Commit-Time Defect Prediction Using One-Class Classification

Mohammed A. Shehab?, Wael Khreich?, Abdelwahab Hamou-Lhadj** and Issam Sedki“

“Concordia University, 1455 De Maisonneuve Blvd. W., Montreal, H3G IM8, Canada

b American University of Beirut, Beirut, Lebanon

ARTICLE INFO

Keywords:

Just-In-Time Software Defect Predic-
tion (JIT-SDP)

One-Class Classification

Machine Learning

Software Maintenance and Evolution
Software Reliability

ABSTRACT

Existing Just-In-Time Software Defect Prediction methods suffer from the data imbalance problem,
where the majority class (normal commits) significantly outnumbers the minority class (buggy
commits). This results in a higher probability of misclassification. Various data balancing techniques
have been proposed to address this challenge with varying degrees of success. In this study, we
propose an approach that rely on One-Class Classification (OCC) to train models using data from
the majority class only. This eliminates the need for data balancing. We compare the accuracy of
three OCC algorithms - One-class SVM, Isolation Forest, and One-class k-NN - to their binary
counterparts - SVM, Random Forest, and k-NN - on 34 software projects. Our results show that the
data imbalance ratio (the proportion of normal to buggy commits) plays a crucial role in determining
the optimal classification approach. We found that for projects with medium to high imbalance ratio,
OCC algorithms outperform binary classifiers with and without data balancing, using cross and time-
sensitive validation approaches. Furthermore, we found that OCC methods require fewer features for
projects with medium to high IR, reducing the computational overhead of training and response time
while providing a better understanding of the data and algorithm behaviour.

1. Introduction

Software Defect Prediction (SDP) approaches have shown
to be useful in improving the quality of software sys-
tems while reducing the cost Nayrolles and Hamou-Lhadj
(2018), Kamei, Shihab, Adams, Hassan, Mockus, Sinha
and Ubayashi (2013). SDP models are built using historical
software data and various machine learning techniques. The
models are then deployed to recognize potential defects in
a newly written code Nayrolles and Hamou-Lhadj (2018).
Recently, there has been a growing interest in Just-in-Time
SDP (JIT-SDP) techniques where the prediction of bugs
is performed at the level of code commits, i.e., before the
changes reach the central code repository. The common
practice is to build a model using one or multiple machine
learning algorithms of historical commits (both normal and
buggy commit) that can later be used to detect whether a new
commit is buggy or not. A buggy commit is a commit that
is identified by the models as a potentially bug-introducing
commit. Unlike traditional SDP techniques, which operate
on the entire source code, JIT-SDP approaches can be used
to provide quick feedback to developers on the code changes
they make. Developers can decide to make fixes while the
changes are fresh in their minds. Furthermore, JIT-SDP
methods can be embedded in code versioning systems,
eliminating the need for external tools Kamei et al. (2013);
Wang, Liu and Tan (2016); Nayrolles and Hamou-Lhadj
(2018).

Existing JIT-SDP studies rely on a variety of machine
learning (ML) techniques including decision trees Song,

%4 mohammed . shehab@concordia. ca (M.A. Shehab);
wk47@aub.edu.1b (W. Khreich);
wahab.hamou-1lhadj@concordia. ca (A. Hamou-Lhadj);
issam.sedki@concordia.ca (I. Sedki)

ORCID(S):

Jia, Shepperd, Ying and Liu (2011); Nayrolles and Hamou-
Lhadj (2018), Bayesian approaches Catolino, Di Nucci and
Ferrucci (2019), Neural Networks Kiehn, Pan and Camci
(2019), and Deep Learning Wang and Yao (2009); Hoang,
Khanh Dam, Kamei, Lo and Ubayashi (2019). These ap-
proaches face a significant challenge due to the imbalance
data problem Song, Guo and Shepperd (2019); Cabral,
Minku, Shihab and Mujahid (2019) where one class (the
minority class) has a much lower proportion in the training
data as compared to the majority class. Class imbalance
affects the performance of a classifier because it creates
a bias towards the majority class, leading to errors when
predicting the minority class Lomio, Pascarella, Palomba
and Lenarduzzi (2022); Hoang, Kang, Lo and Lawall (2020).
The class imbalance problem is particularly relevant to JIT-
SDP because the buggy commits are considerably fewer than
the normal ones Lomio et al. (2022); Song et al. (2019). To
address this, existing studies treat the problem as a binary
(i.e., two-class) classification problem and use some sort
of data balancing approaches such as Over-Sampling (OS),
Synthetic Minority Oversampling (SMOTE), or Under-
Sampling (US) so as not to undermine the minority class
Song et al. (2019). A comprehensive study of the use of data
balancing approaches in the context of JIT-SDP research
is presented by Song et al. Song et al. (2019). However,
data balancing methods have many limitations such as
increasing noise when over-sampling or, worse, dropping
important patterns when under-samplingBruce and Bruce
(2017). Additionally, some classifiers are sensitive to the
data distribution that affects the re-sampling process. Inves-
tigating which sampling method works best for a specific
classifier takes time and effort Bishop (2006); Wang, Minku
and Yao (2018).

