
AML: An Accuracy Metric Model for Effective Evaluation of Log
Parsing Techniques
Issam Sedkia, Abdelwahab Hamou-Lhadja and Otmane Ait-Mohameda

aConcordia University, Montreal, Canada

A R T I C L E I N F O
Keywords:
Log Parsing
Log Analytics
Software Logging
AIOps
Software Maintenance and Evolution

A B S T R A C T
Logs are essential for the maintenance of large software systems. Software engineers often analyze
logs for debugging, root cause analysis, and anomaly detection tasks. Logs, however, are partly
structured, making the extraction of useful information from massive log files a challenging task.
Recently, many log parsing techniques have been proposed to automatically extract log templates
from unstructured log files. These parsers, however, are evaluated using different accuracy metrics. In
this paper, we show that these metrics have several drawbacks, making it challenging to understand
the strengths and limitations of existing parsers. To address this, we propose a novel accuracy metric,
called AML (Accuracy Metric for Log Parsing). AML is a robust accuracy metric that is inspired by
research in the field of remote sensing. It is based on measuring omission and commission errors. We
use AML to assess the accuracy of 14 log parsing tools applied to the parsing of 16 log datasets. We
also show how AML compares to existing accuracy metrics. Our findings demonstrate that AML
is a promising accuracy metric for log parsing compared to alternative solutions, which enables
a comprehensive evaluation of log parsing tools to help better decision-making in selecting and
improving log parsing techniques.

1. Introduction
Logging is a common programming practice that devel-

opers use to reason about the runtime aspects of a software
system. Logs are generated by inserting logging statements
into the source code. Figure 1 shows an example of a logging
statement taken from the Hadoop Distributed File System
(HDFS). The figure also shows the generated log event
after executing this statement. A log event typically has
two sections, namely, the log header and the log message.
The log header contains information about the execution
context, including the timestamp (e.g., 071203 283349 in
the log event of Figure 1), the process ID (e.g., 127), the
log level (e.g. INFO) and the logged component of the sys-
tem (e.g., dfs.DataNodeResponder). The log message contains
static text (e.g., Received Block, of size, from), and dynamic
variables (e.g., blk_-1680, 911, 10.234.11.201). Because

Logging Statement: LOG.info("Received Block"+

block_id + "of size" + block_size + "from" + ip)

Log Event: 071203 283349 127 INFO

dfs.DataNodeResponder: Received block blk_-1680

of size 911 from 10.234.11.201

Log Template: Received Block * of Size * from *

Figure 1: An example of a logging statement, a log event, and
the corresponding log template

logs can sometimes be the only data available to analyze a
∗Corresponding author: Abdelwahab Hamou-Lhadj

i_sedki@live.concordia.ca (I. Sedki);
wahab.hamou-lhadj@concordia.ca (A. Hamou-Lhadj);
otmane.aitmohamed@concordia.ca (O. Ait-Mohamed)

ORCID(s):

software system’s behaviour, they are essential for a variety
of software engineering tasks such as anomaly detection and
debugging [5, 7, 8, 9], understanding system faults [5, 6, 7],
performance and quality analysis [12, 13, 6], operational
intelligence [8, 9, 12, 10, 14], failure prediction[9, 11], data
leaks and security issues [60], and AI for IT Operations
(AIOps) [15, 8]. Logs, however, are partially structured
[5, 11], making the extraction of useful information from
massive log files a challenging task [16, 17]. Log parsing
techniques have been proposed to automatically extract log
templates (i.e., log structures) from unstructured log files.
For the log event example in Figure 1, the extracted log
template is Received Block * of Size * from *, where
the symbol * indicates the position of a dynamic parameter.
Note that the log header structure is not included, since a
log header usually follows the same format within a log
file. Parsing a log header can be done with a simple regular
expression. This is not the case for log messages. A typical
log file can have thousands of log templates [54, 55].
1.1. Problem Statement

Many log parsing techniques and tools have been pro-
posed to automatically parse log events1, such as LogSig
[36], LogCluster [15], AEL [31], Drain [30], IpLom [28, 23],
Lenma [34], LFA [25], LKE [35], LogMine [27], Molfi [29],
Shiso [33], SLCT [24], Spell [37], Logram [26], and recently
ULP [47]. These tools use a range of methods including
heuristics, mining frequent patterns, natural language pro-
cessing, clustering, or a mixture of many of these. However,
these parsers have been evaluated using different accuracy
metrics including Grouping Accuracy [21], Parsing Ac-
curacy [26], and Template Accuracy [38]. These metrics
have several drawbacks. For example, parsing accuracy is

1In the remaining parts of the paper, we use the terms log messages
and log events interchangeably.

<I. Sedki, A. Hamou-Lhadj, O. Ait-Mohamed>: Preprint submitted to Elsevier Page 1 of 22

<AML: An Accuracy Metric Model for Effective Evaluation of Log Parsing Techniques>

sensitive to the number of log events associated with log
templates. A high parsing accuracy may not reflect the
ability of a parser to detect every template of the log file.
We discuss in more detail existing accuracy metrics and their
limitations in the related work section. Without a reliable and
consistent evaluation mechanism, it is difficult to understand
the strengths and limitations of log parsing approaches, such
as why these tools perform well on some log files but poorly
on others. In addition, the absence of a reliable evaluation
approach makes it hard to understand how well log parsing
approaches perform relative to alternative solutions, thus
hindering meaningful progress. Widespread adoption of log
parsing tools will not be possible until convincing empirical
evaluations are obtained using a sound accuracy measure-
ment approach.
1.2. Motivation

In the domain of log parsing, consistent accuracy is
not just about achieving high percentages; it is also about
ensuring the reliability and robustness of the measurement
methodologies. A significant concern arises when these
accuracy measurements fail to articulate precisely how a log
event is determined as correctly parsed. Often, such deter-
minations are made manually, introducing potential biases
and inconsistencies. This lack of standardized assessment
criteria poses challenges when comparing different tools or
methodologies. Even marginal inaccuracies in parsing, as
slight as 4% of the total, can have profound implications on
performance, potentially leading to repercussions magnified
by an entire order of magnitude [22].

The difficulties in measuring the accuracy of log pars-
ing techniques are underscored by the significant variations
observed in evaluations of DRAIN, a widely used log pars-
ing technique. The disparities in reported accuracy are not
trivial, particularly as some assessments indicate an effec-
tiveness gap exceeding 4%. For instance, when evaluating
the parsing of the Proxifier system logs, there is a notable
discrepancy in results. He et al. [30] and Dai et al. [26]
cite commendable effectiveness reflected by 99% and 93%
respectively, yet the same assessments from Zhu et al. [21]
and Sedki et al. [47] paint a contrasting picture, indicating
substantial room for improvement with accuracy scores of
53% and 38%, respectively. These variances highlight the
complexity and challenges associated with obtaining consis-
tent accuracy measurements in log parsing.
1.3. Contributions of the Paper

In this paper, we introduce AML (Accuracy Metric for
Log Parsing), a reliable and yet simple accuracy metric
for log parsing. AML can be used to assess the accuracy
of a log parser at both the template and log file levels.
Inspired by the concept of thematic accuracy in the area of
remote sensing ([2], [19], [4]), AML is designed to measure
omission and commission errors of a parser. At the template
level, omission errors occur when a parser fails to detect
log events associated with the template. Commission errors
occur when the parser detects excessive log events. Omission
and commission errors can be computed at the level of

the entire log file by measuring the number of missing or
excessive templates in the log file. The best parser would be
the one that minimizes errors of commission and omission
at both the template and log file levels. AML is agnostic
to the distribution of log events across templates, a known
problem with the parsing accuracy metric that is widely used
in the literature. Moreover, AML and its components can be
used to analyze the sources of parsing faults. This can help
practitioners dig deeper into each template to understand the
root causes of parsing errors, hence performing a critical
evaluation of the parser’s performance.

We use AML to measure the accuracy of 14 log parsers
when applied to parse 16 log file datasets from the LogHub
benchmark [41]. We also examine how AML compares to
other accuracy metrics. Our results reveal that AML is a
powerful and simple accuracy metric for log parsing that
not only provides adequate insight into the performance of
a log parser as opposed to alternative accuracy metrics but
can also guide root cause analysis of parsing errors with the
ultimate objective of improving parsing tools.
1.4. Paper Organization

This paper is structured as follows: In Section 2, we
provide an overview of existing log parsing accuracy metrics
and discuss their limitations. Section 3 delves into the details
of the novel AML, explaining its methodology and capabil-
ities. In Section 4, we apply AML to assess the accuracy of
14 log parsing tools, presenting our methodology. Section
5 presents the results of our study and provides an in-depth
analysis of the outcomes. Our insights into future research
directions and potential improvements are discussed in Sec-
tion 6. Finally, we summarize our findings and contributions
in Section 10, concluding the paper.

2. Related work
Log parsing is a prerequisite for log analysis tasks. In

recent years, log analysis has received considerable atten-
tion from researchers and practitioners. El-Masri et al. [53]
conducted an extensive review of 17 log parsing tools. The
authors classified these tools using a quality model that fo-
cuses on the following aspects: coverage, delimiter indepen-
dence, efficiency, system knowledge independence, execu-
tion mode, parameter tuning effort required, and scalability.
Zhu et al. [21] presented another comprehensive survey of
log parsing tools. The authors compared the performance
of 13 parsing tools using grouping accuracy. However, both
surveys did not compare the various accuracy metrics used
by the log parsers.
More recently, Khan et al. [38] evaluates and compares tech-
niques for log message template identification in real-world
logs. The study proposes three guidelines: using appropriate
accuracy metrics, performing oracle template correction,
and analyzing incorrect templates. The analysis of incor-
rectly identified templates provides insights on the limita-
tions of individual techniques and offers potential directions
for improvement by identifying the types of incorrectly

<I. Sedki, A. Hamou-Lhadj, O. Ait-Mohamed>: Preprint submitted to Elsevier Page 2 of 22

<AML: An Accuracy Metric Model for Effective Evaluation of Log Parsing Techniques>

Table 1
Legend and Running example/Ground truth

Event Ground-truth
E1 T3
E2 T2
E3 T3
E4 T1
E5 T2
E6 T3
E7 T1
E8 T2
E9 T1
E10 T2

Table 2
Scenario used to calculate GA

Event Parsing Result
E1 T3
E2 T4
E3 T3
E4 T5
E5 T4
E6 T5
E7 T4
E8 T3
E9 T3
E10 T3

identified templates such as over-generalized (OG), under-
generalized (UG), and mixed (MX). Similar to [38], our
study identifies critical gaps in the existing log parsing
accuracy metrics. However, we extend these observations by
offering a metric that not only identifies inaccuracies but also
provides a methodological basis for addressing them, which
was a limitation in the previous studies. The remaining part
of the related work section is a review of existing log parsing
accuracy metrics, namely Grouping Accuracy, Parsing Ac-
curacy, Edit Distance, and Template Accuracy. To illustrate
how these metrics work, we use the fictive ground truth log
file shown in Table 1. This file consists of ten log events (E1,
E2, ..., E10), which are parsed into three event templates (T1,
T2, and T3). The ideal parser would be one that recognizes
these templates and only these templates, as well as the log
events and only the log events associated with each template.

2.1. Grouping Accuracy
Grouping accuracy (GA) is used mainly by tools such as

Drain [30] and AEL [31] that treat the log parsing problem
as a clustering problem. GA evaluates the accuracy of log
template identification, conceptualized as a clustering pro-
cess where log messages pertaining to different events are
grouped into distinct templates. GA assesses whether the log
messages grouped under a common identified template by
the parsing tool match the grouping defined in the ground
truth. Specifically, GA is quantified as the proportion of
log messages that are "correctly parsed" relative to the total

Table 3
Scenario used to calculate PA

Event Parsing Result
E1 T5
E2 T2
E3 T1
E4 T1
E5 T3
E6 T3
E7 T1
E8 T2
E9 T1
E10 T2

Table 4
Scenario used to calculate PTA/RTA

Event Parsing Result
E1 T3
E2 T4
E3 T3
E4 T1
E5 T2
E6 T3
E7 T1
E8 T5
E9 T1
E10 T6

number of log messages in the dataset. A log message
is deemed "correctly parsed" under the GA metric if it
is grouped with other log messages in a manner that is
consistent with the ground truth clustering. In practice, GA
provides an indication of how well a log parsing tool can
identify and group log messages into correct templates as
defined by the ground truth, without necessarily considering
the exact textual match or structure of the templates them-
selves. It focuses on the effective grouping of log messages
into coherent clusters or templates, reflecting the tool’s
ability to accurately segregate logs based on their under-
lying events.GA focus on the number of clusters a parser
can recover that are fully identical to the templates in the
ground truth. GA is measured as shown in Equation (1).
The metric consider only those groups that exactly match
their corresponding ground truth groups in terms of content.
Specifically, the formula ensures that each log message in an
identified group is counted only if it forms a part of a group
that exactly corresponds to a ground truth group:

𝐺𝐴 =
∑𝑛

𝑖=1 correctly_grouped_messages𝑖
total_number_log_messages (1)

Where correctly_grouped_messages𝑖 represents the num-
ber of log messages in the 𝑖-th group that are grouped exactly
as per the corresponding ground truth template.

