
1

ServiceAnomaly: An Anomaly Detection
Approach in Microservices Using Distributed

Traces and Profiling Metrics
Mahsa Panahandeh, Abdelwahab Hamou-Lhadj, Mohammad Hamdaqa, and James Miller

Abstract— Anomaly detection is an essential activity for identifying abnormal behaviours in microservice-based systems. A common
approach is to model the system behavior during normal operation using either distributed traces or profiling metrics. The model is then
used to detect anomalies during system operation. In this paper, we present a new anomaly detection approach, called ServiceAnomaly,
for anomaly detection in microservice systems that combines distributed traces and six profiling metrics to build an annotated directed
acyclic graph that characterizes the normal behaviour of the system. Unlike existing techniques, our approach captures the context
propagation provided by distributed traces as a graph that is annotated with functions characterizing both linear and non-linear
relationships between profiling metrics. The final annotated graph is used to detect abnormal executions during system operation.
The results of applying our approach to two open-source benchmarks show that our approach detects anomalies with an F1-score up
to 86%. We also show how developers can use the annotated graph to reason about the causes of anomalies.

Index Terms—System Observability, Distributed Traces, Anomaly Detection, Microservice Architectures, Software Reliability, AIOps

✦

1 INTRODUCTION

Microservice architecture has emerged as the design of
choice for the development of software systems in a wide
range of industry sectors [1], [2], [3], [4]. Unlike monolithic
applications, a microservice-based system is composed of a
set of services that are easy to develop, deploy and maintain.
Despite their benefits, these systems pose major operational
challenges. The highly dynamic aspect of these systems
combined with frequent maintenance changes make them
prone to failures and crashes in production [5] [4].

Distributed tracing is a relatively new tracing method, de-
signed specifically to provide observability into microser-
vice systems. A distributed trace represents an end-to-end
request and contains a series of tagged time intervals known
as spans as well as the spans relationships, and optionally
metadata such as logs or tags contextualizing spans [6], [7].
A span is a single unit of work carried out by a single
service. Spans are also named a timed operation within a
trace [7]. However, the term ”operation” does not necessar-
ily denote operations or service functions. In this paper, we
define spans at the granularity level of services. An example
of a distributed trace is shown in Figure 1. This trace shows

• M. Panahandeh is with the Department of Electrical and Computer
Engineering, University of Alberta.
E-mail: panahand@ualberta.ca

• A. Hamou-Lhadj is with the Department of Electrical and Computer
Engineering, Concordia University.
E-mail: wahab.hamou-lhadj@concordia.ca

• M. Hamdaqa is with the Department of Computer Engineering and
Software Engineering, Polytechnique Montreal.
E-mail: mhamdaqa@polymtl.ca

• J. Miller is with the Department of Electrical and Computer Engineering,
University of Alberta.
E-mail: jimm@ualberta.ca

Fig. 1. A distributed trace of TrainTicket system and its corresponding
rooted call tree

the services that are invoked following a user request in
the TrainTicket system. This trace includes nine spans. Each
span carries information including a name, a unique span
ID, and a context, which consists of information including
the identifier of the trace that contains the span and the
parent span. A distributed trace is a directed rooted tree,
which can also be represented as a directed acyclic graph
(DAG), by capturing common subtrees only once [7] [8]
[9]. Figure 1 shows the corresponding rotted call tree of the
distributed trace. This call tree is constructed based on the
context information, labelled in brackets in the figure.

Studies have shown that the analysis of distributed traces
is useful for program comprehension [10], [11], fault diag-
nosis [12], [13], root cause analysis [14], [15], and anomaly
detection [16], [17], the focus of this paper. Existing anomaly
detection techniques fall into two categories. The first group
of studies use log data, traces or distributed traces to model
the service flow of execution [18], [19] or observe patterns
within this data [20], [21], [22] for the purpose of anomaly
detection. Such approaches are limited to detecting only
anomalies that affect the flow of execution. The second

2

group relies on building a performance profile using various
metrics (e.g., latency), which can later be used to indicate
significant changes [23], [24], [25], [26], [27], [28], [29], [30],
[31], [32]. These approaches vary depending on the applied
algorithms and the use of either single or multiple metrics.

Due to the shortcomings in both categories, recent studies
have attempted to combine log data and distributed traces
with profiling metrics for detecting anomalies [33], [34].
For example, Meng et al. [33] use response time and a
flow graph to detect anomalies in microservices caused by
performance degradation. The typical metrics used in these
studies include execution time [35], response time [33], [36],
and latency [14]. However, the use of a single metric has its
own limitations since performance problems can manifest
themselves across multiple metrics or a combination of
metrics.

In this paper, we propose a new anomaly detection tech-
nique, called ServiceAnomaly, which builds a model of the
normal behaviour of the system using a Context Propa-
gation Graph (CPG) and six profiling metrics. The CPG
is a directed acyclic graph that models services that are
invoked as user requests propagate through the system. We
annotate the CPG by modelling the relationships between
six profiling metrics to better characterize the expected
normal behaviour of the system. The annotated CPG is used
as a baseline to detect potential anomalies in traces of a
running system. ServiceAnomaly also provides the possi-
bility to compare a distributed trace that is generated in the
presence of an anomaly with a model of the system’s normal
execution, which should help analysts conduct root cause
analysis. We evaluate the effectiveness of our approach
using two different benchmark systems, Teastore [37] and
TrainTicket [38]. We found that our approach can identify
anomaly traces with an F1-score of 85% for TeaStore and
86% for TrainTicket. Moreover, our approach provides a way
to reason about the abnormal behaviour that was identified
in the anomaly traces.

The paper is organized as follows: In Section 2, we pro-
vide an overview of related work. Section 3 explains our
ServiceAnomaly approach. In Section 4, we list the evalu-
ation questions and discuss the setup and execution of the
experiments we used to answer them. Section 5 presents
the results and answers the evaluation questions. Section
6 discusses potential threats to validity. A link to the data
and reproduction package is indicated in Section 7. Lastly,
we conclude the paper in Section 8 and discuss avenues for
future research.

2 RELATED WORK

Identifying anomalies in microservices contributes to the
stability, reliability, and efficiency of microservice systems.
Many approaches have been proposed in the literature. Pro-
filing metrics, logs, and distributed traces are the three pri-
mary sources that offer valuable insights into the behaviour
of microservices [39], which are essential for understanding
the system and identifying and analyzing anomalies. This
section outlines the different anomaly detection techniques
based on the sources they use. Note that, in this section, we

only report on studies that focus on microservices. There
exist studies that use execution traces for anomaly detection
in monolithic systems such as the work of Islam et al. [40]
and Khreich et al. [41]. These studies are outside the scope
of this paper.

2.1 Detecting anomalies using analysis of execution
traces

Bao et al. [18] built a control flow graph from the execution
traces extracted from the annotated source code. Then the
control flow graph is labelled by a conditional probabil-
ity value representing the probability of different paths.
This graph is used to detect anomalies in the execution
sequences. Similarly, Nandi et al. [19] proposed using a
control flow graph out of log data. Then, offline template
and sequence mining techniques are applied to the graph
to generate baseline flows. Zhang et al. [42] have studied
the combination of log data and distributed traces. They
generated a model of the system using collected data and
applied a deep SVDD [43] model to classify anomalous
traces.

Liu et al. [21] and Du et al [20] respectively proposed
a deep Bayesian network model for learning traces and
Long Short-Term Memory (LSTM) for understanding log
data and use these learnt models to detect deviations in
the execution sequences. Given the power of distributed
traces in microservices, Gogatinovsk et al. [22] [44] apply
a neural network to distributed traces combined with log
data to learn the spans’ position and template as a baseline.
These studies are limited to the detection of anomalies that
manifest themselves through violations to the execution
sequences of the system.

2.2 Detecting anomalies using analysis of profiling
metrics

A considerable number of studies analyze microservices
behaviour and detect anomalies by tracking changes in
monitoring key performance indicators (KPIs). The most
common techniques for detecting changes in the collected
metrics are methods based on statistics and learning algo-
rithms. We found that many anomaly detection approaches
rely on monitoring only two metrics, mainly the response
time or request time. For example, Liu et.al [45], Samir et
al. [27], and Lin et al., [28] detect anomalies in the microser-
vices by finding a significant increase in response time or
latency time compared to the historical data. Nedelkoski
et al. [17] employ an unsupervised deep Bayesian network
model to detect changes in response time collected from
distributed traces. Li et.al [46] and Wu et al. [25] [47]
use clustering distributed traces to find abnormal response
times that deviate from normal traces. Zuo et al. [26] suggest
a sequential deep learning model applied to log data to
detect a deviation in the duration of requests. Li et al [15]
perform feature generation and model learning on the la-
tency of requests extracted from log data.

However, all of these studies collect only a single perfor-
mance metric. Ma et al. [48] believe that a single metric
such as response time or latency is not effective enough

3

to detect anomalies. The importance of using more perfor-
mance indicators is addressed by He et al. [29]. The authors
collected 26 metrics such as CPU, memory, I/O, network,
load, and disk usage. Then, they used a neural network
model to learn metrics behaviour and detect anomalies.
Hou et al. [30] also used a kernel density estimation and
waiting moving average method on KPIs including CPU,
I/O, and Network usage to model the system’s performance
and detected anomalies using statistical hypothesis tests.
Samir et al. [31] used Spearman’s rank correlation coefficient
between the collected resource metrics and the number of
requests to reason if the performance degradation in the
response time is a symptom of an anomaly. Kohyarnejadfard
et al. [32] used a multi-class support vector machine for
the classification of call frequency and duration of calls
into different classes with known labels of normal, CPU
shortage, and memory shortage. These classes are used as
baselines to assist in identifying resource-based anomalies.

Although there exist studies that use multiple metrics, they
are limited to revealing a specific type of anomaly (e.g.,
resource-based anomalies) and do not provide reasoning
about the identified anomalies. In fact, finding the root
cause of the anomaly needs more investigation into the
system’s architecture and execution paths. This group of
studies do not use the insight provided by the execution
sequences such as log data, traces, and distributed traces. In
the following, we review studies that exploit both metrics
and execution sequences in detecting anomalies to address
these challenges.

2.3 Detecting anomalies using analysis of execution
sequences and profiling metrics

Zhang et al. [49] encoded frequent signals of log data as well
as KPIs using a transformer. Then, a multi-layer perception
model is used to learn signals. The learnt signals are used
in predicting unexpected behaviours. This study does not
elaborate on the used metrics. Moreover, the approach does
not assist in understanding the system’s behaviour and
analyzing anomalies. Nedelkoski et al. [36] proposed an
approach that uses a multimodal LSTM to build a model
using traces and the response time metric and used this
model for anomaly detection. This model relies on a single
performance metric.

Similar to the first group of studies, a common approach for
understanding the system using both metrics and execution
sequences is modelling the collected data as graphs. Fu et
al. [35] used generated a workflow state machine from log
data. The transitions (edges) of the state machine are anno-
tated with Gaussian functions characterizing the execution
time of services. Then, anomalies are detected against the
built annotated graph as a baseline if they are not matched
with the graph or if their execution time does not belong
to the characterized Gaussian distribution. Meng et al. [33]
built a call tree from traces and response times. Anomalies
are identified when an unexpected call is found by an edit
distance algorithm and compared to the built tree or when a
surge happens in the response time. Similarly, Xu et al. [34]
proposed using a weighted directed graph extracted from
traces, resource metrics, and response times representing the

effect of a node in calling a neighbour node. They use the
sliding window method to predict the next call and response
time as a baseline for identifying anomalies.

These studies are close to our approach in terms of repre-
senting the system behaviour using a graph. However, these
approaches model the microservice’s performance with one
or a specific number of metrics that can only enable the
detection of anomalies that affect these metrics.

Yu et al. [14] clustered distributed traces based on their
Euclidean distance. Then, each observed distributed trace
was assigned to the corresponding cluster and then, the
latency values of traces were clustered into two groups.
An anomaly is detected if groups’ centroids are far from
each other. Wang et al. [16] used a graph-based method
using distributed traces. They addressed the explanation of
distributed traces by generating a call tree annotated by the
services response time. Then, an online incremental cluster-
ing [50] and a tree edit distance algorithm are used to cluster
the call trees and find deviations from the clusters’ centres to
detect anomalies affecting distributed trace structures. Also,
Wang et al. detect anomalies affecting the response time by
tracking a fluctuation in the response time measured by the
coefficient of variance.

All the aforementioned papers rely on only a single met-
ric along with execution sequences in understanding the
system behaviour. Recently, Zhao et al. [51] proposed a
failure detection method, which operates based on profiling
metrics, logs, and distributed traces. The authors used a
combination of a Graph Transformer Network (GTN) and
a Graph Attention Network (GAT) to capture the complex
correlation among various modalities of the data, includ-
ing log templates, profiling metrics, and response times
extracted from distributed traces. Then, they used a Gated
Recurrent Unit (GRU) to learn the temporal dependencies
among the data and predict the multimodal data for the
upcoming moments. Failures are identified by comparing
the observed data with the predicted values. Their work
is based on collecting distributed traces and profiling met-
rics. However, their method relies on a formal model and
lacks visualization tools that could aid in comprehending
the system’s behaviour or facilitating further insights into
anomalies.

