 0.609 -5.0%
SVM US 0.671 4.0% 0.620 -3.3%

IOF 0.737 0.0% 0.704 0.0%
RF OS 0.748 1.6% 0.686 -2.6%
RF SMOTE 0.745 1.1% 0.688 -2.2%
RF US 0.646 -12.3% 0.623 -11.5%

OC-k-NN 0.679 0.0% 0.677 0.0%
k-NN OS 0.670 -1.4% 0.585 -13.7%
k-NN SMOTE 0.680 0.2% 0.607 -10.4%
k-NN US 0.707 4.1% 0.685 1.2%

approach. After applying data balancing strategies, the bi-
nary models consistently outperformed the OCC counter-
parts regarding AUC, and F1-score in some cases. For ex-
ample, when employing the US balancing technique, SVM
surpasses OC-SVM, achieving an AUC of 0.671 compared
to OC-SVM’s 0.646. However, OC-SVM remains superior
to SVM when utilizing oversampling techniques (OS and
SMOTE). Moreover, OC-SVM outperforms SVM across all
balancing techniques when considering the F1-score.

Shifting our attention to RF, it attains average AUC
values of 0.748 and 0.745 with the OS and SMOTE bal-
ancing techniques, respectively, compared to IOF’s 0.737.
Nevertheless, IOF still outperforms RF when employing the
US balancing technique, where RF achieves an AUC of
0.646. Additionally, IOF surpasses RF across all balanc-
ing techniques when evaluating the F1-score. The MCC,
however, demonstrates that IOF outperforms RF only when
using the SMOTE and US balancing techniques.

Finally, the average AUC for OC-k-NN remains steady
at 0.679. K-NN, on the other hand, outperforms OC-k-NN
when applying the SMOTE and US balancing techniques,
yielding AUC values of 0.680 and 0.707, respectively. K-
NN’s average AUC is 0.670, which is only slightly different
from OC-k-NN’s result. Notably, OC-k-NN outperforms K-
NN across all balancing techniques except when employing
the US technique, particularly in terms of F1-score.

The F1-score, while informative, does not provide a
complete understanding of model performance because it

is a threshold-dependent measure and is sensitive to imbal-
anced data. In contrast, as discussed in Section 4.3, the ROC
curve offers a threshold-independent evaluation, illustrating
the model’s performance across all possible thresholds. At
each point on the ROC curve, a different F1-score can
be calculated, however, the AUC (area under the ROC
curve) provides a more holistic metric for overall model
accuracy, which is insensitive to the data imbalance. Most
machine learning libraries internally select the “optimal”
threshold by balancing the tpr and fpr (see Section 4.3).
This threshold aligns, by default, with the point closest to
the upper left corner of the ROC curve, as depicted in
Figure 2. All threshold-dependent metrics, including the F1-
score, are derived based on this threshold. However, relying
solely on these threshold-based metrics can lead to deceptive
results, particularly when the chosen threshold lies outside
the domain application’s region of interest, as demonstrated
in Figure 7. For instance, the ROC curve in Figure 7 depicts
k-NN’s performance without data balancing for the Hive
project. While the F1-score appears promisingly high at
0.61, this may not truthfully represent the model’s genuine
performance, as suggested by the AUC value of 0.53 – barely
better than a random guess. More importantly, in the desired
region where the fpr is low (specifically, below 20%), this
model demonstrates little to no detection capability as the
tpr approaches zero. Furthermore, if one were to choose this
model based on its F1-score, corresponding to an operating
point with an fpr of 60% and a tpr of 95%, it would prove
impractical. Such a selection implies that, out of 100 com-
mits, 60 healthy commits would be erroneously flagged as
buggy. Given these considerations, the F1-score’s capacity
to accurately represent model performance becomes ques-
tionable, especially when there is an imbalance ratio discrep-
ancy between the training and testing sets. Consequently, we
have chosen to prioritize the AUC for subsequent research
questions (RQ2 and RQ3).

Figure 7: An example of testing for a project to display F1-score
and AUC based on the ROC curve.
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Finding RQ1: All one-class classifiers outperform
their binary counterparts when no balancing tech-
nique is applied, resulting in a notable average im-
provement in AUC of up to 18.4% and 4.5% us-
ing CV and TV data splitting approaches, respec-
tively. When data balancing is used, binary classi-
fiers achieve slightly better than OCC methods. The
improvement is between 1.9% to 3.5%. when using
CV and between 1.1% to 4.1% when using the TV
data splitting approach.

5.2. RQ2: How do OCC algorithms perform
compared to binary classifiers when
considering the data imbalance ratio?

In this question, we want to know how OCC methods
perform when the data Imbalance Ratio (IR) of normal
versus buggy commits is considered. This will help in de-
termining when it is preferable to use OCC algorithms over
binary algorithms.
5.2.1. RQ2.1: Results using cross-Validation

Table 21 (see Appendix) shows detailed results of the
algorithms’ performance using AUC. Individual project out-
comes differ depending on the algorithm used. A closer
examination of the results reveals that for projects cayenne,
hive, jackrabbit, oodt, gora, bookkeeper, storm, spark, reef,
helix, bigtop, curator, cocoon, and ambari, which have a
medium to high data imbalance ratio (IR >= 22), all OCC
algorithms (i.e., OC-SVM, IOF, and OC-kNN) consistently
outperform binary classifiers with and without data balanc-
ing. This is also shown in Figure 8 using a boxplot of the
average AUC for projects with medium and high IR (IR >=
22). The figure also shows that the OCC algorithms have
less variability in their AUC results, which suggests that they
are more stable and robust to noise in the data than their
binary counterparts for projects with medium and high data
imbalance ratios.

This finding suggests that software projects with a
medium to high data imbalance ratio would benefit more
from using one-class classifiers than a binary classification
method to build JIT-SDP models. We show that when
the number of normal commits to the number of buggy
commits exceeds a certain threshold (in our case an IR
ratio of 22 normal commits to 1 buggy commit), OCC
algorithms should be considered. This is a significant finding
because large software systems are expected to exhibit such
imbalance. Considering the fact that OCC algorithms do not
require the balancing of data during training and only need
to be trained on normal commits, we believe that they are
a better alternative than binary methods for large software
systems.

The challenge of using OCC in practice is to determine
automatically the threshold beyond which OCC algorithms
should be used. Software developers can use different cri-
teria including the maturity of the project, the criticality of
the project, IR ratios based on past releases, the quality of

Figure 8: Average AUC of binary and OCC models for projects
with medium to high data imbalance ratio (IR>=22) (Cross-
Validation).

the project, the overall development and quality assurance
processes in place, etc. For example, for mature and stable
projects that are developed by experienced developers, one
may expect to see fewer defects being introduced, resulting
in higher IR. Future work should concentrate on determining
the criteria that affect the data imbalance ratio and how these
criteria should be used to determine the threshold beyond
which OCC should be used.

For projects with low IR (a total of 20 projects out of 34),
the results show that binary classifiers perform usually better
than OCC methods (see Figure 9). Although the results
vary from one algorithm to another, we can clearly see
that OC-SVM performs worse than SVM for 16 projects
out 34 (e.g., drill, flume, openjpa, camel, zookeeper, flink,
carbondata, zeppelin, tez, phoenix, and oozie). IOF does
well on only two projects (ignite and hadoop) out of 34 (i.e.,
5% of the projects). OC-k-NN performs well on 1 project
out of 34 (i.e., 2%). When comparing the accuracy of all the
algorithms independently from the type of the algorithm (see
the results highlighted in bold and underlined), we can see
that, for projects with IR < 22, OCC algorithms provide the
best results for only 6 projects (ignite, avro, hadoop, falcon,
derby, and accumulo) out of 34 (i.e., a ratio of 17%). These
results are obtained when using OC-SVM. In all other cases,
binary classifiers (sometime even without data balancing -
see for example flume and openjpa when using SVM with
no balancing of data) perform better than OCC. These results
clearly demonstrate that for projects with low IR (in our case
IR < 22), it is preferable to use a binary classifier. The use of
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Figure 9: Average AUC of binary and OCC models for projects
with low IR (IR<22) (Cross-Validation).

a balancing technique is also recommended as it was already
stated in related work (see Song et al. Song et al. (2019)).