For example, assume that parsing the fictive log file used
as ground truth using a given log parser results in three
clusters T4, T5, and T3, which contain the events shown in

<I. Sedki, A. Hamou-Lhadj, O. Ait-Mohamed>: Preprint submitted to Elsevier Page 3 of 22

<AML: An Accuracy Metric Model for Effective Evaluation of Log Parsing Techniques>

Table 2. From this table, we can see that the only template
that was recovered is T3 by recognizing events E1 and E3.
In this case, 𝐺𝐴 = 1 ∗ 5∕10 = 50%. where 1 is the
number of correctly identified log templates, 5 is the number
of log events in cluster T3, and 10 is the total number of
log events. Note that when using GA, it does not matter if
E8, E9, and E10 were mistakenly detected as part of T3.
The metric considers a template to be recovered as soon as
it recognizes at least one of its log events. This metric has
many drawbacks. First, it does not account for log events
that are properly parsed but it just happens that the approach
was not able to group these events in the right cluster, i.e.,
with other similar events (like E6, which should be with the
group of log events associated with template T3). Another
issue is related to the fact that this metric evaluates the
parser without checking if the logs are associated with the
correct log template (for example, E8, which is supposed to
be associated with T2).
2.2. Parsing Accuracy

Several parsers such as Spell [37], Logpunk [39] define
the accuracy of a parser as the ratio of the total number of log
events that match the string representation of the template
in the ground truth word by word (K) to the total number
of events in the ground truth (N). This is known as Parsing
Accuracy (PA) and is calculated as shown in Equation (2).

𝑃𝐴 = 𝐾
𝑁

(2)

The outcome of parsing a log event is considered correct
if and only if it corresponds to the same template of log
events as the ground truth. For example, assume that the
result of parsing the log events shown in the fictive log file
is the one shown in Table 3. We obtain 𝑃𝐴 = 7∕10 = 70%,
because three log events, namely E1, E3, and E5, were not
parsed correctly. PA is simple to compute but tends to be
sensitive to the number of events in the log, which can be
misleading when there are many repetitive events. hence, PA
can be very highly sensitive to the distribution of log events
across templates. In addition, PA does not show if the log
parsing method generates more templates than the ones in
the ground truth. Parsing Accuracy (PA) treats incorrectly
adding extra templates or log entries and failing to recognize
required templates or log entries similarly. This approach
can obscure the specific weaknesses of a parser by not
adequately distinguishing between fundamentally different
types of errors. Consider a scenario where the ground truth
for log messages specifies grouping into two templates:

• Template T1: Contains messages A, B, and C.
• Template T2: Contains messages D and E.

Assume two different outcomes from two parsers:
1. Parser 1 Outcome:

• Correctly identifies T1 with messages A, B, C.

• Fails to identify T2, omitting messages D and E
entirely (omission), and parse them as T1.

2. Parser 2 Outcome:
• Correctly identifies T1 with messages A, B, C.
• Incorrectly groups messages D and E into a

new, non-existent Template T3 instead of T2
(commission).

In this example, both parsers fail to handle all the log
messages as per the ground truth:Parser 1 omits messages D
and E entirely, failing to include them in any group. Parser
2 misplaces messages D and E into an incorrect template,
creating an unnecessary grouping. PA would compute the
accuracy for both scenarios by considering the proportion
of correctly parsed messages to the total messages:

𝑃𝐴 =
Number of Correctly Parsed Messages

Total Number of Messages (3)

Despite different types of errors, PA yields the same score
for both scenarios. PA does not differentiate between the
nature of the errors—omission versus commission. Both
types of errors reduce the PA score, but the metric does
not indicate whether the error was due to missing data or
due to additional, unnecessary data. This equal treatment
of fundamentally different errors could obscure important
distinctions in a parser’s performance. For systems where
missing data is more critical than additional data , or vice
versa, PA might not provide enough information to accu-
rately assess the log parser’s suitability or reliability.
2.3. Edit Distance

The edit distance metric assesses the alignment capa-
bility of a parsing method with respect to matching log
templates to their respective log messages in a dataset [61].
The primary goal of this metric is to minimize the difference
between the parsed and the ground truth log templates.
The edit distance is the minimum number of operations
(insertions, deletions, or substitutions) required to transform
one string into another within a log event. Given two log
lines log1 and log2 of lengths 𝑚 and 𝑛 respectively, the edit
distance 𝑑 between them is defined as:

𝑑(log1, log2) =
⎧

⎪

⎨

⎪

⎩

1 + min{𝑑(log1[1..𝑚], log2[1..𝑛 − 1]),
𝑑(log1[1..𝑚 − 1], log2[1..𝑛]),
𝑑(log1[1..𝑚 − 1], log2[1..𝑛 − 1])}

𝑑(log1, log2) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑚 if 𝑛 = 0,
𝑛 if 𝑚 = 0,
𝑑(log1[1..𝑚 − 1], log2[1..𝑛 − 1]), if
log1[𝑚] = log2[𝑛]

For log1: "ERR: File not" and log2: "ERR: File found",
the computation can be broken down as:

𝑑("ERR: File not", "ERR: File found") =
1 + 𝑑("ERR: File no", "ERR: File foun")

<I. Sedki, A. Hamou-Lhadj, O. Ait-Mohamed>: Preprint submitted to Elsevier Page 4 of 22

<AML: An Accuracy Metric Model for Effective Evaluation of Log Parsing Techniques>

𝑑("ERR: File no", "ERR: File foun") =
1 + 𝑑("ERR: File n", "ERR: File fou")

𝑑("ERR: File n", "ERR: File fou") =
1 + 𝑑("ERR: File ", "ERR: File fo")

𝑑("ERR: File ", "ERR: File fo") =
2 + 𝑑("ERR: File ", "ERR: File ")

Further computations would result in a distance of 0
since the rest of the strings are identical. Thus, the edit
distance between "ERR: File not" and "ERR: File found"
is 3. This metric can be invaluable in template-based log
matching, providing a flexible measure that can accommo-
date slight deviations from templates due to variable parts
in log messages. However, the computational efficiency of
employing the edit distance in this context is a critical
consideration. For a log message of length 𝑚 and a template
of length 𝑙, the traditional dynamic programming approach
to compute the edit distance requires 𝑂(𝑚 × 𝑙) time.

Given the extensive volume of log messages generated
in real-world systems and the potential diversity of log
templates, this computational cost can become significant.
For example, if a system produces thousands of log entries
per second and uses hundreds of templates, real-time or near-
real-time analysis could be challenging.

The authors haven’t clearly specified a strategy to up-
scale this metric from individual log-template matches to
a comprehensive file-level evaluation. A straightforward
proposition could be averaging the edit distances across
all log-template pairs in a file. However, this simplistic
aggregation might not capture the nuanced variations and
dependencies within logs, especially if there are a multitude
of templates involved and the distribution is not balanced.
Moreover, such an averaging approach would compound the
computational cost even more.
2.4. Template Accuracy

Recently, Khan et al. [38] proposed a new metric, called
Template Accuracy. In this novel metric, a template is cor-
rectly identified from log events if and only if it is token-
for-token identical to the one found in the ground truth.
The identified template must be the same as the template
associated with the messages for which it was identified.
The authors introduced two Template Accuracy metrics:
Precision-TA (PTA) and Recall-TA (RTA), which are based
on standard information retrieval metrics precision and re-
call. PTA is defined as the ratio of correctly identified
templates (O) to the total number of identified templates (L),
which indicates the precision of the parsing technique at the
template level and is calculated as follows:

𝑃𝑇𝐴 = 𝑂
𝐿

(4)

Recall of the parsing approach at the template level is in-
dicated by RTA, which is defined as the ratio of correctly
identified templates (O) over the total number of templates

in the ground truth (N).

𝑅𝑇𝐴 = 𝑂
𝑁

(5)

Consider the result of the parsing shown in Table 4. The
number of correctly identified templates is calculated by
looking at the correct associations made by the parser, here
T1 and T3, because the log messages were parsed correctly
and associated with the right log template. This means that
the number of correctly identified templates (O) is 2. The
total number of identified templates (L) is 6 (T1, T3, T4, T5,
and T6), and the total number of templates in the ground
truth (N) is 3 (T1, T2, and T3).

𝑃𝑇𝐴 = 2∕6 = 33%. (6)

𝑅𝑇𝐴 = 2∕3 = 66% (7)
The template accuracy metric does not consider the number
of events correctly associated with each template. In fact,
this number is not included in the calculation of the tem-
plate’s accuracy to avoid introducing any biases. This metric
provides little information about why the accuracy is low or
which log events were wrongly parsed.
2.5. Discussion

As we showed in this section, existing log parsing accu-
racy metrics have many shortcomings that affect the eval-
uation results of log parsing tools. GA does not consider
whether log events are correctly parsed or not. It only looks
at the overall number of templates that were identified. PA
is sensitive to the distribution of log events across templates,
which can be inflated due to repetitions of the same log
events. This metric is also biased by the presence of predom-
inant templates (templates with a considerably large number
of events).

The focus of the edit distance is limited to the pairing of
log templates, overlooking broader patterns within the entire
log files. This narrow scope creates ambiguity in aggregating
results for evaluating the accuracy of parsing an entire log
file. Furthermore, the computational cost, especially for
massive log outputs and varied templates, can be substantial.
For these reasons, we decided to exclude the edit distance
when comparing AML to existing log parsing accuracy
metrics (see Section 5.4).

PTA and RTA take a different approach by focusing on
the number of templates that are correctly identified. They do
not provide sufficient insight as to the number of log events
that are correctly parsed. These metrics are also not easy to
interpret. One has to decide whether to favor precision or
recall to assess the accuracy of a parser. In addition, none of
these metrics can help with root cause analysis of potential
parsing errors.

AML addresses these shortcomings by providing a more
comprehensive approach for evaluating log parsing accu-
racy. Unlike PA, GA, RTA, and PTA, AML measures the

<I. Sedki, A. Hamou-Lhadj, O. Ait-Mohamed>: Preprint submitted to Elsevier Page 5 of 22

<AML: An Accuracy Metric Model for Effective Evaluation of Log Parsing Techniques>

number of errors at both the template and file levels. AML is
not sensitive to the distribution of log events across templates
either. Moreover, AML can be used by developers to analyze
the sources of parsing errors.

3. AML: The Proposed Accuracy Metric for
Log Parsing
In this section, we present AML to assess the accuracy

of a log parser. AML is inspired by the concept of thematic
accuracy for remote sensing applications [2]. Remote sens-
ing is a specialized field of study that uses satellites and
cameras to produce maps and images of the Earth, enabling
us to understand various phenomena such as environmen-
tal changes, and patterns of land areas, among others [2].
Remote sensing techniques resort mainly to classification
algorithms to detect areas of land cover and represent them
as maps. Assessing the accuracy of the produced maps is
not a straightforward task and has been the topic of many
studies in the remote sensing literature [2]. A typical map
contains different categories of data. For example, a climatic
map can show the temperature, cloud cover, rain precipita-
tion, relative humidity, etc. A robust accuracy metric should
measure not only the overall quality of the map but also
the individual quality of each category it comprises. This
multi-level classification problem is difficult to assess us-
ing traditional classification measures such as the F1-score,
which focuses on one level of classification. Aggregating
multiple category-level F1 scores through micro-averaging
or similar data analytic methods in order to assess the overall
quality of the entire map may result in a metric that is
complex to interpret because of the different types of data
used in each category. The introduction of the AML metric is
prompted by the complexities inherent in evaluating multi-
level classification systems, such as log parsing, which are
not adequately addressed by traditional metrics like F1-
score, precision, and recall. Traditional metrics typically
assess performance at a singular classification level and may
not effectively capture the nuances of hierarchical or multi-
category systems. In log parsing, we often deal with multiple
categories and sub-categories of logs, each with potentially
differing levels of importance and distinct characteristics.
Traditional metrics such as F1-score, which combine pre-
cision and recall in a harmonic mean, focus primarily on a
single level of classification accuracy. They do not account
for the impact of correct or incorrect classifications across
different log categories in a way that reflects their overall
importance or contribution to system performance. AML
provides a nuanced view by integrating performance across
multiple levels of log classification. A key distinction of
AML lies in its treatment of excessive templates. Tradi-
tional metrics like precision and recall do not penalize the
presence of excessive, unnecessary templates generated by
a log parser. AML, however, incorporates a penalty for
such inaccuracies, which is critical for assessing the overall
quality and usability of parsed logs. Excessive templates can
lead to inefficiencies and increased computational costs in

downstream processing, making their consideration essen-
tial in the metric. AML is designed to handle the variability
and complexity of data seen in different categories of logs. It
adjusts its evaluation based on the nature of the data in each
category, something that micro-averaged F1 scores might
oversimplify, leading to a metric that can be difficult to
interpret in a multi-faceted analysis.