Similarly, Lee et al. [52] proposed an anomaly detection
process as well as a root cause analysis approach based on
KPIs, log data, and distributed traces. They used neural net-
work techniques to acquire insights from various sources:
event occurrence from log data, temporal dependencies and
inter-service associations from KPIs, and latency distribu-
tions from distributed traces. A dependency graph is also
extracted from invocation calls of distributed traces. Then,
a graph attention network takes merged insights learned
from different modalities along with the dependency graph
to establish a baseline. Anomalies are detected as deviations
from the baseline using a fully connected neural network
binary classification algorithm. While this study is close
to our approach in using both execution sequences and
profiling metrics, it solely visualises dependency extracted
from execution sequences. Moreover, its anomaly detection
process lacks the incorporation of visualized information

4

with anomaly detection that aids users in comprehending
the detected anomalies and comparing them with the ex-
pected behaviour of the system.

Generally, our work is different from the literature in:

• We use distributed traces jointly with six profiling
metrics to provide a better characterization of the
normal behaviour of the system.

• In modelling the profiling metrics, we use both linear
and non-linear relationships between metrics.

• Our annotated CPG provides information beyond
the detected anomaly that assists in understanding
and analyzing anomalies.

• Our annotated CPG makes it possible to compare
an observed trace and a snapshot of the system’s
performance including profiling metrics with histor-
ical data which can be used in comprehension of the
system.

Table 1 briefly compares our method with most similar stud-
ies in the scope anomaly detection in microservices. The first
two attributes compare the methods in terms of their inputs.
We know that distributed traces provide a better insight into
the microservices compared to the log data and traditional
traces [6]. Moreover, using multiple metrics is more effective
in detecting anomalies in the system performance [48].
However, to the best of our knowledge, the current literature
does not include studies using both distributed traces and
profiling metrics in detecting and understanding anomalies.
The next studied attribute is the visualization of execution-
based information of the system as a model that can assist
in locating and better understanding anomalies [53]. We
also compared the related works with our studies in terms
of generating a baseline for the execution sequence (traces,
distributed traces, logs) and metrics. Then, we studied the
attribute of analyzing a detected anomaly if it has been
provided by the different anomaly detection methods. The
sign ∗means that the attribute has been addressed partially.
Finally, the online attribute shows if the proposed methods
can automatically adapt to the changes in an operational
environment.

3 THE SERVICEANOMALY APPROACH

Our approach for detecting anomalies in microservice sys-
tems, called ServiceAnomaly, relies on building an anno-
tated Context Propagation Graph (CPG) to model the nor-
mal system execution. The annotated CPG is built by aggre-
gating context propagation trees collected from distributed
traces. A context propagation tree is a DAG of service calls,
derived from the span context information, that represents
a user request propagating across the system. CPG is an
integration of these DAGs in which nodes are services and
edges denote service invocations. The CPG is then used as
a reference model to detect and analyze abnormal execu-
tions caused by faults and other undesirable behaviours.
ServiceAnomaly requires two types of telemetry data as
input: distributed traces and profiling metrics. This data is
generated by exercising the system scenarios (or test cases)
in a lab environment. The idea is to collect as much data as
possible to cover various paths of the system execution. We

Fig. 2. ServiceAnomaly- Constructing the Annotated Context Propaga-
tion Graph

use distributed traces to build a CPG and profiling metrics
to annotate the CPG, following the steps described in Figure
2, which are discussed in more detail in the subsequent
sections. The use of the annotated CPG to identify faults
and their root causes is discussed in Section3.4.

3.1 Collecting Data
The goal of this step is to collect distributed traces including
context and profiling metrics from the target microservice
application by executing the system using various requests.
The metrics we focus on in this paper are the service
execution time, request size, response size, service queue
time, latency, and throughput, which are extensively used
to assess the performance of a microservice system. These
metrics are defined as follows:

• Request duration time (m1): It is the time in mil-
liseconds between the moment that a caller sends a
request and the moment when the caller receives the
last byte of the answer. This time is the time that a
request is processed through the mesh.

• Request size (m2): It is the number of bytes of the
data that is sent by a caller to a callee in order to
initiate a request.

• Response size (m3): This metric represents the
amount of data in bytes that is sent by a callee to
a caller in response to a request.

• Service queue time (m4): It is the time in milliseconds
between the moment a request is in the push queue
and the moment before it is dequeued.

• Latency (m5): It is the outgoing request latency, i.e.,
the time in milliseconds it takes for a request to get
to its destinations across the network.

• Throughput (m6): It is defined as the number of
processes handled by a callee within a specified time.

There are two main approaches for monitoring a microser-
vice application in order to collect data, namely agent-
based and agent-less monitoring approaches [39]. In agent-
based approaches, an agent needs to be deployed on each
node/server, it collects the data and pushes data to a col-
lector. Agent-less approaches, on the other hand, do not

5

TABLE 1
Comparing ServiceAnomaly with similar studies in the same scope

Attribute Fu,
2009 [35]

Nedelkoski,
2019 [36]

Wang,
2020 [16]

Meng,
2021 [33]

Yu,
2021 [14]

Zhang,
2022 [49]

Xu,
2022. [34]

Zhao,
2023 [51]

Lee,
2023 [52]

Service-
Anomaly

Distributed trace - - + - + - - + + +
Multiple metrics - - - - - + + + + +

Visualization + - + + - - + - + +
exe. Sequence baseline + + + + - - + + + +

Metrics baseline + + - - - - + + + +
Analyzing anomalies * - * * - + * - - +

Online method - - + + + - + + - -

require any specific software installation as services are
instrumented and send data to a collector directly. While
agent-less approaches tend to be lightweight, agent-based
approaches provide better control over the collected metrics,
are more secure, and do not require code instrumenta-
tion [39]. For these reasons, we use an agent-based approach
to collect data in our technique.

Figure 3 shows a high-level architecture of how the dis-
tributed traces and profiling metrics are collected. At the
top level, we have monitoring systems (e.g., Prometheus
[54] and Jaeger [55]) that process and visualize distributed
traces and profiling metrics, collected by an Istio agent [56].
We deploy our target system on Kubernetes [57]. As shown
in Figure. 3, the microservice application is run inside pods.
A pod is the smallest execution unit in Kubernetes, which
can be replicated. We deploy a single service in each pod.
Besides running the application, we inject an Istio proxy
into each pod. The Istio proxy is an agent that defines our
microservice service mesh, which enables the observability
of communication between services. Istio proxies mediate
and control the network communication between services,
collect data for the traffic passing through the service mesh,
and push data to the collectors. In this paper, Istio agents
collect data from pods running individual services. There-
fore, the granularity of the collected data is at the level of
services.

We use Jaeger [55] and Prometheus [54], two popular mon-
itoring systems, to collect distributed traces and profiling
metrics. Jaeger [55] is used for distributed tracing to track
user requests, whereas Prometheus [54] is used to aggregate
the profiling metrics data of the system as a whole. Jaeger
is an open-source distributed tracing system that listens to
the Istio agent for spans sent over the network. To generate
distributed traces of the traffic, first, the tracing feature of the
Istio service mesh must be activated. By Istio tracing, tracing
headers are recognized by Istio and spans are automatically
generated for each service in the mesh. Once a request
is received, Istio assigns several headers to it including
an ID and the request is passed with its ID through the
services. The Jaeger platform receives the requests with their
headers and specifies request correlation using IDs which
form traces and correlated spans. We use a Jaeger query
to gather all traces or find a specific trace. Prometheus is
an open-source monitoring tool which collects metrics re-
ported within a service mesh. It scraps endpoints including
HTPP and Istio endpoints and collects metrics according
to Prometheus scraping jobs described in the Prometheus
configuration file. The collected profiling metrics from the

Fig. 3. Data collection architecture using monitoring systems in Ser-
viceAnomaly

microservice traffic can be queried by the Prometheus Query
Language (PromQL).

3.2 Constructing the Context Propagation Graph
The CPG is built from the distributed traces that are col-
lected in the previous step. The CPG is the service call
graph. However, we prefer the term ”context propagation”
to emphasize the fact that the graph captures the spans
that are invoked as the user request propagates through
the system. Figure 4 describes the process of building a
CPG using three fictive traces, t1, t2, and t3. First, we start
by merging the rooted call trees of the distributed traces
into a context propagation tree. Then we convert the context
propagation tree into an acyclic-directed graph (DAG). This
is because each rooted ordered tree can be converted into a
DAG by representing common subtrees only once [58]. The
DAG is the final CPG.

In this paper, we merge the rooted call trees while pre-
serving the observed service invocation paths in the col-
lected traces. This involves merging identical sets of edges
that share a common execution path. We follow the same
idea when converting the context propagation tree into
a DAG. Therefore, within the final CPG, we differentiate
between identical services causing different execution paths.
To annotate the CPG with profiling metrics relationships,
Section 3.3, we create a matrix that contains all the metrics
that are collected in the original traces for each edge of the
DAG.

Algorithm 1 elaborates on the process of constructing a CPG
in detail. Line 1 initializes an empty Tree. Next, each trace in
the collected distributed traces (T) is processed as a rooted
call tree using the Construct-Rooted-Call-Trees function.
Then, in Line 4, the processed rooted call tree is merged with

6

Fig. 4. Constructing a Context Propagation Graph using three fictive distributed traces. This process includes constructing root trees from distributed
traces, merging them, and converting the result to a DAG

the previously processed rooted call trees using the Merge-
by-Union function and the result is stored in the Tree data
structure. Finally, in Line 6, the merged result Tree is fed to
the Convert-to-DAG function and converted to a DAG. This
DAG is the final constructed CPG.

The next lines in Algorithm 1 provide more details on each
of the functions. The Construct-Rooted-Call-Tree function,
explained in Lines 7-24, is designed to create rooted call
trees from a given trace according to the context information
propagated through its spans. It begins by initializing an
empty set E to store the edges of the call tree. Then, for
each span in the given trace, it defines an edge. Each edge
is a tuple of caller and callee extracted from the span
information.

According to Open Tracing [7], every span, except the root
span, has a reference to its parent span, which shows the
caller-callee relationship among spans. There are two types
of parent-child relationships including child-of and follows-
from. Edges are assigned by checking parent-child relation-
ships of span. Lines 10 and 11 in the Construct-Rooted-Call-
Tree function, check whether the span is a root one with any
successor. If this condition is met, the algorithm skips to the
next span to get its children’s information. Next, Lines 13
and 14 process a root span with no successor that happens
when a span is failed to capture its parent-child information.
We process this span as an edge with a null caller. If the span
is not a root span, the Construct-Rooted-Call-Tree function
checks the type of parent-child relationship for the current
span. If the relationship type is ”FOLLOWS FROM,” the
algorithm searches for an existing edge in set E where its
callee matches the parent of the current span. If such an
edge is found, it means that the current span is the callee,
and it has a caller span in the root call tree. The edge’s
caller is then assigned accordingly. If the relationship type is
”CHILD OF,” and the span is not a root span, it means the
current span is the callee, and its caller is the span parent.
After identifying the caller of the edge, the current span is
assigned as the callee of the edge and the edge is appended
to the list of edges E . Finally, the Construct-Rooted-Call-Tree
function returns the list of edges as output.

To merge rooted trees into one tree we adopt Messaoud
et al.’s algorithm [60] that was developed to merge tree
structures of XML files. The algorithm uses rules to merge
two trees t1⟨N1, E1⟩ and t2⟨N2, E2⟩, where N1 and N2 are
sets of nodes, and E1 and E2 are sets of edges. The Merge-
by-Union function in Algorithm 1 explains how we adopted

Messaoud et al.’s algorithm to merge rooted call trees. Lines
27-32 check if one tree is a subset of the other tree then the
resulting merged tree will be the same as the containing
tree, as the smaller tree is already included within it. For
example, in Figure 4, t1 is a subset of t2. Therefore, their
merged tree results in t2. Moreover, when there are different
subtrees in t1 and t2 with the same parent, the resulting
merge tree is composed of all subtrees issued from t1 and t2,
Lines 33-38. For example, t2 and t3 of Figure 4 have different
subtrees rooted at node ”b”. The resulting merged tree is
shown in step A of Figure 4, which includes all subtrees of b.
When t1 and t2 include the same subtrees rooted at different
parents or when they do not have any edge in common, the
merged tree is obtained through the union of t1 and t2, Line
39. Merging subtrees t1, t2, and t3 of Figure 4 results in the
tree shown in Figure 4(A).