Table 7 shows the value of Cliff’s 𝛿 for all six classifiers
for projects with IR >= 22. The rows of the table represent
the OCC models and the columns show the binary classi-
fiers. We assess the magnitude of the difference between the
AUC of a one-class algorithm and its binary version with
no balancing, data balancing with over-sampling, SMOTE,
and under-sampling. The results from Cliff’s test indicate the
extent of the differences between OC-SVM, OC-k-NN, and
IOF, along with their corresponding binary classifiers.

We found that in 50% of the cases (6 out of 12), the
accuracy of one-class algorithms exhibited a large effect size
when compared to that of their binary versions with and
without data balancing. For example, the accuracy of both
OC-SVM and IOF show a large effect size (𝛿 ≥ 0.474)
when compared to their binary versions without balancing
and with under-sampling. For the remaining cases, 4 out of
12 cases (33%) show a moderate effect size. There are only
two cases where the effect size is small and this is between
IOF and RF-OS (𝛿 =0.327) and IOF and RF-SMOTE (𝛿
=0.270). A moderate to large effect size means that this
research finding has a practical significance Romano et al.
(2006); Cohen (1992).

Table 8 shows the Cliff’s 𝛿 values for all models for
projects with low IR (IR < 22). The results indicate a
moderate effect size for 5 out of 12 cases (41.66%) (see for
example, the effect size between IOF and RF-US, which is
-0.403), a large size effect in 2 cases out of 12 (16.16%), and
a small size effect in 5 cases out of 12 (41.66%). We also
observe that when no data balancing is used, the effect size
in all cases is small.

Table 7
The Cliff’s 𝛿 of AUC between OCC and binary models for
project with medium and high IR (Cross-Validation)

NB-SVM OS-SVM US-SVM SMOTE-SVM

OC-SVM 0.990 0.372 0.490 0.342

NB-RF OS-RF US-RF SMOTE-RF

IOF 0.740 0.327 0.602 0.270

NB-k-NN OS-k-NN US-k-NN SMOTE-k-NN

OC-k-NN 0.857 0.694 0.418 0.332

Table 8
The Cliff’s 𝛿 of AUC between OCC and binary models with
low IR (Cross-Validation)

NB-SVM OS-SVM US-SVM SMOTE-SVM

OC-SVM 0.180 -0.432 -0.212 -0.355

NB-RF OS-RF US-RF SMOTE-RF

IOF -0.005 -0.360 -0.403 -0.432

NB-k-NN OS-k-NN US-k-NN SMOTE-k-NN

OC-k-NN 0.015 -0.180 -0.575 -0.657

Also Figure 10 shows the results of F1-score using CV
approach with medium and high IR (the detailed F1-score
results for CV can be found in Table 22 within the Appendix
section). It can be clearly seen that the OCC models’ perfor-
mance is higher than binary ones even with balanced data.
On the other side, the binary models start to outperform OCC
models, especially with data balancing methods as shown in
Figure 11 when IR is low.

Figure 10: Average F1-score of binary and OCC models for
projects with medium to high data imbalance ratio (IR>=22)
(Cross-Validation).
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Figure 11: Average F1-score of binary and OCC models for
projects with low IR (IR<22) (Cross-Validation).

Table 9
The Cliff’s 𝛿 of F1-score between OCC and binary models for
projects with medium and high IR (Cross-Validation)

NB-SVM OS-SVM US-SVM SMOTE-SVM

OC-SVM 1.000 0.628 0.673 0.806

NB-RF OS-RF US-RF SMOTE-RF

IOF 0.867 0.607 0.750 0.582

NB-k-NN OS-k-NN US-k-NN SMOTE-k-NN

OC-k-NN 0.964 0.827 0.612 0.628

Table 9 presents the Cliff’s 𝛿 values for F1-scores in
projects characterized by medium and high IR. In all cases,
the Cliff’s 𝛿 values clearly demonstrate that OCC models
statistically outperform binary models, and large effect sizes
characterize these differences.

However, when we examine the Cliff’s 𝛿 values in Table
10, focusing on projects with low IR, we observe that OCC
models outperform binary models only when data balancing
is not applied. To illustrate, without data balancing, both
OC-SVM and IOF exhibit superior performance compared
to NB-SVM and NB-RF, with moderate effect sizes (0.147 ≤
𝛿 ≤ 0.474). OC-k-NN outperforms NB-k-NN with a small
effect size (𝛿 = 0.147). Interestingly, binary models take
the lead and exceed OCC models once data balancing is
introduced, displaying moderate to large 𝛿 values.

Table 10
The Cliff’s 𝛿 of F1-score between OCC and binary models with
low IR (Cross-Validation)

NB-SVM OS-SVM US-SVM SMOTE-SVM

OC-SVM 0.465 -0.415 -0.205 -0.333

NB-RF OS-RF US-RF SMOTE-RF

OC-RF 0.220 -0.340 -0.325 -0.388

NB-k-NN OS-k-NN US-k-NN SMOTE-k-NN

OC-k-NN 0.147 -0.280 -0.575 -0.593

Finding RQ2.1: We found that OCC algorithms
outperform binary classifiers with and without data
balancing techniques for all projects with medium
to high data imbalance ratio (IR >= 22 in our case).
For projects with a low IR (IR < 22 for our datasets),
binary classifiers perform better than OCC ones in
the majority of the cases. This finding suggests that
OCC JIT-SDP models should be used in situations
with IR is high enough. The challenge, however, is
to determine the right IR threshold beyond which the
use of OCC is warranted.

5.2.2. RQ2.2: Results using time-sensitive validation
Table 23 (see Appendix) provides a detailed breakdown

of the results for all six models when using the time-sensitive
validation approach. Five projects (Derby, Oozie, Gora,
Bookkeeper, and Helix) were excluded due to their limited
presence of buggy commits in the testing set (fewer than
10). Across the board, the OCC algorithms consistently
outperform the binary ones, particularly when dealing with
projects with medium and high IR as measured by AUC.
For instance, the OCC models achieved the best results
on 9 out of 29 projects (representing 31%) except for two
projects, Jackrabbit and Bigtop. This discrepancy arises
from variations in IR values between the training, validation,
and testing sets, resulting from the data distribution when
sorted chronologically. Section (5.2.3) elaborates further on
these cases. This observation persists even when applying
balancing techniques such as OS, US, and SMOTE.

Figure 12 visualize the overall AUC results of 11 projects
when the IR is medium or high (more than 21 in our
case). As mentioned previously, the OCC algorithms get an
advantage when IR is medium or high compared to their
binary counterparts. On the other hand, Figure 13 displays
the AUC of all 29 projects with low IR also using time-
sensitive validation. As we can see, the binary algorithms
perform better than OCC ones. For example, the OC-SVM
achieved lower performance on 14 projects from a total of
29 projects. IOF performed worst on 16 projects from a total
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Figure 12: Average AUC of binary and OCC models for projects
with medium to high data imbalance ratio (IR>=22) (time-
sensitive validation).

Figure 13: Average AUC of binary and OCC models for projects
with low IR (IR<22) (time-sensitive Validation).

of 29 ones and OC-k-NN had 15 worst results out of a total
of 29 projects.