In this paper, we investigate the use of One-Class Clas-
sification (OCC) algorithms in JIT-SDP, where we train a

M. Shehab, W. Khreich, Hamou-Lhadj A., Sedki |.: Preprint submitted to Elsevier

Page 1 of 24

Commit-Time Defect Prediction Using One-Class Classification

model on the majority class only (in our case the normal
commits). We used two approaches to build and evaluate
models Cross-Validation (CV) and Time-sensitive Valida-
tion (TV). The model is then used to predict buggy commits
(the minority class). By doing so, we completely eliminate
the need for data-balancing approaches. In addition, we only
require the presence of normal data to train the model. Our
approach is inspired by the area of anomaly detection where
the common practice is to build machine learning models
using the normal behavior of the system and then use these
models to detect any deviations from normalcy Khreich,
Khosravifar, Hamou-Lhadj and Talhi (2017); Islam, Khreich
and Hamou-Lhadj (2018). In this work, we compare the
performance of three different OCC algorithms to their
binary counterparts on 34 datasets (a total of 259,925 com-
mits) with various levels of class imbalance ratios. These
algorithms are trained using the features described by Kamei
et al. Kamei et al. (2013). More specifically, we compare
the performance of the following OCC algorithms, Isolation
Forest (IOF) Hariri, Kind and Brunner (2021), One-Class
k-Nearest Neighbors (OC-k-NN) Yousef, Jung, Showe and
Showe (2008), and One-Class Support Vector Machine (OC-
SVM) Khreich et al. (2017) to their binary classification
counterparts, Random Forest (RF), k-Nearest Neighbor (k-
NN), and Support Vector Machine (SVM) with and without
data balancing.

However, it is worth noting that our study deliberately
excluded Deep learning models such as DeepJIT, DBN-JIT,
and CC2Vec due to their utilization of different features,
specifically semantic and syntactic elements Hoang et al.
(2019); Zeng, Zhang, Zhang and Zhang (2021). We decided
to maintain consistency within our research framework and
focus on a specific set of features. By doing so, we aimed
to analyze the selected features’ effectiveness in our model
comprehensively. Moreover, we acknowledge the critical
influence that feature selection can have on the performance
of models, particularly when dealing with imbalanced data
Bruce and Bruce (2017); Butcher and Smith (2020). We
intended not to disregard the significance of these Deep
learning models but rather to streamline our investigation
and isolate the impact of the chosen features. Furthermore,
we draw attention to the work of Zeng et al. Zeng et al.
(2021) and Pornprasit and Tantithamthavorn Pornprasit and
Tantithamthavorn (2021) who showed that traditional ma-
chine learning models such as a logistic regression classifier
outperform deep learning models when working with large
datasets. That being said, as part of future work, we intend
to expand our research to include deep learning algorithms
and semantic feature sets.

The paper addresses the following three new research
questions (RQ):

e RQI1: What is the overall performance of OCC al-
gorithms compared to their binary classifier counter-
parts?

e RQ2: How do OCC algorithms perform compared to
binary classifiers when considering the data imbal-
ance ratio?

e RQ3: Which features affect the accuracy of OCC
algorithms compared to their corresponding binary
classifiers?

Regarding RQ1, our findings suggest that binary classi-
fiers tend to perform better than OCC algorithms in balanced
data settings. For RQ2, we consider the data imbalance
ratio (IR), which indicates the proportion of normal commits
to buggy ones. We found that OCC methods consistently
outperformed binary classifiers for projects with a medium
to high imbalance ratio, with a medium to large effect size.
As for RQ3, our findings indicate that the choice of features
has an impact on the accuracy of the algorithm. Projects with
medium to high IR require fewer features to train than the
other projects.