The next step is to convert the resulting rooted tree to a
DAG by capturing common subtrees only once. This step
is needed to reduce the number of nodes and edges of the
final CPG. Hamou-Lhadj et al. [8] showed that the size of
routine call traces can be significantly reduced if we can
represent them as DAGs. The same principle applies to call
trees of services. For example, in Figure 4(A), we can see
that the subtree rooted at ”d”, which consists in our case
of only one node, is repeated twice. To convert a rooted
tree into a DAG, we use a variant of Valiente et al’s algo-
rithm [59] that is used to solve the common subexpression
problem, the presence of repetitions in rooted ordered trees.
Valiente et al.’s algorithm iteratively traverses the rooted
tree bottom-up and assigns a certificate (a unique identifier)
to each node. The assigned certificate distinguishes differ-
ent nodes and is used to identify and remove redundant
subpaths. First, the algorithm creates a unique signature
for each node. The signature (sig) is defined by a triple of
sig(n) =< Label(n), sig(Left(n)), sig(Right(L)) > where
Right(n) and Left(n) represent the right and left children of
node n and Label(n) is the label of the node n. The signature
determines if two subtrees are isomorphic. The algorithm
stores signatures in a hash table. It checks to see if the
assigned signature is already in the table, and if not, it adds
the signature as well as a computed certificate to the table.
Then, the certificate is assigned to the traversed node. The
certificate is a positive integer between 1 to the number of
nodes computed incrementally and assigned to the nodes.
If the hash table includes the signature, the corresponding
certificate is then returned from the table and assigned to
the traversed node. Figure 4(B) shows the rooted tree with

7

Algorithm 1 Constructing the Context Propagation Graph Algorithm
Require: T : distributed traces

1: Initialize Tree= ∅
2: for each trace ∈ T do
3: t=Construct-Rooted-Call-Trees(trace)
4: Tree= Merge-by-Union (Tree, t)
5: end for
6: return CPG= Convert-to-DAG(Tree)

Function Construct-Rooted-Call-Trees(trace) begin
7: E ← ∅
8: for each span ∈ trace do
9: Initialize edge← null

10: if span is a root and span.next != null then
11: continue ▷ Skip to the next iteration
12: end if
13: if span is a root and span.next == null then
14: edge.caller ← null
15: end if
16: if (span.refType == ”FOLLOWS FROM”) then
17: edge.caller ← E .get(e.caller|e.callee = span.parent)
18: end if
19: if (span.refType == ”CHILD OF” and span is not a root) then
20: edge.caller ← span.parent
21: end if
22: edge.callee← span
23: E+ = edge
24: end for
25: return E

Function Merge-by-Union(t1 < N1, E1 >, t2 < N2, E2 >) begin
26: Initialize t-union
27: if t1 ⊆ t2 then
28: t-union=t2
29: end if
30: if t2 ⊆ t1 then
31: t-union=t1
32: end if
33: if (t1 ∩ t2 ̸= ∅ AND ∃ ni ∈ N1 = nj ∈ N2| (parent(ni) OR parent(nj) = null) OR (parent(ni) =

parent(nj)) AND child(ni) ̸= child(nj)) then
34: t-union< N3, E3 >= t1 ∪ t2 where N3 = N1 ∪N2, E3 = E1 ∪ E2 where child(ni) is connected to ∀nk ∈ t2|nk =

nj AND child(nj) is connected to ∀nk ∈ t1|nk = ni

35: end if
36: if t1 ∩ t2 ̸= ∅ AND ∃ ni ∈ N1 ̸= nj ∈ N2| parent(ni) = parent(nj) AND child(ni) = child(nj) then
37: t-union< N3, E3 >= t1 ∪ t2 where parent(ni)isconnectedtoparent(nj) AND N3 = N1 ∪N2, E3 = E1 ∪ E2

38: else
39: t-union< N3, E3 >= t1 ∪ t2 where t1and t2 make a forest
40: end if
41: return t-union

Function Convert-to-DAG(tree): This function is based on the work of Valiente et al. [59]

8

the certificates. Figure 4(C) shows the final CPG that is
constructed from t1, t2, and t3 as a DAG.

3.3 Annotating the Context Propagation Graph
The goal of this step is to annotate the CPG with the
profiling metrics (m1, m2,...,m6) to have a representative
baseline model that characterizes the normal execution of
the system. Our approach is to model the relationship
between the metrics for each span invocation (i.e., each edge
of the CPG). We want to know the relationship between any
pair of metrics (m1 to m6) for each edge of the CPG.

There are two types of relationships among any two metrics,
mi and mj , linear and non-linear relationships. To identify
and model the type of relationships of the metrics, we
follow two steps: (a) building the profiling metrics matrix,
and (b) characterizing the relationships between the metrics.
Algorithm 2 elaborates on annotating the context propaga-
tion graph using these two steps. This algorithm requires
the constructed CPG from the previous step and collected
profiling metrics (PM) from the Collecting data step. We
explain the algorithm in the following sections.

3.3.1 Building the profiling metric matrix
We start by running the system to collect enough data to
help us determine the relationship between the profiling
metrics. In Algorithm 2, PM contains all collected profiling
metrics. Lines 1-2 in Algorithm 2 summarizes the construc-
tion of the profiling metrics matrix for each edge of the
CPG. We use the Prometheus Query Language (PromQL)
to collect the metrics for each edge of the CPG. For example,
the following PromQL query returns the request duration
time of the invocation characterized by the edge a→b over
one day, with data points collected at 1-minute intervals:

request duration milliseconds{destination service name =
”b”, reporter = ”source”, source app = ”a”, response code =
”200”}[1d : 1m]

Applying similar queries for all six profiling metrics de-
scribed in 3.1, we obtain a matrix where the number of
columns equals the number of metrics, i.e., 6, and the
rows represent the different observation points in time. For
example, m1,t0 refers to the observed value at t0 for the
first metric m1 (request duration time) and m6,tn is the last
observed value at time tn for the m6.

P =

m1,t0 m2,t0 · · · m6,t0

m1,t1 m2,t1 · · · a6,t1
...

...
. . .

...
m1,tn m2,tn · · · m6,tn

 (1)

Figure 5 shows an example of profiling metrics for the
two traces T1 and T2 that are collected at times t0 and
t1, respectively. Each line represents the collected profiling
metrics based on the called span. For example, for span ’b’
called by span ’a’ in these two traces, we have two sets
of metrics that were collected using Prometheus. Extracting
metrics for ’b’ called by ’a’ (a → b for simplicity) results in
the following P matrix where each column represents the
values of a specific metric over time, and the rows represent
the six metrics of interest. The value of each metric for

a → b over times t0 and t1 used to build the matrix P
are highlighted in Figure 5.

Pa→b =

(m1 m2 m3 m4 m5 m6

0.5 100 90 2 1 0.88
1 121 110 4 1 0.88

)
(2)

3.3.2 Characterizing the relationships between metrics

In this step, we determine both linear and non-linear
relationships between the profiling metrics. Then, we use
regression functions to model the relationship between each
pair of metrics for each edge of the CPG. The functions are
used to annotate the CPG. In the following, we begin by
identifying the linear relationships using linear correlation.
We then explain the process of characterizing non-linear
relationships using mutual information and non-linear
Support Vector Regression (SVR).

A) Identifying and characterizing linear relationships:

A linear relationship is characterised by a direct connection
between two variables, implying that both variables change
in the same proportion [61]. We use the Pearson Correlation
Coefficient (Equation 3) [61] to estimate the degree of a
linear relationship between two variables, in the case of any
two metrics, mi and mj .

rmi,mj
=

∑n
t=0(mi,t − m̄i)(mj,t − m̄j)√∑n

t=0(mi,t − m̄i)2
√∑n

t=0(mj,t − m̄j)2
=

Cov(mi,mj)

σmi
σmj

(3)

where m̄i and m̄j are the averages of the two metric dis-
tributions, Cov(mi,mj) is covariance of mi,mj , and σmi

and σmj
are respectively the standard deviations of each

distribution. rmi,mj
ranges from -1 to 1. A value close to -1

or 1 means that there is a strong correlation between the two
variables. rmi,mj

converges to 0 means that there is no linear
relationship between the two variables. It should be noted
that this does not mean that there is a non-linear correlation
between the two variables [62], [63] since there may not be
any relationships between the two variables. We will discuss
non-linear correlation in the next subsection.

We need to determine a threshold beyond which we can
consider two metrics are strongly linearly correlated using
the Pearson coefficient. For this, we use the same threshold
as the one proposed by Jiang et al. [64]. The authors used lin-
ear correlation and normalized mutual information (NMI)
together, as a similarity measurement to cluster similar soft-
ware applications metrics into groups. According to Jinag et
al [64] two metrics mi,mj are strongly linearly correlated
if r2mi,mj

> 0.6. The measurement r2mi,mj
is a positive

value between 0 and 1 which specifies the proportion of the
variance of mj that is explained by mi [61]. Given a matrix
P for each edge of the CPG, we measure a symmetric matrix
showing r2 between all pairs of metrics in matrix P (Lines
3-4 in Algorithm 2).

9

Algorithm 2 Annotating the Context Propagation Graph
Require: PM: Collected profiling metrics
Require: CPG

1: for each edge ∈ CPG do
2: extract P matrix from PM for edge
3: for each mi,mj ∈ P do
4: R2(P), NMI(P)
5: if r2mi,mj

> 0.6 then
6: characterize mi,mj using a linear regression function and ϵr
7: end if
8: if r2mi,mj

< 0.6andNMI > t then
9: characterize mi,mj using a non-linear SVR regression function and ϵsvr

10: end if
11: Annotate edge with linear and non-linear regression functions
12: end for
13: end for
14: ▷ Different error evaluation metrics can be computed from ϵr, ϵsvr to evaluate the error in the linear and non-linear

regression functions

Fig. 5. Profiling metrics for traces T1, T2. Each line shows the collected six profiling metrics based on the called span.

R2 =

r2m1,m1

r2m1,m2
· · · r2m1,mk

r2m−2,m1
r2m2,m2

· · · r2m2,mk

...
...

. . .
...

r2m−k,m1
r2mk,m2

· · · r2mk,mk

 (4)

We use linear regression to characterize the linearly corre-
lated metrics. Linear regression attempts to find the best
function that describes the linear relationship of the data
[63]. The linear relationship for metrics mi and ,mj is
characterized using the following regression function [61]:

mi = β0 + β1mj + εr (5)

mi and mj are time series representing the value of these

metrics at t0 to tn. β =

(
β0

β1

)
contains coefficients of the

regression model and ε is the disturbance vector or error
calculated as follows:

β1 =
∑n

t=0(mit−m̄i)(mjt−m̄j)∑n
t=0(mit−m̄i)2

, β0 = m̄i − β1m̄j ,

εr = mi −

1 mt0j

1 mt1j

1
...

1 mtnj

β

Lines 3-6 in Algorithm 2 summarize identifying and charac-
terizing linear relationships for each pair of metrics.

The ϵr vector includes the actual error values of mi or
residual for each entry, i.e., mi − m̂i when m̂i represents
the computed value for mi using the regression function 5.
There are various error evaluation metrics used to evaluate
errors in regression functions, each of which computes an
individual error evaluation value based on actual error val-
ues. In this study, we use the following six error evaluation
metrics [65], [66] that are calculated from the vector ϵr .

• Mean absolute error (MAE): It is a metric measuring
the mean of absolute residuals. A lower MAE value
corresponds to a better-fit function [65], [66]. Given a
ϵr vector including the actual error values of metric
mi for the time points t0 to tn, we measure MAE as
follows, where ϵrt represents the actual error value
at time t:

MAE(mi, m̂i) =
1

n

tn∑
t=t0

|ϵrt|

• Mean absolute percentage error (MAPE): It is a mea-
sure defined based on the relative percentage of
errors. It represents the average absolute percentage
errors while a lower value shows a stronger regres-
sion fit model [65], [67]. Given a ϵr vector, MAPE is
computed using the following equation:

MAPE(mi, m̂i) =
1

n

tn∑
t=t0

∣∣∣∣ ϵrtmit

∣∣∣∣

10

• Mean squared error (MSE): This represents the ex-
pected value of the quadratic loss. The lower the MSE
value, the more accurate the function to the actual
observed value [65], [66]. The MSE is calculated as:

MSE(mi, m̂i) =
1

n

tn∑
t=t0

(ϵrt)
2

• Root mean square error (RMSE): This is the standard
deviation of the residuals that shows how the re-
gression is adjusted to the data and the quality of
the model. A lower RMSE means a higher regression
quality [65], [66]. RMSE is calculated as:

RMSE(mi, m̂i) =

√∑tn
t=t0

(ϵrt)2

n

• Median absolute error (MedAE): is a robust mea-
surement to outliers which captures the median of
all absolute differences between the target and the
prediction [65]. The MedAE is calculated as:

MedAE(mi, m̂i) = median(|ϵrt|), t = t0, t1, ..., tn

• Maximum error(max-error): We also use maximum
error which is suggested in the literature [68]. It is
a metric measuring the worst-case error between the
predicted value and the true value. A low max-err
means the presence of lower error values and hence
a better-fit regression. The max-err is computed as
follows:

max− err(mi, m̂i) = max(|ϵrt|), t = t0, t1, ..., tn

We will discuss different error evaluation metrics and their
effect on our experiments in the evaluation section (Sec-
tion 4).