Table 11 represents the Cliff’s 𝛿 for OCC models and
their binary versions with medium and high IR using time-
sensitive validation. The OC-SVM shows a larger impact
than SVM, even with balancing approaches (all 𝛿 ≥ 0.474).

Table 11
The Cliff’s 𝛿 of AUC between OCC and binary models for
projects with medium and high IR (time-sensitive validation)

NB-SVM OS-SVM US-SVM SMOTE-SVM

OC-SVM 0.736 0.562 0.512 0.478

NB-RF OS-RF US-RF SMOTE-RF

IOF 0.661 0.207 0.785 0.190

NB-k-NN OS-k-NN US-k-NN SMOTE-k-NN

OC-k-NN 0.595 0.306 0.281 0.289

Table 12
The Cliff’s 𝛿 of AUC between OCC and binary models with
low IR (time-sensitive validation)

NB-SVM OS-SVM US-SVM SMOTE-SVM

OC-SVM -0.201 -0.086 -0.210 -0.225

NB-RF OS-RF US-RF SMOTE-RF

IOF -0.398 -0.370 -0.562 -0.296

NB-k-NN OS-k-NN US-k-NN SMOTE-k-NN

OC-k-NN -0.302 -0.281 -0.463 -0.343

The Cliff’s 𝛿 of IOF is large compared to RF with imbalanced
and US approaches. While it shows a small size impact using
OS and SMOTE balancing techniques with RF. Finally, the
OC-k-NN Cliff’s 𝛿 shows a large size impact compared to
k-NN without balancing data with a small size impact with
OS, US, and SMOTE. These results collectively indicate
that OCC models consistently outperform binary models in
a statistically significant manner when dealing with projects
with medium or high IR scenarios.

Table 12 presents the Cliff’s 𝛿 values for projects char-
acterized by low IR. All the results in the table are negative,
indicating that in these cases, OCC models underperform
compared to their binary counterparts. For instance, SVM
indicates a statistically significant but small size impact
compared to OC-SVM. Additionally, RF outperforms IOF
with a moderate effect size when employing NB and OS
techniques, while RF achieves superior results over IOF
using the US with a large effect size. Furthermore, RF
records a small effect size compared to IOF when using
SMOTE. Lastly, k-NN demonstrates a moderate effect size
compared to OC-k-NN when employing NB and OS, and
Cliff’s 𝛿 indicates a moderate effect size when using US and
SMOTE.

In terms of F1-score, Figure 14 illustrates the average
results using the TV approach through boxplots for projects
characterized by medium and high IR. The detailed F1-score
results for TV can be found in Table 24 within the Appendix
section. Among these results, OC-SVM shows only slight
variations compared to SVM, while IOF consistently yields
higher results than RF, even when data balancing techniques
are applied, except in the case of RF-SMOTE, which exhibits
similar results to IOF. Additionally, OC-k-NN consistently
outperforms k-NN when used in conjunction with NB, OS,
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Table 13
The Cliff’s 𝛿 of F1-score between OCC and binary models with
medium and high IR (time-sensitvie validation)

NB-SVM OS-SVM US-SVM SMOTE-SVM

OC-SVM 0.397 0.355 0.116 0.331

NB-RF OS-RF US-RF SMOTE-RF

IOF 0.537 0.157 0.570 0.083

NB-k-NN OS-k-NN US-k-NN SMOTE-k-NN

OC-k-NN 0.744 0.405 0.207 0.339

and SMOTE balancing methods, while k-NN-US demon-
strates similar performance to the OC-k-NN model.

Table 13 provides insight into the Cliff’s 𝛿 values for the
F1-score in projects characterized by medium and high IR.
OC-SVM exhibits a moderate effect size (with 𝛿 values rang-
ing from 0.147 to 0.474) when compared to SVM-NB, SVM-
OS, and SVM-SMOTE. Conversely, it shows a small effect
size when compared to SVM-US (𝛿 values less than or equal
to 0.147). In contrast, IOF demonstrates a large effect size
when compared to RF-NB and RF-US, with Cliff’s 𝛿 values
greater than or equal to 0.474. However, when compared to
RF-OS and RF-SMOTE, the effect size is small, indicated
by Cliff’s 𝛿 values less than or equal to 0.147. Finally, OC-k-
NN exhibits a moderate to large effect size when compared
to k-NN, both with and without balancing methods (OS and
SMOTE), while k-NN-US shows a moderate effect size.

Transitioning to projects with low IR, it becomes evident
that binary models consistently maintain their advantage
over one-class classifiers in terms of the F1-score. This pat-
tern is clearly illustrated in Figure 15, regardless of whether
data balancing techniques are applied or not. Further confir-
mation of this trend is found in the Cliff’s 𝛿 values presented
in Table 14, where all 𝛿 values are negative. These negative
values indicate that across the board, binary models consis-
tently outperform OCC models, and the magnitude of this
advantage is moderate to large in terms of effect size.

Finding RQ2.2: Our investigation reveals that OCC
algorithms consistently outperform binary classi-
fiers across all projects characterized by medium
to high IR levels (IR >= 22 in our study), even
when using the TV data splitting approach. It is
worth noting that two projects, Bigtop and Jackrab-
bit, exhibit unique behavior due to the distribution of
buggy data after commits are sorted by time. These
projects represent special cases and require separate
consideration. In contrast, for projects with a low IR,
binary classifiers consistently exhibit superior per-
formance compared to OCC models in most cases,
even without data balancing techniques.

5.2.3. Fine-grained discussion
We also carefully analyzed projects with IR exceed-

ing 21, revealing that data distribution significantly affects
OCC algorithms in contrast to binary ones. This observation

Figure 14: Average F1-score of binary and OCC models for
projects with medium to high data imbalance ratio (IR>=22)
(time-sensitive Validation).

Figure 15: Average F1-score of binary and OCC models for
projects with low IR (IR<22) (time-sensitive validation).

becomes obvious when the data is chronologically sorted,
leading to variations in the distribution of buggy commits.
For instance, when we sort the data by time and divide it
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Table 14
The Cliff’s 𝛿 of F1-score between OCC and binary models with
low IR (time-senstivie validation)

NB-SVM OS-SVM US-SVM SMOTE-SVM

OC-SVM -0.501 -0.404 -0.210 -0.148

NB-RF OS-RF US-RF SMOTE-RF

IOF -0.321 -0.340 -0.451 -0.238

NB-k-NN OS-k-NN US-k-NN SMOTE-k-NN

OC-k-NN -0.196 -0.386 -0.330 -0.133

into three parts: training, validation, and testing (see Fig-
ure 5), we encounter varying counts of buggy commits in
each segment, reflecting real-world scenarios. However, this
distribution discrepancy poses challenges for OCC models,
particularly when the number of buggy commits in the
validation set is lower than in the training set. The OCC
models require additional information during the hyper-
tuning process since they assess their parameters based on
buggy commits in the validation set. In contrast, binary
models outperform OCC models due to their inherent nature,
which employs two classes during training, as opposed to
OCC models that rely solely on one class.

For example, the OCC models do not perform well
with projects (Jackrabbit and Bigtop), even with higher IR.
When we dug deeper into data distribution we found that
the count of buggy data represented after sorting data by
commit time is as follows for project Jackrabbit: training
(228), validation (50), and testing (92). As we can see most
of the buggy commits are placed in the training set. In the
case of OCC, this data is dropped and not used at all, while
binary classifiers use them to discover the class boundaries.
Therefore, the binary models get an advantage over OCC.