In addition, because maps are approximate representa-
tions of the real world, they are expected to contain errors.
Map producers and users are more interested in knowing
how accurate a map is by measuring the errors it contains [4].
To achieve this, many thematic accuracy metrics rely on the
concepts of omission and commission errors. An omission
error occurs when a map omits an element of a category.
A commission error happens when the map contains more
data than the actual category. Omission and commission
errors can be computed at the level of specific categories
or at the level of the entire map. Errors or omissions and
commissions at the map level occur when the algorithm
either excludes certain categories or detects an excessive
number of categories. The best remote sensing algorithm is
the one that minimizes omission and commission errors at
all levels of assessment.

By analogy, we can think of a log file as a map and event
templates as categories of the map. We can then compute the
number of omissions and commissions at both the template
and log file levels. AML uses a simple mechanism to aggre-
gate errors of omission and commission at both levels into a
single and intuitive metric. To explain how AML works, let
us consider the example in Table 5. In this table, we show an
example of a ground truth log file where each log event E1
to E12 is associated with a log template T1 to T4. We also
show the results of a fictive parser when parsing the log file.
In this example, the parser made the following errors:

• Omission errors at the template level: The parser did
not detect E7 and E8 in Template 𝑇2, and did not detect
event E10 in 𝑇3.

• Commission errors at the template level: The parser
wrongly assigned E7 and E8 to T3, which are two
excessive events.

• Omission errors at the file level: The parser omitted to
detect the entire template 𝑇4.

• Commission errors at the file level: The parser de-
tected an excessive template 𝑇5, which did not match
any template in the ground truth.

Although both T1 and T5 templates show an ErrO of 0,
their contexts differ significantly. T1 is an ideal scenario
where the parser perfectly matches the ground truth. T5,
termed as an ’excessive template’, shows no ground truth
events, and thus, by definition, there cannot be any omission;
however, it falsely introduces events, hence the ErrC of 1.
These examples highlight that ErrO alone does not capture
the presence of invalid log events. Although T1 and T4 have
both ErrC at 0, T1 demonstrates a scenario with perfect pars-
ing (no errors), while T4 shows a complete failure to parse

<I. Sedki, A. Hamou-Lhadj, O. Ait-Mohamed>: Preprint submitted to Elsevier Page 6 of 22

<AML: An Accuracy Metric Model for Effective Evaluation of Log Parsing Techniques>

Table 5
Ground truth and parsing outcome

Template Ground Truth Log Events Parser’s Outcome
T1 E1, E2, E3 E1, E2, E3
T2 E4, E5, E6, E7, E8 E4, E5, E6
T3 E9, E10 E7, E8, E9
T4 E11, E12 -

T5 (excessive template) - E10, E11, E12

Table 6
Computing errors of omission and commission for the example
in Table 5

Template 𝐸𝑟𝑟𝑂 𝐸𝑟𝑟𝐶 𝐼𝐶𝑆𝐼
T1 0 0 1
T2 0.4 0 0.6
T3 0.5 0.66 -0.16
T4 1 0 0
T5 0 1 0

any events despite their presence in the ground truth. T4’s
critical issue is captured by ErrO (1), which indicates a total
omission. This observation points out that neither ErrO nor
ErrC individually provides complete error information and
underscores the necessity of using these metrics together,
complemented by additional measures such as the ICSI
shown in the table, to provide a more nuanced understanding
of parser performance.
3.1. Measuring Errors of Omission and

Commission
Errors of omission, 𝐸𝑟𝑟𝑂𝑇 𝑖, for a template 𝑇𝑖 is the ratio

of the number of events of 𝑇𝑖 that the parser failed to detect
as part of 𝑇𝑖 to the total number of events in 𝑇𝑖. Equation 8
is used to calculate 𝐸𝑟𝑟𝑂𝑇 𝑖 where:

• False Negatives (FN) represent events from 𝑇𝑖 that
were detected by the parser as belonging to other
templates.

• True Positives (TP) represent events from 𝑇𝑖 that were
correctly detected by the parser.

𝐸𝑟𝑟𝑂𝑇 𝑖 =

⎧

⎪

⎨

⎪

⎩

𝐹𝑁
𝑇𝑃+𝐹𝑁 𝑇𝑃 + 𝐹𝑁 ≠ 0

0 𝑇𝑃 + 𝐹𝑁 = 0
(8)

Errors of omissions are calculated for all the templates that
are in the ground truth and for any excessive template that
the parser has mistakenly identified (e.g., 𝑇5 in the example
of Table 5). ErrO for an excessive template equals zero. This
is the special case where (TP+FN = 0).

𝐸𝑟𝑟𝑂𝑇 𝑖 varies from 0 to 1. A value that is equal to 0
means that the parser detected all the events of the template
𝑇𝑖 based on the ground truth or that the template 𝑇𝑖 is an
excessive template. A value of 𝐸𝑟𝑟𝑂𝑇 𝑖 equal to 1 means that
the parser did not detect any events of the template 𝑇𝑖. Table
6 shows the results of omission errors for templates 𝑇1 to 𝑇5.

𝐸𝑟𝑟𝑂𝑇 1 = 0∕3 = 0 because the parser detected all events
of 𝑇1 (i.e., no errors of omission). 𝐸𝑟𝑟𝑂𝑇 2 = 2∕5 = 0.4
because the parser failed to detect E7 and E8. etc. For the
special case of Template 𝑇5, 𝐸𝑟𝑟𝑂𝑇 5 = 0 because it is an
excessive template.

The error of commission is the ratio of the number of
events that were identified mistakenly as belonging to the
template 𝑇𝑖 (i.e., false positives) to the total number of events
that were identified as belonging to template 𝑇𝑖 (the sum
of true positives and false positives). A commission error
ratio 𝐸𝑟𝑟𝐶𝑇 𝑖 for template 𝑇𝑖 is calculated using Equation
9. Following the same logic as for errors of commission,
𝐸𝑟𝑟𝐶𝑇 𝑖 = 0 means that the parser did not detect any
excessive log events.𝐸𝑟𝑟𝐶𝑇 𝑖 that is strictly less than 1 means
that the parser has detected excessive log events.𝐸𝑟𝑟𝐶𝑇 𝑖 = 1
indicates an excessive template altogether. For the special
case where a ground truth template was not detected by the
parser (e.g., 𝑇4) we assign 𝐸𝑟𝑟𝐶𝑇 𝑖 = 0.

𝐸𝑟𝑟𝐶𝑇 𝑖 =

⎧

⎪

⎨

⎪

⎩

𝐹𝑃
𝑇𝑃+𝐹𝑃 𝑇𝑃 + 𝐹𝑃 ≠ 0

0 𝑇𝑃 + 𝐹𝑃 = 0
(9)

For the example in Table 5, 𝐸𝑟𝑟𝐶𝑇 1 = 0∕3 = 0 because
the parser did not detect any excessive events. The same
applies to 𝑇2. 𝐸𝑟𝑟𝐶𝑇 3 = 2∕3 = 0.66 because out of the
three events detected by the parser as associated to 𝑇3, two
of these (i.e., E7 and E8) do not belong to 𝑇3. 𝐸𝑟𝑟𝐶𝑇 3 = 0
because 𝑇3 was not at all detected. Finally, all events of 𝑇5 are
considered commission errors since the entire 𝑇5 template is
an excessive template.
3.2. Combining Errors of Omission and

Commission
To assess the accuracy of a parser in identifying each

template 𝑇𝑖 we need to combine commission and omission
errors of 𝑇𝑖 into one equation. One way to achieve this
would be to use the harmonic mean,2 similar to the way
the popular F1-score is computed. The problem with the
harmonic mean is that it is sensitive to extreme values of any
of the ratios that are involved in the calculation. Consider
for example a parser that results in ErrO = 50% and ErrC
= 50% for a given template, and another parser that results
in ErrO = 90% and ErrC = 10% for the same template. The

2The harmonic mean H of n ratios 𝑥1 to 𝑥𝑛 is computed as 𝐻 =
𝑛∕(1∕𝑥1 + 1∕𝑥2 + ...1∕𝑥𝑛)

<I. Sedki, A. Hamou-Lhadj, O. Ait-Mohamed>: Preprint submitted to Elsevier Page 7 of 22

<AML: An Accuracy Metric Model for Effective Evaluation of Log Parsing Techniques>

harmonic mean will disproportionately penalize the second
parser (H=0.18) when compared to the first one (H=0.5).
Another issue with the harmonic mean is that it only applies
when all the ratios are different from zero, which is not the
case for ErrC and ErrO. Both ratios can be equal to zero to
account for situations where the parser omits to detect some
templates or detects excessive templates in the log file as
discussed in the previous section.

Our approach for combining errors of omission and com-
mission is based on the Individual Classification Success
Index (ICSI) that was proposed by Koukoulas et al. [19] in
the field of remote sensing. ICSI is a composite index that
combines linearly ErrO and ErrC ratios. Composite indices
are used in other fields [1] to combine multiple ratios in order
to assess the overall quality of the observed phenomenon.
Examples include the heat index that combines temperature
and relative humidity, stock exchange indices for investment
forecasting, and so on.

ICSI of Template 𝑇𝑖 is calculated using Equation 10.
AML aggregates the ICSIs of all templates to measure the
overall performance of a parser as we will show in the next
subsection.

𝐼𝐶𝑆𝐼𝑇 𝑖 = 1 −
(

𝐸𝑟𝑟𝑂𝑇 𝑖 + 𝐸𝑟𝑟𝐶𝑇 𝑖
) (10)

𝐼𝐶𝑆𝐼𝑇 𝑖 varies from -1 to 1. A value of 𝐼𝐶𝑆𝐼𝑇 𝑖 equal
to 1 indicates best accuracy in the sense that the parser was
able to detect the events and only the events of 𝑇𝑖. A value
of 𝐼𝐶𝑆𝐼𝑇 𝑖 that converges to -1 indicates poor performance
of the parser for template 𝑇𝑖 and reflects the situation where
both omission and commission error ratios converge to 1.
When applied to the above example, both parsers will result
in the same ICSI value (ICSI = 1 - (0.5 + 0.5) = 1 - (0.9 +
0.1) = 0).

It should be noted that, in this paper, we assign the
same weight to ErrO and ErrC when computing ICSI. In
practice, a developer may opt to assign varying weights
based on the significance assigned to each type of error. This
can help developers select parsers depending on the type of
errors they make. For example, one may decide to choose
parsers that make fewer omission errors than commission
errors or vice versa. Further studies should be conducted to
investigate the need for a weighted ICSI.
3.3. Calculating AML

The AML metric is calculated using Equation 11, where
N represents the total number of templates in the ground
truth, and D represents the number of detected templates.
max(N, D) is used to account for the situation where D is su-
perior to N, meaning that the parser detected more templates
than needed (i.e., a commission error at the log file level).

𝐴𝑀𝐿 =
∑max(𝑁,𝐷)

1 𝐼𝐶𝑆𝐼𝑖
max(𝑁,𝐷)

(11)

The AML score ranges from -1 to 1. A value of 1 indi-
cates that the parser was able to parse all the log events and

assign them to the appropriate templates, as well as detect
the templates and only the expected templates. When the
AML score is negative, it means that the parser performed
poorly, and the negative value indicates the extent of the poor
performance. For example, an AML score of -0.5 means
that the parser has detected some expected templates and log
events, but it has also missed some templates and/or detected
some incorrect log templates and the extent of these errors is
relatively significant. Note that if the ICSI values are mixed
(some positive, some negative) such that their sum equals
zero, then the overall AML value will be zero. This can
happen when the parser has both omission and commission
errors across multiple templates, and the errors cancel each
other out in terms of their impact on ICSI. Essentially, this
means that the parser has correctly classified some templates
while making errors in others, resulting in a net neutral
impact on the overall AML score.