B) Identifying and characterizing non-linear relationships:

The correlation coefficient r can be used to determine if two
variables are linearly correlated. However, it cannot be used
to deduce that two variables are not linearly correlated [62],
[63]. Figure 6 shows cases where the correlation coefficient
r alone cannot describe non-linear relationships between
variables. For example, there may not be any relationship
between the two variables (as shown in Figure 6 bottom left
quadrant). To identify the non-linear relationships between
our metrics, we use the mutual information (MI) concept
with the correlation coefficient as suggested by Jiang et
al. [64]. Mutual information defined using conditional en-
tropy and describes the amount of information that each
variable provides knowing the other one. In this paper, we
use Normalized Mutual Information (NMI) measurement
since our collected metrics have different ranges, which is
calculated using Equation 6.

NMI(X|Y) =
H(X)−H(X|Y)√

H(X)H(Y)
(6)

The normalized mutual information for two variables of
X and Y is defined as follows where H(X) is the entropy
of X and H(X|Y) is conditional entropy describing the
uncertainty of X when the Y value is known. The mutual

Fig. 6. Different types of the relationship between variables X and Y.
The top right shows a linear relationship with high values of both the
correlation and MI. In the bottom right, there is a non-linear relationship
that is well captured by the MI, but the correlation does not reflect it. The
bottom-left shows no relationship and both MI and correlation are low.
The top left is impossible since high correlation cause high MI value,
adapted from [62]

information is a symmetric value that describes the reduced
uncertainty in X when Y is known. If two variables X and Y
are determined together, i.e., if Y does not add uncertainty
to X value, then, X and Y are dependent and the conditional
entropy equals zero. In this case, NMI(X,Y) equals one that
it means NMI is in its max value. The higher the NMI value,
the more dependent the variables are. Similarly to the r2 for
a given P matrix, we measure an NMI matrix showing the
NMI value for each pair of metrics m1 to m6.

NMI =

NMIm1,m1 NMIm1,m2 · · · NMIm1,mk

NMIm2,m1 NMIm2,m2 · · · NMIm2,mk

...
...

. . .
...

NMImk,m1 NMImk,m2 · · · NMImk,mk

(7)

An NMI greater than a certain threshold, t (which will be
discussed later), indicates that there is either a linear or
a non-linear relationship between two variables [62], [64],
[69]. Jiang et al. [64] suggest using r2 jointly with the NMI
value to interpret the NMI magnitude and identify non-
linear relationships. For a pair of metrics mi and mj , if
r2mi,mj

> 0.6 then we conclude that mi and mj are strongly
linearly correlated. On the other hand if r2mi,mj

< 0.6 and
NMI >= t then mi and mj are non-linearly correlated. The
threshold t needs to be determined by analyzing the data as
suggested by Jiang et al. by [64]. In this paper, we follow the
same approach, explained in the next section, to identify the
threshold t according to our experiments.

To characterize a non-linear relationship, we use non-linear
Support Vector Regression (SVR) [70], [71]. SVR uses de-
cision boundaries along with a maximal margin to find
the best-fit hyperplane between two variables including the
maximum number of data points on it. These points are
called support vectors (SV). Non-linear decision boundaries
of SVR transform the original feature space into a high-

11

dimensional space in which non-linear relationships can be
estimated by a linear regression model. Feature space trans-
formation can be written as a mapping of φ : mi,mj → Z
and the transformation function (kernels) is defined as:
K(xi, xj) = φ(xi)

Tφ(xj), while x ∈ mi,mj . This function
shows how xi is compared to xj .

The non-linear SVR regression function is calculated as:

w =
n∑

i=1,x∈SV

(α∗
i − αi)k(xi, x) + b (8)

Where n is the length of the data sets (number of col-
lected metrics). The constant b is the model parameter and
α = (α1, α2, ..., αn)

T , α∗ = (α∗
1, α

∗
2, ..., α

∗
n)

T are model
coefficients, measured by maximizing the objective function:

−1

2

n∑
i,j=1

(α∗
i − αi)(α

∗
j − αj)k(xi, xj)−

ϵ
n∑

i=1

(α∗
i − αi) +

n∑
i=1

(α∗
i − αi)yi

(9)

subject to the constraints of:

n∑
i=1

(α∗
i − αi) = 0, 0 ≤ αi, α

∗
i ≤ C

While yi is the indicator of each data point (label of mi and
mj) and ϵ and C are known as the hyper-parameters used
to minimize the fitting error for the regression.

Similarly to the εr , for each non-linear regression, there
is an error vector called εSV R. The vector εSV R includes
actual error values for each entry of mi computed from
the difference between an observed mi at time tn and the
corresponding computed mi using equation8. We use the
same error evaluation metrics of MAE, MAPE, MSE, RMSE,
MedAE, and max-error measured from εSV R for identified
non-linear relationships.

Algorithm 2, line 4 measures NMI for each pair of metrics
for every edge. Then, lines 8-10 identify and characterize
non-linear relationships.

When applied to the fictive example, r2 and NMI matri-
ces are calculated for each edge of the CPG over the P
matrices. For example, in Figure 7, in Step I, r2 and NMI
matrices are calculated based on the P metric matrix for
edge a → b. For real cases, we need a large sample size
to confidently identify the type of relationship between the
metrics. In Figure 7, high linear correlation coefficients are
in green colour and high NMI values are in blue. In Step
II, two linear relationships and one non-linear relationship
are identified according to r2 and NMI. As shown in Step II,
each relationship is characterized by a regression function.

Finally, we annotate the CPG by the functions that char-
acterize the relationships between the metrics (Line 11) in
Algorithm 2. Figure 7, Step III, shows the annotated edge
a→ b sowing the linear and non-linear relationships. Other
edges of the CPG are annotated similarly.

3.4 Detecting Anomalies Using the Annotated CPG

To detect an anomaly during the system execution, we
collect a distributed trace (we refer to this trace as a test
trace) along with profiling metrics as the system is running.
Next, we follow the same steps of our method to build a
CPG from the test trace and annotate it by labelling the
edges with the profiling metrics. We use the term test CPG
to refer to the CPG extracted from a test trace. Note that we
do not need to model the linear and non-linear correlations
between the metrics. For the test trace, we only need the
value of the metrics. In other words, the profiling metric
matrix P 1 corresponding to the test trace consists of one
row only. Figure 8 shows the steps for detecting anomalies
using the CPG. In this figure, a fictive CPG is used for testing
in the dashed-blue rectangle while an edge of a → b has
been annotated with its corresponding profiling metric as
an example. In real cases, all edges are annotated with their
profiling metric matrix.

We compare the test CPG against the baseline CPG, which
characterizes the normal behaviour of the system (see Figure
8). To achive this, we turn to graph matching. The goal
is to determine whether the test CPG is an edge-inducing
sub-graph of the general CPG or not. An edge-induced sub-
graph includes a subset of edges and their incident vertices.
We use an extended version of the VF2 algorithm [72] to
check if the baseline CPG contains a sub-graph that is
isomorphic to the test CPG. The test CPG is isomorphic
to the general CPG if and only if there is an isomorphism
mapping for edges issued from the same vertices. Since our
CPG graphs are directed graphs, we use directed sub-graph
matching.

In addition, we compare the test CPG against the baseline
CPG to make sure that the metrics match. In this step,
we check whether common edges’ annotations are matched
together. Edges’ annotation in the test CPG is a profiling
metric matrix. These matrices are tested against liner and
non-linear functions annotated on the baseline CPG’s edges.
We check to see if the profiling metric values at the test
time satisfy the linear and non-linear metrics relationship
functions. To identify the degree by which a metric in the
test CPG matches the functions on the baseline CPF, we
need to define the margin of accepted error. As mentioned
in Section 3.3.2, in this paper, we analyze six different error
evaluation metrics computed for each ϵr, ϵSV R vectors of
linear and non-linear relationships. These metrics specify
the accepted deviation margin for the profiling metric values
at the test time. We will discuss the impact of the margin
values on anomaly detection accuracy in Section 4.

Figure 8 shows the baseline CPG built from the fictive traces
t1-t3 in a green rectangle. The edge of a → b has been
annotated with the metric relationship functions and error
evaluation metric as an example. Checking the test CPG
against the baseline CPG includes I) checking if the test
CPG is an edge-induce sub-graph of the baseline CPG; and
II) if for each common edge, the relationships between the
metrics on the test CPG match the annotated function on the
baseline CPG. In this case, the test CPG is not a sub-graph
of the baseline CPG because of node ”f”. Secondly, metric

12

Fig. 7. Modelling metric relationships and Annotating CPG. I), r2 and NMI are calculated for each pair of metrics. Next, in step II) identified
relationships are characterized, and III) the CPG is annotated with the characterized relationships

Fig. 8. Anomaly detecting process using ServiceAnomaly. A test trace
and observed metrics are modelled in a test CPG. Then, the test CPG
is compared with the general CPG using two steps of graph matching
and metric matching

checking for the annotated instance edge of a→ b results in
violating two functions out of three:

Response size, queue time:|350− (10 ∗ 7 + 70)| ≰ 20

Latency, Throughput:|2− (0.6 + 0.2)| ≰ 1.0

Request duration, Request Size:|1.3− (0.5 ∗ 1650.5 − 4.5)| ≤ 0.7

We perform metric checking for all common edges between
the test CPG and the baseline. Finally, according to Figure 8,
any violation in graph checking and metric checking is
reported to the analyst as an anomaly. We also highlight
violations in the baseline CPG for further anomaly analysis.
Otherwise, if the test CPG matches the baseline CPG, the
test trace is recognized as a normal trace.

3.5 Analyzing ServiceAnomaly usage process and
complexity
Figure 9 shows how our approach can be used in practice.
First, the user needs to configure the microservice system to
provide the necessary telemetry data for ServiceAnomaly.
Our proposed architecture for data collection is detailed in

Section 3.1. In this paper, we deployed microservices on
Kubernetes, where Prometheus and Jaeger were added as
monitoring systems into the Kubernetes cluster. However,
ServiceAnomaly can be integrated with alternative architec-
tures that offer the essential telemetry data.

To enable data collection, the user needs to a) inject Istio
agents into the running Kubernetes pods to enable the data
collection process, b) deploy Prometheus and Jaeger into
the Kubernetes clusters and configure them to collect data
from Istio agents, and c) optionally, if needed, perform
instrumentation on the microservices. After the installation
of Prometheus and Jaeger, additional instrumentation might
be necessary for users looking to collect customized profil-
ing metrics (e.g., the CPU usage of services) or customize
span specifications. For example, Next, the collected data
is acquired by ServiceAnomaly, shown in the dashed box
in Figure 9, which is used to build the CPG and profiling
metrics models.

During the test time, which we refer to as online setup,
the user collects a test trace along with its corresponding
profiling metrics using the Jaeger and Prometheus dash-
boards or by querying their APIs. The data collected during
this test phase is then fed to ServiceAnomaly. Within the
online setup, constructing the CPG, annotating the CPG,
and graph matching are carried out to generate the output
including the test annotated CPG and then the anomaly
detection result. If an anomaly is detected, the nodes and
edges that deviate from the baseline CPG, i.e., unseen nodes
and edges, are highlighted. Additionally, any violated linear
and nonlinear relationships are also flagged in the test CPG,
along with the degree of violation for each relationship.
The process of analyzing a test trace against the baseline
annotated CPG can be repeated for upcoming test traces.

To analyze the computational complexity of Ser-
viceAnomaly, we break it down into distinct computational
functions. As shown in Figure 9, ServiceAnomaly operates
in both offline and online phases. The offline phase of
ServiceAnomaly includes a) constructing the Context
Propagation Graph, b) modelling metric relationships, and
c) constructing the Annotated Context Propagation Graph.

Constructing Context Propagation Graph explained by Al-
gorithm 1 involves performing several functions for each

13

Fig. 9. User interaction with ServiceAnomaly

trace of the collected set of T traces. These functions
include Construct-Rooted-Call-Trees, Merge-by-Union, and
Convert-to-DAG. The Construct-Rooted-Call-Trees function
exhibits linear complexity, reliant on the span count within
each trace. Moreover, the computation complexity of the
Merge-by-Union function is derived by traversing the input
rooted trees. We use a hash table structure to search through
rooted trees capping the complexity of merging rooted trees
at the complexity of converting them to hash maps—this
conversion’s complexity is linked to rooted tree size. In the
worst case scenario, if S denotes the service count within
the longest trace and there is a call between each pair of
services, the rooted tree results in

(S
2

)
=S(S−1)

2 edges, called
the tree size. Therefore, the complexity of the Merge-by-
Union is primarily dictated by O(S2). For the Convert-to-
DAG function, we adopt a similar strategy proposed by
Hamou-Lhadj et al. [8], using a hash table to maintain
certificates and signatures. According to Hamou-Lhadj et
al. [8], if a tree’s degree (the count of children for any node)
remains bounded by a constant, the Convert-to-DAG func-
tion performs in linear time. As a result, the computation
complexity of the Constructing Context Propagation Graph
step drives from O(TS2) in which T represents the trace
count and S is the number of services.