In contrast, OCC models exhibit superior performance
compared to binary models in situations where the validation
set contains more buggy commits. Take, for example, the
distribution of buggy commits in the project Parquet-mr after
sorting the data: training (7), validation (30), and testing
(77). In such cases, binary classifiers encounter challenges
due to the limited information available in the training data.
Additionally, balancing methods yield little improvements,
primarily due to the noise in the data. On the other hand,
OCC models perform better for two key reasons. Firstly,
the OCC models are trained exclusively on normal data
and evaluated on the validation set. This approach helps
them adapt effectively to scenarios where buggy commits
are more prevalent in the validation data. Secondly, the OCC
models are less sensitive to the noise introduced by data
balancing processes, as they do not require such balancing.
They contribute to their improved performance in situations
with imbalanced data.

In such instances, OCC identifies buggy commits with
a higher IR (exceeding 21). Interestingly, when data is bal-
anced using various techniques like OS, SMOTE, and US,
binary models tend to identify the same buggy commits as

OCC. However, these balancing methods directly impact bi-
nary models, as highlighted by Song et al. Song et al. (2019).
Notably, we discovered that binary models tend to generate
more false positives due to these balancing methods, leading
to a degradation in their overall performance. In other words,
while OCC and (binary models + balanced data) identify
the same buggy commits, binary models exhibit reduced
performance due to increased false positive results.

Finding RQ2.3: We found that the distribution of
buggy data during time validation has an impact on
the performance of binary and OCC models. To il-
lustrate this, OCC models exhibit better performance
when most of the buggy data are included in the
validation set during the model-building process.
Conversely, having buggy data in the training set
does not affect OCC models since these models
are trained on normal data only. In contrast, binary
models need to incorporate both normal and buggy
data during training.

5.3. RQ3: Which features affect the accuracy of
OCC algorithms compared to their binary
counterparts?

In the previous question, we found that the accuracy of
OCC algorithms depends on the data imbalance ratio of the
project. In this question, we aim to understand which feature
set (i.e., diffusion, size, purpose, history, and experience) has
the most impact on the results. The feature sets used to train
the algorithms are shown in Table 2. We rank the features
based on their importance and investigate the effect of using
the top 9 features on the performance of the OCC and binary
algorithms.

To achieve this, we extract the most important features
from the Random Forest decision trees. It calculates feature
importance by assessing how much each feature contributes
to reducing impurity when splitting decision tree nodes,
making it a straightforward and interpretable choice Zheng
and Casari (2018). Table 15 lists the 14 features in the
descending order of importance. Table 16 shows the average
AUC of different algorithms trained on datasets with low
IR (IR < 22). It includes the results when all features are
used and when only using the top 9 features. We only kept
the top 9 features shown in Table 15 because the other
features (ND, Fix, RExp, SExp, and Exp) did not result in
any improvements to the models. The algorithm with the
highest accuracy is highlighted with a gray background.
We can observe that the accuracy of all algorithms has
improved when using the top 9 features. We also found
that the accuracy of binary classifiers with data balancing
techniques remains superior to that of OCC algorithms for
projects with low IR.

Table 17 presents the average AUC of various algorithms
trained on datasets with medium and high IR (IR >= 22).
The table includes results for all features and the top 9
features. We see that the best results are obtained when using

M. Shehab, W. Khreich, Hamou-Lhadj A., Sedki I.: Preprint submitted to Elsevier Page 18 of 24



Commit-Time Defect Prediction Using One-Class Classification

Table 15
Ranking of feature importance for JIT-SDP classifiers using
Cross-Validation.

Features Importance Ranking

NF 26.223
NS 25.577
LT 25.434
LA 24.883
Entropy 23.042
AGE 20.012
LD 18.052
NDEV 15.741
NUC 15.043
ND 5.412
Fix 3.652
REXP 3.256
SEXP 2.124
EXP 2.004

Table 16
Impact of feature sets on average AUC for JIT-SDP projects
with low IR (IR<22)

Classifiers Metrics Average AUC of low IR

NB US OS SMOTE

All 0.691 0.748 0.742 0.736RF Top 9 only 0.698 0.749 0.730 0.758

All 0.691 - - -IOF Top 9 only 0.708 - - -

All 0.718 0.765 0.730 0.760k-NN Top 9 only 0.744 0.770 0.735 0.779

All 0.715 - - -OC-k-NN Top 9 only 0.700 - - -

All 0.655 0.740 0.791 0.784SVM Top 9 only 0.706 0.796 0.806 0.783

All 0.696 - - -OC-SVM Top 9 only 0.736 - - -

OCC with the top 9 features. IOF, OC-K-NN, and OC-SVM
achieve an average AUC with the Top 9 features of 0.830,
0.805, and 0.863.

The conclusion from answering RQ3 is that the choice
of the feature sets has an impact on the accuracy. The results
suggest that projects with medium to high IR (in our case,
IR >= 22) require fewer feature sets than projects with
low IR (IR<22). Feature selection reduces the redundancy
and multicollinearity among features, which can improve
the accuracy of machine learning algorithms. Furthermore,
feature selection alleviates the curse of the dimensionality
problem, which indicates that the number of instances in the
training data set that need to be accessed grows exponentially
with the underlying dimensionality (number of features).
This becomes a bigger issue when training binary classifiers
on imbalanced datasets due to the difficulty in obtaining
more positive examples, while a large number of negative

Table 17
Impact of feature sets on average AUC for JIT-SDP projects
with medium & high IR (Cross-Validation)

Classifiers Metrics Average AUC of medium & high IR

NB US OS SMOTE

All 0.659 0.685 0.761 0.776RF Top 9 only 0.670 0.630 0.707 0.760

All 0.804 - - -IOF Top 9 only 0.830 - - -

All 0.665 0.747 0.677 0.782k-NN Top 9 only 0.685 0.719 0.671 0.773

All 0.790 - - -OC-k-NN Top 9 only 0.805 - - -

All 0.568 0.758 0.776 0.737SVM Top 9 only 0.613 0.807 0.795 0.801

All 0.826 - - -OC-SVM Top 9 only 0.863 - - -

Table 18
Ranking of feature importance for JIT-SDP classifiers using
time-sensitive validation.

Features Importance Ranking

NS 12.507
NF 11.552
LT 10.415
Entropy 10.167
LA 10.071
AGE 8.268
LD 7.217
NUC 6.737
NDEV 6.178
ND 2.352
Fix 1.352
REXP 1.304
SEXP 1.054
EXP 1.007

examples are typically available (or easy to acquire) for
training OCC algorithms. More importantly, for practical
applications, selecting fewer features reduces the training
and response time and allows for a better understanding of
the data and the behavior of the algorithms Chandrashekar
and Sahin (2014).

We also do the same process with the time-sensitive
validation protocol. Table 18 displays the 14 features ranked
based on their importance using the RF algorithm. The rank
of features is different after applying the time-sensitive vali-
dation approach compared to Cross-Validation. However, the
RF model shows the same top 9 features with lower values
in importance.

Table 19 displays the average AUC of projects with low
IR using the time-sensitive Validation approach. The best
results are recorded when we use only the top 9 features.
The binary models still perform better than OCC ones, but
balancing approaches show changes. For instance, we can
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Table 19
Impact of feature sets on average AUC for JIT-SDP projects
with low IR (time-sensitive validation)

Classifiers Metrics Average AUC of low IR

NB US OS SMOTE

All 0.732 0.619 0.728 0.722RF Top 9 only 0.779 0.678 0.791 0.798

All 0.687 - - -IOF Top 9 only 0.760 - - -

All 0.654 0.678 0.718 0.731k-NN Top 9 only 0.693 0.742 0.718 0.731

All 0.619 - - -OC-k-NN Top 9 only 0.703 - - -

All 0.618 0.674 0.607 0.618SVM Top 9 only 0.677 0.674 0.667 0.680

All 0.597 - - -OC-SVM Top 9 only 0.670 - - -

see RF still recorded the best average AUC using SMOTE.
On the other side, the k-NN algorithm gets the best average
AUC with US, while it gets the best average AUC using
SMOTE with the Cross-Validation approach. Also SVM
algorithm gets a different best average AUC, where the
best result with time-sensitive Validation is SVM-SMOTE.
While the SVM-OS is the best result with Cross-Validation.