𝐴𝑀𝐿 = 1 + 0.6 − 0.16 + 0 + 0
5

= 0.35 (12)
One strength of AML is that not only it considers errors

of omission and commission at the individual template level,
but also takes into account the overall accuracy of the parser
in detecting the correct number of templates (as we saw in
the example with the log template 𝑇5). This means that AML
can identify situations where the parser may detect too many
templates (commission errors at the file level) or too few
templates (omission errors at the file level), and it penalizes
such errors by reducing the overall AML score.

4. Study Setup
4.1. Log Parsing Tools

There are many log parsing tools that have been proposed
in the last decade. Two comprehensive surveys of these tools
are provided by Zhu et al.[21] and EL-Masri et al. [53].
In this paper, we evaluate the accuracy of 14 log parsing
tools, which include the 12 best-performing tools that were
surveyed by Zhu et al.[21] and EL-Masri et al. [53]. We add
to this list Logram [26] and ULP [47], which were recently
released. We used the same parameter settings described by
Zhu et al. [21] and the authors of Logram [26] and ULP
[47]. Note that many of these tools did not compile due to
bugs and the use of outdated libraries. We had to fix and
update many of them. Table 7 lists the tools used in this
study and their main characteristics, with reference to the
key publications that describe the tool. It should be noted
that this list of parsers is not exhaustive and that we may
have missed to include some parsers. We do not see this as
a significant threat to validity because we believe that the
selected parsers are representative of the state of the art.
4.2. Datasets

We evaluate the selected log parsing tools using 16 log
datasets from the LogHub benchmark [41], which is avail-
able online3. The datasets consist of a collection of log files,

3https://zenodo.org/record/3227177#.YUqmXtNPFRE

<I. Sedki, A. Hamou-Lhadj, O. Ait-Mohamed>: Preprint submitted to Elsevier Page 8 of 22

<AML: An Accuracy Metric Model for Effective Evaluation of Log Parsing Techniques>

Table 7
The log parser used in this study

Parser Key characteristic Reference
Lenma Computes similarity to templates of existing clusters. [34]
Shiso Measure resemblance of new templates to clusters. [33]
LKE Distance-based clustering technique [35]
LogSig Identifies log events using a set of signatures [36]
Molfi Parsing as a multiple objective optimization problem [29]
ULP Pattern recognition technique based on text similar-

ity
[47]

SLCT Mining line patterns and outlier events from textual
event logs

[24]

Logmine Uses MapReduce to abstract heterogeneous logs [27]
LogCluster Extracts terms from the logs into tuples [15]
Spell Relies on the longest common sequence [37]
Drain Abstracts logs into event using a tree [30]
AEL Relies on textual similarity to group logs together [31]
IpLom Employs a heuristic-based hierarchical clustering [28, 23]
Logram Leverages n-gram dictionaries [26]

generated from various systems, including Apache, HPC,
and HDFS as shown in Table 8. They are used extensively
in the literature to compare the performance of log parsers.

Each log dataset from the LogHub benchmark used in
this study comes with a subset of 2,000 log events that have
been parsed manually. The log templates were identified and
each log event out of the 2,000 events was associated with
a specific log template. This ground truth dataset is meant
for researchers to test their Log parsers and has been used
by many studies (e.g., Drain [30], Logram [26], ULP [47],
Khan et al.[38]). Table 9 shows examples of templates that
the logHub creators have manually extracted from a subset
of the 2,000 log events of the Apache system.

When measuring the accuracy of various log parsing
techniques, we noticed some recurring parsing errors, re-
gardless of the tool that was used. An in-depth analysis of
the log datasets revealed that the labeling of the ground
truth contained minor errors. For example, in the HDFS log
file, the block id variable is divided into two sections. Thus,
the log event Received block blk_11234 of size 910 from

/10.250.14.224 is assigned to the log template Received Block

blk_<*> of size <*> from <*> instead of Received Block

<*> of size <*> from <*>. This is because blk_11234 is
a dynamic variable. Therefore, we remove the blk_ string
from the ground truth file. We made similar corrections to
other files when the errors were straightforward. Khan et
al. in [38] noticed the same problem. They proposed an
automated approach based on a set of heuristics that uses
regular expressions to correct the datasets. However, their
approach is heavily based on log parsing to automatically fix
the dataset, which can lead to errors and introduce serious
internal threats to validity.
4.3. Research questions

We evaluate the accuracy of 14 log parsing tools using
AML. The objective is to answer five research questions:

• RQ1: How do existing log parsing tools perform using
AML?

The answer to RQ1 provides insights into the performance of
log parsing tools using AML. We also examine the omission
and commission errors made by these parsers.

• RQ2: How do dynamic variables and log message
density impact the performance of log parsing tools?

RQ2 investigates the impact of dynamic variables and log
message density on log parsing tool performance. Under-
standing these factors can help improve log parsing in di-
verse environments.

• RQ3: How does the performance of log parsing tools
vary across different log datasets, and which datasets
pose unique challenges?

RQ3 explores the variation in log parsing tool performance
across different datasets. Identifying datasets with unique
challenges can guide tool selection for specific applications.

• RQ4: How do these tools perform using AML com-
pared to other accuracy metrics?

RQ4 compares log parsing tool performance using AML
against other accuracy metrics. This analysis highlights the
advantages of AML in providing a more reliable view of a
parser’s effectiveness.

• RQ5: How can we use AML to analyze the sources of
parsing errors?

RQ5 focuses on utilizing AML to identify the sources of
parsing errors. By pinpointing these sources, we gain valu-
able insights into the issues behind parsing errors, which
may be challenging to determine using traditional metrics.

<I. Sedki, A. Hamou-Lhadj, O. Ait-Mohamed>: Preprint submitted to Elsevier Page 9 of 22

<AML: An Accuracy Metric Model for Effective Evaluation of Log Parsing Techniques>

Table 8
Log datasets from LogHub benchmark used in this study

System Description Number of Templates
Distributed systems
HDFS Hadoop distributed file system log 14
Hadoop Hadoop mapreduce job log 114
Spark Spark job log 36
Zookeeper ZooKeeper service log 50
OpenStack OpenStack infrastructure log 43
Supercomputers
BGL Blue Gene/L supercomputer log 120
HPC High performance cluster log 46
Thunderbird Thunderbird supercomputer log 149
Operating systems
Windows Windows event log 50
Linux Linux system log 118
Mac Mac OS log 341
Mobile systems
Android Android framework log 166
HealthApp Health app log 75
Server applications
Apache Apache web server error log 6
OpenSSH OpenSSH server log 27
Standalone software logs
Proxifier software log Software logging tool 8

Table 9
An example of templates from the Apache log file ground truth

ID Template
1 jk2_init() Found child * in scoreboard slot *

2 workerEnv.init() ok *

3 mod_jk child workerEnv in error state *

4 [client *] Directory index forbidden by rule: *

5 jk2_init() Can’t find child * in scoreboard

6 mod_jk child init * *

5. Results
5.1. RQ1.How do existing log parsing tools

perform using AML?
Table 10 shows the average AML accuracy of the 14

log parsing tools used in this study when applied to the 16
datasets of the LogHub benchmark. Note that all the results
of this study are available online.4

We observe that ULP consistently performs better than
the other log parsers achieving the highest average AML
score of 35.72% across all log parsers, followed by Drain
(26.12%), SHISO (25.10%) and AEL (24.51%). These tools
are better than all tools in identifying the right templates and
reducing the number of log events that are assigned to the
wrong templates. Logcluster, Molfi and Logram achieve the
lowest average AML (less than 10%).

4The detailed results of this study are available on
https://zenodo.org/record/7872794#.ZEsHxezMJhE

Table 10 also shows the average error ratios of omission
and commission, as well as the total number of templates
for all dataset generated by each tool. Note that the expected
total number of templates for all datasets is 1,363. Logclus-
ter with an average omission error ratio equal to 19.26%,
Lenma (25.96%), ULP (26.40%) and Spell (29.54%) have the
lowest omission error ratios, while LKE (46.65%), Logram
(47.86%), Logsig (51.96%), and SLCT (55.61%) have the
highest omission error ratios (see also Figure 2 for a ranking
of log parsers based on their omission error ratio). Except for
Logram, these tools (i.e. SLCT, LogSig, and LKE) rely on
clustering techniques, which may explain the high omission
error ratio. Clustering-based approaches aim to group log
events that are similar into clusters that do not necessarily
match the templates in the ground truth. As for Logram,
one of the main limitations that results in a high omission
error ratio consists of the way the tool deals with log events
that appear only once. For these events, the whole template
is considered by Logram to be composed of only dynamic
variables. Another major issue with the use of n-grams in
Logram is that an n-gram sequence may be considered a
dynamic variable and hence removed from the final pattern.

Take, for example, the following log event: Resolved

04DN8IQ.microsoft.com to /default-rack. Because the 2-
gram
Resolved04DN8IQ.microsoft.com has only 2 occurrences, whereas
the 2-gram to /default-rack, which appears more fre-
quently, the template generated for this log event is not valid:

<I. Sedki, A. Hamou-Lhadj, O. Ait-Mohamed>: Preprint submitted to Elsevier Page 10 of 22

<AML: An Accuracy Metric Model for Effective Evaluation of Log Parsing Techniques>

Table 10
Results of parsing the 16 datasets of the LogHub benchmark in terms of average AML, omission, and commission, and the total
number of templates generated.

Log parser Omission(%) Commission(%) AML score(%) Number of Templates
ULP 26.40 38.09 35.72 1591
Drain 36.21 35.52 26.12 1920
SHISO 35.64 39.18 25.10 1483
AEL 34.41 41.14 24.51 1593
Iplom 38.37 36.66 23.52 1212
Spell 29.54 49.86 22.46 2238
Lenma 25.96 54.05 19.97 3171
LKE 46.65 36.50 16.85 2561
Logmine 29.60 53.67 16.76 3375
SLCT 55.61 28.80 15.57 777
Logsig 51.96 34.85 14.52 916
Molfi 35.72 54.59 9.70 3083
Logram 47.86 42.36 8.57 1889
Logcluster 19.26 74.99 5.68 4553

Lo
gc

lu
st

er

Le
nm

a

U
LP

Sp
el

l

Lo
gm

in
e

A
E
L

SH
IS

O

M
ol

fi

D
ra

in

Ip
lo

m

LK
E

Lo
gr

am

Lo
gs

ig

SL
C
T

0

10

20

30

40

50

60

O
m

is
si
on

(%
)

Figure 2: Ranking of log parsers by omission error ratio

* * to /default-rack. The expected template is resolved *

to *.
The ranking of the log parsing tools using the commis-

sion error ratio is shown in Figure 3. LogCluster (average
commission error ratio = 74.99%) is by far the technique
with the highest commission error ratio followed by Molfi
(54.59%), Lenma (54.05%), and Logmine (53.67%).
5.2. RQ2. How do dynamic variables and log

message density impact the performance of
log parsing tools?

To understand the performance of log parsing tools
using AML, we decided to investigate how dynamic vari-
ables and message density impact their performance. As

a motivating example, after we analyzed manually more
than 100 examples of log events that were misclassified
by LogCluster, We found that the high commission error
ratio is mainly due to the way the tool handles dynamic
variables. We found that LogCluster does not always re-
produce the exact position of the dynamic variables as that
of the ground truth. For example, LogCluster parses the
HDFS log event "Deleting block blk_1781953582842324563

file /mnt/blk_1781953582842324563" as Deleting block file

*{1,1} as opposed to "Deleting block * file *, which is the
correct template. The dynamic variable blk_1781953582842324563

lost its position as the third item in the log structure. We
also found a situation where the tool completely omits
dynamic variables. For example, the log event "BLOCK*

<I. Sedki, A. Hamou-Lhadj, O. Ait-Mohamed>: Preprint submitted to Elsevier Page 11 of 22

<AML: An Accuracy Metric Model for Effective Evaluation of Log Parsing Techniques>

SL
C
T

Lo
gs

ig

D
ra

in

LK
E

Ip
lo

m

U
LP

SH
IS

O

A
E
L

Lo
gr

am

Sp
el

l

Lo
gm

in
e

Le
nm

a

M
ol

fi

Lo
gc

lu
st

er

0

10

20

30

40

50

60

70

80

C
om

m
is
si
on

(%
)

Figure 3: Ranking of the log parsers based on the average commission error ratio

NameSystem.delete: blk_2568309208894455676 is added to

invalidSet of

10.251.31.160:50010" is parsed by LogCluster as " BLOCK*

NameSystem.delete : is added to invalidSet of", ignoring
the dynamic variables
blk_2568309208894455676 and 10.251.31.160:50010. Dynamic
variables can play an important role in debugging tasks, as
shown by He et al. [22]. A log parser should be able to
clearly recognize all the dynamic variables that are logged.
Lenma, the tool with the third worst average commission
error ratio, seems to suffer from the same design problems
as LogCluster. We found many cases where Lenma, which
also relies on clustering techniques, such as LogCluster,
completely removes dynamic variables from the generated
templates. For example, the Apache log event jk2_init()

Found child 6062 in scoreboard slot 9 is parsed as
jk2_init() Found child in scoreboard slot by Lenma. Both
the dynamic variables 6063 and 9 were ignored.