Researchers and practitioners can benefit from this study
by developing JIT-SDP tools that use OCC algorithms in-
stead of binary classifiers for systems with high data imbal-
ance ratios. OCC methods not only eliminate the need for
data balancing techniques but do not require the availability
of commits from both classes, i.e., normal and buggy com-
mits. These algorithms can also be trained on fewer features,
which shortens the training and response time and allows for
a better understanding of the behavior of the algorithms.

Organization of the paper: The next section reviews
software defect prediction and techniques for learning from
imbalanced data. Section 3 describes three one-class clas-
sifiers, which will be used in our experiments. Section 4
describes methods and experiments including datasets, fea-
tures, performance metrics, and experimental protocol used
for conducting the experiments. In Section 5, we present the
results to provide answers to the research questions. Potential
threats to validity and our mitigating actions are presented
in Section 6, followed by the conclusions and future work in
Section 7.

2. Related Work

Lomio et al. Lomio et al. (2022) investigated the use
of anomaly detection algorithms, more particularly, OC-
SVM, IOF, and Local Outlier Factor for fine-grained JIT
Pascarella, Palomba and Bacchelli (2019) defect prediction,
where the predicted class has three labels, namely buggy,
partial-buggy, and normal, instead of buggy and normal.
The authors found that one-class classification algorithms
perform similarly to binary classifiers. There are many key
differences between Lomio et al’s approach and our study.
First the authors focused on predicting files within the com-
mits that may potentially be buggy and not the commits. In
addition, they used a cross-project JIT-SDP method, mean-
ing that, using a dataset of n projects, they train a model
using n-1 projects and then test it on the remaining project.
In this study, we apply JIT-SDP to single projects and not
cross-projects. This is because our objective is to determine

M. Shehab, W. Khreich, Hamou-Lhadj A., Sedki |.: Preprint submitted to Elsevier

Page 2 of 24

Commit-Time Defect Prediction Using One-Class Classification

whether and when OCC algorithms provide better results
than their corresponding binary classifier. Using a cross-
project experimental setting makes it difficult to conclude
if the obtained results are due to the type of classifier
(binary or OCC) or simply because the models are trained
on larger datasets (commits from multiple projects). The
second difference is that we compare OCC algorithms with
their corresponding binary classifiers with and without data
balancing techniques. This is because data balancing is used
to address the imbalance data problem. Therefore, we must
compare OCC to binary classifiers with data balancing to
reach strong conclusions. In addition, unlike Lomio et al.’s
study, we examine the impact of the ratio of data imbalance
on the accuracy to determine a threshold beyond which
OCC algorithms should be favored over binary classification
algorithms. In their study, the authors did not provide such a
threshold. Finally, we also investigate the impact of various
feature sets on the accuracy of OCC algorithms to draw a
full picture of the value and usefulness of these algorithms
in practice.

There exist other studies that investigate the problem
of data imbalance in JIT-SDP tasks using mainly binary
classifiers. Cabral et al. Cabral et al. (2019) showed that JIT-
SDP suffers tremendously from data imbalance issues by
significantly reducing the predictive performance of existing
JIT-SDP methods. Their study is based on the analysis of
commits of 10 projects. Wang et al. Wang and Yao (2013)
studied the problem of class imbalance learning methods
in the field of software defect prediction. They examined
various class imbalance learning methods, including re-
sampling techniques, threshold moving, and ensemble algo-
rithms. They found that AdaBoost.NC yields the best overall
performance. The authors further improved the performance
of AdaBoost.NC by proposing a dynamic version, which
adjusts its parameters automatically during training.

Song et al. Song et al. (2019) conducted a comprehensive
study to understand the impact of defects in software com-
ponents by applying various imbalance learning techniques.
They conducted experiments with 27 datasets to understand
the impact of specific classifiers, data balancing techniques,
and features on prediction accuracy. The authors found that a
moderate and severe level of imbalanced data can directly in-
fluence the SDP model’s performance. They also found that
the selection of the machine learning algorithm is important
when dealing with data imbalance in the context of SDP.