Table 20 presents the average AUC values for projects
with moderate to high IR using the time-sensitive validation
approach. The OCC algorithms achieve the most favorable
average AUC scores when the top 9 features are considered.
Interestingly, the IOF method demonstrates a similar average
AUC performance when employing both Cross-Validation
and time-sensitive Validation approaches. However, when
comparing the OC-SVM and OC-k-NN algorithms, we ob-
serve that they yield higher average AUC values with the
Cross-Validation approach than the time-sensitive Valida-
tion approach. Nevertheless, it is worth noting that OCC al-
gorithms consistently outperform counterpart models when
dealing with moderate to high IR.

Finding RQ3 : We found that the accuracy of the
algorithms improved when using the top 9 ranked
features based on their importance. For projects with
low IR, binary classifiers outperform OCC algo-
rithms when using the top 9 features. For projects
with medium to high IR, all OCC algorithms out-
perform their binary versions with and without data
balancing using both data splitting approaches CV
and TV.

6. Threats to Validity
We now discuss the threats to the validity of our results

and recommendations.
Construct Validity: Construct validity threats concern

the accuracy of the observations with respect to the theory.

Table 20
Impact of feature sets on average AUC for JIT-SDP projects
with medium & high IR (time-sensitive Validation)

Classifiers Metrics Average AUC of medium & high IR

NB US OS SMOTE

All 0.704 0.692 0.782 0.783RF Top 9 only 0.721 0.712 0.770 0.795

All 0.819 - - -IOF Top 9 only 0.836 - - -

All 0.640 0.754 0.708 0.724k-NN Top 9 only 0.658 0.733 0.686 0.706

All 0.785 - - -OC-k-NN Top 9 only 0.788 - - -

All 0.646 0.671 0.656 0.675SVM Top 9 only 0.660 0.689 0.693 0.721

All 0.726 - - -OC-SVM Top 9 only 0.740 - - -

We used six machine learning algorithms that are well-
studied in the literature. We followed the conventional way
of training, validation, and testing. We also used the AUC,
a threshold-independent evaluation metric, to assess the
performance of the classification algorithms. We argued that
the AUC is a more representative metric than the F1-score,
which is tied to a specific threshold. Thus, we believe that
there is no threat to the construct validity of our results
and recommendations besides the threat to any experimen-
tal studies in software engineering where the use of other
datasets, especially those from industry, may impact the
results.

Internal Validity: Internal validity threats are factors
that may have an impact on our results. The selection of the
algorithms is one possible threat. We mitigated this threat by
using powerful algorithms that are known to perform well in
various classification tasks and are used in many research
fields. Another threat is concerned with the datasets that
we selected. Although, we experimented with 34 different
Java Apache projects, using additional datasets including
those written in different programming languages should
provide better generalizability of the results. Another threat
to internal validity is the implementation of the scripts we
use to run the experiments. To mitigate this threat, all authors
have tested the scripts rigorously to ensure that they work
properly. We also make all the data and scripts available
online3 to other researchers.

Conclusion Validity: Conclusion validity threats corre-
spond to the correctness of the obtained results. We selected
six machine learning algorithms based on their excellent
performance in various research fields. We made every effort
to follow proper machine learning procedures to conduct the
experiments. We also make the data and scripts available
online to allow the assessment and reproducibility of our
results.

3https://github.com/wahabhamoulhadj/jit-occ
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External Validity: External validity is related to the
generalizability of the results. We experimented with 34
datasets from different software projects. We do not claim
that our results can be generalized to all projects, in particu-
lar industrial, proprietary systems to which we did not have
access.

In addition, we used the implementation of RA-SZZ that
is provided by the authors 4 to label the dataset of into
normal and buggy commits. Although RA-SZZ is a powerful
labelling technique, errors in the implementation may occur,
which can impact our results.

7. Conclusion
In this paper, we investigate the use of OCC algorithms

for JIT-SDP. To achieve this, we experimented with three
OCC algorithms, OC-SVM, IOF, and OC-k-NN using 34
datasets. We compared their performance to their corre-
sponding binary classifiers, SVM, RF, and k-NN using two
data splitting and evaluation approaches (Cross-Validation
and Time-aware Validation). We found that for projects with
medium to high IR (in our case IR >= 22), OCC algorithms
outperform binary classifiers for all projects. We also found
that for these projects, OCC requires fewer features for train-
ing than the other projects. These findings are significant
because they show that for projects with a medium to high
IR, OCC should be favored over binary classification. The
challenge, however, is to determine the threshold beyond
which OCC methods should be favored. We expect that this
threshold would vary from one project to another.

Future directions should focus on the following aspects.
First, we need to work towards determining the criteria that
software engineers should use to determine the IR threshold
beyond which OCC should be used. Examples include the
maturity of the subject system, IR ratios from past releases,
etc. Because a software system evolves over time, there is
a need to constantly check that the criteria hold for major
subsequent changes in the systems to determine whether
OCC is still a viable option. Second, we need to experiment
with more systems from different domains that are written in
various programming languages to generalize our findings.
Furthermore, we should explore other OCC algorithms and
the combination of the algorithms such as those used in
anomaly detection research for the detection of outliers (e.g.,
Islam et al. (2018); Khreich, Murtaza, Hamou-Lhadj and
Talhi (2018)). We also need to compare with more binary
classifiers using different balancing techniques. Moreover,
we should also apply OCC to cross-projects and determine
the best IR for cross-project JIT-SDP tasks where data from
many projects are used for training, which may result in
a higher data imbalance ratio, further favoring the use of
OCC. Finally, we need to experiment with deep learning
algorithms and other feature sets such as semantic features
extracted from commit messages and code change.

4RA-SZZ Github repository: https://github.com/danielcalencar/ra-szz

8. Replication Package
All the data, scripts, and results discussed in this paper

are available on Github:
https://github.com/wahabhamoulhadj/jit-occ
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Table 21
The relationship between JIT-SDP model accuracy using AUC and the data imbalance ratio (IR) with cross-validation. NB
stands for No balancing, OS stands for Over-sampling, US stands for Under-sampling, and SMOTE stands for Synthetic Minority
Oversampling Technique.