Table 11 and 12 show the AML scores from a system’s
standpoint. Systems like HDFS, Android, and Zookeeper
generally enjoy higher average AML values, indicating of-
ten better AML performance with all the tested parsing
techniques. While most techniques show variability in their
efficiency across systems, some display remarkable con-
sistency. For instance, Apache demonstrates a consistent
value of 0.3333 across the majority of techniques (9 parsing
techniques out of 14). Linux exhibits high variability in
results, suggesting its behavior is highly dependent on the

technique applied. On the contrary, systems like Apache
maintain consistent outcomes across methods, indicating
lesser sensitivity to the applied technique. to investigate the
inner characteristics of specific systems and how they may
influence the parsing results. Specifically, we looked at how
the density of dynamic variables within a log file can impact
the AML score. Specifically, we define the density of dy-
namic variables as the ratio of dynamic variables to the total
number of tokens in a log message. As illustrated in Table
13, systems manifest diverse densities of dynamic variables.
Notably, high-density systems like HealthApp or Linux tend
to exhibit lower AML scores in comparison to systems with
lesser density such as Apache or Android. While density is a
significant factor in influencing AML scores, it’s paramount
to consider it in conjunction with other variables such as the
number of templates and their distribution or frequency. As
detailed in Table 8, the template count and its distribution
play a pivotal role in parsing complexity, indicating that
density should not be assessed in isolation.

In evaluating the performance of log parsers, it is crucial
to understand how varying densities of dynamic variables
within log messages influence the accuracy of parsing, as
measured by AML. The Pearson correlation coefficient is
employed to quantify the linear relationship between the
density of dynamic variables and the AML scores. This
statistical method is chosen due to its effectiveness in mea-
suring the degree of a linear relationship between two con-
tinuous variables. This metric is particularly relevant in

<I. Sedki, A. Hamou-Lhadj, O. Ait-Mohamed>: Preprint submitted to Elsevier Page 12 of 22

<AML: An Accuracy Metric Model for Effective Evaluation of Log Parsing Techniques>

Table 11
Log Parsing Techniques for Systems (HDFS to OpenSSH)

System HDFS Apache Android Windows Mac OpenStk Linux Openssh
ULP 0.5681 0.3333 0.4633 0.3866 0.4435 0.2800 -0.2802 0.0690
Drain 0.7055 0.3333 0.6605 0.3919 0.1709 0.0088 -0.2478 0.2439
SHISO 0.7500 0.3333 0.4313 0.2790 0.1455 0.1111 0.2274 0.1735
AEL 0.6663 0.3333 0.4976 0.3151 0.1356 0.1868 -0.1948 0.1731
Iplom 0.7100 0.3300 0.0000 0.2700 0.1400 0.2100 -0.1900 0.1600
Spell 0.7500 0.3333 0.7294 0.3312 0.1264 0.0123 -0.1964 0.2000
Lenma 0.7055 0.3333 0.6508 0.2976 0.1246 0.1155 -0.2550 0.1860
LogMine 0.6875 0.3333 0.3083 0.3247 0.1671 0.0097 0.2473 0.0107
LKE 0.7500 0.3333 0.7563 0.2877 0.0000 0.0242 -0.0767 0.0239
SLCT 0.2166 0.1429 0.7000 0.0506 0.0870 0.2679 0.0310 0.1260
Logsig 0.2760 0.1820 0.3450 0.1590 0.0720 0.2470 0.0400 0.1700
Molfi 0.0000 0.0000 0.1703 0.1770 0.0676 0.0018 0.2275 0.0612
Logram 0.0141 0.0009 0.3290 0.0806 0.1133 0.0000 0.0303 0.1172
Logcluster 0.0056 0.0000 0.1786 0.2414 0.0846 0.0023 -0.1906 0.0282
Average 0.4861 0.2373 0.4443 0.2566 0.1342 0.1055 -0.0591 0.1245

Table 12
Log Parsing Techniques for Systems (Thunderbird to Proxifier)

System Thunder. Spark Hadoop Zookeeper BGL HealthApp HPC Proxifier
ULP 0.4103 0.3077 0.1684 0.6508 0.2542 0.7500 0.4774 0.4330
Drain 0.1871 0.2500 0.1361 0.3913 0.1443 0.0871 0.3433 0.3730
SHISO 0.1718 0.2241 0.1194 0.2333 0.0947 0.1681 0.0917 0.4612
AEL 0.1605 0.2100 0.1423 0.3100 0.1200 0.1500 0.2800 0.4400
Iplom 0.2200 0.2400 0.1300 0.4100 0.2000 0.1200 0.3700 0.4200
Spell 0.2350 0.2550 0.1150 0.3750 0.1550 0.1750 0.3600 0.4350
Lenma 0.1800 0.2300 0.1100 0.3200 0.1400 0.1300 0.3500 0.4150
LogMine 0.1950 0.2150 0.1000 0.3400 0.1300 0.1100 0.3400 0.4000
LKE 0.1700 0.2000 0.0900 0.3000 0.1200 0.1000 0.3300 0.3850
SLCT 0.1500 0.1800 0.0800 0.2800 0.1100 0.0900 0.3200 0.3700
Logsig 0.1650 0.1950 0.0700 0.2600 0.1000 0.0850 0.3100 0.3600
Molfi 0.1450 0.1750 0.0600 0.2400 0.0900 0.0800 0.3000 0.3500
Logram 0.1350 0.1650 0.0550 0.2300 0.0850 0.0750 0.2900 0.3400
LogCluster 0.1250 0.1550 0.0500 0.2200 0.0800 0.0700 0.2800 0.3300
Average 0.1780 0.2085 0.1006 0.3200 0.1270 0.1207 0.3400 0.4000

our context because it allows us to understand whether a
higher density of dynamic variables tends to complicate or
facilitate the log parsing process, thereby influencing the
AML scores. For instance, a significant negative correlation
would suggest that as the complexity of logs increases (with
more dynamic variables), the parsing accuracy decreases,
posing challenges in parsing effectiveness. The correlation
analysis highlights the varying impacts of dynamic vari-
able density on the performance of different log parsers. It
shows that the Average AML scores across parsers have a
correlation of approximately 0.036 with density, indicating
a very weak positive relationship. However, the complete
analysis reflects a mix of weak positive and negative corre-
lations between the dynamic variable density and the AML
scores across different log parsers. ULP has a correlation of
approximately -0.386 with dynamic variable density while
Drain shows a correlation of approximately -0.120 with vari-
ables density. SHISO show a slight positive correlation with
density indicating that as the density of dynamic variables

increases, the AML scores might slightly increase as well.
AEL, and Iplom show negative correlations. This suggests
that for these parsers, higher density of dynamic variables
could be associated with lower AML scores.
Log Parsers like ULP and SHISO that show a positive corre-
lation likely have robust mechanisms for template matching
that can effectively distinguish and correctly classify these
variables. Parsers such as AEL might struggle with overfit-
ting where the parser fits too closely to specific log patterns
observed in training, failing to generalize well to new or
slightly different log entries. Alternatively, these parsers
might misclassify increased dynamic content as anomalies
or errors.

In our analysis of log parsing inaccuracies impacting
AML scores, certain dynamic variables were identified as
major contributors to errors. The most frequent issues in-
clude effectively delineating log elements. Additionally, a
significant number of errors are due to difficulties in pars-
ing special characters. Misinterpretations of key-value pairs

<I. Sedki, A. Hamou-Lhadj, O. Ait-Mohamed>: Preprint submitted to Elsevier Page 13 of 22

<AML: An Accuracy Metric Model for Effective Evaluation of Log Parsing Techniques>

Figure 4: Accuracy distribution of log parsers across the datasets

Table 13
Density of dynamic variables in various systems

System Dynamic variables density(%)
Thunderbird 12.47
Windows 15.75
Zookeeper 16.02
Android 16.70
Apache 16.95
HPC 17.76
SSH 18.60
Openstack 22.56
Hadoop 23.05
HDFS 23.18
Spark 25.32
Linux 26.93
Proxifier 29.74
Healthapp 44.25

using colons as delimiters also pose significant challenges.
Conversely, certain log attributes like MAC addresses, and
URLs show less impact on AML score. This suggests that
while certain formats consistently challenge parsing accu-
racy, others are managed more effectively, possibly due to
parsers being optimized for these specific types.

5.3. RQ3.How does the performance of log parsing
tools vary across different log datasets, and
which datasets pose unique challenges?

Furthermore, we examined how the accuracy of the tools
varies depending on each dataset. Figure 4 shows, using a
boxplot, how the parsers compare to each other using AML
as a measure of accuracy. The median of ULP is higher than
that of all other tools, followed by Drain, SHISO, and AEL.
LogCluster, Logram, Molfi, LogSig, and SLCT perform the
worst across the datasets. In addition, we observe that the
interquartile ranges (the width of the boxes) of box plots
of all the tools show relatively high variability of the data,
meaning that the accuracy of a log parser depends greatly
on the structure of the log file itself. We attribute this to
the lack of logging standards, which causes log files to vary
in their content and structures, making it difficult to have a
tool that can identify the structure of different log files in a
consistent manner. Figure 5 provides a different perspective
by examining the variability of the AML accuracy of the
tools in parsing each dataset. In this figure, we focus only on
the four most performing tools, namely ULP, Drain, SHISO,
and AEL. The table shows that the results of parsing HPC,
Linux, and Zookeeper logs vary significantly compared to
the other datasets. This may suggest that these log files are
among the hardest to parse.

<I. Sedki, A. Hamou-Lhadj, O. Ait-Mohamed>: Preprint submitted to Elsevier Page 14 of 22

<AML: An Accuracy Metric Model for Effective Evaluation of Log Parsing Techniques>

Figure 5: Variability analysis of ULP, Drain, SHISO, and AEL by dataset

5.4. RQ4. How do these tools perform using AML
compared to other accuracy metrics?

Table 14 shows the results of comparing the accuracy
of the tools using AML, Grouping Accuracy (GA), Parsing
Accuracy (PA), Precision Template Accuracy (PTA), and
Recall Template Accuracy (RTA). As discussed in Section
2.5, we excluded the edit distance in this analysis. As we
can see in the table, using GA, the accuracy of 7 out of the
14 tools (50%) is greater than 70% and 4 other tools have
an accuracy of more than 60%. This is highly optimistic,
considering the fact that the same tools perform poorly using
the other metrics. For example, the accuracy of LogCluster
using GA is 62.34%, while the accuracy of the same tool is
14.70%, 10.07%, 21.97%, and 5.68% using PA, PTA, RTA,
and AML respectively. Similar results can be observed for
Molfi and Logram. This is due to the fact that GA is primarily
concerned with the way the log events are grouped together
independently of the correctness of the log templates, which
explains the major discrepancy between the measures. The
difference between AML and PTA, as well as AML and RTA
cannot be clearly deduced from the table. Statistical tests are
needed to measure the magnitude of the difference between
AML and these other metrics. We use Cliff’s 𝛿 effect size
[57] to assess the magnitude of the difference between the
results obtained by AML and those of GA, PA, PTA, and

Table 14
Comparison of the performance of tools using AML and other
accuracy metrics.(%)

Parser AML GA PA PTA RTA
ULP 35.72 73.34 54.62 29.69 33.08
Drain 26.12 86.54 55.44 28.65 30.55
Shiso 25.10 64.82 24.53 16.75 17.08
AEL 24.51 75.94 52.56 25.99 28.13
Iplom 23.52 75.89 39.34 15.83 15.41
Spell 22.46 79.26 54.22 16.46 18.56
Lenma 19.97 73.33 29.18 16.47 23.38
LKE 16.85 60.18 9.97 11.23 12.72
Logmine 16.76 70.39 29.69 15.53 20.17
SLCT 15.57 59.28 45.71 21.84 16.04
LogSig 14.52 50.39 16.58 14.76 10.22
Molfi 9.70 60.10 10.85 9.07 11.20
Logram 8.57 55.47 25.74 13.04 14.46
LogCluster 5.68 62.34 14.70 10.07 21.97

RTA. Cliff’s test is a non-parametric effect size measure
that quantifies the magnitude of dominance as the difference
between two groups X and Y [57]. Cliff’s 𝛿 ranges from –1 to
+1. A Cliff’s 𝛿 that is equal to -1 means that all observations
in Y are larger than all observations in X. It is equal to +1 if
all observations in X are larger than the observations in Y. A

<I. Sedki, A. Hamou-Lhadj, O. Ait-Mohamed>: Preprint submitted to Elsevier Page 15 of 22

<AML: An Accuracy Metric Model for Effective Evaluation of Log Parsing Techniques>

𝛿 value that converges to 0 indicates that the distribution of
the two observations is identical.