Other recent studies on SDP use a variety of ma-
chine learning algorithms and their combinations to im-
prove model accuracy. Tong et al. Tong, Liu and Wang
(2018) proposed a two-stage ensemble approach to im-
prove the accuracy of SDP. The proposed model, called
SDAESTSE, builds on a two-phase ensemble learning based
on stacked denoising auto-encoders. In the first phase, the
auto-encoders were used to represent the traditional software
metrics as deep representations. After that, the two layers of
the ensemble technique were used to build the prediction
model to overcome the class imbalance issue. The proposed
approach outperforms existing state-of-the-art SDP models

significantly when applied to commits from 12 NASA
projects.

TLEL is an approach proposed by Yang et al. Yang,
Lo, Xia and Sun (2017) to use two-layer set learning that
uses decision trees and ensemble learning to improve the
performance of JIT-SDP prediction. On average, TLEL was
able to identify more than 70% of defects by only 20% of
code lines compared to around 50% for a baseline model.
The researchers used random under-sampling to overcome
the imbalance issue.

The accuracy across supervised and unsupervised mod-
els for investigative JIT-SDP techniques has been examined
by Yang, Zhou, Liu, Zhao, Lu, Xu, Xu and Leung (2016).
The authors found that unsupervised techniques, which typ-
ically require less time to build the model, yield similar
results as the supervised models. Fu et al. Fu and Menzies
(2017) conducted a replication study of that of Yang et al.
Yang et al. (2016). The authors reported that unsupervised
models did not perform better than the supervised ones. They
contended that unsupervised learners should be combined to
achieve comparable performance to supervised algorithms.

Fukushima et al. Fukushima, Kamei, McIntosh, Ya-
mashita and Ubayashi (2014) examined the performance
of JIT-SDP models using two case studies: single-projects
and cross-projects. They started by examining the effect of
using the 14 code-based and process-based features Kamei
et al. (2013) by extracting these features from 11 projects.
They ended up using only six projects. The authors used
the Random Forest algorithm for building the classifier
and showed that cross-project techniques provide superior
performance compared to single-project methods.

Yan et al. Yan, Xia, Fan, Hassan, Lo and Li (2022)
designed a framework to detect the buggy changes for code
and then recognize the buggy code location from the newly
added lines. This technique comprises two main phases:
Identification and Localization. In the Identification phase,
the JIT-SDP model is trained and tested using 14 features
proposed by Kamei et al. (2013), where the training data is
60% of early commits and the next 40% of commits used
to test the model. Yan et al. (2022) did not focus on the
performance of the JIT-SDP model, which directly affects
the Localization step after identifying the buggy changes.
Their approach focuses on finding the location of the buggy
code if the JIT-SDP predicts the code changes as buggy.

Wang et al. Wang et al. (2016) applied the Deep Belief
Network (DBN) model as a semantic feature generator. The
Abstract Syntax Tree (AST) is used to represent the source
code and use it to train the DBN model. They used the
Naive Bayes (NB) and Logistic Regression (LR) classifiers
for building the prediction models, which were trained on 10
open-source Java projects from various domains to ensure
model generalization. The proposed method increases the
F1-score of cross-projects and within-project approaches by
8.9% and 14.2%, receptively.

In contrast, Pornprasit and Tantithamthavorn Pornprasit
and Tantithamthavorn (2021) proposed the JITLine tool
using the JIT-SDP model to predict the buggy changes and

M. Shehab, W. Khreich, Hamou-Lhadj A., Sedki |.: Preprint submitted to Elsevier

Page 3 of 24

Commit-Time Defect Prediction Using One-Class Classification

find the location of buggy code for buggy predictions. The
authors evaluated the performance of the JITLine with 3
models (EARL Kamei et al. (2013), DeepJIT Hoang et al.
(2019), and CC2Vec Hoang et al. (2020)). They used the
AUC, F1, Precision, and Recall evaluation metrics. The
JITLine achieved AUC = 82%, while the best AUC for
EARL, DeepJIT, and CC2Vec reaches 64%, 76%, and 81%,
respectively. The JITLine approach also provides faster and
simpler machine learning models to build JIT-SDP models
rather than deep learning approaches (e.g., DeepJIT Hoang
et al. (2019) and CC2Vec Hoang et al. (2020)).