Algorithm 2 explains the steps related to modelling met-
ric relationships and constructing the Annotated Context
Propagation Graph of ServiceAnomaly in the offline setup.
This algorithm requires computations of r2 (equation 3),
NMI (equation 6), regression function (equation 5), and
non-linear SVR regression function (equation 8) for each
edge within the baseline CPG. The computation complexity
of r2 is directly proportional to the number of data points
within the amassed profiling metrics, resulting in a linear
function. The computation of NMI—as defined by Danon
et al. [73]—exhibits a complexity of O(n + K2), where n
represents the data point count of the profiling metrics, and
k signifies the number of distinct categories or clusters.
According to documentation [74], finding the regression
function has linear complexity while the non-linear SVR
regression function complexity is more than quadratic with
the number of samples, approximated by Hui et al. [75] at
O(n3). Therefore if the baseline CPG consists of E edges,
the dominant computation complexity of Algorithm 2 is

O(En3).

The computational complexity of the online phase of Ser-
viceAnomaly, which is detecting anomalies using the anno-
tated CPG, comprises several tasks: Constructing the CPG
for the test trace, Annotating the CPG, Graph Matching
and Metric Matching. Given that a test trace with a con-
stant number of spans, the complexities of all tasks are
overshadowed by the task of graph matching. The graph
matching algorithm for a graph with s’ nodes has com-
plexities ranging from O(s′2) to O(s′!s′) [76]. However, as
shown by Luks [77], graph-matching algorithms demon-
strate polynomial complexity in scenarios involving graphs
with tree-like structures and bounded node valence. This
finding is especially relevant to our study, in which a test
CPG derived from a request inherently possesses a tree-
like configuration with limited inter-nodal connections. In
the specified context of our study, the test CPGs are char-
acterized as labelled, directed trees sharing identical parts
with the general CPG. In fact, both normal and abnormal
test CPGs are expected to differ from the general CPG only
in certain segments. Moreover, these CPGs are structured as
Directed Acyclic Graphs (DAGs), wherein common subtrees
are encapsulated singularly, thereby eliminating redundant
embeddings of the entire test CPG within the general CPG.
These characteristics contribute to the feasibility of graph
matching, enabling efficient pruning of the search space and
swift identification of matching nodes between the test CPG
and the general CPG.

4 EXPERIMENTAL SETUP

In this section, we explain the design of the experiment that
we used to evaluate our ServiceAnomaly approach and to
answer the following research questions:

• RQ1 - How accurate is ServiceAnomaly at detecting
anomalies?

• RQ2 - How can the ServiceAnomaly approach be
used to reason about anomalies?

• RQ3 - What are the limitations of ServiceAnomaly in
detecting anomalies?

4.1 Target Systems
We use two open-source microservice applications, Tea-
Store1 and TrainTicket2. TeaStore was developed as a
benchmark to conduct experiments with performance mod-
elling techniques. The tool emulates a tea web store for
automatically-generated tea products [37]. TeaStore has six
microservices including WebUI, Image-Provider, Auth, Per-
sistence, Recommender, and a Registry service. TrainTicket
is one of the academic largest open-source microservice
systems to our knowledge with over 30 microservices and
many service dependencies. Examples of microservices of
TrainTicket include services providing ticket enquiry, reser-
vation, food and seat selection, payment, search on travel
and routes, consign, etc. [38]. TrainTicket is deployed on
56 Kubernetes pods composed of 32 logical microservices
implemented in Java, node.js, Python, and Go, as well as 24
MongoDB and MySql database-related services.

1. https://github.com/DescartesResearch/TeaStore
2. https://github.com/FudanSELab/train-ticket/wiki

14

4.2 Data collection

To collect distributed traces and profiling metrics that char-
acterize the normal behaviour of TeaStore and TrainTicket
systems, we executed the load test suites that accompany
these systems. The objective is to exercise as many execution
paths as possible. For TeaStore, we used JMeter [78] to run
the load tests. We simulated 10,000 user requests with dif-
ferent numbers of concurrent active users to test the system
under different stress load scenarios. Finally, we used a
sample of more than 3,000 successful distributed traces and
9,160 rows of six metrics collected in a one-minute window.
TrainTicket comes with 15 load test scenarios written in
Python and JavaScript, which we executed using a different
number of concurrent active users. We collected more than
5,000 traces and 5,410 rows of metrics for TrainTicket. We
used four scenarios for injecting faults into the systems
based on the literature [23], [28], [79].

Stressing the hosts: We generated resource stress by tar-
geting 80%-100% of the CPU and disk capacity of the node
running the target service. To do this, we used Stress-ng3, or
Linux CPU exhausting test to impose an amount of CPU on
the host [28], [79].

Service latency: We injected a 15-second latency for %80
of HTTP traffic passing through the target service. We use
Kiali4 to add a rule to the Istio service mesh and control
traffic transmitting across the target service. Using Kiali, we
add a 15-second latency to the Istio agent running inside the
target service pod. The Istio agent applies the latency to the
testing service traffic [23], [28], [79].

Service timeout: Network connection failures might cause
an error or failed request instead of a delay. To induce
request failure, we used Kiali and instrument Istio traffic
routing rules to inject a timeout in traffic passing through
the target service. We added 5 seconds timeout for the target
service, which means the target service stops answering the
requests if they take longer than 5 seconds and a timeout
error is returned. To trigger the timeout, we injected a 10-
second latency in one of the testing service’s dependencies.
All injected rules are applied to the passing traffic by Istio
[79].

Service hangup: To simulate a dead process or a service
hangup, we pause the pod running the target service. Killing
a pod is simulated by scaling down the Kubernetes deploy-
ment with zero replicas of the testing service’s pod [23], [28].

At the test time, we execute 2 to 3 requests per second
for each target system. To collect normal test traces, we
continuously monitor the performance of the target sys-
tem using Kiali to ensure that the system is operating as
normal. For collecting anomaly traces, we inject faults into
individual services, one at a time. The system performance
is monitored before and after injecting a fault. To make sure
that the collected trace contains a fault, we use Kiali to check
the changes in the execution of the system that are caused
by the fault. Figure 10 shows examples of changes in the
system execution after injecting a fault.

3. https://wiki.ubuntu.com/Kernel/Reference/stress-ng
4. https://kiali.io/

In total, we injected 15 faults into TeaStore and 32 in
TrainTicket. In addition to the data collected after fault
injection into the target systems, we also gathered an equal
amount of normal traces and profiling metrics. The collected
data from normal and faulty requests are used together as
our test data in evaluating our method. Table 2 shows the
number of collected traces and profiling metric rows that
are used to construct the baseline annotated CPG, as well as
the number of normal and faulty traces used to evaluate the
effectiveness of ServiceAnomaly to detect anomalies.

TABLE 2
Collected data for each case study

Systems

Training data to Normal and anomaly
construct baseline CPG traces used for testing

Traces Metrics Normal
Traces

Anomaly
Traces

TeaStore 3,000 9,160 15 15
TrainTicket 5,000 5,410 32 32

4.3 Building the baseline annotated CPGs

We built the baseline annotated CPG for each system using
the collected distributed traces and profiling metrics. Table 3
shows the number of nodes, edges, and an average number
of linear and non-linear relationships per edge in the CPG.
The maximum number of all possible relationships for each
edge of the CPG is the number of combinations of m
metrics considering two metrics at a time that is m!

2!(m−2)! .
In our case, at every edge, at most 15 metric relationships
are possible to be characterized for each linear and non-
linear type of relationship. However, it is clear that we have
fewer numbers of relationships since there might not be a
relationship between each pair of metrics or the relationship
might not be significant to be characterized.

As mentioned in Section 3.3.2, we adopt the same process
proposed by Jiang et al. [64] to interpret r2 and NMI
values for each target system and find linear and non-linear
relationships. We consider r2 > 0.6 as an indicator of a
strong linear relationship as suggested by Jiang et al. [64].
To find the best t threshold for NMI values, for each target
system, we compute r2 and NMI for all pairs of metrics and
compare NMI to r2. Figure 11 shows that for TeaStore when
r2 ≥ 0.6 and there is a strong linear relationship between
metrics, NMI value is at least 0.6. We know that for a linear
relationship both r2 and NMI are at their high values. We
consider NMI > 0.6 as the threshold for determining a high
NMI value for TeaStore. Moreover, we know that correlated
data with a non-linear relationship shows a low r2 and high
NMI value. Therefore, when r2 < 0.6 and NMI ≥ 0.6 we
identify non-linear relationships. According to Figure 11, the
threshold for the TrainTicket system is NMI = 0.47 and for
TeaStore is NMI=0.6.

TABLE 3
CPG characteristics for each system

SUT #Nodes #Edges
Avg #Linear

relations / edge
Avg #Nonlinear
Relations / edge

TeaStore 6 12 3.6 1.5
TrainTicket 32 83 4.0 2.95

15

Fig. 10. Service performance change at the time of injected faults, at 7:00 PM

Fig. 11. r2 and NMI measured for pair of metrics in TeaStore and
TrainTicket

Figure 12 shows a partial view of the baseline CPG for
TeaStore. The CPG is on the right side and the metric
relationship functions for each edge are listed on the left
side of the figure. Figure 12 shows five linear relationships.
The figure also shows one non-linear relationship for the
edge connecting the services ”teastore-auth” and ”teastore-
persistence”. To clearly characterize the relationships, a
partial heat map for three metrics collected over these two
services is shown in Figure 13. As shown, there is a high cor-
relation between the latency and request size, highlighted by
a circle, which results in a linear relationship between these
metrics. Similarly, a high NMI value and low correlation
between the latency and queue time, highlighted by squares
in the figure, results in a non-linear relationship between
latency and queue time. The low correlation coefficient and
NMI values for request size and queue size indicate that
these metrics do not have a relationship.

4.4 Evaluation Metrics
To assess the accuracy of our method, we measure the
precision, recall, and F1 score. These measures are used to
describe a test accuracy which detects the presence or ab-
sence of a condition [80]. In our case, the positive condition,
P, is defined as the number of real anomalies, i.e. test traces
collected when we injected fault/stress scenarios, and the
negative condition, N, is the number of normal traces.

According to the error of the anomaly detection, different
outcomes including true (T) and false (F) results can be
concluded.

• True Positive (TP): An anomaly trace detected as
anomaly

• False Positive (FP): A healthy trace detected as
anomaly

• False Negative (FN): An anomaly trace detected as
healthy

• True Negative (TN): A healthy trace detected as
healthy

The precision reflects the number of correct positive pre-
dictions out of all positive predictions made, which include
those falsely classified as anomalies, and it is measured as:

Precision =
TP

TP + FP

The recall quantifies the number of positive class predictions
made out of all positive cases in the data set, calculated as:

Recall =
TP

TP + FN

F1-score is a single score that balances precision and recall
and is defined as the harmonic mean of Precision and Recall:

F1− score = 2 ∗ Precision ∗Recall

Precision+Recall

5 RESULTS

5.1 RQ1. How accurate is ServiceAnomaly at detecting
anomalies?
The accuracy of ServicAnomaly can be affected by the
choice between different error evaluation metrics since they
determine the expected amount of deviation in anomaly

16

Fig. 12. A partial baseline annotated CPG for TeaStore

Fig. 13. A partial heat-map for an edge of TeaStore

detection. Table 4 shows precision, recall, and F1-score for
both TeaStore and TrainTicket with the six different error
evaluation metrics discussed in Section 3.3.2. As shown in
Table 4, our approach achieves an F1-score of up to 85% for
TeaStore and 86% for TrainTicket.