SVM RF k-NN

Project name IR NB OS SMOTE US OCC NB OS SMOTE US OCC NB OS SMOTE US OCC

Drill 1.4 0.804 0.801 0.709 0.808 0.582 0.755 0.763 0.500 0.763 0.707 0.787 0.780 0.784 0.774 0.717
Flume 1.7 0.844 0.833 0.704 0.829 0.530 0.711 0.690 0.716 0.752 0.500 0.804 0.782 0.803 0.787 0.705
Openjpa 2.0 0.784 0.767 0.822 0.779 0.519 0.706 0.763 0.735 0.786 0.500 0.754 0.747 0.763 0.722 0.689
Camel 2.3 0.801 0.809 0.852 0.812 0.567 0.789 0.790 0.790 0.806 0.731 0.795 0.789 0.802 0.768 0.740
Zookeeper 2.5 0.828 0.843 0.689 0.846 0.567 0.802 0.755 0.876 0.794 0.586 0.790 0.790 0.823 0.765 0.590
Flink 4.4 0.703 0.764 0.876 0.765 0.588 0.728 0.765 0.753 0.771 0.674 0.757 0.711 0.740 0.746 0.653
Carbondata 7.7 0.681 0.838 0.808 0.833 0.608 0.830 0.829 0.774 0.834 0.806 0.810 0.811 0.810 0.816 0.761
Zeppelin 7.8 0.727 0.780 0.802 0.825 0.555 0.783 0.799 0.823 0.816 0.776 0.747 0.671 0.759 0.764 0.671
Ignite 8.7 0.611 0.763 0.801 0.635 0.779 0.651 0.705 0.764 0.649 0.709 0.678 0.732 0.708 0.748 0.750
Avro 9.2 0.605 0.819 0.891 0.845 0.858 0.500 0.800 0.900 0.760 0.630 0.648 0.790 0.823 0.800 0.797
Tez 10.5 0.593 0.792 0.380 0.720 0.790 0.753 0.786 0.817 0.787 0.766 0.669 0.732 0.794 0.773 0.761
Airavata 13.5 0.582 0.727 0.818 0.618 0.728 0.656 0.722 0.698 0.736 0.663 0.634 0.623 0.691 0.710 0.668
Hadoop 15.8 0.657 0.810 0.800 0.693 0.814 0.641 0.686 0.769 0.755 0.759 0.657 0.710 0.747 0.784 0.709
Hbase 15.8 0.554 0.779 0.852 0.601 0.785 0.738 0.786 0.767 0.726 0.738 0.673 0.672 0.776 0.749 0.720
Falcon 16.1 0.583 0.824 0.736 0.712 0.852 0.602 0.797 0.759 0.817 0.734 0.722 0.680 0.817 0.783 0.734
Derby 16.5 0.509 0.818 0.829 0.725 0.843 0.500 0.500 0.500 0.727 0.695 0.671 0.774 0.797 0.813 0.702
Accumulo 17.3 0.601 0.722 0.634 0.603 0.729 0.500 0.500 0.805 0.577 0.544 0.694 0.627 0.722 0.699 0.695
Parquet-mr 18.7 0.625 0.714 0.790 0.689 0.727 0.658 0.732 0.721 0.775 0.657 0.648 0.721 0.729 0.688 0.710
Phoenix 19.6 0.517 0.763 0.760 0.595 0.736 0.713 0.818 0.771 0.834 0.789 0.695 0.687 0.762 0.757 0.756
Oozie 19.7 0.494 0.852 0.636 0.870 0.764 0.795 0.843 0.823 0.500 0.862 0.735 0.773 0.864 0.845 0.784
Cayenne 22.3 0.525 0.814 0.789 0.714 0.826 0.734 0.792 0.500 0.745 0.812 0.679 0.685 0.774 0.771 0.781
Hive 22.7 0.597 0.799 0.743 0.799 0.806 0.500 0.500 0.500 0.500 0.661 0.674 0.677 0.738 0.668 0.768
Jackrabbit 22.9 0.616 0.816 0.774 0.659 0.823 0.743 0.799 0.818 0.500 0.892 0.769 0.709 0.813 0.795 0.835
Oodt 23.6 0.511 0.773 0.785 0.773 0.803 0.659 0.727 0.766 0.679 0.793 0.701 0.788 0.766 0.762 0.805
Gora 25.3 0.444 0.600 0.680 0.600 0.889 0.609 0.779 0.785 0.708 0.811 0.631 0.635 0.754 0.638 0.761
Bookkeeper 27.3 0.620 0.826 0.782 0.826 0.883 0.667 0.758 0.767 0.763 0.769 0.680 0.788 0.828 0.792 0.838
Storm 42.6 0.491 0.762 0.728 0.762 0.810 0.667 0.705 0.746 0.500 0.794 0.666 0.619 0.747 0.751 0.790
Spark 52.1 0.559 0.837 0.701 0.837 0.887 0.766 0.827 0.827 0.797 0.890 0.738 0.786 0.862 0.753 0.866
Reef 63.6 0.771 0.886 0.901 0.886 0.910 0.836 0.878 0.872 0.889 0.914 0.792 0.812 0.819 0.820 0.838
Helix 65.6 0.576 0.749 0.718 0.749 0.881 0.708 0.769 0.820 0.768 0.880 0.678 0.666 0.676 0.773 0.773
Bigtop 82.8 0.668 0.741 0.765 0.741 0.773 0.500 0.799 0.787 0.631 0.905 0.587 0.588 0.720 0.823 0.835
Curator 96.1 0.561 0.603 0.803 0.603 0.816 0.588 0.774 0.775 0.626 0.780 0.486 0.494 0.713 0.657 0.844
Cocoon 198.4 0.438 0.866 0.797 0.866 0.915 0.755 0.889 0.780 0.829 0.916 0.689 0.687 0.747 0.821 0.846
Ambari 222.5 0.568 0.800 0.839 0.800 0.852 0.500 0.661 0.773 0.657 0.806 0.536 0.537 0.685 0.629 0.775

Average 0.619 0.785 0.765 0.748 0.759 0.678 0.750 0.752 0.722 0.748 0.696 0.708 0.769 0.757 0.755

Table 22
The relationship between JIT-SDP model accuracy using F1-score and the data imbalance ratio (IR) with cross-validation. NB
stands for No balancing, OS stands for Over-sampling, US stands for Under-sampling, and SMOTE stands for Synthetic Minority
Oversampling Technique.