Nayrolles and Hamou-Lhadj Nayrolles and Hamou-
Lhadj (2018) introduced CLEVER, a JIT-SDP technique
that creates a training model by merging contributions
from multiple video game systems that use the same game
engines. Instead of working on each project independently,
the authors argued that developing a training model that
incorporates commits from several interconnected systems
made more sense in this situation. CLEVER can detect
buggy commits with 79% precision and 65% recall, and the
Fl-score is 79.10%.

Shehab et al. Shehab, Hamou-Lhadj and Alawneh (2022)
proposed merging commit data from a collection of projects
as part of a bigger cluster to train the JIT-SDP model.
ClusterCommit depends solely on code and process metrics,
making no assumptions about how projects are built. Fur-
thermore, unlike Nayrolles and Hamou-Lhadj’s work Nay-
rolles and Hamou-Lhadj (2018), Shehab et al. Shehab et al.
(2022) adopt a time-sensitive validation technique to test the
prediction accuracy of ClusterCommit, which considers the
temporal sequence of commits. ClusterCommit gets an F1-
score of 73% and 0.44 MCC.

Except for the work of Lomio et al. Lomio et al. (2022),
all other existing studies resort to machine learning tech-
niques for JIT-SDP using binariy classification models and
use data balancing methods to avoid bias. In this paper, we
propose the use of one-class classification to train JIT-SDP
models using the majority class, i.e., the normal commits.
The OCC approach eliminates the need for data balancing.
Also, as we show in this paper, the OCC models perform
better than binary algorithms when the data imbalance ratio
is high. We also determine using 27 datasets a threshold for
the data imbalance ratio beyond which it is preferable to use
OCC instead of binary classification.

3. One-class classification

OCC techniques rely on data from the majority (nega-
tive) class to train the machine learning model, as opposed
to binary classifiers, which need labeled data from both pos-
itive and negative classesBellinger, Sharma and Japkowicz
(2012). Once trained, the OCC model is used to classify
new examples as either belonging to the majority class or
not (which can then be considered outliers or anomalies).
One-class algorithms are well suited for tasks where the
minority (positive) class does not exhibit a consistent pattern

or structure in the feature space, which makes it harder for bi-
nary classification models to learn the class boundary. OCC
algorithms attempt to group the majority class instances
into a high-density region in the feature space as normal
behavior (see Figure 1) and then detect deviations from this
expected behavior as anomalies or outliers Hart, Stork and
Duda (2000).

In this paper, we examine three commonly used OCC
techniques which are based on three fundamental machine
learning approaches, and compare them to their binary
classifier counterparts. These OCC algorithms are One-
Class Support Vector Machine (OC-SVM), which relies on
a margin-based algorithm; One-Class k-Nearest Neighbors
(OC-k-NN), which relies on a distance-based algorithm;
and Isolation Forest (IOF), which relies on a tree-based
algorithm. We explain each algorithm in more detail in the
following subsections.

P @ Majority Class (Inlier)

< Minority Class (Outlier)

N
[J

Figure 1: An illustration of OCC approach learning from the
majority class and detecting deviations as anomalies or outliers.

3.1. OC-SYM

Support Vector Machine (SVM) is a binary supervised
machine learning approach that separates classes based on
the maximum margin hyperplane Bishop (2006); He and
Garcia (2009). In addition to linear hyperplanes, SVM can
rely on other kernels such as polynomial, radial basis func-
tion (RBF), and sigmoid to detect nonlinear boundaries
between classes Bishop (2006). OC-SVM is a version of
SVM adapted to the OCC approach that only learns from
the majority class Scholkopf, Platt, Shawe-Taylor, Smola
and Williamson (2001). OC-SVM creates discrimination
boundaries based on the high-density region in the feature
space of the training data.

Given a training data Xi of size n and K kernel function,
the OC-SVM training is based on the following dual problem

(Eq. 1):

M. Shehab, W. Khreich, Hamou-Lhadj A., Sedki |.: Preprint submitted to Elsevier

.1
mU}HEZaiajK(xi,xj) @))]
ij
subject t0 0 < a; < i,za,. =1)
vn
1
Page 4 of 24

Commit-Time Defect Prediction Using One-Class Classification

where a; are the support vectors, K is the kernel, and v €
(0, 1) controls the upper bound on the fraction of outliers
and the lower bound on the fraction of support vectors. After
obtaining the coefficients of the support vectors (a; > 0), the
decision function is computed based on the sign (positive or
negative) of the fowling function (Eq. 3):

F&) = sign(Y aa;K(x;, x,) = p) 3)

ij
where p denotes the offset of the separating hyperplane.