The choice between error evaluation metrics depends on
the specific characteristics of the dataset. In our case, we
have observed that using the RMSE error evaluation metric
to assess the accuracy of the model yields the best results
compared to other error evaluation metrics for both systems.
This may be due to the fact that RMSE is sensitive to outliers
and therefore penalizes large errors, resulting in a model
that provides better classification. This is contrasted with
MAPE, MedAE, and MAE, which are not as sensitive to
outliers as RMSE [81]. Table 4 shows that models obtained
using these error evaluation metrics have a very high recall
(100% for TeaStore and up to 94% for TrainTicket), and a
low precision (50% to 60% for TeaStore) and (48% to 58%
for TrainTicket), meaning that they introduce a considerable
number of false positives (i.e., healthy traces detected as
anomalies). We also found that out of the 15 anomaly traces
of TeaStore, 7 were detected using the CPG matching alone,
and 7 were detected with metric matching with RMSE. The
remaining anomaly trace was not detected as an anomaly,
which explains a recall of 93%. Out of the 7 anomaly traces
detected by CPG matching, 2 were affected by an injected

TABLE 4
Accuracy of ServiceAnomaly when applied to TeaStore and TrainTicket

systems with different error evaluation metrics

Target systems Error Precision Recall F1-score

TeaStore

MAPE 0.50 1.00 0.67
MedAE 0.54 1.00 0.70

MAE 0.60 1.00 0.75
RMSE 0.78 0.93 0.85
MSE 0.67 0.67 0.67

max error 0.89 0.53 0.66

TrainTicket

MAPE 0.48 0.94 0.64
MedAE 0.54 0.94 0.69

MAE 0.59 0.91 0.72
RMSE 0.79 0.94 0.86
MSE 0.53 0.88 0.68

max error 0.77 0.72 0.74

service latency, 3 were affected by an injected service time-
out, and 2 were affected by an injected service hangup sce-
nario. Furthermore, the 7 detected anomaly traces through
metric matching included 3 collected after injecting a stress
scenario, 2 after injecting a latency, 1 after an injected service
timeout, and 1 after an injected service hangup. We did
a similar analysis on TrainTicket and found that out of
32 anomaly traces, 5 were detected using CPG matching
and 25 were detected using metric matching with RMSE.
Among the 5 detected anomaly traces using CPG matching,
3 were attributed to an injected service timeout scenario,
one to an injected service latency, and one to an injected
service hangup. Similarly, with metric matching, 25 anomaly
traces were detected, where 8 were collected after injecting
a service latency scenario, 7 after injecting a service timeout,
6 after stressing the host, and 4 after injecting a service
hangup.

Based on our analysis, we can conclude that both CPG
matching and metric matching are needed to detect a variety
of faults in microservice applications.

RQ1. How accurate ServiceAnomaly is at detecting
anomalies?
Finding: The results show that ServiceAnomaly can
detect anomalies with an F1-score up to 85% for
TeaStore and 86% for TrainTicket. The RMSE error
evaluation metric yields a more accurate model for
both systems compared to other error evaluation
metrics. We also showed that the combination of
CPG and profiling metrics is an effective way to
detect different types of faults.

17

5.2 RQ2. How can the ServiceAnomaly approach be
used to analyze anomalies?
In this question, we show how our approach can help
developers to better understand the anomalies by exploring
the annotated CPG.

In the following, we select two examples of anomaly traces
from the TeaStore and TrainTicket systems respectively that
were detected in the previous section and examine the
causes of the anomalies using the CPG and the metrics
model.

5.2.1 Scenario 1: TrainTicket anomaly trace
Figure 14-(a) shows a portion of a TrainTicket anomaly
trace using Jaeger. We could not show the entire trace,
which contains 28 spans showing a record of the var-
ious services involved in reserving a ticket using the
TrainTicket system. To reserve a ticket, in a normal trace,
first, the ”ts-ui-dashboard” calls the ”ts-preserve-service”.
Then, the ”ts-preserve-service” span invokes a series of ser-
vices, including ”ts-security-service”, ”ts-contact-service”,
”ts-travel-service”, and eight other services, in a sequential
manner to complete the request.

Figure 14-(b) shows part of the TrainTicket’s baseline CPG
including the context propagation paths invoked as a result
of a ticket reservation request. However, in this scenario,
we simulated a timeout fault scenario into ”ts-preserve-
service” using Kiali as explained in Section 3.1. We used the
fault injection wizard on ”ts-preserve-service” and created
a rule that triggers a timeout error after 5 seconds if the
service does not receive a response within that time frame.
To activate this rule, we introduced a latency to the ”ts-
contact-service” using the same wizard in Kiali. This latency
causes delays in the traffic forwarding from ”ts-preserve-
service” to ”ts-contact-service”, which then triggers the
injected timeout rule. As a result of the injected fault, the
”ts-preserve-service” span throws an error propagated to its
caller, shown in Figure 14-(a), lines 1-2, 5-6, and 9. Moreover,
in comparison to the observed normal paths in the baseline
CPG, ”ts-preserve-service” has been repetitively called in
lines 5 and 9 without any nested child.

To detect the anomalous trace using our approach, the test
trace, Figure 14-(a), collected at the time of injecting the
timeout into the ”ts-preserve-service” service is taken and
checked against the baseline CPG. As a result, the developer
will be presented by the test CPG shown in Figure 15.
As we can see the matching algorithm has highlighted the
unmatched nodes and edges in red colour. In the test CPG,
there is a ”ts-preserve-service” node with no child that is
because of repetitive calls of ”ts-preserve-service” in lines
5 and 9 of the test trace (14-(a)). Parsing the contextual
information propagated through the spans of the test trace
shows that one of the recalled ”ts-preserve-service” has
missed contextual information. Our algorithm assigns an
empty reference to this service, shown by a node with no
name in Figure 15. The graph matching step finds this
node and its connection unmatched with the general CPG.
In addition, the metric matching step identifies linear and
non-linear metric relationships that deviate from the normal
metric relationships. In this case, there are eight linear and

three non-linear metric relationships on seven edges that
deviate from the metric relationships on the edges of the
baseline CPG. These metric relationships are highlighted
and reported to the developer along with the metric types,
the expected value range for each metric, and the amount
of deviation. Figure 15 shows part of the reported identified
unmatched metric relationships.

5.2.2 Scenario 2: TeaStore anomaly trace
Figure 16-(a) shows one of the TeaStore traces that was
flagged as an anomaly by our approach. This trace includes
three events each of which has two spans. First, ”teastore-
webui” calls ”teastore-persistence”, then it invokes a ser-
vice of ”teastore-image”, and finally, ”teastore-webui” calls
”teastore-auth” to fulfil the user request. Figure 16-(b)
presents a partial view of the baseline CPG for TeaStore.
This graph includes the context propagation path from
”teastore-webui” to each of the other three called spans
that was observed in the trace shown in Figure 16-(a). The
annotations on each edge of Figure 16-(b) briefly describe
the linear (L) and non-linear (NL) relationships between
the profiling metrics for each edge, as well as the specific
profiling metrics involved in each relationship.

To test our approach, we injected a latency into the ”teastore-
recommender” service using Kiali as explained in Sec-
tion 4.2. To inject a latency into the ”teastore-recommender”,
we configure a fault injection rule where 80% of requests for-
warding to the ”teastore-recommender” will be delayed 15
seconds. The test trace shown in Figure 16-(a) was collected
after injecting this fault into ”teastore-recommender”.

As we can see in Figure 16-(c), the anomaly was caused by
a violation to the metric relationships. In this scenario, the
test CPG is a subgraph of the baseline CPG. Therefore, graph
matching did not identify the trace as an anomaly. However,
the injected fault into the trace has been detected by metric
matching. In total, one linear and two non-linear relation-
ships have deviated from this trace. Using this information
the developer can do more investigations about the reason
for the detected anomaly. In this scenario, the relationship
between some metrics in the test CPG did not match the
expected relationships on all three edges connected to the
”teastore-webui”. The developer can analyze the ”teastore-
webui” service and its dependencies to uncover the causes
of the anomaly. For example, comparing the test CPG (Fig-
ure 16-(c)) with the baseline CPG (Figure 16-(b)) shows
that in addition to three called spans by ”teastore-webui”
in the test CPG, the ”teastore-recommender” and ”teastore-
registry” are also connected to the ”teastore-webui” and
can be the cause of the detected anomaly. This information
can not be learnt from the collected test trace. Therefore,
given the result of our approach, the developer is able to
learn about the reason for the detected anomaly, ”teastore-
recommender” in this case.

18

Fig. 14. (a)Scenario 1- An anomalous TrainTicket trace detected by ServiceAnomaly, (b) A partial Trainticket general CPG

Fig. 15. Scenario 1- Test CPG result for the test trace shown in Figure 14-(a)

Fig. 16. Scenario2- An anomalous TeaStore trace detected by ServiceAnomaly

RQ2. How can the ServiceAnomaly approach be
used to analyze anomalies?
Finding: Our approach can pinpoint places of inter-
est where the anomalies occur using the test CPG
and the baseline CPG. We illustrate this feature
through two examples of anomaly traces from Tea-
Store and TrainTicket. Additional studies involving
developers should be conducted to further assess
the usefulness of our approach in root causes of
anomalies.

5.3 RQ3. What are the limitations of ServiceAnomaly in
detecting anomalies?

To identify the limitations of our approach, ServiceAnomaly,
in this question, we discuss anomalies that were not
detected by ServiceAnomaly and attempt to determine
the causes. According to our observations, anomalies that
change the CPG structure compared to the baseline CPG
were successfully detected at the graph matching step.
However, if the test CPG is an edge-inducing sub-graph of
the baseline CPG, the anomaly might remain undetected by
the metric matching.

The first reason for undetected anomalies can be found
in the magnitude of deviation in the metrics affected by
the anomaly. In this case, using different error evaluation

19

TABLE 5
Details of ”teastore-webui → teastore-persistence” profiling metric

relationships

Metrics Rel. residual max-error RMSE
y=response size(Kb),
x=request size(kb)

L 10.9 25.6 4.7

y=latency(s),
x=queue time(s)

NL 16.6∗10−3 30.3 5.62

y=request size(kb),
x=duration time(s)

NL 67.1 ∗ 10 46.9 ∗ 102 64.2 ∗ 10

y=response size(kb),
x=duration time(s)

NL 20.4 ∗ 10 13.9 ∗ 102 18.9 ∗ 10

metrics can alter the outcome and cause the detection of
the anomaly. For example, Table 5 shows profiling metric
relationships for a test trace of TeaStore with an injected
CPU stress that is not detected by the error evaluation metric
of max-error but is detected by a smaller error evaluation
metric such as RMSE.

Table 5 describes the characterized metric relationships
for an edge between ”teastore-webui” and ”teastore-
persistence”. The first two columns specify the involved
metrics in each characterized relationship and the type of
relationship, with L denoting linear and NL denoting non-
linear relationships. The third column indicates the residual
value or absolute difference between the observed value of
metric y and the computed value using the characterized
relationships. The last two columns show the values of
different error evaluation metrics, i.e., error-max and RMSE,
for each metric relationship. The CPU stress can be detected
when the absolute difference (third column) exceeds the
expected error values (last two columns). A comparison of
the third column with the expected residuals reveals that the
injected CPU stress can be detected using the smaller error
evaluation metric (RMSE) by one linear and two non-linear
violated relationships.

The second reason for undetected anomalies is performing
anomaly detection on test traces that are unaffected by the
anomaly. In this case, although the injected fault scenario
has changed the system performance, the injected fault
has not been propagated into the collected spans of the
test trace. These traces remain undetected with different
experimented error evaluation metrics. For instance, Fig-
ure. 17 shows some of the performance views of Kiali
for ”ts-food-service.default” service in TrainTicket before
and after injecting a service latency into this service. The
service latency scenario has been injected at 6:26 PM,
shown by a border in Figure. 17. As the monitoring dash-
boards show, the service performance has changed after
injecting the latency. However, the collected test trace at
the time of experiments does not reveal these changes.
Figure. 17, shows the test trace that we collected after
injecting this fault scenario in the blue colour. This test
trace includes a span ”ts-travel-service.default” that calls
”ts-ticketinfo-service.default”. Figure. 17 shows how the
”ts-food-service.default” service with the injected latency
is connected to the collected spans. While the ”ts-food-
service.default” service has been affected by the injected
latency, this anomaly did not manifest itself in the test
trace. Therefore, the collected test traces were missed by our
approach.

We tried different test traces in this group of undetected
anomalies and realized that anomalies are more likely to be
detected when the collected test trace is a trace generated
by requests to the affected service (i.e., the service with
the injected fault) or its dependencies. Moreover, generally,
collected test traces comprising more spans with a longer
request propagation path are more likely to show the change
caused by the injected fault.

The third group of undetected anomalies happen when the
collected test trace includes spans with no relationships. It
is a rare case in our experiments. However, in some cases,
there might be services with low interactions with the rest
of the system. Therefore, few profiling metric values can be
detected for those services that it makes it challenging to
identify relationships between those metrics. For example,
in TeaStore, there are services of an Image provider and
a Recommender calling the Persistence service only once
at the system execution startup. Therefore, no relationship
can be identified for them out of a few telemetry data
extracted from them. Moreover, there is a possibility that
there are enough collected profiling metrics for an edge but
the collected metrics do not show any linear or non-linear
dependency for an edge of the CPG. Therefore, collected test
traces including that edge with no relationships cannot be
cooperative in detecting anomalies using matching metric
relationships.

RQ3. What are the limitations of ServiceAnomaly in
detecting anomalies?
Finding: ServiceAnomaly cannot detect anomalies
when I) The anomaly has not changed the metric
values significantly to be captured by the used error
evaluation metric. II) The collected test trace does
not include the affected services and III) There are
edges in the general CPG with no profiling metric
relationship and the test trace includes spans associ-
ated with those edges.