Cliff’s delta, denoted as 𝛿, is given by the following
equation:

𝛿 =
∑

𝑖,𝑗[𝑥𝑖 > 𝑥𝑗] − [𝑥𝑖 < 𝑥𝑗]
𝑚 × 𝑛

(13)
where the two distributions are of size 𝑚 and 𝑛 with items 𝑥𝑖and 𝑥𝑗 , respectively. Here, [⋅] is the Iverson bracket, which
is 1 when the contents are true and 0 when false [3].

The Cliff’s 𝛿 effect size can be grouped into ranges.
The effect is considered small for 0.147 ≤ |𝛿| < 0.33,
moderate for 0.33 ≤ |𝛿| < 0.474, or large for |𝛿| ≥
0.474 [57]. The analysis of the effect sizes using Cliff’s 𝛿
between AML and GA, PA, PTA, and RTA has revealed
varying degrees of differences. The effect size between AML
and GA was found to be large (Cliff’s 𝛿 = 1.00), indicating
a significant difference between the two accuracy metrics.
Similarly, for PA, the effect size was also large (Cliff’s 𝛿 =
0.76). On the other hand, the effect size between AML and
PTA was moderate (Cliff’s 𝛿 = 0.43), suggesting a noticeable
difference between the two metrics. The effect size between
AML and RTA was large (Cliff’s 𝛿 = 0.51), showing a
significant difference between the two metrics.

Additional statistical tests are needed to measure the
magnitude of the difference between AML and these other
metrics. We use the Spearman Correlation Coefficient [57],
which is a non-parametric correlation coefficient calculated
using Equation 14 where 𝑑𝑖 represents the difference be-
tween the two ranks of each observation and n represents the
number of observations.

𝑅𝑠 = 1 −
6 ∗

∑𝑛
1 𝑑

2
𝑖

𝑛(𝑛2 − 1)
(14)

Spearman’s correlation coefficient ranges from -1 to +1. A
positive correlation means that as one variable increases, the
other variable also tends to increase. A negative correlation
means that as one variable increases, the other tends to
decrease. A strong correlation is reached when the value of
the Spearman coefficient is close to -1 or +1. Values close to
zero indicate weak to no correlation. The correlation analysis
revealed that while AML has moderate to strong correlations
with existing metrics, it also shows distinct behavior in
certain scenarios. For instance, the strong correlation with
PTA suggests that AML is robust in evaluating the pre-
cision of template-based parsing. However, AML’s unique
approach to evaluating log parsing performance also means
it can capture aspects that other metrics do not, especially in
complex parsing scenarios where traditional metrics might
align but still miss critical errors.This is highlighted by its
varying degrees of correlation across the board. The table
below presents the correlation coefficients between various
metrics and AML: The interpretation of correlation coeffi-
cients reveals nuanced insights into the relationship between
AML and other metrics. The moderate to strong correlation
of 0.675 with GA suggests that while both GA and AML
are related, AML extends beyond GA’s scope by capturing

Table 15
Correlation of different metrics with AML

Metric Correlation with AML

GA 0.675
PA 0.721
PTA 0.799
RTA 0.646

additional aspects of log parser performance, particularly
those not covered by simple grouping accuracy. Similarly, a
strong correlation of 0.721 with PA indicates that AML not
only aligns well with traditional parsing accuracy but also
adds depth by addressing errors in template generation that
PA might overlook. Moreover, the strongest correlation of
0.799 with PTA underscores that both AML and PTA assess
similar characteristics of log parsers effectively. Although
the substantial correlations are strong, they do not indicate
perfect alignment, AML is particularly effective in complex
parsing environments where both the presence and correct-
ness of parsed templates are crucial. AML addresses the
limitations of PA, which is notably sensitive to the frequency
of templates. Additionally, unlike the PTA and RTA, which
focus solely on the number of correctly identified templates,
AML extends its assessment to ensure accurate parsing
within these templates and across the entire log file.
5.5. RQ5. How can we use AML to analyze the

sources of parsing errors?
One of the main advantages of AML over existing ac-

curacy metrics is that it can be used to guide practitioners
in understanding the root causes of parsing errors. This is
made possible by the ability to see how a tool identifies each
template by going into the level of log events associated
with the template. This debugging mode is not possible
using other metrics. To illustrate this feature, we take as an
example the results obtained with AEL when applied to the
Android log dataset. Table 16 shows sample templates from
the Android dataset and the results of error ratios of omission
and commission, as well as ICSI. A software developer
may choose to dig deeper into one of these templates to
understand the root causes of parsing errors. For example,
for Template T22, of the three expected log events in the
ground truth shown below with ids 39, 1267, 1377, AEL
was able to correctly detect only two log events (an omission
error ratio of 0.33). A tool that uses AML can generate
a report that points out the parsing faults. In the case of
template T22, AEL did not properly parse the log event 1267.
The reason behind this is due to the presence of -1 dynamic
value, which confused the parser.

• 39: WindowManager: Application requested orienta-
tion 1, got rotation 0 which has compatible metrics

• 1267: WindowManager: Application requested ori-
entation -1 , got rotation 0 which has compatible
metrics

<I. Sedki, A. Hamou-Lhadj, O. Ait-Mohamed>: Preprint submitted to Elsevier Page 16 of 22

<AML: An Accuracy Metric Model for Effective Evaluation of Log Parsing Techniques>

Table 16
An example of parsing results of AEL when applied to Android logs. ELE stands for Expected Log Events and DLE stands for
Detected Log Events

Template
ID

Identified Template ELE DLE Omission Commission ICSI

T22 Application requested ori-
entation *, got rotation
* which has compatible
metrics

3 2 0.33 0.00 0.67

T23 applyOptionsLocked: Un-
known animationType=*

2 2 0.00 0.00 1.00

T25 Bad activity token: *@* 1 1 0.00 0.00 1.00
T26 battery changed plugged-

Type: *
1 1 0.00 0.00 1.00

T27 cancelAutohide 15 15 0.00 0.00 1.00
T28 cancelNotification,

cancelNotificationLocked,
callingUid = *,callingPid
= *

2 2 0.00 0.00 1.00

T29 cancelNotification,index:* 23 3 0.87 0.00 0.13

• 1377: WindowManager: Application requested orien-
tation 1, got rotation 0 which has compatible metrics

Using AML with its components, omission errors, com-
mission errors, and ICSI, we analyzed hundreds of log events
to understand the root causes of most parsing issues. We’ve
identified some prevalent challenges that often culminate in
parsing errors. These errors inevitably impact the overall
accuracy of the log parsers as shown in Table 17.

One of the pivotal challenges is the inherent variability
in the data types in logs. Tokens can exhibit diverse formats,
making it a complex task for log parsers to accurately dif-
ferentiate between dynamic and static parts. This variability
is often manifested in elements like IPv4 and IPv6 tokens,
domain names, and universally unique identifiers (UUIDs).
Each presents a unique set of characteristics that requires
tailored parsing strategies.

Adding to the complexity are the intricate structures
within the log events. Nested or non-linear formats introduce
an additional layer of complexity, making the extraction of
relevant information a non-trivial task. Multi-level nested
tokens illustrate such complex structures that demand ad-
vanced parsing techniques capable of unraveling the embed-
ded information accurately.

Furthermore, the distinction and separation of dynamic
and static tokens in log events are pivotal factors that signif-
icantly influence the accuracy of log parsing. Each system
might adopt a diverse set of techniques for this separation,
employing delimiters such as spaces, commas, or others
to distinguish between different types of tokens. It’s worth
noting that many log parsing techniques, including those
cataloged in Loghub benchmark [41] 5 often necessitate the
specification of these delimiters during the pre-processing
phase to streamline the parsing process.

5https://zenodo.org/record/3227177#.YUqmXtNPFRE

Such diversity in separation methods underscores the
necessity for log parsers that are not only robust but also
versatile. The ability to adapt to and efficiently process a
variety of separation techniques becomes instrumental in
enhancing the precision and reliability of log parsing.

Log events are also characterized by their unusualness -
the presence of unexpected tokens, formats, or patterns. Such
elements can trigger parsing errors if not aptly managed.
Instances like non-standard MAC address formats or URLs
with query parameters are cases in point, requiring specific
attention to ensure accurate parsing.

6. Discussion on improving log parsing
This study provided us with important insights on how

to improve log parsing. We discuss key lessons learned in
this section as well as opportunities on improvement of the
AML metric. The ultimate objective is to encourage the
adoption of AML for effectiveness evaluation of log parsing
techniques.
6.1. Implications of AML in the development of

future log parsers
Using AML, developers of log parsers can focus on

reducing errors of ommision and commission both at the
log message and template levels. This can be done in several
ways. The first one is to consider similarity instead of exact
match when assessing the degree by which two log messages
below to the same template. Based on our experiments,
we found that many parsing errors are caused by extensive
use of special and alphanumerical characters. Exact match
will almost always lead to errors. More on this in Section
6.3 where we discuss the concept of intelligent parsing.
Additionally, log parsers can use AML to test their parsers
and identify areas where they fail the most. For example,
some parsers may be good at identifying log messages, but
introduce many false positives and new templates. Others

<I. Sedki, A. Hamou-Lhadj, O. Ait-Mohamed>: Preprint submitted to Elsevier Page 17 of 22

<AML: An Accuracy Metric Model for Effective Evaluation of Log Parsing Techniques>

Table 17
Challenges in Log Parsing with Examples

Challenge Examples
Unseparated To-
ken Sequence

2022-03-15T13:45:32+00:00[ERROR]500InternalServerErrorID:123456

UUIDs or IDs ID:abcd1234efgh5678, ID:5678abcd-1234-efgh

Datetime Tokens Timestamp:[2022/03/15::13:45:32+00]

MAC Addresses Connected Device MAC=00-11-22-33-44-55, MAC=00:11:22:33:44:55

URLs with Query
Parameters

GET https://example.com/api?user=123&status=active&role=admin

Multi-level
Nested Tokens

Event [Timestamp:(2023-09-20 14:23:00) Details:(Error:Failed to

connect)]

Alphanumeric &
Special Charac-
ters

EventID:#A1b2_c3! - User ’john.doe’ authentication success

Delimiter Varia-
tions

INFO [2023-09-20] - User:john.doe | IP:192.168.1.1, Status=Active

IPv4 and IPv6
Addresses

IPv4: 192.168.1.1, IPv6: 2001:0db8:85a3:0000:0000:8a2e:0370:7334

may be good at detecting just the right number of templates,
but fail in associating log messages to these templates. The
ommission, commission, and ICSI can be readily used to
assess the strengths and weaknesses of a parser.
6.2. Problems with logging practices

Parsing errors are mainly caused by the inability to
distinguish between static and dynamic tokens. We found
that this issue can be reduced if better logging practices
are adopted. For example, consider the following two log
events of the HDFS dataset: transmit 1 2 3 and transmit

blk123. Parsing these events will lead to two templates,
namely, transmit * * * and transmit * despite the fact
that both events log the same information, which consists
of transmitting data blocks 1, 2, and 3. Another example
would be in the HPC log events Fan speeds (3552 3534

3375 **** 3515 3479) and Fan speeds (3552 3534 3375

11637 3515 3479. The inconsistencies in the way the logging
statements corresponding to these events are written tend
to mislead most parsers we examined in this paper. For
example, some parsers mistakenly generated two different
templates, namely Fan speeds (<*> <*> <*> **** <*> <*>) and
Fan speeds (<*> <*> <*> <*> <*> <*>). The lack of guidelines
for logging has been reported in many studies such as the
work of Keyur et al. [59] on the practice of logging in the
Linux system, and the work of Chen et al. [58] on the logging
practices in Java applications. We believe that improving
logging practices by following some standardized ways to
write logs can lead to improved parsing.
6.3. Intelligent parsing