3.2. OC-k-NN

k-NN is a supervised machine learning approach that
uses lazy processing to classify the data Wang and Zucker
(2000). The lazy approach uses the training data on the
prediction time as a memory instead of training the model to
detect the patterns on the training time Jiang, Cai, Wang and
Jiang (2007). The k-NN algorithm calculates the distance
between a new data point and the k closest points. Then, it
uses the voting method to determine the best label for that
data point Jiang et al. (2007).

The distance between the data point and training points
is measured using Minkowski distance as shown in Equation
(4). The Minkowski distance d is the generalized formula
of both (Manhattan for p = 1 and Euclidean for p = 2)
distances Jiang et al. (2007). After selecting the distance
measure, we only need to tune the k value, the number of
the closest neighbors to the new incoming point.

1
d= <Z |p; - q,-|"> “)
i=1

The OC-k-NN algorithm is a modified version of k-NN,
which also relies on training a dataset (comprising only the
majority class) to determine whether a new instance belongs
to the majority class or not. For a given test example X, the
distance d to the nearest k neighbors of x is first calculated.
Then, the average (using the mean or median) of these
distances is computed and compared to a tunable threshold
6 to determine whether x belongs to the majority class or
not. Therefore, OC-k-NN requires two tunable parameters,
the value of k and the threshold 6 Zhao, Nasrullah and Li
(2019).

3.3. IOF

The Isolation Forests (IOF) is a tree-based ensemble
algorithm, the OCC counterpart of the Random Forests (RF)
binary classifier Liu, Ting and Zhou (2008). The main idea
is to build isolation trees by creating partitions such that each
data point is isolated, i.e., a particular partition contains only
one data point. The intuition behind isolation trees is that a
regular point is much harder to isolate than an anomalous
point. Therefore, an anomalous point requires fewer parti-
tions than a regular point. The algorithm creates multiple
isolation trees by selecting random features and random
partitions from different subsets of the training data. This

process of partitioning or branching is performed recursively
until reaching a single point or the maximum allowable tree
depth (a tunable parameter) Hariri et al. (2021).

Given a new observation x, the IOF algorithm parses the
x value into the isolation trees. If x ends up in a leaf node or
reaches the maximum allowable tree depth it is considered a
normal point (belonging to the majority class). Otherwise, if
the x couldn’t reach a leaf node or the maximum allowable
depth then is classified as abnormal (belonging to the minor-
ity class) Hariri et al. (2021). Finally, the anomalous score of
a particular point x is calculated as shown in Equation (5):

—E(h®
s(x,n) = 27w)

Where h(x) is the mean value of depth of the point x in all
the isolation trees, c(n) is the average of h(x) or the average
depth of all points, and n is the number of points used to
build the trees.

4. Experimental Protocol

4.1. Dataset

In this paper, we use datasets of commits from 34 open-
source projects from the Apache organization. The total
number of commits to all these projects is 259,925. Table
1 shows the characteristics of the datasets. The first column
refers to the project name, followed by the number of normal
commits, the number of buggy commits, and the data imbal-
ance ratio (IR) measured as the ratio of the number of normal
commits to the number of buggy commits. For example, an
IR of 4 means that there are 4 normal commits for each 1
buggy commit. The last column shows the total number of
commits to the project. The category column has 3 types
(low, medium, and large) labeled using a k-mean clustering
algorithm based on the IR column. We make the datasets,
the scripts, and the results of this study available online'.

4.2. Feature Extraction and Data Labeling

In this study, we use 14 features proposed by Kamei
et al. Kamei et al. (2013) to build JIT-SDP models (also
known as Process metrics). These features are organized
into five dimensions: diffusion, size, purpose of commit,
history, and experience as detailed in Table 2. The selection
of these features is motivated by their widespread usage in
JIT-SDP research as shown in a survey study conducted by
Yunhua et al. Zhao, Damevski and Chen (2023), and their
effectiveness in characterizing normal and buggy commits as
shown by Rahman et al. Rahman and Devanbu (2013). They
are also simple to compute and easy to interpret, allowing us
to understand the model behaviour. The simpler the features
used to build models, the clearer the interpretation of model
predictions Zheng and Casari (2018).