SVM RF k-NN

Project name IR NB OS SMOTE US OCC NB OS SMOTE US OCC NB OS SMOTE US OCC
Drill 1.4 0.756 0.803 0.722 0.810 0.597 0.755 0.779 0.500 0.779 0.743 0.788 0.782 0.797 0.788 0.745
Flume 1.7 0.873 0.834 0.706 0.832 0.549 0.711 0.738 0.748 0.773 0.500 0.809 0.789 0.815 0.799 0.724
Openjpa 2.0 0.738 0.770 0.827 0.785 0.531 0.706 0.782 0.752 0.788 0.500 0.760 0.758 0.776 0.741 0.712
Camel 2.3 0.754 0.811 0.850 0.816 0.595 0.789 0.804 0.800 0.809 0.758 0.799 0.794 0.813 0.785 0.757
Zookeeper 2.5 0.765 0.844 0.693 0.850 0.576 0.802 0.780 0.893 0.802 0.667 0.799 0.798 0.831 0.782 0.627
Flink 4.4 0.677 0.771 0.883 0.771 0.601 0.728 0.779 0.771 0.782 0.720 0.761 0.720 0.754 0.768 0.682
Carbondata 7.7 0.660 0.840 0.802 0.834 0.622 0.830 0.835 0.782 0.836 0.819 0.815 0.816 0.820 0.823 0.780
Zeppelin 7.8 0.659 0.781 0.801 0.828 0.564 0.783 0.804 0.834 0.821 0.795 0.757 0.676 0.768 0.780 0.721
Ignite 8.7 0.560 0.767 0.807 0.638 0.794 0.651 0.741 0.782 0.704 0.731 0.685 0.747 0.728 0.773 0.766
Avro 9.2 0.542 0.820 0.887 0.855 0.860 0.500 0.813 0.905 0.776 0.694 0.656 0.803 0.833 0.813 0.813
Tez 10.5 0.546 0.794 0.490 0.730 0.796 0.753 0.795 0.827 0.788 0.787 0.683 0.736 0.803 0.790 0.780
Airavata 13.5 0.535 0.742 0.802 0.624 0.738 0.667 0.741 0.725 0.756 0.716 0.654 0.655 0.710 0.736 0.708
Hadoop 15.8 0.615 0.812 0.800 0.696 0.821 0.641 0.738 0.791 0.768 0.783 0.665 0.718 0.758 0.794 0.727
Hbase 15.8 0.517 0.783 0.855 0.603 0.792 0.738 0.795 0.785 0.739 0.758 0.682 0.682 0.784 0.762 0.740
Falcon 16.1 0.538 0.826 0.747 0.721 0.856 0.602 0.804 0.775 0.821 0.761 0.734 0.696 0.825 0.796 0.759
Derby 16.5 0.474 0.819 0.824 0.731 0.854 0.500 0.500 0.500 0.739 0.728 0.686 0.786 0.810 0.825 0.730
Accumulo 17.3 0.541 0.739 0.640 0.602 0.739 0.500 0.500 0.831 0.657 0.627 0.692 0.664 0.739 0.726 0.726
Parquet-mr 18.6 0.595 0.720 0.794 0.702 0.741 0.658 0.758 0.739 0.778 0.718 0.663 0.729 0.742 0.712 0.728
Phoenix 19.5 0.484 0.767 0.760 0.623 0.750 0.713 0.826 0.787 0.838 0.821 0.708 0.704 0.776 0.775 0.768
Oozie 19.7 0.480 0.855 0.643 0.878 0.778 0.795 0.850 0.837 0.500 0.891 0.743 0.778 0.875 0.855 0.802
Cayenne 22.3 0.471 0.815 0.782 0.726 0.835 0.734 0.804 0.500 0.758 0.818 0.690 0.700 0.787 0.793 0.796
Hive 22.7 0.553 0.802 0.753 0.803 0.818 0.500 0.500 0.500 0.500 0.697 0.681 0.689 0.760 0.688 0.782
Jackrabbit 22.9 0.562 0.819 0.778 0.667 0.836 0.743 0.804 0.830 0.500 0.900 0.775 0.716 0.822 0.806 0.854
Oodt 23.6 0.494 0.777 0.791 0.776 0.816 0.659 0.751 0.783 0.700 0.805 0.712 0.797 0.780 0.776 0.824
Gora 25.3 0.437 0.605 0.673 0.604 0.898 0.609 0.795 0.798 0.729 0.827 0.638 0.643 0.764 0.651 0.779
Bookkeeper 27.3 0.560 0.829 0.778 0.828 0.887 0.667 0.771 0.785 0.775 0.830 0.694 0.797 0.839 0.811 0.856
Storm 42.6 0.466 0.769 0.735 0.769 0.819 0.667 0.741 0.763 0.500 0.823 0.682 0.645 0.758 0.769 0.801
Spark 52.1 0.517 0.839 0.710 0.839 0.894 0.766 0.845 0.844 0.808 0.918 0.743 0.794 0.871 0.768 0.878
Reef 63.6 0.720 0.889 0.899 0.891 0.917 0.836 0.884 0.894 0.894 0.937 0.796 0.818 0.828 0.831 0.856
Helix 65.6 0.536 0.753 0.735 0.756 0.883 0.708 0.782 0.825 0.775 0.908 0.685 0.678 0.704 0.786 0.787
Bigtop 82.8 0.573 0.746 0.768 0.748 0.774 0.500 0.810 0.801 0.660 0.933 0.605 0.606 0.731 0.834 0.852
Curator 96.1 0.523 0.611 0.808 0.602 0.835 0.588 0.789 0.795 0.654 0.820 0.502 0.501 0.726 0.684 0.862
Cocoon 198.4 0.385 0.867 0.803 0.869 0.922 0.755 0.896 0.800 0.837 0.942 0.699 0.700 0.761 0.836 0.863
Ambari 222.5 0.531 0.805 0.815 0.805 0.856 0.500 0.720 0.791 0.697 0.795 0.561 0.568 0.701 0.661 0.799

Average 0.578 0.789 0.769 0.753 0.769 0.678 0.766 0.767 0.737 0.779 0.706 0.720 0.782 0.774 0.776
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Table 23
The relationship between JIT-SDP model accuracy using AUC and the data imbalance ratio (IR) with time-sensitive validation.
NB stands for No balancing, OS stands for Over-sampling, US stands for Under-sampling, and SMOTE stands for Synthetic
Minority Oversampling Technique.

SVM RF k-NN

Project name IR NB OS SMOTE US OCC NB OS SMOTE US OCC NB OS SMOTE US OCC
Drill 1.4 0.651 0.622 0.599 0.654 0.604 0.789 0.788 0.789 0.654 0.683 0.706 0.710 0.704 0.711 0.616
Flume 1.7 0.557 0.572 0.699 0.566 0.558 0.724 0.763 0.767 0.566 0.730 0.699 0.700 0.703 0.716 0.609
Openjpa 2.0 0.648 0.642 0.625 0.586 0.582 0.780 0.777 0.780 0.586 0.676 0.671 0.656 0.667 0.660 0.597
Camel 2.3 0.642 0.644 0.631 0.594 0.605 0.822 0.816 0.820 0.594 0.703 0.759 0.758 0.759 0.746 0.605
Zookeeper 2.5 0.634 0.666 0.667 0.689 0.516 0.818 0.806 0.814 0.689 0.615 0.727 0.718 0.730 0.728 0.568
Flink 4.4 0.625 0.648 0.652 0.673 0.675 0.759 0.755 0.730 0.673 0.690 0.656 0.652 0.646 0.670 0.687
Carbondata 7.7 0.679 0.639 0.587 0.706 0.638 0.781 0.769 0.784 0.706 0.770 0.720 0.706 0.715 0.764 0.650
Zeppelin 7.8 0.622 0.599 0.663 0.575 0.655 0.785 0.766 0.770 0.575 0.759 0.724 0.723 0.728 0.734 0.688
Ignite 8.7 0.588 0.574 0.578 0.534 0.529 0.537 0.555 0.560 0.534 0.636 0.532 0.534 0.532 0.553 0.615
Avro 9.2 0.563 0.561 0.578 0.568 0.657 0.794 0.806 0.800 0.568 0.594 0.645 0.629 0.652 0.610 0.517
Tez 10.5 0.674 0.708 0.635 0.705 0.556 0.827 0.813 0.813 0.705 0.684 0.707 0.688 0.704 0.779 0.586
Airavata 13.5 0.560 0.506 0.546 0.569 0.576 0.639 0.672 0.666 0.569 0.576 0.574 0.558 0.568 0.610 0.540
Hadoop 15.8 0.722 0.624 0.692 0.644 0.625 0.799 0.694 0.648 0.644 0.641 0.521 0.530 0.532 0.588 0.673
Hbase 15.8 0.677 0.684 0.656 0.636 0.582 0.740 0.751 0.747 0.636 0.749 0.608 0.596 0.620 0.738 0.700
Falcon 16.1 0.610 0.614 0.661 0.671 0.545 0.654 0.741 0.731 0.671 0.663 0.686 0.674 0.689 0.714 0.578
Derby 16.5 - - - - - - - - - - - - - - -
Accumulo 17.3 0.543 0.547 0.549 0.534 0.510 0.519 0.531 0.535 0.534 0.649 0.556 0.552 0.542 0.530 0.558
Parquet-mr 18.6 0.549 0.544 0.519 0.575 0.687 0.631 0.645 0.602 0.575 0.719 0.552 0.549 0.551 0.575 0.609
Phoenix 19.5 0.575 0.539 0.582 0.658 0.640 0.777 0.648 0.635 0.658 0.825 0.727 0.703 0.719 0.777 0.742
Oozie 19.7 - - - - - - - - - - - - - - -
Cayenne 22.3 0.680 0.669 0.692 0.730 0.773 0.774 0.851 0.842 0.770 0.872 0.765 0.960 0.959 0.946 0.965
Hive 22.7 0.644 0.650 0.727 0.734 0.806 0.696 0.955 0.914 0.734 0.970 0.529 0.842 0.858 0.853 0.867
Jackrabbit 22.9 0.604 0.633 0.676 0.692 0.646 0.787 0.818 0.801 0.692 0.714 0.826 0.823 0.838 0.817 0.719
Oodt 23.6 0.686 0.646 0.593 0.619 0.730 0.708 0.841 0.865 0.619 0.880 0.714 0.942 0.950 0.939 0.951
Gora 25.3 - - - - - - - - - - - - - - -
Bookkeeper 27.3 - - - - - - - - - - - - - - -
Storm 42.6 0.614 0.680 0.668 0.685 0.720 0.738 0.778 0.720 0.685 0.790 0.571 0.576 0.581 0.691 0.724
Spark 52.1 0.688 0.550 0.539 0.695 0.701 0.726 0.769 0.699 0.695 0.774 0.633 0.632 0.658 0.696 0.725
Reef 63.6 0.684 0.691 0.648 0.671 0.833 0.730 0.751 0.753 0.761 0.783 0.609 0.611 0.622 0.705 0.742
Helix 65.6 - - - - - - - - - - - - - - -
Bigtop 82.8 0.684 0.772 0.783 0.745 0.542 0.610 0.650 0.834 0.745 0.633 0.625 0.617 0.671 0.707 0.602
Curator 96.1 0.627 0.567 0.657 0.519 0.708 0.670 0.772 0.746 0.519 0.846 0.521 0.518 0.544 0.596 0.705
Cocoon 198.4 0.620 0.609 0.725 0.621 0.754 0.514 0.501 0.514 0.621 0.808 0.501 0.501 0.501 0.618 0.765
Ambari 222.5 0.573 0.747 0.714 0.676 0.774 0.791 0.918 0.931 0.770 0.938 0.744 0.759 0.784 0.731 0.866