One possibility to prevent parsing errors would be to
have a log parser that supports similarity instead of exact
match when comparing log events. For example, the two
HPC log events not responding and not-responding can
be considered similar and therefore mapped to the same
template. We should also design parsers that can predict the

structure of a log event by learning a partial representation
of the template. For example, for the log event Received

block blk_1687916 of size 910 from 10.240.15.214, it may
be sufficient to recognize part of the template (let us say
Received block * of) in order to classify unseen log events.
The remaining dynamic variables are still to be identified
later. However, this is much simpler to achieve than having to
identify the exact template when dealing with a diverse set of
log templates. Partial matching should be exercised with care
to avoid discarding important data that can affect log analyt-
ics tasks. In addition to this, we found many instances where
parsing can be made accurate if the parser has the ability to
recognize logs with similar semantics. For example, the two
log events packet sent to 16 and block sent to 45 from the
HDFS log dataset can be parsed correctly if we treat "packet"
and "block" as synonymous since both logs refer to "data
sent to a port number". Semantic analysis of logs can further
reduce ambiguities due to the inherent imprecision of natural
language. Future research should focus on developing an in-
telligent parser that considers the semantics of logs, perhaps
by integrating natural language processing techniques with
log parsing. In addition, a good parser should be able to
check for spelling errors, acronyms, and other imprecisions
pertaining to the use of natural language that almost always
lead to parsing errors.
6.4. Ground truth datasets to train the parsers

In this study, we used 2,000 log events from each dataset
to test the parsers. These datasets contain errors that have
misled many of the parsers we used. For example, in the
Mac log file, the token CrazyIvan46! in the log event CI46

- Perform CrazyIvan46! is considered static, while the to-
ken CrazyIvan46 refers to a username and, therefore, should
be dynamic. Another example would be the case of the
HDFS log dataset, where block ids such as blk_23333989 are
sometimes labeled * and other times as blk_*. The dynamic
variables that appear frequently are mistakenly parsed in

<I. Sedki, A. Hamou-Lhadj, O. Ait-Mohamed>: Preprint submitted to Elsevier Page 18 of 22

<AML: An Accuracy Metric Model for Effective Evaluation of Log Parsing Techniques>

Table 18
Comparison between Normal AML and Weighted AML

Aspect Normal AML Weighted AML

Metric Calculation
∑max(𝑁,𝐷)

1 𝐼𝐶𝑆𝐼𝑖
max(𝑁,𝐷)

∑max(𝑁,𝐷)
1 (𝑊 𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐼𝐶𝑆𝐼𝑖)

max(𝑁,𝐷)
Weighting Criteria Equal weight for all templates Custom weights based on log template importance/criticality

Interpretation General performance assessment Context-driven analysis
Additional Information Limited insight into error impact Highlights specific template-related errors

Use Cases Standard evaluation Security or domain-specific evaluation

the ground truth as static tokens. For example, the variable
fecd:467f appears 18 times in the Mac dataset without any
change. It was parsed as a static token, while it should be dy-
namic. Another common error in the ground truth consists of
considering static variables, which are syntactically similar
to dynamic variables, as dynamic variables. For example,
in the Hadoop log file, some parsers interpret the log event
jetty-6.1.26 as * despite the fact that jetty-6.1.26 refers
to static content. This type of static token is the hardest to
detect because it bears most of the characteristics of dynamic
variables. In this paper, although we have made every effort
to fix the ground truth of the datasets used in this study,
we believe that cleaner and larger ground truth datasets are
desirable.
6.5. Weighted AML

The introduction of weights to the AML metric could
enable a context-driven evaluation of log parsing errors.

The allocation of higher weights to certain templates
would underscore scenarios where missing certain log events
or templates is deemed more critical, possibly due to their
role in security, system performance monitoring, or other
tasks.

We can calculate the Weighted AML score using the
formula:

𝑊 𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐴𝑀𝐿 =
∑max(𝑁,𝐷)

1 (𝑊 𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐼𝐶𝑆𝐼𝑖)
max(𝑁,𝐷)

(15)

Assuming we are evaluating a log parsing tool for network
security with a ground truth dataset of five predefined log
templates:

• Template A: Firewall Rule Updated - Firewall rule
updated by user [username] for IP [IP]

• Template B: Suspicious Activity Detected - Suspi-
cious activity detected from IP [IP]

• Template D: System Error - System error: [error mes-
sage]

Template B, followed by D can be given a higher weight
due to their sensitivity. Table 18 compares normal AML to
weighted AML.

6.6. Diagnostic insights in template identification
The AML model in this paper is built on the principle

that precise template identification is central to effective log
parsing. We aim for a "perfect match," where every element
of a parsed log event aligns flawlessly with its ground truth.
However, in the practical world of log parsing, partial iden-
tifications are common and can be equally valuable. These
are instances where not all dynamic tokens are identified
but substantial portions are, offering useful insights. In these
cases, static tokens within the log events maintain their
categorization, illustrating a balance between accuracy and
completeness. While our focus is on reducing these errors,
we acknowledge that the path to perfection is paved with
instances of partial identifications, each bringing us a step
closer to optimal log parsing.

Even though our current AML model does not incor-
porate partial identifications, practitioners often find value
in partial identifications as they can significantly reduce
the manual workload, making the parsing process more
manageable and efficient.

In the landscape of log parsing metrics, the introduc-
tion and systematic analysis of partial identifications remain
largely unexplored. By including partial identifications in the
evaluation process, we believe future iterations of log pars-
ing models will offer more nuanced, practical, and actionable
insights.

Each partial identification, in its unique way, draws us
closer to a world where log parsing is not just about perfec-
tion but about practicality and efficiency.
6.7. Threats to Validity

Internal validity: Threats to internal validity are asso-
ciated with factors that may impact our results. Many of the
tools we used in this study contained bugs and old libraries.
We had to fix these bugs, and update the libraries. We tested
the new versions thoroughly to ensure that the changes we
made did not impact the functionality of the tools so as to
minimize potential internal threats to validity. In addition,
we corrected minor errors in the datasets as discussed in
Section 4.2. We carefully checked every log template and
made sure that our corrections did not alter the log event
structure represented by these templates.

External validity: Threats to external validity are re-
lated to the ability to generalize our results. To support
generalizability, we used 16 log datasets generated from a
variety of software systems and experimented with 14 log

<I. Sedki, A. Hamou-Lhadj, O. Ait-Mohamed>: Preprint submitted to Elsevier Page 19 of 22

<AML: An Accuracy Metric Model for Effective Evaluation of Log Parsing Techniques>

parsing tools, which cover most of the tools that exist in the
public domain. Although more studies should be conducted
to fully generalize our results, we believe that this threat
to validity is greatly minimized considering the number of
datasets and tools we have used in this paper.

Reliability validity: Reliability validity concerns the
ability to replicate this study. To mitigate this threat, we put
all the data used in this paper online, including the detailed
results of parsing 16 log datasets using 14 parsers. Data can
be found in Zenodo :
https://zenodo.org/record/7872794#.ZEsHxezMJhE

7. Future Work
The soundness of AML is supported by its comprehen-

sive evaluative scope, adaptability, quantitative rigor, and
potential for empirical validation. AML distinctly evaluates
errors of omission and commission, which are critical for
understanding the nuances of information loss and misin-
terpretation in log parsing. While this paper establishes a
foundation for evaluating log parsing tools using the AML
metric, there are additional validation strategies that we
believe could further substantiate the effectiveness of AML.
However, these strategies fall outside the current scope of
our research and are suggested as directions for future work:
Future research could include conducting empirical studies
to examine the correlation between AML scores and the
success of downstream tasks such as Anomaly Detection,
System Monitoring or Predictive Maintenance. Addition-
ally, incorporating human evaluation can provide valuable
insights into the practical utility of AML compared to other
metrics. Participants would perform typical log management
tasks using outputs from parsers with different AML scores.
After task completion, participants could provide qualitative
and quantitative feedback on the ease of use, effectiveness,
and overall satisfaction with the parsed data and benefits in
terms of task performance and data usability.

8. Replication Package
The datasets, scripts and results are available on Zenodo:

https://zenodo.org/record/7872794#.ZEsHxezMJhE

9. Acknowledgment
This work is partly supported by the Natural Sciences

and Engineering Council of Canada (NSERC).

10. Conclusion
In this study, we introduced AML, an innovative ac-

curacy metric tailored for log file parsing. AML uniquely
assesses the accuracy of log parsers by quantifying both
omission and commission errors at both the template and log
file levels, all encapsulated within a single metric. Through a
comprehensive evaluation, we have demonstrated that AML
surpasses existing accuracy metrics in terms of reliability
and ease of use for log parsing tasks.

Our extensive experimentation involved 14 log parsers
applied to 16 log file datasets from the LogHub bench-
mark, providing robust evidence of AML’s effectiveness as
a superior accuracy measure. Furthermore, we conducted a
comparative analysis, pitting AML against other established
accuracy metrics, highlighting its superiority in providing
a more nuanced and dependable assessment of log parsing
performance.

Beyond its role as a reliable evaluation metric, AML
offers an additional dimension of utility. It empowers prac-
titioners with the ability to dissect and comprehend the
root causes of parsing errors, opening up new avenues for
troubleshooting and refinement in log parsing processes.

As we look toward the future, there exist promising
directions for advancing AML and enhancing log parsing
tools. Future research endeavors could explore the introduc-
tion of weighted considerations for omission and commis-
sion errors or fine-tuning AML for specific log templates,
thereby tailoring the metric to specific application domains.
Additionally, the evolution of log parsing tools should incor-
porate intelligent parsing approaches that leverage seman-
tics alongside syntax, addressing the complex and evolving
nature of log data. Integrating natural language processing
capabilities could prove pivotal, especially when dealing
with the inherent ambiguities and imprecisions found in
natural language logs, even in cases lacking standardized
logging practices.

References
[1] S.N, C. Composite Index: Methods and Properties. Journal Of Applied

Quantitative Methods. 12 (2017)
[2] R.G, C. K, G. Assessing the accuracy of remotely sensed data: princi-

ples and practices. CRC Press; 3rd Edition. (2020)
[3] Graham, R.L., Knuth, D.E., Patashnik, O. and Liu, S., 1989. Concrete

mathematics: a foundation for computer science. Computers in Physics,
3(5), pp.106-107.

[4] Liu, C., Frazier, P. Kumar, L. Comparative assessment of the measures
of thematic classification accuracy. Remote Sensing Of Environment.
107, 606-616 (2007)

[5] Xu, W., Huang, L., Fox, A., Patterson, D. & Jordan, M. Detecting
Large-Scale System Problems by Mining Console Logs. Proceedings Of
The ACM SIGOPS 22nd Symposium On Operating Systems Principles.
pp. 117-132 (2009)

[6] He, S., Zhu, J., He, P. & Lyu, M. Experience report: System log analysis
for anomaly detection. 2016 IEEE 27th International Symposium On
Software Reliability Engineering (ISSRE). pp. 207-218 (2016)

[7] Lin, Q., Zhang, H., Lou, J., Zhang, Y. & Chen, X. Log clustering based
problem identification for online service systems. Proceedings Of The
38th Inƒternational Conference On Software Engineering Companion.
pp. 102-111 (2016)

[8] Oliner, A. & Stearley, J. What supercomputers say: A study of five
system logs. Proceedings Of The 37th Annual IEEE/IFIP International
Conference On Dependable Systems And Networks (DSN 2007). pp.
575–584 (2007)

[9] Lin, Q., Hsieh, K., Dang, Y., Zhang, K., Xu, Y., Lou, J., Li, C., Wu,
Y., Yao, R., Chintalapati, R. & Zhang, D. Predicting node failure in
cloud service systems. Proceedings Of The 2018 ACM Joint Meeting
On European Software Engineering Conference And Symposium On The
Foundations Of Software Engineering (ESEC/SIGSOFT FSE 2018). pp.
480–490 (2018)

[10] Lou, J., Fu, Q., Yang, S., Xu, Y. & Li, J. Mining Invariants from Con-
sole Logs for System Problem Detection.. USENIX Annual Technical

<I. Sedki, A. Hamou-Lhadj, O. Ait-Mohamed>: Preprint submitted to Elsevier Page 20 of 22

<AML: An Accuracy Metric Model for Effective Evaluation of Log Parsing Techniques>

Conference. pp. 23-25 (2010)
[11] Xu, W., Huang, L., Fox, A., Patterson, D. & Jordan, M. Online system

problem detection by mining patterns of console logs. Proceedings Of
The 9th IEEE International Conference On Data Mining (ICDM 2009).
pp. 588–597 (2009)