To label the data into normal and buggy commits, we use
the Refactoring Aware SZZ Implementation (RA-SZZ) al-
gorithm, proposed by Neto et al. Neto, da Costa and Kulesza
(2018). RA-SZZ labels the commits as normal or buggy by

Uhttps://github.com/wahabhamoulhadj/jit-occ

M. Shehab, W. Khreich, Hamou-Lhadj A., Sedki |.: Preprint submitted to Elsevier

Page 5 of 24

Commit-Time Defect Prediction Using One-Class Classification

Table 1

Description of the Datasets for JIT-SDP

Project Name Normal Buggy IR Category Total
Drill 2,288 1,643 1.39 Low 3,931
Flume 1,151 661 1.74 Low 1,812
Openjpa 3,404 1,706 2.00 Low 5,110
Camel 9,032 3,990 2.26 Low 13,022
Zookeeper 1,453 577 2.52 Low 2,030
Flink 20,369 4,613 4.42 Low 24,982
Carbondata 4,249 552 7.70 Low 4,801
Zeppelin 4,259 543 7.84 Low 4,802
Ignite 13,969 1,609 8.68 Low 15,578
Avro 2,151 235 9.15 Low 2,386
Tez 2,426 232 10.46 Low 2,658
Airavata 6,729 497 13.54 Low 7,226
Hadoop 9,881 627 15.76 Low 10,508
Hbase 16,721 1,058 15.80 Low 17,779
Falcon 2,096 130 16.12 Low 2,226
Derby 7,795 473 16.48 Low 8,268
Accumulo 9,541 552 17.28 Low 10,093
Parquet-mr 2,126 114 18.65 Low 2,240
Phoenix 3,284 168 19.55 Low 3,452
Oozie 2,244 114 19.68 Low 2,358
Cayenne 6,365 285 22.33 Medium 6,650
Hive 11,759 518 22.70 Medium 12,277
Jackrabbit 8,488 370 22.94 Medium 8,858
Oodt 2,006 85 23.60 Medium 2,091
Gora 1,314 52 25.27 Medium 1,366
Bookkeeper 2,289 84 27.25 Medium 2,373
Storm 10,178 239 42.59 Large 10,417
Spark 19,591 376 52.10 Large 19,967
Reef 3,813 60 63.55 Large 3,873
Helix 3,672 56 65.57 Large 3,728
Bigtop 2,567 31 82.81 Large 2,598
Curator 2,690 28 96.07 Large 2,718
Cocoon 13,094 66 198.39 Large 13,160
Ambari 24 477 110 222.52 Large 24,587
Total 237,471 22,454 - - 259,925

analyzing bug reports from the bug tracking system (in our
case, Jira). The RA-SZZ algorithm retrieves all resolved bug
reports and links them to the commits using the bug report’s
unique identifier contained within the commit message (if
available). Finally, the algorithm examines the commit his-
tory to determine the original commits that introduced the
bugs and label them as buggy. Furthermore, we have taken
steps to ensure that the most recent commits in our dataset
date back to at least one year from the labeling process initi-
ation, thereby significantly reducing the likelihood of misla-
beling the commits. This practice was proposed by Herbold
et al. Herbold, Trautsch, Trautsch and Ledel (2022). The
RA-SZZ is an extension of SZZ Sliwerski, Zimmermann
and Zeller (2005) that takes into account code refactoring,
which are changes to the code that do not change its external
behavior. Refactoring activities tend to complicate the bug
localization process because they can move code around
and change its structure, making it difficult to determine
which lines of code are responsible for a bug Neto et al.
(2018); Fan, Xia, da Costa, Lo, Hassan and Li (2021). The
RA-SZZ addresses this issue by identifying and accounting
for refactorings when analyzing code changes between two

Table 2
The features used to build the prediction model
Dimension Name Description
NS Number of modified sub-systems
Diffusion ND Number of modified directories
NF Number of modified files
Entropy Distribution of modified code across files
LA Added lines
Size LD Deleted lines
LT Line of code before edit
Purpose of Change Fix Whether or not the change is a defect or fix
NDEV Number of developers that changed the file
History AGE The average time between file changes
NUC The number of unique changes
EXP Developer experience
Experience REXP Recent developer experience
SEXP Developer experience on sub-systems

versions. This allows it to provide more accurate and reliable
results than SZZ when dealing with systems that undergo
frequent refactoring Fan et al. (2021). In addition, Fan et
al. Fan et al. (2021) showed that RA-SZZ reduces the noise
when compared to SZZ. For all these reasons, we opted to
use for RA-SZZ in this research instead of the traditional
SZ7.