Average 0.628 0.626 0.639 0.639 0.646 0.721 0.748 0.745 0.646 0.737 0.649 0.670 0.680 0.707 0.682

Table 24
The relationship between JIT-SDP model accuracy using F1-score and the data imbalance ratio (IR) with time-sensitive validation.
NB stands for No balancing, OS stands for Over-sampling, US stands for Under-sampling, and SMOTE stands for Synthetic
Minority Oversampling Technique.

SVM RF k-NN

Project name IR NB OS SMOTE US OCC NB OS SMOTE US OCC NB OS SMOTE US OCC
Drill 1.4 0.648 0.637 0.629 0.602 0.624 0.720 0.727 0.724 0.602 0.654 0.680 0.685 0.680 0.681 0.630
Flume 1.7 0.545 0.400 0.671 0.362 0.622 0.642 0.720 0.753 0.362 0.701 0.655 0.662 0.656 0.683 0.600
Openjpa 2.0 0.624 0.618 0.601 0.586 0.577 0.715 0.711 0.734 0.586 0.636 0.630 0.620 0.628 0.627 0.590
Camel 2.3 0.629 0.622 0.619 0.553 0.649 0.752 0.747 0.747 0.553 0.659 0.687 0.690 0.695 0.689 0.619
Zookeeper 2.5 0.657 0.600 0.636 0.644 0.670 0.770 0.749 0.755 0.644 0.589 0.674 0.680 0.702 0.675 0.556
Flink 4.4 0.585 0.608 0.604 0.640 0.665 0.708 0.685 0.687 0.640 0.659 0.607 0.615 0.606 0.638 0.671
Carbondata 7.7 0.645 0.618 0.600 0.684 0.638 0.729 0.722 0.706 0.684 0.717 0.686 0.666 0.678 0.719 0.643
Zeppelin 7.8 0.623 0.574 0.663 0.556 0.665 0.749 0.725 0.719 0.556 0.715 0.671 0.687 0.681 0.698 0.673
Ignite 8.7 0.459 0.433 0.435 0.491 0.664 0.580 0.552 0.570 0.491 0.593 0.524 0.562 0.552 0.571 0.616
Avro 9.2 0.542 0.561 0.654 0.607 0.464 0.831 0.824 0.829 0.607 0.547 0.685 0.663 0.673 0.669 0.481
Tez 10.5 0.729 0.711 0.631 0.675 0.580 0.822 0.771 0.770 0.675 0.633 0.692 0.644 0.631 0.762 0.605
Airavata 13.5 0.583 0.434 0.509 0.528 0.437 0.576 0.651 0.655 0.528 0.579 0.571 0.559 0.556 0.596 0.558
Hadoop 15.8 0.722 0.473 0.709 0.632 0.631 0.749 0.657 0.565 0.632 0.603 0.386 0.432 0.436 0.587 0.669
Hbase 15.8 0.683 0.704 0.644 0.634 0.654 0.698 0.696 0.660 0.634 0.708 0.635 0.608 0.630 0.682 0.699
Falcon 16.1 0.589 0.613 0.653 0.658 0.631 0.598 0.671 0.697 0.658 0.627 0.656 0.632 0.647 0.677 0.594
Derby 16.5 - - - - - - - - - - - - - - -
Accumulo 17.3 0.511 0.529 0.474 0.511 0.654 0.476 0.536 0.542 0.511 0.629 0.432 0.467 0.495 0.475 0.648
Parquet-mr 18.6 0.479 0.499 0.529 0.486 0.389 0.416 0.371 0.439 0.486 0.697 0.323 0.320 0.363 0.531 0.548
Phoenix 19.5 0.484 0.495 0.533 0.643 0.703 0.742 0.653 0.573 0.643 0.810 0.667 0.681 0.712 0.753 0.713
Oozie 19.7 - - - - - - - - - - - - - - -
Cayenne 22.3 0.705 0.692 0.693 0.732 0.743 0.745 0.794 0.774 0.732 0.798 0.750 0.906 0.905 0.872 0.910
Hive 22.7 0.630 0.703 0.807 0.848 0.511 0.742 0.912 0.882 0.848 0.941 0.605 0.836 0.864 0.861 0.855
Jackrabbit 22.9 0.560 0.600 0.645 0.674 0.630 0.743 0.778 0.766 0.674 0.675 0.785 0.791 0.784 0.759 0.675
Oodt 23.6 0.744 0.547 0.502 0.630 0.750 0.710 0.776 0.823 0.630 0.865 0.701 0.921 0.917 0.909 0.935
Gora 25.3 - - - - - - - - - - - - - - -
Bookkeeper 27.3 - - - - - - - - - - - - - - -
Storm 42.6 0.627 0.644 0.680 0.659 0.702 0.700 0.717 0.689 0.659 0.750 0.373 0.401 0.426 0.689 0.687
Spark 52.1 0.661 0.537 0.486 0.653 0.654 0.686 0.722 0.669 0.653 0.693 0.510 0.510 0.586 0.661 0.670
Reef 63.6 0.649 0.659 0.612 0.678 0.792 0.706 0.728 0.739 0.732 0.731 0.393 0.394 0.437 0.660 0.730
Helix 65.6 - - - - - - - - - - - - - - -
Bigtop 82.8 0.716 0.791 0.781 0.722 0.636 0.551 0.650 0.846 0.722 0.704 0.481 0.474 0.595 0.723 0.717
Curator 96.1 0.675 0.594 0.264 0.646 0.717 0.639 0.773 0.763 0.646 0.843 0.104 0.157 0.321 0.562 0.701
Cocoon 198.4 0.651 0.452 0.702 0.455 0.719 0.000 0.000 0.000 0.455 0.764 0.000 0.000 0.000 0.618 0.786
Ambari 222.5 0.566 0.817 0.703 0.782 0.820 0.823 0.863 0.881 0.817 0.882 0.659 0.692 0.746 0.850 0.859

Average 0.618 0.592 0.609 0.620 0.641 0.666 0.686 0.688 0.623 0.704 0.559 0.585 0.607 0.685 0.677
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