6 THREATS TO VALIDITY

Internal Threats:
The threats to internal validity concern the factors that
might influence our results. To collect distributed traces and
profiling metrics to characterize the normal behaviour of the
system, we run both systems using the accompanying load
tests. A different strategy may lead to another set of traces.
However, we purposely resorted to load tests to observe as
many execution paths as possible. An alternative solution
would be to run the systems using execution scenarios, but
this would require a good set of system features, which we
do not have. Another threat to internal validity consists of
the collection of anomaly traces by injecting faults into the
systems. To make sure that the collected reflect the abnormal
behaviour caused by the fault, we carefully observed the
system to see the impact of the fault on the execution
as shown in Figure 10. In addition, the profiling metrics
values collected through the service mesh can be affected
by the network delay. For instance, a request duration
time is defined as the time between establishing a request
to its completion. However, network delays may increase

20

Fig. 17. An example of a service performance affected by injecting network latency at 6:26PM, A partial CPG representing the propagation path of
injected fault to the services

processing time. We ignored analysing the present delay in
the network since it is applied to all the metrics. However,
to make sure that the profiling metrics are not affected
by a long delay, we monitored our target system’s health
during the experiment to identify and filter any significant
delays. Finally, there is a possible threats in the way we im-
plemented ServiceAnomaly. An implementation error may
have an impact on the results. To mitigate this threat, we
checked the implementation very carefully and tested it on
small examples. We also make the scripts and the datasets
available online for verifiability5.

External Threats:
The threats to the external validity of this study lie in the
generalizability of the results. We evaluated our approach
on two different microservices using a large number of
traces. To our knowledge, the TrainTicket system is the
largest open-source microservice system available. To gener-
alize our results, we should experiment with more systems
once they become available. There is also an external threat
to validity related to the types of faults that were injected
to generate anomaly traces. Although we covered different
types of faults (service latency, stress host, etc.), we should
experiment with more types of fault scenarios to claim
generalizability of the approach.

Construction Threats:
The threats to the construction validity of our method
mainly lie in modelling metric relationships. Calculating
mutual information is dependent on entropy and probabil-
ities which makes it difficult to be measured for empirical
data [82]. We used the proposed binning approach for cal-
culating entropy [83] in which the observed data is divided
into k bins with ni samples in each bin and ni represents the
number of occurrences of each metric value. Then, entropy
is measured using the following formula for metric mi:

entropy(mi) = −Σk
i=1

ni

n
log

ni

n
(10)

The adapted VF2 algorithm employed for graph matching
is expected not to surpass polynomial time complexity,
considering the specific characteristics of CPGs and the as-
sumption that that test CPGs are expected to have identical
parts with the general CPG. However, this assumption may
encounter challenges under certain conditions: I) if the test

5. https://github.com/M-panahandeh/ServiceAnomaly

CPG closely resembles the general CPG, but is not identical.
i.e., when the test CPG is very similar to the general CPG in
both structure and attributes, but not identical in many parts
or II) the test CPG can be embedded in the general CPG in
multiple ways. While the algorithm demonstrates feasibility
for our tested target system, these scenarios necessitate fur-
ther analysis to refine the graph-matching task. A potential
solution to mitigate these complexities involves structuring
anomalies, i.e. null nodes or novel patterns, as distinct
patterns. By doing so, the graph-matching algorithm can
specifically search for these patterns, facilitating targeted
pruning based on predefined anomaly characteristics.

7 REPRODUCTION PACKAGE

All the data used in this paper as well as the scripts can
be found on Github repository using the following link:
https://github.com/M-panahandeh/ServiceAnomaly.

8 CONCLUSION

Anomaly detection of microservices is a challenging task
due to the complexity of these systems, the volume of
logs and traces, and metrics collected during monitoring
microservices. In this paper, we proposed ServiceAnomaly,
a method based on modelling the context propagation as
a graph, which is annotated with the linear and non-linear
relationships of six profiling metrics. We evaluated our ap-
proach against two case studies of TeaStore and TrainTicket.
The results show that our approach identifies traces with
an accuracy of F1-score up to 86%. we also showed how
ServiceAnomaly can be used to reason about anomalies, a
starting point for root cause analysis. For future work, we in-
tend to experiment with more microservice systems as they
become available. We also need to integrate ServiceAnomaly
in an observability tool and work with developers to ex-
amine the usefulness of this method in practice. Another
important future direction is to study how the annotated
CPG can be used to understand large distributed traces. A
particular line of research is to examine how abstraction
techniques such as those developed for traditional traces
(e.g. [84]) can improve the analysis of the annotated CPG to
support program comprehension, an important enabler for
root cause analysis of faults. Moreover, we should investi-
gate techniques to improve the causality and explainability
of our approach. The idea is to improve ServiceAnomaly’s

21

decisions through a feedback loop process that considers the
analyst feedback. Finally, we need to study the scalability of
our approach when working with large systems. For the
current work, we collected traces for 3 to 7 days depending
on the system to have a good coverage of the execution
paths for each system. For larger systems, we may need to
collect more traces, which can impact scalability.

REFERENCES

[1] Claus Pahl. Containerization and the paas cloud. IEEE Cloud
Computing, 2(3):24–31, 2015.

[2] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. Mi-
grating to cloud-native architectures using microservices: an expe-
rience report. In European Conference on Service-Oriented and Cloud
Computing, pages 201–215. Springer, 2015.

[3] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. Mi-
croservices architecture enables devops: Migration to a cloud-
native architecture. Ieee Software, 33(3):42–52, 2016.

[4] Jacopo Soldani, Damian Andrew Tamburri, and Willem-Jan Van
Den Heuvel. The pains and gains of microservices: A systematic
grey literature review. Journal of Systems and Software, 146:215–232,
2018.

[5] Nane Kratzke and Peter-Christian Quint. Understanding cloud-
native applications after 10 years of cloud computing-a systematic
mapping study. Journal of Systems and Software, 126:1–16, 2017.

[6] A. Parker, D. Spoonhower, J. Mace, B. Sigelman, and R. Isaacs. Dis-
tributed Tracing in Practice: Instrumenting, Analyzing, and Debugging
Microservices. O’Reilly Media, Incorporated, 2020.

[7] OpenTracing Contributors. Opentracing specification. https://
opentracing.io/specification/. Accessed: February 23, 2023.

[8] Abdelwahab Hamou-Lhadj and Timothy C Lethbridge. Compres-
sion techniques to simplify the analysis of large execution traces.
In Proceedings 10th International Workshop on Program Comprehen-
sion, pages 159–168. IEEE, 2002.

[9] Abdelwahab Hamou-Lhadj and Timothy C Lethbridge. Measur-
ing various properties of execution traces to help build better
trace analysis tools. In Proceedings 10th International Conference
on Engineering of Complex Computer Systems, pages 559–568. IEEE,
2005.

[10] Edvin Niemi and Richard Wallin. Visualization of microservices:
Mapping dependencies in a distributed architecture, 2021.

[11] Veronika Dashuber and Michael Philippsen. Trace visualization
within the software city metaphor: Controlled experiments on
program comprehension. Information and Software Technology,
150:106989, 2022.

[12] Andrew Ayers, Richard Schooler, Chris Metcalf, Anant Agarwal,
Junghwan Rhee, and Emmett Witchel. Traceback: First fault diag-
nosis by reconstruction of distributed control flow. In Proceedings of
the 2005 ACM SIGPLAN conference on Programming language design
and implementation, pages 201–212, 2005.

[13] Hao Chen, Kegang Wei, An Li, Tao Wang, and Wenbo Zhang.
Trace-based intelligent fault diagnosis for microservices with deep
learning. In 2021 IEEE 45th Annual Computers, Software, and
Applications Conference (COMPSAC), pages 884–893. IEEE, 2021.

[14] Guangba Yu, Zicheng Huang, and Pengfei Chen. Tracerank:
Abnormal service localization with dis-aggregated end-to-end
tracing data in cloud native systems. Journal of Software: Evolution
and Process, page e2413, 2021.

[15] Richard Li, Min Du, Zheng Wang, Hyunseok Chang, Sarit
Mukherjee, and Eric Eide. Longtale: Toward automatic perfor-
mance anomaly explanation in microservices. In Proceedings of
the 2022 ACM/SPEC on International Conference on Performance
Engineering, pages 5–16, 2022.

[16] Tao Wang, Wenbo Zhang, Jiwei Xu, and Zeyu Gu. Workflow-
aware automatic fault diagnosis for microservice-based applica-
tions with statistics. IEEE Transactions on Network and Service
Management, 17(4):2350–2363, 2020.

[17] Sasho Nedelkoski, Jorge Cardoso, and Odej Kao. Anomaly detec-
tion and classification using distributed tracing and deep learning.
In 2019 19th IEEE/ACM international symposium on cluster, cloud and
grid computing (CCGRID), pages 241–250. IEEE, 2019.

[18] Liang Bao, Qian Li, Peiyao Lu, Jie Lu, Tongxiao Ruan, and
Ke Zhang. Execution anomaly detection in large-scale systems
through console log analysis. Journal of Systems and Software,
143:172–186, 2018.

[19] Animesh Nandi, Atri Mandal, Shubham Atreja, Gargi B Dasgupta,
and Subhrajit Bhattacharya. Anomaly detection using program
control flow graph mining from execution logs. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 215–224, 2016.

[20] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. Deeplog:
Anomaly detection and diagnosis from system logs through deep
learning. In Proceedings of the 2017 ACM SIGSAC conference on
computer and communications security, pages 1285–1298, 2017.

[21] Ping Liu, Haowen Xu, Qianyu Ouyang, Rui Jiao, Zhekang Chen,
Shenglin Zhang, Jiahai Yang, Linlin Mo, Jice Zeng, Wenman Xue,
et al. Unsupervised detection of microservice trace anomalies
through service-level deep bayesian networks. In 2020 IEEE 31st
International Symposium on Software Reliability Engineering (ISSRE),
pages 48–58. IEEE, 2020.

[22] Jasmin Bogatinovski, Sasho Nedelkoski, Jorge Cardoso, and Odej
Kao. Self-supervised anomaly detection from distributed traces.
In 2020 IEEE/ACM 13th International Conference on Utility and Cloud
Computing (UCC), pages 342–347. IEEE, 2020.

[23] Sasho Nedelkoski, Jorge Cardoso, and Odej Kao. Anomaly detec-
tion and classification using distributed tracing and deep learning.
In 2019 19th IEEE/ACM international symposium on cluster, cloud and
grid computing (CCGRID), pages 241–250. IEEE, 2019.

[24] Stephen Jacob, Yuansong Qiao, Yuhang Ye, and Brian Lee. Anoma-
lous distributed traffic: Detecting cyber security attacks amongst
microservices using graph convolutional networks. Computers &
Security, 118:102728, 2022.

[25] Li Wu, Johan Tordsson, Jasmin Bogatinovski, Erik Elmroth, and
Odej Kao. Microdiag: Fine-grained performance diagnosis for
microservice systems. In 2021 IEEE/ACM International Workshop
on Cloud Intelligence (CloudIntelligence), pages 31–36. IEEE, 2021.

[26] Yuan Zuo, Yulei Wu, Geyong Min, Chengqiang Huang, and
Ke Pei. An intelligent anomaly detection scheme for micro-
services architectures with temporal and spatial data analysis.
IEEE Transactions on Cognitive Communications and Networking,
6(2):548–561, 2020.

[27] Areeg Samir, Nabil El Ioini, Ilenia Fronza, Hamid R Barzegar,
Van Thanh Le, and Claus Pahl. Anomaly detection and analy-
sis for reliability management clustered container architectures.
International Journal on Advances in Systems and Measurements,
12(3\&4):247–264, 2020.

[28] Jinjin Lin, Pengfei Chen, and Zibin Zheng. Microscope: Pin-
point performance issues with causal graphs in micro-service
environments. In Claus Pahl, Maja Vukovic, Jianwei Yin, and
Qi Yu, editors, Service-Oriented Computing, pages 3–20, Cham, 2018.
Springer International Publishing.

[29] Zilong He, Pengfei Chen, Xiaoyun Li, Yongfeng Wang, Guangba
Yu, Cailin Chen, Xinrui Li, and Zibin Zheng. A spatiotemporal
deep learning approach for unsupervised anomaly detection in
cloud systems. IEEE Transactions on Neural Networks and Learning
Systems, 2020.

[30] Chuanjia Hou, Tong Jia, Yifan Wu, Ying Li, and Jing Han. Diag-
nosing performance issues in microservices with heterogeneous
data source. In 2021 IEEE Intl Conf on Parallel & Distributed

https://opentracing.io/specification/
https://opentracing.io/specification/

22

Processing with Applications, Big Data & Cloud Computing, Sustain-
able Computing & Communications, Social Computing & Networking
(ISPA/BDCloud/SocialCom/SustainCom), pages 493–500. IEEE, 2021.

[31] Areeg Samir and Claus Pahl. Dla: Detecting and localizing anoma-
lies in containerized microservice architectures using markov
models. In 2019 7th International Conference on Future Internet of
Things and Cloud (FiCloud), pages 205–213. IEEE, 2019.

[32] Iman Kohyarnejadfard, Mahsa Shakeri, and Daniel Aloise. System
performance anomaly detection using tracing data analysis. In
Proceedings of the 2019 5th International Conference on Computer and
Technology Applications, pages 169–173, 2019.