4.3. Evaluation Metrics

Several metrics have been used to evaluate the perfor-
mance of binary classification problems in general and JIT-
SDP models in particular Kamei et al. (2013); MclIntosh
and Kamei (2018); Catolino et al. (2019); Huang, Xia and
Lo (2019). These include threshold-based metrics such as
Precision, Recall, F1-score, and the Matthews Correlation
Coefficient (MCC), and threshold-independent metrics such
as the Receiver Operating Characteristic (ROC) curve and
the Area Under the ROC (AUC-ROC).

Threshold-based metrics rely on setting a cut-off point on
the classifier’s score to compute the confusion matrix based
on the following quantities:

e True Positive (TP): The number of buggy commits
that are correctly classified as buggy

e False Positive (FP): The number of normal commits,
classified as buggy (a.k.a false alarms)

e False Negative (FN): The number of buggy commits
that are classified as normal

e True Negative (TN): The number of normal commits
that are correctly classified as normal

The F1-score or Fl1-measure is a popular accuracy mea-
surement used to evaluate machine models Baeza-Yates and
Ribeiro-Neto (1999) based on a specific threshold. It is the
harmonic mean of the precision (TP/(TP + FP)) and recall
(TP/(TP + FN)). However, the F1-score is not suitable for
measuring the performance of classifiers when dealing with
class imbalance since it gives equal importance to precision
and recall, does not account for the TN instances, and varies

M. Shehab, W. Khreich, Hamou-Lhadj A., Sedki |.: Preprint submitted to Elsevier

Page 6 of 24

Commit-Time Defect Prediction Using One-Class Classification

with swapping the target class Song et al. (2019); Chicco and
Jurman (2020).

Threshold-independent metrics such as the Receiver
Operating Characteristic (ROC) and the Area Under the
ROC Curve (AUC) do not commit to a threshold. The
ROC is a graphical plot (see Figure 2 for an example),
which illustrates the performance of a classifier as its dis-
crimination threshold is varied.”“* The ROC plots the false
positive rate fpr=FP/(FP+TN) against the true positive
rate tpr=TP/(TP+FP) for every decision threshold Fawcett
(2006). A ROC curve allows the visualization of the perfor-
mance of detectors and the selection of optimal operational
points, without committing to a single decision threshold. It
presents the classifier’s performance across the entire range
of class distribution and error costs. The default decision
threshold (minimizing overall errors and costs) corresponds
to the vertex that is closest to the upper-left corner of the
ROC plane (see the red lines on Figure 2. This threshold
assumes balanced classes and an equal cost of errors. When
the number of positives is larger than the negatives, this
threshold can be adjusted to account for the data imbalance
ratio by rotating the iso-performance line (blue line on
Figure 2) proportionally to the imbalance ratio Fawcett
(2006). The AUC has been proposed as a robust (global)
measure for the evaluation and selection of classifiers Huang
and Ling (2005). The AUC is the average of the tpr values
over all fpr values (independently of decision thresholds
and prior class distributions). The AUC evaluates how well
a classifier is able to sort its predictions according to the
confidence it assigns to these predictions. An AUC = 1
means all positives are ranked higher than the negatives,
which indicates perfect discrimination between the positive
and negative classes. An AUC = 0.5 means that both classes
are ranked at random and the classifier is no better than
random guessing.

Because the objective of this paper is to understand the
overall performance of OCC algorithms compared to binary
classifiers, we use the AUC as a threshold-independent
metric and the Fl-score as a threshold-dependent metric to
assess the performance of the algorithms.

Additionally, we use Clift’s ¢ effect size to assess the
magnitude of the difference between the results of OCC
algorithms and binary classifiers. The Cliff’s test is a non-
parametric effect size measure that quantifies the magnitude
of dominance as the difference between two groups X and Y
Cliff (1993); Macbeth, Razumiejczyk and Ledesma (2010);

Romano, Kromrey, Coraggio, Skowrone<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>