[12] He, S., Lin, Q., Lou, J., Zhang, H., Lyu, M. & Zhang, D. Identifying
impactful service system problems via log analysis. Proceedings Of The
2018 ACM Joint Meeting On European Software Engineering Confer-
ence And Symposium On The Foundations Of Software Engineering
(ESEC/SIGSOFT FSE 2018). pp. 60–70 (2018)

[13] Nagaraj, K., Killian, C. & Neville, J. Structured comparative analysis
of systems logs to diagnose performance problems. Proceedings Of The
9th USENIX Conference On Networked Systems Design And Implemen-
tation. pp. 26-26 (2012)

[14] Huang, P., Guo, C., Lorch, J., Zhou, L. & Dang, Y. Capturing and
Enhancing in Situ System Observability for Failure Detection. Proceed-
ings Of The 13th USENIX Conference On Operating Systems Design
And Implementation. pp. 1-16 (2018)

[15] Vaarandi, R. & Pihelgas, M. LogCluster-A data clustering and pattern
mining algorithm for event logs. Network And Service Management
(CNSM), 2015 11th International Conference On. pp. 1-7 (2015)

[16] Shang, W., Jiang, Z., Adams, B., Hassan, A., Godfrey, M., Nasser, M.
& Flora, P. An Exploratory Study of the Evolution of Communicated
Information about the Execution of Large Software Systems. 2011 18th
Working Conference On Reverse Engineering. pp. 335-344 (2011)

[17] Shang, W., Jiang, Z., Hemmati, H., Adams, B., Hassan, A. & Mar-
tin, P. Assisting developers of Big Data Analytics Applications when
deploying on Hadoop clouds. 2013 35th International Conference On
Software Engineering (ICSE). pp. 402-411 (2013)

[18] Campbell, J. Introduction to remote sensing. Geocarto International.
2 pp. 64-64 (1987)

[19] Koukoulas, S. Blackburn, G. Introducing New Indices for Accuracy
Evaluation of Classified Images Representing Semi-Natural Woodland
Environments.. Photogrammetric Engineering And Remote Sensing. 67
pp. 499-510 (2001)

[20] Fu, Q., Zhu, J., Hu, W., Lou, J., Ding, R., Lin, Q., Zhang, D. & Xie,
T. Where do developers log? an empirical study on logging practices in
industry. 36th International Conference On Software Engineering, ICSE
’14, Companion Proceedings, Hyderabad, India, May 31 - June 07,
2014. pp. 24-33 (2014), http://doi.acm.org/10.1145/2591062.2591175

[21] Zhu, J., He, S., Liu, J., He, P., Xie, Q., Zheng, Z. & Lyu, M. Tools and
benchmarks for automated log parsing. Proceedings Of The 41st Inter-
national Conference On Software Engineering: Software Engineering In
Practice, ICSE (SEIP) 2019, Montreal, QC, Canada, May 25-31, 2019.
pp. 121-130 (2019), https://dl.acm.org/citation.cfm?id=3339932

[22] He, P., Zhu, J., He, S., Li, J. & Lyu, M. An evaluation study on
log parsing and its use in log mining. 2016 46th Annual IEEE/IFIP
International Conference On Dependable Systems And Networks (DSN).
pp. 654-661 (2016)

[23] Makanju, A., Zincir-Heywood, A. & Milios, E. Clustering event logs
using iterative partitioning. Proceedings Of The 15th ACM SIGKDD
International Conference On Knowledge Discovery And Data Min-
ing, Paris, France, June 28 - July 1, 2009. pp. 1255-1264 (2009),
http://doi.acm.org/10.1145/1557019.1557154

[24] Vaarandi, R. A data clustering algorithm for mining patterns from
event logs. IP Operations Management, 2003.(IPOM 2003). 3rd IEEE
Workshop On. pp. 119-126 (2003)

[25] Nagappan, M. & Vouk, M. Abstracting log lines to log event types
for mining software system logs. Proceedings Of The 7th International
Working Conference On Mining Software Repositories, MSR 2010 (Co-
located With ICSE), Cape Town, South Africa, May 2-3, 2010, Proceed-
ings. pp. 114-117 (2010), http://dx.doi.org/10.1109/MSR.2010.5463281

[26] Dai, H., 0007, H., Chen, C., Shang, W. & Chen, T. Logram: Efficient
Log Parsing Using n-Gram Dictionaries. IEEE Trans. Software Eng.. 48,
879-892 (2022), https://doi.org/10.1109/TSE.2020.3007554

[27] Hamooni, H., Debnath, B., Xu, J., Zhang, H., Jiang, G. & Mueen, A.
LogMine: fast pattern recognition for log analytics. Proceedings Of The
25th ACM International On Conference On Information And Knowledge

Management. pp. 1573-1582 (2016)
[28] Makanju, A., Zincir-Heywood, A. & Milios, E. A lightweight al-

gorithm for message type extraction in system application logs. IEEE
Transactions On Knowledge And Data Engineering. 24, 1921-1936
(2012)

[29] Messaoudi, S., Panichella, A., Bianculli, D., Briand, L. & Sasnauskas,
R. A Search-based Approach for Accurate Identification of Log Message
Formats. Proceedings Of The 26th IEEE/ACM International Conference
On Program Comprehension (ICPC’18). pp. 167-177 (2018)

[30] He, P., Zhu, J., Zheng, Z. & Lyu, M. Drain: An online log parsing
approach with fixed depth tree. Web Services (ICWS), 2017 IEEE
International Conference On. pp. 33-40 (2017)

[31] Jiang, Z., Hassan, A., Hamann, G. & Flora, P. An Automated Ap-
proach for Abstracting Execution Logs to Execution Events. Journal Of
Software Maintenance. 20, 249-267 (2008)

[32] Mizutani, M. Incremental mining of system log format. Services
Computing (SCC), 2013 IEEE International Conference On. pp. 595-
602 (2013)

[33] Mizutani, M. Incremental mining of system log format. Services
Computing (SCC), 2013 IEEE International Conference On. pp. 595-
602 (2013)

[34] Shima, K. Length Matters: Clustering System Log Messages using
Length of Words. CoRR. abs/1611.03213 (2016)

[35] Fu, Q., Lou, J., Wang, Y. & Li, J. Execution anomaly detection in
distributed systems through unstructured log analysis. Data Mining,
2009. ICDM’09. Ninth IEEE International Conference On. pp. 149-158
(2009)

[36] Tang, L., Li, T. & Perng, C. LogSig: Generating system events
from raw textual logs. Proceedings Of The 20th ACM International
Conference On Information And Knowledge Management. pp. 785-794
(2011)

[37] Du, M. & Li, F. Spell: Online streaming parsing of system event logs.
Proceedings Of The 16th International Conference On Data Mining
(ICDM 2016). pp. 859-864 (2016)

[38] Khan, Z., Shin, D., Bianculli, D. & Briand, L. Guidelines
for Assessing the Accuracy of Log Message Template
Identification Techniques. Proceedings Of The 44th International
Conference On Software Engineering. pp. 1095-1106 (2022),
https://doi.org/10.1145/3510003.3510101

[39] Zhang, S. & Wu, G. Efficient Online Log Parsing with Log Punctua-
tions Signature. Applied Sciences. (2021)

[40] Mohammad, H. Sulaiman, M. A REVIEW ON EVALUATION MET-
RICS FOR DATA CLASSIFICATION EVALUATIONS. International
Journal Of Data Mining Knowledge Management Process. (2015)

[41] He, S., Zhu, J., He, P. & Lyu, M. Loghub: A Large Collection
of System Log Datasets towards Automated Log Analytics. ArXiv.
abs/2008.06448 (2020)

[42] Wilson, S. Mining Oblique Data with XCS. IWLCS. (2000)
[43] Ranawana, R. & Palade, V. Optimized Precision - A New Measure for

Classifier Performance Evaluation. 2006 IEEE International Conference
On Evolutionary Computation. pp. 2254-2261 (2006)

[44] Gu, Q., Zhu, L. & Cai, Z. Evaluation Measures of the Classification
Performance of Imbalanced Data Sets. ISICA 2009, CCIS 51. Berlin,
Heidelberg. (2009)

[45] Han, S., Yuan, B. & Liu, W. Rare Class Mining: Progress and
Prospect. 2009 Chinese Conference On Pattern Recognition. pp. 1-5
(2009)

[46] He, H. & Ma, Y. Assessment Metrics for Imbalanced Learning. Wiley
IEEE Press, 2013, Pp. 187-210. (2013)

[47] Sedki, I., Hamou-Lhadj, A., AitMohamed, O. & Shehab, M. An Ef-
fective Approach for Parsing Large Log Files. 2022 IEEE International
Conference On Software Maintenance And Evolution (ICSME). (2022)

[48] Provost, F. & Fawcett, T. Analysis and Visualization of Classifier Per-
formance: Comparison Under Imprecise Class and Cost Distributions.
Proceedings Of The Third International Conference On Knowledge
Discovery And Data Mining. 43-48 (1999,12)

[49] Provost, F. & Fawcett, T. Robust Classification for Imprecise Envi-
ronments. Machine Learning. 42 pp. 203-231 (2001,1)

<I. Sedki, A. Hamou-Lhadj, O. Ait-Mohamed>: Preprint submitted to Elsevier Page 21 of 22

<AML: An Accuracy Metric Model for Effective Evaluation of Log Parsing Techniques>

[50] Ho, T. & Basu, M. Complexity Measures of Supervised Classification
Problems. IEEE Trans. Pattern Anal. Mach. Intell.. 24 pp. 289-300
(2002,3)

[51] Hossin, M. OAERP: A Better Measure than Accuracy in Discriminat-
ing a Better Solution for Stochastic Classification Training. Journal Of
Artificial Intelligence. 4 pp. 187-196 (2011,6)

[52] Lingras, P. & Butz, C. Precision and Recall in Rough Support Vec-
tor Machines. Proceedings - 2007 IEEE International Conference On
Granular Computing, GrC 2007. pp. 654-654 (2007,12)

[53] Diana, E., Petrillo, F., Guéhéneuc, Y., Hamou-Lhadj, A. & Bouziane,
A. A Systematic Literature Review on Automated Log Abstraction
Techniques. Information And Software Technology. 122 pp. 106-276
(2020,2)

[54] Chow, M., Meisner, D., Flinn, J., Peek, D. & Wenisch, T. The Mystery
Machine: End-to-End Performance Analysis of Large-Scale Internet
Services. Proceedings Of The 11th USENIX Conference On Operating
Systems Design And Implementation. pp. 217-231 (2014)

[55] Mi, H., Wang, H., Zhou, Y., Lyu, M. & Cai, H. Toward fine-grained,
unsupervised, scalable performance diagnosis for production cloud
computing systems. IEEE Transactions On Parallel And Distributed
Systems. 24, 1245-1255 (2013)

[56] He, P., Zhu, J., He, S., Li, J. & Lyu, M. An evaluation study on
log parsing and its use in log mining. 2016 46th Annual IEEE/IFIP
International Conference On Dependable Systems And Networks (DSN).
pp. 654-661 (2016)

[57] Frost, J. Introduction to Statistics: An Intuitive Guide for Analyzing
Data and Unlocking Discoveries. (2019)

[58] Chen, B. & Jiang, Z. Characterizing logging practices in Java-based
open source software projects - a replication study in Apache Soft-
ware Foundation. Empirical Software Engineering. 22, 330-374 (2017),
http://dx.doi.org/10.1007/s10664-016-9429-5

[59] Patel, K., Faccin, J., Hamou-Lhadj, A. & Nunes, I. The sense of
logging in the Linux kernel. Empirical Software Engineering. 27, 153
(2022), https://doi.org/10.1007/s10664-022-10136-3

[60] Zhou, R., Hamdaqa, M., Cai, H. & Hamou-Lhadj, A. Mo-
biLogLeak: A Preliminary Study on Data Leakage Caused by Poor
Logging Practices. 27th IEEE International Conference On Soft-
ware Analysis, Evolution And Reengineering, SANER 2020, Lon-
don, ON, Canada, February 18-21, 2020. pp. 577-581 (2020),
https://doi.org/10.1109/SANER48275.2020.9054831

[61] Sasho Nedelkoski Self-supervised Log Parsing. Machine Learning
And Knowledge Discovery In Databases: Applied Data Science Track.
pp. 122-138 (2021), https://doi.org/10.1007

<I. Sedki, A. Hamou-Lhadj, O. Ait-Mohamed>: Preprint submitted to Elsevier Page 22 of 22