[33] Lun Meng, Feng Ji, Yao Sun, and Tao Wang. Detecting anomalies
in microservices with execution trace comparison. Future Genera-
tion Computer Systems, 116:291–301, 2021.

[34] Peng Xu, Xue Gao, and Zhongbao Zhang. Graph neural network-
based anomaly detection for trace of microservices. Available at
SSRN 4111928, 2022.

[35] Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. Execution
anomaly detection in distributed systems through unstructured
log analysis. In 2009 ninth IEEE international conference on data
mining, pages 149–158. IEEE, 2009.

[36] Sasho Nedelkoski, Jorge Cardoso, and Odej Kao. Anomaly detec-
tion from system tracing data using multimodal deep learning.
In 2019 IEEE 12th International Conference on Cloud Computing
(CLOUD), pages 179–186. IEEE, 2019.

[37] Jóakim von Kistowski, Simon Eismann, Norbert Schmitt, André
Bauer, Johannes Grohmann, and Samuel Kounev. TeaStore: A
Micro-Service Reference Application for Benchmarking, Modeling
and Resource Management Research. In Proceedings of the 26th
IEEE International Symposium on the Modelling, Analysis, and Sim-
ulation of Computer and Telecommunication Systems, MASCOTS ’18,
September 2018.

[38] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and
Dan Ding. Fault analysis and debugging of microservice systems:
Industrial survey, benchmark system, and empirical study. IEEE
Transactions on Software Engineering, 47(2):243–260, 2018.

[39] Bowen Li, Xin Peng, Qilin Xiang, Hanzhang Wang, Tao Xie, Jun
Sun, and Xuanzhe Liu. Enjoy your observability: an industrial
survey of microservice tracing and analysis. Empirical Software
Engineering, 27(1):1–28, 2022.

[40] Md. S. Islam, Wael Khreich, and Abdelwahab Hamou-Lhadj.
Anomaly detection techniques based on kappa-pruned ensembles.
IEEE Transactions on Reliability, 67(1):212–229, 2018.

[41] Wael Khreich, Babak Khosravifar, Abdelwahab Hamou-Lhadj, and
Chamseddine Talhi. An anomaly detection system based on vari-
able n-gram features and one-class svm. Information and Software
Technology, 91:186–197, 2017.

[42] Chenxi Zhang, Xin Peng, Chaofeng Sha, Ke Zhang, Zhenqing Fu,
Xiya Wu, Qingwei Lin, and Dongmei Zhang. Deeptralog: Trace-
log combined microservice anomaly detection through graph-
based deep learning. Conference on Software Engineering (ICSE),
2022.

[43] Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke,
Shoaib Ahmed Siddiqui, Alexander Binder, Emmanuel Müller,
and Marius Kloft. Deep one-class classification. In International
conference on machine learning, pages 4393–4402. PMLR, 2018.

[44] Jasmin Bogatinovski and Sasho Nedelkoski. Multi-source anomaly
detection in distributed it systems. In International Conference on
Service-Oriented Computing, pages 201–213. Springer, 2020.

[45] Dewei Liu, Chuan He, Xin Peng, Fan Lin, Chenxi Zhang, Sheng-
fang Gong, Ziang Li, Jiayu Ou, and Zheshun Wu. Microhecl:
High-efficient root cause localization in large-scale microservice
systems. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP),
pages 338–347. IEEE, 2021.

[46] Min Li, Dingyong Tang, Zepeng Wen, and Yunchang Cheng.
Microservice anomaly detection based on tracing data using semi-
supervised learning. In 2021 4th International Conference on Artificial
Intelligence and Big Data (ICAIBD), pages 38–44. IEEE, 2021.

[47] Li Wu, Johan Tordsson, Erik Elmroth, and Odej Kao. Microrca:
Root cause localization of performance issues in microservices. In
NOMS 2020-2020 IEEE/IFIP Network Operations and Management
Symposium, pages 1–9. IEEE, 2020.

[48] Meng Ma, Jingmin Xu, Yuan Wang, Pengfei Chen, Zonghua
Zhang, and Ping Wang. Automap: Diagnose your microservice-
based web applications automatically. In Proceedings of The Web
Conference 2020, pages 246–258, 2020.

[49] Qixun Zhang, Tong Jia, Zhonghai Wu, Qingxin Wu, Lichun Jia,
Donglei Li, Yuqing Tao, and Yutong Xiao. Fault localization
for microservice applications with system logs and monitoring
metrics. In 2022 7th International Conference on Cloud Computing
and Big Data Analytics (ICCCBDA), pages 149–154. IEEE, 2022.

[50] Tao Wang, Wenbo Zhang, Chunyang Ye, Jun Wei, Hua Zhong, and
Tao Huang. Fd4c: Automatic fault diagnosis framework for web
applications in cloud computing. IEEE Transactions on Systems,
Man, and Cybernetics: Systems, 46(1):61–75, 2015.

[51] Chenyu Zhao, Minghua Ma, Zhenyu Zhong, Shenglin Zhang,
Zhiyuan Tan, Xiao Xiong, LuLu Yu, Jiayi Feng, Yongqian Sun,
Yuzhi Zhang, Dan Pei, Qingwei Lin, and Dongmei Zhang. Ro-
bust multimodal failure detection for microservice systems. In
Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, KDD ’23, page 5639–5649. Association
for Computing Machinery, 2023.

[52] Cheryl Lee, Tianyi Yang, Zhuangbin Chen, Yuxin Su, and
Michael R. Lyu. Eadro: An end-to-end troubleshooting framework
for microservices on multi-source data. In Proceedings of the 45th
International Conference on Software Engineering, ICSE ’23, page
1750–1762. IEEE Press, 2023.

[53] Ivan Beschastnikh, Perry Liu, Albert Xing, Patty Wang, Yuriy
Brun, and Michael D Ernst. Visualizing distributed system exe-
cutions. ACM Transactions on Software Engineering and Methodology
(TOSEM), 29(2):1–38, 2020.

[54] Prometheus: From metrics to insight power your metrics and alert-
ing with the leading open-source monitoring solution. Available
athttps://prometheus.io/. Accessed: 2022-02-04.

[55] Jaeger: open source, end-to-end distributed tracing. Available
athttps://www.jaegertracing.io/. Accessed: 2022-02-04.

[56] istio-simplify observability, traffic management, security, and pol-
icy with the leading service mesh. Available athttps://istio.io/
(2022-02-04).

[57] Kubernetes. Available athttps://kubernetes.io/ (2022-08-09).

[58] Philippe Flajolet, Paolo Sipala, and Jean-Marc Steyaert. Analytic
variations on the common subexpression problem. In International
Colloquium on Automata, Languages, and Programming, pages 220–
234. Springer, 1990.

[59] Gabriel Alejandro Valiente Feruglio. Simple and efficient tree pattern
matching. PhD thesis, Universitat Politècnica de Catalunya, 2000.

[60] Ines Ben Messaoud, Jamel Feki, and Gilles Zurfluh. A first step for
building a document warehouse: Unification of xml documents.
In 2012 Sixth International Conference on Research Challenges in
Information Science (RCIS), pages 1–6. IEEE, 2012.

[61] Richard B Darlington and Andrew F Hayes. Regression Analysis
and Linear Models: Concepts, Applications, and Implementation. New
York, NY: Guilford, 2017.

[62] Sungyoung Lee, Young-Tack Park, Brian J d’Auriol, et al. A novel
feature selection method based on normalized mutual informa-
tion. Applied Intelligence, 37(1):100–120, 2012.

[63] David A Freedman. Statistical models: theory and practice. cam-
bridge university press, 2009.

https://prometheus.io/
https://www.jaegertracing.io/
https://istio.io/
https://kubernetes.io/

23

[64] Miao Jiang, Mohammad A Munawar, Thomas Reidemeister, and
Paul AS Ward. Efficient fault detection and diagnosis in complex
software systems with information-theoretic monitoring. IEEE
Transactions on Dependable and Secure Computing, 8(4):510–522, 2011.

[65] Neeraj Mohan, Ruchi Singla, Priyanka Kaushal, and Seifedine
Kadry. Artificial Intelligence, Machine Learning, and Data Science
Technologies: Future Impact and Well-being for Society 5.0. CRC Press,
2021.

[66] Brad Boehmke and Brandon Greenwell. Hands-on machine learning
with R. Chapman and Hall/CRC, 2019.

[67] Arnaud De Myttenaere, Boris Golden, Bénédicte Le Grand, and
Fabrice Rossi. Mean absolute percentage error for regression
models. Neurocomputing, 192:38–48, 2016.

[68] Eamonn Keogh, Selina Chu, David Hart, and Michael Pazzani. An
online algorithm for segmenting time series. In Proceedings 2001
IEEE international conference on data mining, pages 289–296. IEEE,
2001.

[69] Lin Song, Peter Langfelder, and Steve Horvath. Comparison of co-
expression measures: mutual information, correlation, and model
based indices. BMC bioinformatics, 13(1):1–21, 2012.

[70] Vladimir Vapnik. The support vector method of function estima-
tion. In Nonlinear modeling, pages 55–85. Springer, 1998.

[71] Vladimir Vapnik, Steven Golowich, and Alex Smola. Support
vector method for function approximation, regression estimation
and signal processing. Advances in neural information processing
systems, 9, 1996.

[72] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario
Vento. Subgraph transformations for the inexact matching of
attributed relational graphs. In Graph based representations in pattern
recognition, pages 43–52. Springer, 1998.

[73] Leon Danon, Albert Diaz-Guilera, Jordi Duch, and Alex Arenas.
Comparing community structure identification. Journal of statistical
mechanics: Theory and experiment, 2005(09):P09008, 2005.

[74] scikit learn. scikit-learn: Machine learning in python.
https://scikit-learn.org/stable/index.html, 2023. Accessed: Au-
gust , 2023.

[75] Yu Hui, Sun Wenzhu, Zhou Xiuzhi, Zhu Guotao, and Hu Went-
ing. Heuristic sample reduction based support vector regression
method. In 2016 IEEE International Conference on Mechatronics and
Automation, pages 2065–2069. IEEE, 2016.

[76] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario
Vento. A (sub) graph isomorphism algorithm for matching large
graphs. IEEE transactions on pattern analysis and machine intelligence,
26(10):1367–1372, 2004.

[77] Eugene M Luks. Isomorphism of graphs of bounded valence
can be tested in polynomial time. Journal of computer and system
sciences, 25(1):42–65, 1982.

[78] Apache jmeter. Available athttps://jmeter.apache.org/ (2022-08-
04).

[79] Álvaro Brandón, Marc Solé, Alberto Huélamo, David Solans,
Marı́a S Pérez, and Victor Muntés-Mulero. Graph-based root
cause analysis for service-oriented and microservice architectures.
Journal of Systems and Software, 159:110432, 2020.

[80] Jacob Yerushalmy. Statistical problems in assessing methods of
medical diagnosis, with special reference to x-ray techniques.
Public Health Reports (1896-1970), pages 1432–1449, 1947.

[81] H. Gzyl, S. Mayoral, and E. Gomes-Gonçalves. Loss Data Analysis:
The Maximum Entropy Approach. De Gruyter STEM. De Gruyter,
2023.

[82] Reginald Smith. A mutual information approach to calculating
nonlinearity. Stat, 4(1):291–303, 2015.

[83] Jan Beirlant, Edward J Dudewicz, László Györfi, Edward C
Van der Meulen, et al. Nonparametric entropy estimation: An
overview. International Journal of Mathematical and Statistical Sci-
ences, 6(1):17–39, 1997.

[84] Heidar Pirzadeh, Sara Shanian, Abdelwahab Hamou-Lhadj, Luay
Alawneh, and Arya Sharifee. Stratified sampling of execution
traces: Execution phases serving as strata. Science of Computer
Programming, 78(8):1099–1118, 2013.

https://jmeter.apache.org/

	Introduction
	Related Work
	Detecting anomalies using analysis of execution traces
	 Detecting anomalies using analysis of profiling metrics
	Detecting anomalies using analysis of execution sequences and profiling metrics

	The ServiceAnomaly Approach
	Collecting Data
	Constructing the Context Propagation Graph
	Annotating the Context Propagation Graph
	Building the profiling metric matrix
	Characterizing the relationships between metrics

	Detecting Anomalies Using the Annotated CPG
	Analyzing ServiceAnomaly usage process and complexity

	Experimental Setup
	Target Systems
	Data collection
	Building the baseline annotated CPGs
	Evaluation Metrics

	Results
	RQ1. How accurate is ServiceAnomaly at detecting anomalies?
	RQ2. How can the ServiceAnomaly approach be used to analyze anomalies?
	Scenario 1: TrainTicket anomaly trace
	Scenario 2: TeaStore anomaly trace

	RQ3. What are the limitations of ServiceAnomaly in detecting anomalies?

	Threats to Validity
	Reproduction Package
	Conclusion
	References

